TMTDyn: A Matlab Package for Modeling and Control of Hybrid Rigid-Continuum Robots Based on Discretized Lumped System and Reduced Order Models

S.M.Hadi Sadati ${ }^{1,2}$, S. Elnaz Naghibi ${ }^{3}$, Ali Shiva ${ }^{4,5}$, Brendan Michael ${ }^{4}$, Ludovic Renson ${ }^{1}$, Matthew Howard ${ }^{4}$, Caleb D. Rucker ${ }^{6}$, Kaspar Althoefer ${ }^{3}$, Thrishantha Nanayakkara ${ }^{5}$, Steffen Zschaler 4, Christos Bergeles ${ }^{2}$, Helmut Hauser ${ }^{1}$, and lan D. Walker ${ }^{7}$

Abstract

A reliable, accurate, and yet simple dynamic model is important to analyze, design and control hybrid rigid-continuum robots. Such models should be fast, as simple as possible and user-friendly to be widely accepted by the ever-growing robotics research community. In this study, we introduce two new modeling methods for continuum manipulators: a general reduced-order model (ROM) and a discretized model with absolute states and Euler-Bernoulli beam segments (EBA). Additionally, a new formulation is presented for a recently introduced discretized model based on EulerBernoulli beam segments and relative states (EBR). We implement these models to a Matlab software package, named TMTDyn, to develop a modeling tool for hybrid rigid-continuum systems. The package features a new High level Language (HLL) text-based interface, a CAD-file import module, automatic formation of the system EOM for different modeling and control tasks, implementing Matlab C-mex functionality for improved performance, and modules for static and linear modal analysis of a hybrid system. The underlying theory and software package are validated for modeling experimental results for (i) dynamics of a STIFF-FLOP continuum appendage, and (ii) general deformation of a fabric sleeve worn by a rigid link pendulum. A comparison shows higher simulation accuracy ($8-14 \%$ normalized error) and numerical robustness of the ROM model, and computational efficiency of the EBA model with near real-time performances that makes it suitable for large systems. The challenges and necessary modules to further automate the design and analysis of hybrid systems with a large number of states are briefly discussed in the end.

Keywords

TMT Lagrange dynamics, Hybrid mechanisms, Continuum robots, Cosserat rod, Tissue, Fabric, Software, High Level Language

Nomenclature

Acronyms

BVP Boundary Value Problem
CC Constant Curvature (Kinematics)
COM Center of Mass
EOM Equation of Motion
FEM Finite Element Method
MK Main Kinematic Chain
ODE Ordinary Differential Equation
PDE Partial Differential Equation
PVW Principle of Virtual Work
ROM Reduced-order Model
TMT TMT Method for Driving EOM
VC Variable Curvature (Kinematics)
Sets \& Constants
$\mathbb{N} \quad$ Natural Numbers

\mathbb{R}	Real Numbers
\mathbb{Z}	Integer Numbers
g	Gravitational Constant, $9.81\left[\mathrm{~m} / \mathrm{s}^{2}\right]$
Operators	
$*$	Rotating a Vector with a Quaternion
Δ	Arithmetic Difference

[^0]
Corresponding author:

S.M.Hadi Sadati, Department of of Engineering Mathematics, University of Bristol, Bristol, BS8 1TH, U.K.
Email: smh_sadati@kcl.ac.uk

\star	Translation/Quaternion Pair Rotation
\times	Cross Product for Vectors \& Mapping from \mathbb{R}^{i} to $\mathbb{S O}(i)$ for Quaternions
$a: b$	Vector of $[a, a+1, \ldots, b-1, b]$ e
Lie transformation Base	

Subscripts \& Superscripts

R	Rotation Matrix
r	Radius
S	ROM Shape Function Vector
s	Length Variable Along a Rod Backbone
T	Transformation Jacobian
V	Linearized Viscous Damping Matrix
w	Action in PWV Method
I	Unit Matrix

Introduction

Mimicking highly dexterous and deformable biological bodies has been a trending topic of multi-disciplinary research, called soft robotics, using intrinsically soft materials in the form of continuum robotic platforms Rus and Tolley (2015). Performing delicate tasks Cianchetti et al. (2014), high maneuverability in unstructured and confined environments Burgner-Kahrs et al. (2015); Cianchetti and Menciassi (2017); Walker et al. (2016), dexterous grasping Katzschmann et al. (2015), mimicking biological tissue and organs He et al. (2018), bioinspired dynamic locomotion Wehner et al. (2016) such as crawling Rich et al. (2018), terrestrial Godage et al. (2012) or submerged locomotion Cianchetti et al. (2015) are among the promises made by the researchers in the field. Soft robots are appealing to investigate new design and theoretical concepts such as variable stiffness structures McEvoy and Correll (2018), morphological computation Nakajima et al. (2018) and embodied intelligence Nakajima et al. (2015), to simplify the control and sensing tasks through robot embodiment Fchslin et al. (2012); Thuruthel et al. (2018a).

However, compliance has disadvantages, such as uncertain deformations, limited control feedback, reduced control bandwidth, stability issues, underdamped modes, and lack of precision in tasks involving working against external loads Blanc et al. (2017); Cianchetti et al. (2013). These usually result in modeling and/or control challenges for such designs. Besides, now more than anytime, unified frameworks are needed to transfer our well-established knowledge of dynamic system analysis, path planning and control design for rigid-body robots to soft robotic research Kapadia et al. (2010); Renda and Seneviratne (2018); Renda et al. (2018); Della Santina et al. (2018b) and to model hybrid rigid-soft body systems Sadati et al. (2018c); Patern et al. (2018). Such frameworks should be as simple as possible and easy to use, to be widely accepted by the ever-growing soft robotics research community with researchers from different disciplines and backgrounds. It should provide fast performance, to be suitable for control and design problem of soft systems with large state spaces. Also, it needs to be integrable with standard software platforms, e.g. C/C++ language, Matlab software, ROS (Robotic Operation System, see ros.org), etc., widely used in the community.

Here, we introduce two new modeling approaches for continuum rods and actuators, a general reduced-order model (ROM), and a discretized model with absolute states and Euler-Bernoulli beam segments (EBA). These models enable us to perform more accurate simulation of continuum
manipulators, as well as modeling 2D and 3D continuum geometries, something which has been missing in similar recent research Renda et al. (2018). In addition, a new formulation is presented for a recently introduced discretized model by Renda et al. (2018); Shiva et al. (2018) which is based on Euler-Bernoulli beam theory and relative states (EBR). These models are implemented in a Matlab software package, that we name TMTDyn, to establish a new modeling and simulation tool for hybrid rigid-continuum body systems. The package is improved with a new High level Language (HLL) text-based interface, a CAD-file import module, automatic formation of the system EOM for different modeling and control tasks, implementing Cmex functionality for improved performance, and other modules for static and linear modal analysis of a hybrid system. Our main goal is to make deriving EOM of hybrid rigid-continuum body robots, performing dynamic system analysis, state observation, and control system design tasks more accessible to the interdisciplinary soft robotics research community and people with limited expertise in dynamic system modeling. The rest of this section is dedicated to a brief review of the different elements of this research.

High Level and Domain Specific Languages

ROS, Orocos (Open Robot Control Software, see orocos.org), SmartSoft (see smart-robotics.sourceforge.net), OpenRTM (see openrtm.org), and Matlab Robotics System Toolbox (see mathworks.com/products/robotics) are some robotic software platforms developed to make robotics programming and configuration as accessible as possible to experts from different application domains. Domain-Specific Languages (DSLs), also known as High Level Languages (HLL), and Model-driven Engineering (MDE) are interesting emerging areas in the robotics research community, e.g. distributed robotics, system control, and vision, with significant potential in facilitating the programming of future robots. A DSL is a dedicated programming language for a particular problem domain, offering specific abstractions and notations, to decrease the coding complexity and increase programmer productivity. DSLs have been used for programming complex systems, such as robots, control systems, etc, for which traditional general-purpose languages do not provide a good correlation between the implementation requirements and language features. To address this, DSLs are powerful and systematic ways to provide two main features; (i) quick and precise adaptation by domain experts, who are not familiar with general purpose programming languages; (ii) hiding the architecture complexity by software engineers to facilitate complex configuration and design architectures before transferring to domain experts.

However, none of the aforementioned robotics software platforms are fully compatible with soft structure robots, which need modules for handling highly articulated geometries with repeated elements, discretization or employing reduced order model assumptions to simplify the modeling and control state space for a continuum geometry. Moreover, it is not always straightforward to access the derived Equations of Motion (EOM) which is necessary for off-the-shelf dynamic system analysis, design optimization, and control system design tasks. On the other hand, most recent efforts for publishing modeling packages for soft robots

Coevoet et al. (2017); Gazzola et al. (2018); Renda and Seneviratne (2018); Hu et al. (2018) were more focused on the feasibility of their modeling and control approach, cannot be extended easily due to not providing classical EOM for the system (mostly because of using differential equations and Finite Element Method (FEM) solvers, e.g. SOFA (Simulation Open Framework Architecture, see www.sofaframework.org) package Coevoet et al. (2017) and ChainQueen Hu et al. (2018)), and almost none of them provide an easy-to-use HLL to reach researchers with less expertise in mechanics of continuum structures. As a part of this research, we address these challenges by developing a Matlab based modeling package for modeling and control of hybrid robotic systems with minimal modeling and control states. To this end, the key challenge is to integrate continuum mechanics with traditional rigid body dynamics, which is widely being used in robot control research. To address this issue, we start with a brief review of the modeling methods for mechanical systems and, later, continuum elements.

Mechanical System Dynamics

Deriving EOM for modeling hybrid rigid-continuum body mechanisms has been a challenge in soft robotic research Boyer (2014); Rus and Tolley (2015); Burgner-Kahrs et al. (2015); Sadati et al. (2017b). The Newton-Euler method Jung et al. (2011), Lagrange dynamics Mustaza et al. (2018); Godage et al. (2016), the Principle of Virtual Work (PVW) Trivedi et al. (2008); Sadati et al. (2016, 2017a), TMT methods for deriving the Lagrange dynamics Sadati et al. (2018b) and Bond Graph approaches Sutar and Pathak (2017) have been used to derive EOM of such systems. Here, we disregard the Cosserat rod dynamics Till and Rucker (2017), FEM Coevoet et al. (2017) and the Moving Least Squares Material Point Method (MLSMPM) Hu et al. (2018), methods that result in a system of differential equations which are not inherently compatible with control design methods for rigid-body systems. Based on the Newton-Euler method, the EOM of a system can be derived by knowing the kinematic relations and dynamic interactions between the system components. This is a straight forward step-by-step derivation method that results in a large number of modeling states, including the internal forces. The Euler-Lagrange and Principle of Virtual Work methods benefit from a limited number of independent states (generalized coordinates) for which methods of controller design are investigated intensively. Most commercially available dynamical system modeling software, e.g. MSC. ADAMS Negrut and Dyer (2004), utilize Lagrange dynamics formulation. Complex and hard-to-interpret final sets of equations and complexity in dealing with nonlinear elastic and damping elements are the drawbacks of this method. Hence, usually, an extra step is needed to collect the final EOM in a close form vector formalism. The TMT method is based on parts of Lagrange's investigations on analytical mechanics, dealing with generalized coordinates, virtual work and inertial forces, which was published in 1788 and before his well-known "Lagrange method" Wisse and Linde (2007). L. Schwab and M. Wisse have named this method "TMT" because of the final form of the system inertial matrix (M) in the generalized coordinates space ($T^{\top} M T$), where T is the Jacobian transformation matrix
between the Cartesian and generalized coordinates spaces and superscript $\left({ }^{\top}\right)$ is the matrix transpose operator. As a result, higher order derivatives are eliminated in the derivation process and the EOM are directly derived in a closed vector formalism. The derived terms are independent, hence suitable for parallel numerical evaluation, and the final form of EOM is easy-to-interpret and suitable for controller design. It is easy to incorporate constraints, to derive inverse maps and to change the system EOM if the constraints or structural properties are changed without deriving the Lagrangian again. We have recently developed a Matlab software package, called AutoTMTDyn to derive TMT EOM of rigid-body mechanisms Sadati et al. (2018d, 2015).* AutoMTDyn was originally developed for deriving the TMT EOM of rigid-body systems Sadati et al. (2015) and used for analyzing free-fall righting maneuvers of a robot cat Sadati and Meghdari (2017), lumped system modeling of continuum appendage Sadati et al. (2017b), and dynamic analysis of a spider web structure Sadati et al. (2018a). In this paper, we introduce a new version of AutoTMTDyn, now called TMTDyn, which is equipped with a new High level Language (HLL) text-based interface, CAD-file import module, automatic formation of the system EOM for different modeling and control tasks, implementing Matlab C-mex functionality for improved performance, and modules for static and linear modal analysis of a hybrid system. We employed the TMT method to derive EOM of continuum bodies based on discretized and reduced order solutions. As a result, a unified software package is sought after for deriving EOM, control design, and numerical simulation of hybrid rigid-continuum body systems. To this end, a brief review is provided on different modeling elements and assumptions for continuum rods.

Mechanics of Continuum Structures

If taking a theoretical approach in constrast to pure learning Braganza et al. (2007); Thuruthel et al. (2018b), combined reduced-order solution and learning Thieffry et al. (2018a) approaches, and byond the distinction between 2 D vs. 3D and static vs. dynamic models, two key stages can be identified which determine the modeling strategy of a soft robot Burgner-Kahrs et al. (2015); Gazzola et al. (2018); Sadati et al. (2017b) (Table 1). (1) Modeling assumptions for (1-I) the system kinematics, (1-II) system conservation law (system mechanics), and (1-III) material constitutional law (material mechanics). This stage results in a system of differential equations for the mechanics of a continuum media. (2) The method to solve this resulting system, which can be based on (2-I) direct or (2-II) indirect methods. Here, we focus on modeling methods for 1-dimensional (1D) continuum elements, (continuum rods), as the most studied continuum structure in soft robotic research. Later we explain how to generalize models for continuum rods to 2-dimensional (2D) (membrane) and 3-dimensional (3D) continuum structures.

Table 1. Different elements of a model for continuum rods.

1- Modeling Assumptions
I- Kinematics
i- Continuous Geometry
a- Variable Curvature (VC- finite strain assumption)
b- Truncated Series Shape Assumption
c- Constant Curvature (CC)
ii- Discretized Geometry
a- Series Rigid-Body Kinematics
b- Screw Theory
c- Forward Discretization of VC
II- Mechanics (Conservation Law)
i- Cossert Rod Method
ii- Principle of Virtual Work (PVW)
iii- Beam Theory
iv- Lagrange Dynamics
III- Material Mechanics (Constitutional Law)
i- Linear Elasticity (Hooke's Law)
ii- Finite Strain Theory (Neo-Hookean, Money-Rivlin,... Gent, etc)
iii- Visco-Hyperviscoelastic
2- Solution
I- Direct Methods
i- Analytical Integration
ii- Numerical Forward Integration Steps
II- Indirect methods
i- Optimization Based Methods
ii- Finite Element Methods (FEM)
iii- Reduced Order Method (Ritz Method)
iv- Combination of the above

Mechanics of Continuum Rods

Two methods are widely used to describe continuum rod kinematics; (1-I-i) continuous and (1-I-ii) discretized Kinematics. (1-I-i-a) Variable Curvature (VC- finite strains assumption) Trivedi et al. (2008), (1-I-i-b) truncated series shape functions Godage et al. (2011, 2016); Sadati et al. (2018b), and (1-I-i-c) Constant Curvature (CC- as a subset of general shape function approach), which is probably the most simple and widely used assumption for soft manipulator modeling Webster and Jones (2010) report instances of employing continuous kinematics. (1-I-ii-a) Employing series rigid-body kinematics, by simplifying a continuum rod as a hyper-redundant mechanism with finite but large enough number of segments, based on transformation matrices for consecutive but distinct rotational and translational joints Della Santina et al. (2018a); Shiva et al. (2018), or methods based on (1-I-ii-b) Screw Theory Renda et al. (2017); Renda and Seneviratne (2018); Renda et al. (2018) and (1-I-ii-c) forward discretization of VC differential equations Shiva et al. (2018), where a skew-symmetric matrix of local curvatures/torsion vector is used to describe the local relative rotations along the backbone, are instances of using discretized representation of such system kinematics. (1-IIi) The Cosserat Rod method Trivedi et al. (2008); BurgnerKahrs et al. (2015), (1-II-ii) Principle of Virtual Work (PVW) Sadati et al. (2017a), (1-II-iii) Beam Theory Sadati et al. (2017a), and (1-II-iv) Lagrange Dynamics Godage et al. (2016); Sadati et al. (2018b); Della Santina et al. (2018a) are used to derive the system governing equation (conversational law). The material constitutional law (material mechanics) is usually derived based on (1-III-i) linear elasticity
theory (Hookes law) Trivedi et al. (2008); Godage et al. (2016); Sadati et al. (2017b), (1-III-ii) finite strain theory (considering large strain in hyperelastic materials, such as Neo-Hookean Trivedi et al. (2008); Sadati et al. (2017a,b); Shiva et al. (2018), Mooney-Rivlin, Gent Shiva et al. (2018), etc), or (1-III-iii) by considering hyper-viscoelastic properties Sadati et al. (2018b); Mustaza et al. (2018). Any combination of the above choices results in a system of Ordinary (ODE) or Partial Differential Equations (PDE) to be solved numerically based on the system initial and boundary conditions. Using shape functions or discretized kinematics results in PDEs with decoupled spatial and time domains where direct solutions based on (2-I-i) analytical, if possible, or (2-I-ii) numerical forward integration steps in spatial and time domain can be used to solve the resulting initial value problems Godage et al. (2016); Sadati et al. (2017a, 2018b). Such systems turn into a Boundary Value Problem (BVP), if static solutions are sought, where forward integration is valid when distributed loads, e.g.body weight, are neglected Shiva et al. (2018). Alternatively, indirect solutions can be sought. (2-II-i) Optimization-based methods, i.e. single shooting Sadati et al. (2017a,b, 2018b), multiple shooting, and concatenation methods, are suitable for BVPs resulting from static models with general loads, or for learning the coefficients of an approximate series solution Godage et al. (2011) or gains in a neural network model Thuruthel et al. (2018b). (2-II-ii) Finite Element Methods (FEM) or similar segmentation methods Cianchetti and Menciassi (2017); Bieze et al. (2018) are suitable if spatial (kinematics) discretization methods are used where, instead of a forward integration over the spatial domain, a system of nonlinear equations is formed with a large but sparse coefficient matrix. The system equilibrium point in static cases or at every time step of a dynamic simulation is found by calculating the pseudo-inverse of the coefficient matrix, while satisfying all the geometrical, dynamical and optimal control constraints Cianchetti and Menciassi (2017). While considering truncated series solutions as the system kinematics (2-II-iii) reduced order Thieffry et al. (2018b) or Ritz Sadati et al. (2018b) method for solving a PDE problem, different choices of weighting functions can be used to improve the accuracy of the solution, e.g. in the case of Ritz-Galerkin methods Tunay (2013); Sadati et al. (2018b). Finally, (2-II-iv) a combination of the above methods can be used, usually for solving PDEs resulting from complex geometries. As an example of general practice in many commercially available FEM solvers, Tunay used a discrete Galerkin method, where weighted governing equations are used to construct the FEM solution for pneumatic actuators with general deformation Tunay (2013). Sadati et al. used forward integration on spatial domain for the PDEs resulting from employing reduced order solutions for continuum manipulator kinematics, and then combined that with single shooting optimization method to find the system static solution under excessive external tip loads Sadati et al. (2017a, 2018b). Bieze et al. combined FEM and optimization methods to solve the closed-loop control problem of continuum manipulators Bieze et al. (2018).

[^1]Gazzola et al. combined FEM with forward integration on time-domain in dynamic simulations Gazzola et al. (2018). Thieffry et al. constructed a reduced order model based on dominant deformation modes that are found from multiple FEM based simulations of a system under different loading conditions. The coefficients of such solution were then optimized to solve for general cases Thieffry et al. (2018b). Duriez, Bieze and Thieffry used a SOFA FEM modeling package for real-time dynamic simulation of soft structures Cianchetti and Menciassi (2017); Bieze et al. (2018); Thieffry et al. (2018b).

In a comparative study with experimental results with a single module STIFF-FLOP appendage Sadati et al. (2017b), we have recently shown the advantage of:

- a lumped system approach (1-I-ii-a \& 1-II-iv \& 2-I-i) for dynamic analysis and traditional control design
- CC and modified CC (1-I-i-c \& 1-II-ii \& 2-Ii) for considering structural complexity and design parameter study
- Cosserat rod theory (1-I-i-a \& i-II-i \& 2-II-i) for accuracy in general cases
- reduced order series solutions (1-I-i-b \& 2-II-i) for real-time performance, all based on 1-III-i if needed.

We show that combining reduced order kinematics, the Cosserat rod mechanics, numerical integration on spatial domain and optimization based solution (1-I-i-b \& 1-IIi \& 2-I-ii \& 2-II-i) produces most of the aforementioned advantages, i.e. accuracy, simple control design, real-time performance, considering structural complexity for a single STIFF-FLOP appendage in planar motion with excessive external load at the tip Sadati et al. (2018b). Further, we generalize our solution for multi-segment arms in general 3D dynamic motion and compare the accuracy and numerical performance of the results with models with other assumptions. Additionally, the discretization method presented by Renda et al. Renda et al. (2018), which is based on Screw Theory and transformation matrices, is modified to use absolute (independent) states to achieve discretized models for multi-dimensional continuum geometries with a large number of states and significantly improved numerical efficiency.

Aims and Objectives

In the following sections, first, we discuss rigid system kinematics and how they can be unified with variable curvature and discretized continuum kinematics, with relative and absolute (independent) states. A new general yet efficient reduced order solution for the rod backbone is discussed based on truncated series. Then, hybrid system dynamics is discussed where a lumped-system representation of the Cosserat rod theory and a new discretization method based on absolute (independent) states is presented. As a result, the relations for one-dimensional continuum elements can be generalized to model two-dimensional (membrane or fabric) and three-dimensional (tissue block) geometries. Subsequently, we discuss how these modeling methods are implemented in the newly developed TMTDyn package with new functionalities and modules. The software package
and experimental results from a (STIFFness controllable Flexible and Learn-able manipulator for surgical OPerations) continuum appendage Fras et al. (2015) are used to investigate the computational performance and simulation accuracy of the discussed continuum rod models. Finally, the package is tested for dynamic modeling a system with a 2D continuum geometry, a rigid link pendulum with a fabric sleeve on, and compared with experimental results. A discussion and conclusion are presented as the final section of this paper.

Hybrid Systems Mechanics

A dynamic system with inertial, compliant and constraining elements can be assumed as a set of lumped (point) masses, usually assumed at the system elements' Center of Mass (COM) locations, with moments of inertia which are connected with spring/dampers and joints to the adjutant lumped masses. For a continuum system, where usually a system of differential equations describes the system mechanics, a differential format of the lumped-system approach can be employed. To this end, first, the free body diagram of the load balance in a single differential element is drawn, then the lumped-system equivalence of the system is assumed where the parameters are differential terms. In the following sections, first the rigid- and continuum-body system kinematics using quaternions and the reduced-order method of using truncated polynomial series are described. Then, the TMT dynamics of such systems are discussed. Finally, we explain how to derive the lumped-system equivalence of Cosserat rod and reduced-order methods with relative and absolute (independent) states.

Hybrid System Kinematics

Rigid Body Kinematics- System kinematics describes the geometric relations between the system elements in terms of rotation and translation. As a result, equations describing the position vector and orientation of each point of the system (usually only COMs and joint axis) are derived. The rotations/orientations can be described in terms of rotation matrices $R_{[3 \times 3]}$, quaternions $Q_{[1 \times 4]}$ or screw theory and Lie group notations, and the translation is a vector ρ_{t}. Rotation matrices and Screw Theory result in the same final set of equations, despite their differences in notation. Quaternion representation of rotations, implemented in the $T M T D y n$ package, results in fewer states in the system EOM (3 for a quaternion rotation and 6 for a rotation matrix) compared to screw transformations and angle-axis representation of rotations. This method, only if all the four quaternion elements are considered as the system states, does not have inherent singular points associated with the transformation matrices and screw transformations. Also, Matlab is shown to be faster in optimizing the derived equation when quaternions are used. However, quaternion arithmetic requires more numerical operations, as described below.

Unit quaternion representation of a rotation ϕ around a unit vector $\hat{\rho}_{[1 \times 3]}$ is $Q=\left[Q_{0}, Q_{\rho}\right]$, where $Q_{0}=\cos (\phi / 2)$ and $Q_{\rho}=\sin (\phi / 2) \hat{\rho}$, hence, basic rotation around frame x , y-, or z-axis is simply setting $\hat{\rho}$ to \hat{i}, \hat{j}, or \hat{k} respectively. Alternatively, if a general 3D rotation/orientation is
described with the three elements of Q_{ρ}, we have $Q_{0}=$ $\sqrt{1-Q_{\rho} Q_{\rho}^{\top}}$. The method of defining a rotation with only three parameters does not suffer from singularity around 0 [deg] (which is associated with the singularity of CC and series rigid-link kinematics of continuum rods at straight configuration). Note that $Q_{0}=\sqrt{1-Q_{\rho} Q_{\rho}^{\top}}$ is also an equally valid scalar part. Following any of the above formulations, by definition, can never produce a quaternion with both positive and negative scalar part and really employ the whole space of quaternions, rather only the ones with positive or scalar parts. As a result, this method will suffer from inherent representational singularities, just like Euler angles do but for rotations approaching ± 180 [deg] about any axis. One should use such method only for rotations $\in(-\pi, p i)$, not inclusive of $\pm \pi$. An alternative is defining a rotation with all the four quaternion elements Tunay (2013); Till and Rucker (2017); Rucker (2018) which is not considered here due to the extra needed state.

Consecutive local rotations are handled by simple righthand multiplication $R_{1: n}=\Pi_{i=1}^{n} R_{i}$, or matrix multiplication of quaternions as $Q_{1: n}=Q_{1: n-1} \times Q_{n}$, where $Q \times$ is equivalent to a matrix product as

$$
Q \times=\left[\begin{array}{cccc}
Q_{0} & -Q_{\rho_{1}} & -Q_{\rho_{2}} & -Q_{\rho_{3}} \tag{1}\\
Q_{\rho_{1}} & Q_{0} & -Q_{\rho_{3}} & Q_{\rho_{2}} \\
Q_{\rho_{2}} & Q_{\rho_{3}} & Q_{0} & -Q_{\rho_{1}} \\
Q_{\rho_{3}} & -Q_{\rho_{2}} & Q_{\rho_{1}} & Q_{0}
\end{array}\right]
$$

and $1: n$ means considering all the instances with index 1 to n. For rotating/transforming a vector ρ to ρ_{r} with quaternions, we have $\rho_{r}=R \rho$ with rotation matrices and $\left[0, \rho_{r}\right]=$ $\left[[Q]_{\times}[0, \rho]\right]_{\times} \operatorname{conj}(Q)$, where $\operatorname{conj}(Q)=\left[Q_{0},-Q_{\rho}\right]$ is the definition of quaternion inversion $\left(Q^{-1}=\operatorname{conj}(Q)\right)$. We present the above quaternion manipulation by $\rho_{r}=Q * \rho$ in the rest of this text for simplicity. A translation $\left(\rho_{t}\right)$ followed by a rotation (R or Q) can be represented by a 4×4 transformation matrix $\Gamma=\left\{R, \rho_{t}\right\}$ as $\Gamma(1: 3,1: 4)=$ $\left[R, \rho_{t}\right], \Gamma(4,1: 4)=[0,0,0,1]$, where consecutive transformations are handled by simple multiplication of Γ as $\Gamma=$ $\Pi_{i=1}^{n} \Gamma_{i}$, and a vector transformation by $\rho_{r}=\Gamma \rho$. We use a similar quaternion transformation pair as $\Xi=\left\{Q, \rho_{t}\right\}$, where consecutive transformations are handled by $\Xi_{1: n}=$ $\left\{Q_{1: n}, \rho_{t_{1: n}}\right\}$, in which $\rho_{t_{1: n}}=\rho_{t_{1: n-1}}+Q_{1: n} * \rho_{t_{n}}$ and $Q_{1: n}=Q_{1: n-1} \times Q_{n}$. We present the above quaternion pair transformation as $\Xi_{1: n}=\Xi_{1: n-1} \star \Xi_{n}$ in the rest of this text for simplicity. All the vectors in the rest of this paper are w.r.t. and expressed in the system reference frame, unless stated otherwise.

Each joint can be described as a set of transformations (Γ_{j} or Ξ_{j}) and the system kinematics represents the joint axis transformations w.r.t. and expressed in the system reference (inertial) frame. Then, the linear velocity of the body COM, to which the joint (j) is immediately connected in the system main kinematic chain, is $\dot{\rho}_{m}=T_{\rho_{m}} \dot{q}$, where $T_{\rho_{m}}=\rho_{m, q}$ is the Jacobian of the transformation that maps the link COM position vector between the Cartesian and the system state spaces, $\rho_{m}=\Xi_{j} * \rho_{\text {com }}$ is the COM position vector, q is the system state (DOF) vector, $\rho_{\text {com }}$ is the COM local vector (w.r.t. and expressed in local frame), superscripts (${ }^{\circ}$) and (${ }^{*}$) are for the first and second temporal derivatives, and subscript (,) represents partial derivatives as $X_{, x}=\partial X / \partial x$.

The COM rotational velocity Ω_{m} is derived w.r.t. the reference frame but expressed in the link local frame, since it is easier to calculate the link second moment of inertial w.r.t. the link local frame. We have, $\Omega_{m}=T_{Q_{j}} \dot{q}$, where $T_{Q_{j}}=$ $\left(2 Q_{j}^{-1} \times Q_{j, q}\right)_{\left[2: 4,1: n_{q}\right]}$ is the Jacobian of the transformation that maps the link COM orientation quaternion to the system state space, and n_{q} is the number of system states (DOFs). Finally, the link (rigid-body) inertial matrix (M) and the Jacobian of the transformation map to the system state space $\left(T_{m}\right)$ become

$$
M=\left[\begin{array}{cc}
m \mathbf{I}_{[3 \times 3]} & 0 \tag{2}\\
0 & J_{m}
\end{array}\right], T_{m}=\left[\begin{array}{cc}
T_{\rho_{m}} & 0 \\
0 & T_{Q_{j}}
\end{array}\right]
$$

where m is the body mass, J_{m} is the body second moment of inertia $[3 \times 3]$ matrix, and $\mathbf{I}_{[n \times n]}$ is an $[n \times n]$ unity matrix.

Continuum Rod VC Kinematics- We use 1-dimensional (1D) continuum elements, i.e. continuum rods, as the basis of modeling continuum geometries in this work. A higher dimensional geometry (e.g. a mesh geometry) can be constructed based on lumped masses (e.g. nodes of a mesh) interconnected by these 1D elements (e.g. edges of the mesh). Using the Cosserat rod method, which considers all six transnational (strains- ξ) and rotational (curvatures/torsion- ζ) differential states, is beneficial for 1D continuum elements. It is not the most efficient method for higher dimensional geometries, where the strain field is sufficient to calculate the distortions too; however, it is well suited for our main purpose here, which is deriving easy to interpret EOM of hybrid systems suitable for system dynamics analysis and controller design. Such models are not aimed at exact geometrical analysis and design, for which FEM methods are more suited. They rather are built upon simplifying assumptions for improved performance with the aim of investigating the large state space of such systems to clarify their underlying dynamics and/or control opportunities/challenges. We have recently used Variable Curvature (VC), based on rotation matrices, and Beam theory to investigate continuum manipulator mechanics in static and dynamic motions Sadati et al. (2017b,a, 2018b) and for a hybrid rigid-continuum body system proposing of a highly-articulated inter-locking interface for stiffness control of a continuum appendage Sadati et al. (2018c,a). We showed that employing a beam theory approach simplifies solving the BVP for static analysis of a continuum rod with numerical optimization-based or reduced order model methods. However, it is not a good candidate as a part of a unified framework for modeling hybrid systems and especially in a lumped system approach framework. VC kinematics and the Cosserat rod theory are used to model the static mechanics of continuum rods, based on rotation matrices Gazzola et al. (2018) and quaternion Trivedi et al. (2008); Burgner-Kahrs et al. (2015) representation of rotations.
Here, the equations are derived in a local physical curvilinear coordinates $\left[\hat{d}_{1}, \hat{d}_{2}, \hat{d}_{3}\right]$, where s is the variable along the backbone, \hat{d}_{3} is tangent to the backbone, and at the rod base we have $\left[\hat{d}_{1}, \hat{d}_{2}, \hat{d}_{3}\right](s=0)=[\hat{i}, \hat{j}, \hat{k}]$ (Fig. 1.a).

The rod backbone curve spatial configuration $\left(\rho_{s}\right)$ and $1 \times$ 4 rotation quaternion unit vector $\left(Q_{s}\right)$, expressed in inertial Cartesian coordinates ($[\hat{i}, \hat{j}, \hat{k}]$), are derived according to VC

Figure 1. a) Variable curvature kinematics and free body diagram of Cosserat rod method for one differential element along the continuum backbone. Subscript (l), (u), and (σ) are for the external point loads at the along the backbone, loads due to internal pressures and/or tendons' tension (inputs) if any, and distributed loads, e.g. due to gravity, respectively. $[f, \tau]_{s}$ are the structural internal loads induced in response to the aforementioned loads. Note the direction of the load vectors. b) Discretized VC kinematics and lumped mass representation of Cosserat rod method for the same continuum rod as in (a). Lumped mass representation of Cosserat rod method is equivalent to assuming a concentrated mass at the base of each differential/discretized element along the rod backbone.
as in Rucker (2018); Trivedi et al. (2008)

$$
\begin{equation*}
Q_{s}^{\prime}=Q_{s} \times\left[0, \zeta_{s}\right] / 2, \rho_{s}^{\prime}=Q_{s} *\left(\xi_{s}+[0,0,1]\right) \tag{3}
\end{equation*}
$$

where superscript (${ }^{\prime}$) is used spatial differentiation as $x^{\prime}=$ $\partial x / \partial s$. The simple implementation of quaternion rotation is more computationally expensive than using rotation matrices R_{s} as $R_{s}^{\prime}=R\left[\zeta_{s}\right]_{\times}$and $\rho_{s}^{\prime}=R\left(\xi_{s}+[0,0,1]\right)$, where []$_{\times}$ denotes the standard mapping from \mathbb{R}^{3} to $\sim \rtimes(3)$ BurgnerKahrs et al. (2015). However, quaternions are reported to be better in terms of numerical integration accuracy, and preserving frame orthogonality and vector length Trivedi et al. (2008); Rucker (2018).

Discretized VC Kinematics- Discretized versions of Eq. 3 with rotation matrices are discussed in Takano et al. (2017); Renda and Seneviratne (2018); Renda et al. (2018); Shiva et al. (2018). Shiva et al. used first order discretiztion, $R_{i+1}=R_{i}\left(\zeta_{i} \Delta s+\mathbf{I}_{[3 \times 3]}\right)$ (i is the element numerator, , , which is probably the simplest assumption, failing to conserve the principal properties of a rotation matrix. Renda et al. used the same method in the context of screw theory as $R_{i+1}=R_{i} e^{\zeta_{i} \Delta s}$, where $e^{\zeta \Delta s}=\zeta \Delta s+$ $\mathbf{I}_{[3 \times 3]}$ Renda and Seneviratne (2018); Renda et al. (2018). Takano et al. used the most accurate representation for ζ with Euler angles (three consecutive rotations around local frame principle unit vectors) with 1-2-3 $(x-y-z)$ order $\left(R_{x y z_{\zeta}}=R_{x_{\zeta_{1}}} R_{y_{\zeta_{2}}} R_{z_{\zeta_{3}}}\right)$, as $R_{i+1}=R_{i} R_{x y z_{\zeta_{i}}}$. A similar representation is discussed in Shiva et al. (2018), appendix section, arguing that the order of the rotations is not important as long as small enough elements are considered along with the backbone (infinitesimal curvatures/torsion). They showed that using any of the above methods does not affect the accuracy of modeling a short appendage with beam theory, even for large deformations. Here we use the first representation used by Shiva et al. and Renda et al., since it

Figure 2. Different modeling assumptions for a continuum rod. a) Rod differential Variable Kinematics (VC), b) discretized VC framework, c) Reduced Order Model (ROM) based on a polynomial series solution for the backbone kinematics, d) equivalent highly-articulated series rigid link mechanism, e) discretized model with relative states from Euler-Bernoulli (EB) beams, f) discretized model with absolute states (w.r.t. reference frame) and EB beam compliant connections. In the case of absolute states, we may assume that segments are connected to the ground with zero stiffness elastic elements and to each other with EB beams. Backbone is shown by a continuous gray line and dashed curves are EB beam sections.
is easy to interpret its inverse as $\zeta_{i}=R_{i}^{\top}\left(R_{i+1}-R_{i}\right) / \Delta s$, which is necessary for modeling a continuum rod with absolute (independent) modeling states (a new contribution of this paper). Using quaternions and their properties, the final form of the discretized equations are

$$
\begin{align*}
Q_{i+1} & =Q_{i} \times\left[1, \alpha_{i} / 2\right], \tag{4}\\
\rho_{i+1} & =Q_{i} * \epsilon_{i}+\rho_{i},
\end{align*}
$$

for VC kinematics and

$$
\begin{align*}
{\left[0, \alpha_{i}\right] } & =2 Q_{i}^{-1} \times\left(Q_{i+1}-Q_{i}\right), \tag{5}\\
\epsilon_{i} & =Q_{i}^{-1} *\left(\rho_{i+1}-\rho_{i}\right),
\end{align*}
$$

for their inverse. Here, $\alpha=\zeta \Delta s$ is the local bending/twist angle vector, and $\epsilon=\Delta \rho=(\xi+[0,0,1]) \Delta s$ is the deformed local position/translation vector. Notice that Q_{i} is the absolute orientation quaternion at each point, but α describes the relative orientation of consecutive elements. The above equations show that the deformation of a discretized element can be modeled as a quaternion transformation pair $\Xi=\left\{Q_{\alpha}, \epsilon\right\}$, which is a 3D translational joint with state space ϵ and initial value ϵ_{0}, followed by a 3D rotational joint with state α, initial value α_{0} and quaternion representation of $Q_{\alpha}=[1, \alpha / 2]$ (Fig. 1.b). The same can be said if using R as $\Gamma=\left\{R_{x y z_{\alpha}}, \epsilon\right\}$. Having an element's initial bending/twist angle (α_{0}) and a local translation vector $\left(\epsilon_{0}\right)$, the local deformation of the discretized geometry ($\Delta \alpha=$ $\alpha-\alpha_{0}$ and $\Delta \epsilon=\epsilon-\epsilon_{0}$) can be calculated for deriving the element viscoelastic mechanical action due to system deformation.

Reduced Order Kinematics- Reduced Order Models (ROM) for continuum rod kinematics is discussed by Godage et al. Godage et al. $(2011,2016)$ based on the pressure chambers' length for a pneumatic soft manipulator. The presented solution is hard to interpret, results in complicated dynamic derivations, and the mechanical coupling between the actuation chambers' input pressure and length are not considered. A large number of coefficients that should be learned through experimental trials is another drawback of such a method. In our previous work, we showed the advantageous numerical performance and accuracy of using a truncated Lagrange polynomial series passing through some arbitrary points along the backbone Sadati et al. (2018b). The proposed solution is easy to interpret for shape estimation and controller design, since the used polynomial is constructed using Cartesian coordinates of physical points, and has small number of states (6 for a short appendage consisting of Cartesian coordinates of 2 points at the appendage tip and mid-length). Both methods solve the singularity problem of using Constant Curvature and rotation matrix representations. However, we used the CC assumption to compensate for the imaginary torsion of a FrenetSerret frame and to find the physical torsion of the appendage cross-section based on the input chambers' pressure. In addition, the cross-section shear was neglected and a mean axial strain is assumed along the backbone. The kinematics was combined with Beam theory for static modeling and PVW for dynamic modeling, using Ritz and Ritz-Galerkin solutions. Duriez, Bieze and Thieffry have recently generalized the same concept to modeling and control of complex continuum geometries by extracting the dominant deformation maps using the SOFA FEM package Cianchetti and Menciassi (2017); Bieze et al. (2018); Thieffry et al. (2018b).

Here, we drop using FrenetSerret frames and present a new general ROM approach to account for the cross-section local strains, as well as dealing with curvatures/torsion without any secondary assumptions, e.g. CC. Additionally, a simple polynomial is used instead of a Lagrange polynomial that results in simpler and faster derivation of the system kinematics. An inverse linear problem is solved to find the initial value of the polynomial coefficients based on the position and orientation of some nodes along the rod
backbone. The final solution is more suitable for Cosserat rod and PVW methods. We assume that the manipulator geometry is defined by 6 truncated polynomial series of order $n_{r}+1$ for position and n_{r} for orientation map, as

$$
\begin{equation*}
\left[\rho, Q_{\rho}\right]=\sum_{i=1}^{n_{r}}\left(C_{r} S_{i}\right)+S_{0} \tag{6}
\end{equation*}
$$

where Q_{ρ} is the vector part of the quaternion representation of backbone orientation (Q) with $Q_{0}=\sqrt{1-Q_{\rho} Q_{\rho}^{\top}}, n_{r}$ is the polynomial order, $C_{r\left[6 \times n_{r}\right]}$ is the polynomial coefficient matrix which is considered as the system modeling states, $S_{i}=[s, s, s, 1,1,1] s^{i}$ and $S_{0}=[0,0, s, 0,0,0]$ are the shape function matrices that satisfies the rod base boundary conditions, i.e. being perpendicular to the base. Defining $S=$ $S_{1: n_{r}}$, we can rewrite the above equation as $\left[\rho, Q_{\rho}\right]=C_{r} S+$ S_{0}. The state (coefficient matrix) initial values ($C_{r 0}$) are found based on position $\left(\rho_{0}\right)$ and orientation $\left(Q_{\rho 0}\right)$ of a few points along the manipulator backbone $\left(s_{r}\right)$ by solving the following inverse problem, $C_{r 0}=\left(\left[\rho_{0}, Q_{\rho 0}\right]-S_{0 s_{0}}\right) S_{s_{0}}^{-1}$. The above inverse problem can be solved efficiently using Matlab inv function. ρ_{0} and $Q_{\rho 0}$ can be simply measured from experimental observations using magnetic or visual trackers. For the local strain ξ and curvatures/torsion ζ, from Eq. 3 and similar to the inverse map in Eq. 4, we obtain

$$
\begin{equation*}
[0, \zeta]=2 Q^{-1} \times Q^{\prime}, \xi=Q^{-1} * \rho^{\prime}-[0,0,1] . \tag{7}
\end{equation*}
$$

$x i$ and ζ are used to calculate the mechanical action of the rod structural compliance. Alternatively, the system geometry can be described using only four polynomials, three for ρ and one for twist angle $\left(\theta_{\hat{1}}\right)$, where the bending angles are found by compensating the FrenetSerret frames non-physical orientation using $\theta_{\hat{1}}$. Such a solution results in a system with a smaller number of states, but more complex equations to handle, and inherent singular points.

Hybrid System Dynamics

Dynamic modeling and controller design for hybrid systems are practiced, by having a kinematic model with a finite number of states. The discussed discretization method and reduced order model are the key elements in modeling such systems. We use the TMT method for deriving vector formalism of inertial terms in Lagrange EOM. The TMT method benefits from a smaller number of steps and simpler procedures compared to deriving EOM based on a system Lagrangian. A separate set of equations are derived for each body in the system that speeds up the derivation and optimization of derived equations, as well as providing the possibility of implementing parallel numerical simulation methods for large systems. However, the Principle of Virtual Work is used to derive the actions for the system springs, dampers, and input forces, due to the flexibility and simplicity of this approach in handling different element types.

TMT Method for EOM Inertial Terms- From Newton's second laws of motion for the inertial terms (related to M) and gravitational forces (related to g) of a rigid body EOM in general free motion, we have $M \ddot{\chi}=f_{\chi}$, where $\chi=\left[\rho, Q_{\rho}\right], M$ as in Eq. 2, f_{χ} are the forces in Cartesian
coordinates, e.g. body weight $f_{\chi}=f_{g}=M[g, 0,0,0]$, and $g=[0,0,9.81]\left[\mathrm{m} / \mathrm{s}^{2}\right]$ is the gravity vector. From mapping the system states from Cartesian coordinates to state space coordinates using the Jacobian transformation matrix, we have $T_{m}=\chi_{, q}$, where q is the vector of system states), and hence $\dot{\chi}=T_{m} \dot{q}, \ddot{\chi}=T_{m} \ddot{q}+\left(T_{m} \dot{q}\right)_{, q} \dot{q}$. Combining the above relations and transforming the equation to the state space (using T_{m}^{\top}) we obtain, $T_{m}^{\top} M T_{m} \ddot{q}=T_{m}^{\top}\left(-M D_{m} \dot{q}+\right.$ $\left.f_{g}\right)$, where $D_{m}=\left(T_{m} \dot{q}\right)_{, q}$. While the above relation is valid for a large dynamic system, deriving the necessary vectors (M, T_{m}, D_{m}, f_{g}) for individual bodies in a system provides flexibility in dealing with bodies of different type. So we have

$$
\begin{align*}
\sum_{i=1}^{n_{m}} \bar{M}_{i} \ddot{q} & =\sum_{i=1}^{n_{m}} \bar{d}_{i} \tag{8}\\
\bar{M}_{i} & =T_{m_{i}}^{\top} M_{i} T_{m_{i}} \\
\bar{d}_{i} & =T_{m_{i}}^{\top}\left(-M_{i} D_{m_{i}} \dot{q}+f_{g_{i}}\right)
\end{align*}
$$

where $T_{m_{i}\left[6 \times n_{q}\right]}, M_{m_{i}[6 \times 6]}, D_{m_{i}\left[6 \times n_{q}\right]}, f_{g_{i}[6 \times 1]}, i$ is a general numerator for the body number in a system with n_{m} bodies, $q_{\left[n_{q} \times 1\right]}=q_{1: n_{m}}$ is the vector of all the system states, and $n_{q}=\sum_{i=1}^{n_{m}} n_{q_{i}}$ is the number of states in the system. Note that the Jacobian matrices are calculated w.r.t. q (all the system states) and not q_{i}. Eq. 8 can be solved for \ddot{q} to form an ODE problem, and then integrated over time using a numerical integration method, e.g. $4^{\text {th }}$-order RungeKutta method implemented in Matlab software ode $15 s$ or ode 113 function.

Springs, Dampers, External \& Input Loads- Following PVW, the mechanical action of such elements in the system state space (q) is $w \delta q=f T_{f} \delta q$, where f is the force vector exerted by the element, and $T_{f}=\chi_{f, q}$ is the Jacobian that transforms the loads exerting location/orientation from Cartesian space to the system states space. The term $w^{\top}=$ $T_{f}^{\top} f$ will be added to the right side of Eq. 8 as

$$
\begin{equation*}
\sum_{i=1}^{n_{m}} \bar{M}_{i} \ddot{q}=\sum_{i=1}^{n_{m}} \bar{d}_{i}-\sum_{i} w_{i}^{\top} \tag{9}
\end{equation*}
$$

where $T_{f_{i}\left[n_{f_{i}} \times n_{q}\right]}, f_{j\left[n_{f_{i}} \times 1\right]}, w_{i\left[n_{q} \times 1\right]}$ represents other mechanical actions in the system due to viscoelastic elements, external, internal, and body forces, etc., and $n_{f_{i}}$ is the dimension of vector f_{i}.

For external loads $\left(f_{l}\right)$ with action point ρ_{l}, we have $T_{l}=\rho_{f, q}$. If the elements are acting directly on the system states, i.e. elements parallel to the DOFs, $T_{q}=q$ is for the acting point, $f_{l_{q}}$ is the DOF direct input, $f_{k_{q}}=k_{q}(q-$ $q_{0_{k}}$) is the force of a parallel spring, $q_{0_{k}}$ is the resting value of the spring, and $f_{v_{q}}=\mu_{q} \dot{q}^{\nu}$ is the force of a parallel viscous damper with power ν. For simple axial (1D) elements, connecting two points of the system ($\rho_{f_{1}} \& \rho_{f_{2}}$), we have $T_{a}=\bar{\rho}_{f, q}$, where $\bar{\rho}_{f}=\Delta \rho_{f}=\rho_{f_{1}}-\rho_{f_{2}}$ is the line of action, $f_{l}=\left|f_{l}\right| \hat{\bar{\rho}}_{f}$ is the external force with value $\left|f_{l}\right|$ along the element unit direction vector where $\hat{\bar{\rho}}=$ $\bar{\rho}_{f} / \sqrt{\bar{\rho}_{f} \bar{\rho}_{f}^{\top}}, f_{k}=k \bar{\rho}_{f}\left(1-l_{0_{k}} / \sqrt{\bar{\rho}_{f} \bar{\rho}_{f}^{\top}}\right)$ is the spring force vector, $l_{0_{k}}$ is the spring resting length, and $f_{v}=\mu \dot{\bar{\rho}}_{f}^{\nu}$ is the viscous damping force vector. Note that the order of $\rho_{a \mid b}$ is not important in calculating $\bar{\rho}_{f}$, as long as it remains consistent. Finally, by monitoring the sign of the deformation
of the element $\Delta l_{k}=\sqrt{\bar{\rho}_{f} \bar{\rho}_{f}^{\top}}-l_{0_{k}}$, tension only ($\Delta l_{k}>$ 0 , e.g. rope) and compression only ($\Delta l_{k}<0$, e.g. impact) elements can be modeled. The same procedure can be adopted for continuum elements, e.g. an Euler-Bernoulli beam or reduced order model of a deforming beam, which is discussed in the following sections.

Continuum Body Dynamics- Eq. 9 can be easily adapted for a discretized continuum rod using the lumped mass method. The differential form of TMT terms are

$$
\begin{equation*}
\bar{M}_{i}=\int_{0}^{l_{i}} \mathrm{~d} \bar{M}_{i} \mathrm{~d} s, \bar{d}_{i}=\int_{0}^{l_{i}} \mathrm{~d} \bar{d}_{i} \mathrm{~d} s, w_{i}^{\top}=\int_{0}^{l_{i}} \mathrm{~d} w_{i}^{\top} \mathrm{d} s \tag{10}
\end{equation*}
$$

where l_{i} is the length of the $i^{\text {th }}$ ROM element. For each ROM element in the system, the above spatial integrals can be handled with a numerical forward integration method, e.g. trapezoidal rule implemented in Matlab software trapz function, in each integrating time step of Eq. 8. The Cosserat rod method is used to derive the TMT method differential terms in Eq. 10 for ROM elements. To this end, we start with the differential form and then differential lumped mass representation for Cosserat rod model.

Cosserat Rod Mechanics- The Cosserat rod theory presents the conservation law to balance the material local internal loads $\left(f_{s}, \tau_{s}\right)$ due to local external ($f_{l}, \tau_{l^{-}}$external loads at the rod tip or body), internal (f_{u}, τ_{u} - due to internal actuation pressure or tendon tension) and body loads ($f_{g}, \tau_{g^{-}}$ due to body weight or other uniform loads, e.g. a magnetic field). Different methods of deriving Cosserat rod mechanics are presented in the literature, based on distributed load balance in an infinitesimal element Trivedi et al. (2008), and differentiation of the shear force balance on a long segment (applying variational calculus) Rucker et al. (2010); BurgnerKahrs et al. (2015); Renda et al. (2018). Governing equations for the above approaches can be derived using the Principle of Virtual Work too Grazioso et al. (2018). Here, we follow Trivedi et al. (2008) by considering the distributed load balance for free body diagram of a single differential element along the rod backbone (Fig. 1.a). For the load balance, expressed in the reference frame, we have

$$
\begin{align*}
\left(f_{s}-Q_{s} * f_{u}\right)^{\prime}+f_{g} & =\sigma a_{s} \ddot{\rho}_{s} \tag{11}\\
\left(\tau_{s}-Q_{s} * \tau_{u}\right)^{\prime}+\rho_{s}^{\prime} \times f_{s}+\tau_{g} & =J_{m_{s}} \dot{\Omega_{s}}
\end{align*}
$$

where ρ_{s} and Q_{s} are as in Eq. 3, $J_{m_{s}}$ is the cross section second moment of inertia, $f_{g}=\sigma a_{s} g, \sigma$ is the material density, and a_{s} is the rod cross-section area. Note that the effect of f_{s}, τ_{u} are considered in the force $\left(\left(Q_{s} * f_{u}\right)^{\prime}\right)$ and moment $\left(\left(Q_{s} * \tau_{u}\right)^{\prime}\right)$ balance equations after being transformed to the reference frame. External local loads $f_{l_{s}}, \tau_{l_{s}}$ are local shear loads considered as local boundary conditions

$$
\begin{align*}
f_{s}-Q_{s} * f_{u}+f_{g} \Delta s+f_{l_{s}} & =0 \tag{12}\\
\tau_{s}-Q_{s} * \tau_{u}+\Delta \rho_{s} \times f_{s}+\tau_{g} \Delta s+\tau_{l_{s}} & =0
\end{align*}
$$

where Δ represents the variation between the integration boundaries. Knowing all the boundary conditions $\left(\xi, \zeta, f_{s}, \tau_{s}\right)$ at a point and all the external contact forces along the backbone f_{l}, τ_{l}, Eq. 11 can be integrated between
the external contact points and free ends, using Eq. 12 to update f_{s}, τ_{s} at each external contact point (between two consecutive spatial integration steps). In a discretized or reduced order modeling framework, Eq. 11 and 12 are handled alongside after direct (ROM) or indirect (discretization methods) spacial integration of Eq. 11. Hooke's law (linear stress-strain relation), expressed in reference frame, is the usual choice for the system constitutional law as $f_{s}=Q_{s} *$ $\left(k_{\xi} \xi_{s}\right)$ and $\tau_{s}=Q_{s} *\left(k_{\zeta} \zeta_{s}\right)$, where k_{ξ} and k_{ζ} are diagonal stiffness matrices based on the rod material.

The above formulation results in a BVP problem which is hard to integrate into a unified modeling framework for hybrid systems. In the next sections, three methods for dynamic modeling of a continuum rod are discussed, using the discretized (Eq. 4 \& 5) and reduced order model (Eq. 6 \& 7) kinematics, discussed earlier, and using TMT differential terms (Eq. 10), and PVW for compliance elements and loads explained above.

Discretized Continuum Dynamics with Relative StatesDiscretizing Eq. 11, a highly articulated system with length l, n_{d} elements, and relative states $(q=[\epsilon, \alpha])$ is formed with the kinematic relation expressed in Eq. 4. M and T_{m} are found by substituting ρ_{i} and Q_{i} from Eq. 4 into Eq. 2, to find the TMT inertial terms as in Eq. 8. This forms the right hand of Eq. 11. The external loads are handled based on their exerting point, found from Eq. 4. In such systems, beam elasticity and damping, and the internal pressure/tendon tension acts parallel to the states q, so we set $k \mid \mu_{q}=\left[k\left|\mu_{\epsilon}, k\right| \mu_{\alpha}\right]$ and $f_{l_{q}}=\left[f_{u}, \tau_{u}\right]$, and follow the relevant procedure for compliance elements and loads explained above. These form the left-hand side of Eq. 11. Finally, the above terms are used alongside other terms in Eq. 9. The proposed procedure is easy to implement; however, the derived equations tend to be complex after having less than ten elements, which results in long segments, resulting in inaccurate results, slow derivation and simulation Sadati et al. (2018d); Takano et al. (2017). The method is not suitable for large system models.

Discretized Continuum Dynamics with Absolute StatesTo avoid complex derivations for a high number of elements, we may assume the discretized system states to be the lumped-masses' Cartesian positions and take the vector part of their unit quaternion orientation as $q=\left[\rho, Q_{\rho}\right] . Q_{0}$ is derived based on Q_{ρ} to form a unit quaternion. The system kinematics is the same as q and increasing the number of elements does not increase the complexity of the derivations. M and T_{m} are found by substituting ρ and Q into Eq. 2, to find the TMT inertial terms as in Eq. 10. The external loads become loads directly acting on system states $f_{l_{q}}=f_{l}$. The inverse map presented in Eq. 5 is used to derive ϵ_{i} and α_{i}, based on which the beam elasticity (w_{k}) and damping (w_{v}), and the internal pressure/tendon tension (w_{u}) actions are calculated as

$$
\begin{align*}
\chi_{b} & =\left[\epsilon_{i}, \alpha_{i}\right], T_{b}=\chi_{b, q}, \tag{13}\\
w_{k}^{\top} & =T_{b}^{\top} k_{\epsilon \mid \alpha}\left(\chi_{b}-\chi_{b_{0}}\right), \\
w_{v}^{\top} & =T_{b}^{\top} \mu_{\epsilon \mid \alpha}\left(T_{b} \dot{q}\right)^{\nu}, \\
w_{u}^{\top} & =T_{b}^{\top}\left[f_{u}, \tau_{u}\right],
\end{align*}
$$

where $\chi_{b_{0}}$ is the beam initial position vector and bending/twist angle that can be fund based on the system states' initial condition q_{0} as $\chi_{b_{0}}=\chi_{b}\left(q_{0}\right)$. The above terms are used alongside other terms in Eq. 9. The proposed method allows handling a large number of elements. To the best of our knowledge, this is the first time that such a discretization method is used for modeling an actuated continuum manipulator, as well as its integration to a unified hybrid system modeling framework. However, similar discretization methods are widely being used to solve hyperbolic PDEs, e.g. Eq. 11, numerically. Meeting Courant-Friedrichs-Lewy condition is necessary for converging the solution which usually results in systems with very large number of elements and hence slow performance Skeel and Berzins (1990). We do not analyze the convergence criteria in this draft, but a comparison with experimental results and the other presented methods in this draft are provided later.

Reduced Order Model Dynamics- In the case of reduced order model kinematics, the system spatial and temporal domains are decoupled. So we keep the differential form of Eq. 11, and perform a forward numerical integration over the ROM terms in each time step of the final system EOM numerical temporal integration. Here the states are the elements of C_{r} in Eq. 6 which gives $6 \times n_{r}$ states. The system kinematics is presented in Eq. 6 as $\chi_{s}=$ [$\rho_{s}, Q_{\rho_{s}}$], and T_{m} is found by substituting ρ_{s} and $Q_{\rho_{s}}$ into Eq. 2. for $\mathrm{d} M$ we have, $\mathrm{d} m=\sigma a \mathrm{~d} s$ and $J_{m_{s}}$ is found based on the second moment of inertia for planar objects with the shape of the rod cross section. TMT differential terms are found from Eq. 10. The contact point kinematics of an external load at location s_{l} along the backbone is found by substituting $s=s_{l}$ in Eq. 6. Using the inverse map in Eq. 7 to find ξ, ζ, the differential form of Eq. 13 is used to find the action derivatives for viscoelastic structure and internal pressures/tendon tensions. This method does not suffer from discretization inaccuracy; however, the modeling accuracy depends on the order of the polynomial, while a higher number of terms does not necessarily improve the accuracy. Initial bent configurations, rods with initial arbitrary geometries are easy to handle, by choosing appropriate values for $\chi_{s_{0}}$.

Intermediate Numerical Step for Higher Order Nonlinear Terms- High order nonlinear terms due to soft structure hyper viscoelastic behavior can be handled by considering nonlinear stiffness and damping coefficients. Such assumptions do not change the method of deriving such elements' actions as for compliance elements and loads explained before. However, the value of the nonlinear coefficients should be updated during the numerical simulation. An intermediate numerical integration step is introduced to update the nonlinear coefficients based on the system current states. We have used this approach in our earlier work to account for the braid constraint of pneumatic actuators in continuum manipulators and the material hyper-elastic deformation Sadati et al. (2018b); Shiva et al. (2018). This intermediate step can be used for event handling and saturation constraints.

Table 2. TMTDyn package structure. Underlined file names are provided or edited by the user (continued in Table 3).

1. System Declaration

User Interface ("system.m")

- System Symbolic Parameters: par.sym

HLL System Declaration

- Bodies: body
- Lumped Mass
- Mesh Body- connected similar masses
- 1D VC Beam- reduced order model
- 1D Connections: joint
- Axial Spring/Damper
- Input Actuator
- Constraints
- Flexible Beams
- Euler-Bernoulli Beam
- VC Beam- reduced order model

External Loads: exload

- Parameters Check ("check.m")
L Assign Default Values \& Error Check
- Mesh Import ("import.m")

L Assign Masses \& Links to a CAD File

Linear Modal Analysis- A linearized version of Eq. 9, without time-varying external forces, at a given point q_{0} is

$$
\begin{equation*}
\sum_{i_{m}} \overline{\bar{M}}_{i_{m}} \ddot{q}+\sum_{i_{v}} \overline{\bar{V}}_{i_{v}} \dot{q}+\sum_{i_{k}} \overline{\bar{K}}_{i_{k}} q+A_{0}=0, \tag{14}
\end{equation*}
$$

where $\overline{\bar{M}}=\bar{M}_{, q\left(q_{0}\right)}, \overline{\bar{V}}=w_{v, q\left(q_{0}\right)}$, and $\overline{\bar{K}}=w_{k, q\left(q_{0}\right)}$ are linearized matrix coefficients for inertia, stiffness, and viscous damping respectively, and A_{0} is a constant term due to linearizion of \bar{d}, gravitational forces, springs resting values, etc.. A_{0} does not contribute to the system modal analysis. Eq. 14 can be used for linear modal analysis of a system without damping or a proportionally damped system, subject to proper choice of damping coefficients ($\overline{\bar{V}}=$ $\left.A_{1} \bar{M}+A_{2} \bar{K}\right)$ and $\nu=1$, where A_{i} is a general constant. The eigenvalue problem for Eq. 14 can be solved with the Matlab eig function to find the system undamped natural frequencies (ω) and matrix of mode shapes (Φ) as $\left[\Phi_{\omega}, \omega\right]=$ $\operatorname{eig}\left(-\overline{\bar{M}}^{-1} \overline{\bar{K}}\right)$. Then the system modal damping ratio is $\eta_{\omega}=\left(\omega M_{\omega}\right)^{-1} V_{\omega}$, where $M_{\omega}=\Phi_{\omega}^{\top} \overline{\bar{M}} \Phi_{\omega}$ and $V_{\omega}=$ $\Phi_{\omega}^{\top} \overline{\bar{V}} \Phi_{\omega}$ are the linearized inertial and viscous damping matrices in modal space.

Constraints, Controller and Observation Design- Constraints can be modeled as soft constraints, e.g. elastic connections, and hard ones, e.g. geometric constraints. The former can be handled by adding viscoelastic elements to the system, while for the former the following closed form

Table 3. ...continued from Table 2.
2. EOM Derivation

L TMT Derivation of EOM ("tmt_eom_derive.m")

- Joints' kinematics

Forming state space: $q, f_{k_{q}}, f_{v_{q}}, f_{u_{q}}$

- Local transformations: Q_{l}, Ξ_{l}
- System Bodies: mass
- Abs. Q, Ξ of main kinematic joints
- Derive EOM matrices: $M, T_{m}, D_{m}, f_{g_{m}}, \rho_{m}$
- System Connections

Spring/Damper/Input: $s p r d m p$

- Abs. Q, Ξ for both joints' ends
\square Derive $T_{j}^{\top}, f_{k_{j}}, f_{v_{j}}, f_{u_{j}}, K_{j}, V_{j}, \rho_{j}$
- Constraints: cnst
\measuredangle Derive $T_{c}^{\top}, D_{c}, u_{c}$
External Loads
- Abs. Q, Ξ for point of exerting load
- Derive $T_{l}{ }^{\top}, f_{l}$

3. Derivation Optimization \& Forming EOM

- Derivation Optimization \& Storage
- Optimized Matlab \& C functions ("save_func.m")

L C-mex file generation ("save_mex.m")
EOM Formation \& Optimization

- Mid-step in num. integration ("int_mid_step.m")

L Matlab \& C-mex EOM func. ("save_eom_mex.m")
— Modal Analysis Terms Formation \& Optimization
L Matlab \& C-mex EOM func. ("save_modal_mex.m")
4. System Numerical Simulation

Simulation Parameter: par.var ("system.m")
Static Equilibrium: $\ddot{q}=\dot{q}=0$ ("equil.m")

- Modal Analysis ("modal.m")
- Dynamic Simulation ("dyn_sim.m")

5. Post-process

- Simple Simulation Animation ("anim.m")
_ Post-process- provided by the user ("post_proc.m")
expression can be adopted from Eq. 9

$$
\left[\begin{array}{cc}
\Sigma_{i} \bar{M}_{i} & T_{c}^{\top} \tag{15}\\
T_{c} & 0
\end{array}\right]\left[\begin{array}{c}
\ddot{q} \\
\lambda_{c}
\end{array}\right]=\left[\begin{array}{c}
\Sigma_{i} \bar{d}_{i}-\Sigma_{i} w_{i}^{\top} \\
-d_{c}+u_{c}
\end{array}\right],
$$

where $T_{c}=\chi_{c, q}$ is the Jacobian transformation matrix for the constraint, $\chi_{c}=0$ is the geometrical constraint relation, λ_{c} is Lagrange multiplier, $d_{c}=\left(T_{c} \dot{q}\right)_{, q} \dot{q}$ and u_{c} is a control term that can be used to set a desired acceleration for the constraint term as $u_{c}=\ddot{\chi}_{c}+C_{c} . u_{c}$ can be used to design a Jacobian based nonlinear controller by setting it to the desired acceleration control input for the constraint geometry $\left(\chi_{c}\right) . C_{c}$ can be a constant or a PID term to compensate for the numerical integration and/or inversion errors for a constraint, or to cancel out the control tracking error in a controller design.

Software Algorithm \& Implementation

The discussed modeling frameworks for soft robots have enabled us to incorporate their states into the traditional modeling framework of rigid body dynamics. In the following section, these modules of the TMTDyn Matlab software package are explained for the purpose of automating the derivation, simulation, and visualization of the model for a hybrid system. The TMTDyn package structure and flowchart are presented in Table 2, 3 and Fig. 3. The package consists of 5 main stages and 10 sub-stages, implemented in 13 modules each in a separate Matlab file. Some modules have sub-functions, embedded in the same file with local only access. The connection between the stages/modules are provided by three means: (i) passing a Matlab structure variable, named par and defined in the system.m file, between the modules, (ii) generating the necessary functions (Matlab, C or C-mex format) after completion of some stages and calling them in the next stages, and (iii) calling the main modules in a single file (system.m) that returns the resulting parameters to the Matlab workspace environment for later use. The system geometry, in the form of a set of bodies that are interconnected with compliant elements and constraints, is described in the User Interface module (system.m) using an HLL. The elements of the HLL interface are explained in Appendix 1 Table 10-12. Next, the check.m module is called to check the defined parameters and assign default values if needed. The system is passed to the tmt_eom_derive.m module to derive the hybrid system TMT EOM. Depending on the method of choice for optimization and storing the derived EOM, Matlab, C-mex or $\mathrm{C}++$ functions are generated by calling the save_func.m and save_mex.m modules. The intermediate steps in the numerical simulation should be defined in int_mid_step.m by the user. Then, int_eom_mex.m is called to generate the code that is used for numerical static and dynamic simulations. equil.m, modal.m, and dyn_sim.m are called to perform static equilibrium analysis, linear modal analysis, and numerical dynamic simulation. Finally, the results are passed to anim.m, providing a simple animation, and to post_proc.m (provided by the user) for any intended postprocessing of the results. Different elements of the package are explained further below. Pseudocodes for each file are presented in Appendix 2.

System Declaration

The package control parameters, and the system properties (geometrical, inertial and stiffness) and inputs (actuator
inputs, external loads) are described in system.m file, using a text-based High Level Language. The HLL inputs are Matlab structure variables that store the package control parameters (par), properties of the simulation environment (world), and a dynamic system consisting of bodies (body), joints (joint), mesh elements from a CAD (Computer Aided Design) file (mesh), and external loads (exload). The fields, types, input options, default values, and suggested unit for these structure variables are explained in detail in Appendix 1 Table 10-12. Then different modules are called respectively based on the package control parameters par. These modules derive the EOM (tmt_eom_derive(...)), solve static equilibrium (equil(...)), perform linear modal analysis ($\operatorname{modal}(\ldots)$), simulate the system dynamics (dyn_sim (\ldots)), present and record simple animation of the system geometry and motion $(\operatorname{anim}(\ldots))$, and perform user-provided post processes on the results (post_proc(...)). Pseudocode for system.m is presented in Appendix 2 Algorithm 1.
par contains the package control (par.anim, par.mov, par.derive, par.fun, par.mex, par.equil, par.modal, par.dyn, par.nint) and modeling (par.sym, par.var) parameters. The modeling parameters, e.g. system dimensions, can be set to numeric values or symbolic variable, stored in par.sym. It is possible to vary the symbolic values, stored in par.sym, after deriving the system EOM to provide flexibility. The numeric values remain constant speeding up the derivation, function optimization/generation and simulation processes. par.sym is considered as an input for the generated functions from derived EOM. par.var contains the numeric values for par.sym to be set after EOM derivation, e.g. for numerical simulation. For detailed explanation of package control parameters see Appendix 1 Table 10-12.
world.g stores the gravity vector as $\left[g_{x}, g_{y}, g_{z}\right]$. body, joint, and exload store the system structural parameters. Assume a system with n_{m} different bodies or body sets (body), n_{j} joints or joint sets (joint), and n_{l} external loads (exload). A single joint or exload my describe a set of n_{d} elements with similar properties, which we call a mesh. Series of links with relative DOFs, nodes with absolute DOFs, and any arbitrary interconnections between the nodes in a mesh are possible. A joint with rom field defines a continuum rod modeled with ROM. A mesh geometry cannot be defined with a ROM joint. The first joint that is connected to a body is a member of the Main Kinematic chain (MK). Any other joint connected to a body is a compliant element (if spring, damp, or input fields are defined) or a geometric constraint (if fixed field is defined). A body that is connected to a mesh joint defines the inertial properties of the mesh elements. An alternative way to define a mesh body is importing a mesh CAD file. The mesh structure stores the CAD file name, a body field to be assigned to the mesh nodes, and two joint fields to define the bodies absolute DOFs (w.r.t. reference frame) and to assign to the mesh edges. To generate a mesh geometry with a ROM joint, a mesh with such joints can be defined to assign to a CAD file imported geometry. Brief descriptions for the fields in each structure variable are provided below. We use SI units throughout this draft.
body has the following fields. m is the body mass, I is the 3×3 inertia matrix,.l _com is the COM position vector, and

Figure 3. TMTDyn package flowchart.
tip is the link tip position vector, both in local frame. If a body describes a mesh with n_{d} elements, each of the above fields can have different values for each mesh elements. A $n_{d} \times 1$ column vector is assigned to each parameter that each row stores the value for a mesh element with corresponding row number. We follow the convention throughout this paper, that individual values for mesh elements are stored in a different column of a vector or matrix, except for I that becomes a $3 \times 3 \times n_{d}$ cube variable. In case of ROM continuum elements, all the fields present differential values with "per unit length" unit. n_{m} is the total number of bodies defined, i_{m} is their unique numerator, and $n_{m d}=\sum_{i=1}^{n_{m}} n_{d_{i}}$ is the total number of masses defined in the system.
joint describes the system geometric connections and defines one of the following: i) system DOFs if being a member of MK, ii) a continuum ROM element if it contains rom filed and is in MK, iii) a compliant connection, e.g. spring, viscous damper, or actuator input, if not being a member of MK and contains any of spring, damp, or input fields, iv) a geometric constraint if the fixed field is defined and joint is not in MK. It can define a mesh too if it is connected to multiple instances of a body, in any of the above cases, except for a ROM joint. joint has the following fields. rom defines if the joint is a ROM link. rom has one filed order setting the ROM polynomial order $\left(n_{r}\right)$ that should be defined (SBD). first and second are 1×2 or $1 \times n_{d}+1$ row vectors defining the body number and
instance/axial location that the joint ends are connected to. The first element of the row defines the body number. Either of the ends should be connected to a single body. In the case of a 1×2 vector, i) the second element defines the ROM continuum beam length, if joint is a ROM (has rom field) in MK, ii) it is axial location of contact on the continuum beam, if joint is not in MK and the target body is a ROM, or iii) it is the instance of the body that the joint is connected to if joint is not in MK and the target body is not ROM. In the case of a $1 \times n_{d}+1$ vector, i) the joint creates a mesh with n_{d} elements if joint is in MK, and ii) it connects to instances of the body defined in $2: n_{d}+1$ elements if joint is not in MK. joint cannot be a ROM when defining a mesh. Leaving these fields completely empty (fields' default value) means connecting to the reference frame (ground), and if a scalar is assigned, the first instance of the body is used. first and second must have the same number of elements, if defined and their assigned vectors have three or more elements.

Each joint can define n_{t} number of consecutive transformation between its ends that are defined in the $t r$ field. Each $t r$ has a translation followed by a rotation pair defined in trans and rot fields with zero default values. trans is a 1×3 position vector in local frame. rot can be i) a principal axis and rotation set defined as elements of a 1×2 vector respectively (eg. $[2, \theta]$ defines a rotation of θ around local frame y-axis), ii) a 1×3 vector defining the axis of a unit quaternion $\left(Q_{r}\right)$, or iii) an angle-axis 1×4 vector with the first element as the angle (cannot handle DOF). trans and rot can define a fixed transformation, if their elements are set to numeric values, or a free DOF, if set to \inf. The properties for each DOF are defined in a dof field with zero default value. n_{h} is the number of DOF definitions and $n_{q}=\sum_{j=1}^{n_{j}} n_{h_{j}} n_{d_{j}}$ is the total number of states (generalized coordinates) in a system. dof has the following fields mostly with zero default values: initial value (init), initial values axial location for a ROM Joint (init $_{s}$), elastic properties in spring (spring coefficient(spring.coeff), spring initial value (spring.init), and initial compassion ratio (spring.compr)), active direction (dir), damping properties in damp (viscous damping coefficient (damp.visc) and damping power (damp.pow)), and direct actuator input (input). The spring/damping/input elements act in parallel to the DOF (having the same displacement). If the spring.init is set to nan, this value is assigned automatically based on the system initial configuration (system DOFs' initial value). dir sets the active direction of these elements, not the DOF itself. A joint defines a mesh by assigning matrices and vectors with n_{d} rows to its fields, except for a ROM joint. All instances of a mesh joint have the same $t r$ but can have different DOF properties. This is possible by setting the dof subfields to matrices with n_{d} rows. For a ROM joint, init is a matrix with 3 rows, for the 3 -value Cartesian location of a point at an axial location defined by init_s, and an unlimited number of columns, the number of points along the axis which is equal to the number of init_s elements. An inverse problem is solved in the check.m file to find proper initial values for the coefficients of a n_{r}-order polynomial that passes through all these points. An initially curved beam can be defined as a ROM body by setting proper values for the init and init_s fields.

A joint in MK does not need any definition for a transformation in the second connecting body frame. The second body local frame is assumed to be attached to the joint itself. $\operatorname{tr} 2 n d$ defines such transformation w.r.t. the second body local frame if joint is not in MK. We name these "linking" joints. They have the same fields as $t r$ but cannot have \inf elements, i.e. define any new DOFs. A ROM or linking joint can have dir, spring, damp, and input fields as stated above. The assigned values for a ROM joint should have the same number of columns as the order of the ROM polynomial. An elastic Euler-Bernoulli beam can be defined by assigning six-column vectors/matrices to these fields. The six columns correspond to $[\xi, \zeta]$ states of an Euler-Bernoulli beam as in Eq. 5. spring.initi values can be set to nan for an EB beam but not for a ROM one. By default, such a beam is defined along the z-axis of the frame defined by $t r$. Alternatively, a new right-hand orthogonal frame is calculated using the aforementioned z axis and the director axis defined in xaxis field. The matrices assigned to these fields can have n_{d} rows (except for a ROM joint), to define and/or assign different values to elements of a mesh joint. If a row vector is assigned for a mesh joint, same values are assigned to all the mesh elements. Finally, fixed and control define the constrained directions and their desired control value. fixed accepts a boolean vector and a geometric constraint is defined for each direction that is set to 1 . A 1×3 vector can be used to constrain local Cartesian directions $([x, y, z])$ or a 1×6 vector to constrain the different states of an EB beam $([\alpha, \epsilon])$. This does not override the spring, damp, or input fields for the constrained directions. The dynamic actions associated with the compliant elements parallel to the constrained directions should result in zero. A spring and damper in parallel to these directions act as PD control terms to minimize the numerical simulation errors in satisfying the constraints. control can be set to a symbolic variable and then updated during the simulations with the desired acceleration (since EOM is of $2^{\text {nd }}$ differential order) of the constraint geometry. Setting it to zero (its default value) fixes the constraint. It is useful for designing a Jacobian nonlinear controller. The dir field is ignored for constraints. Also fixed field is ignored for a ROM joint.

An alternative way to define a complex geometry is importing a CAD mesh file with extension "iges" or "stl". The mesh structure has a file_name to store the CAD file name, tol to set the points' overlap tolerance of the CAD file, $t r$ to set initial position and orientation of the imported body, a body and two joint sub-structures with the same fields as stated before. A body is assigned to each node of the CAD file that at least two edges are attached to it. Nodes that are only attached a single edge are assumed fixed connecting points with the ground. Each "body" has absolute DOFs, described in mesh.joint(1). A linking joint is assigned to each edge of the CAD file based on mesh.joint(2). The CAD-file coordinates transform based on $t r$ filed and then used to define the initial condition of the imported elements. The links are numbered based on the order of extracted lines from the CAD file and overlapping of the nodes. Hence, it is hard to predict the assigned numbers to the links and masses. A plot is shown at the end of the importing process with labels showing the assigned mass
numbers. The imported bodies will be added after all the previously defined body instances, hence their labels may start with numbers greater than 1 . The imported joints will be added before all the previously defined joints to satisfy our definition of MK joints. The import process is handled in the mesh_import.m file. The file return structure vectors for created body and joint instances. Only one mesh element can be defined (one CAD-file can be imported) at the moment. Pseudocode for this file is presented in Appendix 2 Algorithm 2.

External loads on the system are defined in exload. n_{l} is the number of defined external loads. exload has the following fields. exbody defines the exerting body number and the body instance, in case of a mesh, or axial location of the external load, in case of a ROM body. exload can define a set of loads if a matrix with multiple rows is assigned to exbody, the same as defining a mesh with a joint that is explained earlier. The exerting point location in the local frame is defined by the trans and rot fields. The external force is defined as a 1×6 vector, in the form of $[f, \tau]_{l}$, in the ftau field. ftau elements can be set to symbolic parameters and later updated in the int_mid_step.m file during the simulation steps. ftau is measured in the local frame of the body which is defined by refbody. If refbody is not defined, ftau is then measured in the reference frame. A ROM body cannot be set as refbody. For a complete explanation of these fields, and their acceptance and default values see Appendix 1.

Most of the above fields can be left undefined or empty. The check.m module assigns the default values, formats the input matrices, and performs some simple complication checks for the parameters. Pseudocode for this file is presented in Appendix 2 Algorithm 3. Examples of different hybrid systems are provided later to clarify the application of the HLL and text-based user interface. The inputs are then passed to the tmt_eom_derive.m module to derive the system TMT EOM. After calling the mesh_import.m and check.m modules, the code proceeds to derive the system TMT EOM and generate optimized Matlab, C-mex, and/or C functions.

TMT EOM Derivation \& Optimization

The system TMT EOM is derived in a set of Matlab structure variables. First the code iterates through all the joint vector elements (n_{j}), their instances (n_{d}) and ROM order $\left(n_{r}\right)$. This step identifies inf elements in trans and rot subfields, and generates the system states (q, \dot{q}) and collects the elastic $f_{k_{q}}$, viscous damping $\left(f_{v_{q}}\right)$ and input $\left(f_{u_{q}}\right)$ actions in parallel to each DOF for the whole system. This step calculates each joint instance rotation (joint $\left.\left(i_{j}\right) \cdot Q\left(i_{d}\right) \cdot l o c\right)$ and transformation $\left(\operatorname{joint}\left(i_{j}\right) \cdot T Q\left(i_{d}\right) \cdot l o c\right)$ in the local frame too.

Then the code iterates through all body vector elements $\left(n_{m}\right)$ and finds their MK joint. The joint type (ROM or not) and number of instances $\left(n_{d}\right)$ define the type and number of mass elements in the system. The MK joints rotation (joint $\left.\left(i_{j}\right) \cdot Q\left(i_{d}\right) \cdot a b s\right)$ and transformation ($\left.\operatorname{joint}\left(i_{j}\right) \cdot T Q\left(i_{d}\right) \cdot a b s\right)$ in the reference frame are calculated. The terms for each inertial element (M for \bar{M}_{i}, T for $T_{m_{i}}, D d$ for $D_{m_{i}}$, and $f g$ for $f_{g_{m_{i}}}$) are stored as fields of a mass structure vector. These terms are collected for
the whole system in single variables (M for \bar{M}, T for T_{m}, $D d$ for D_{m}, and $f g v$ for $f_{g_{m}}$). $\left.r_{-} j t i p s_{[} n_{m} d \times 6\right]$ matrix stores the base and tip position vector of all the mass vector elements. rom.mass stores zeros for rigid links and length of the beam for ROM rods.

Then the code iterates through all the joint vector elements $\left(n_{j}\right)$ and their instances $\left(n_{d}\right)$ to find the linking joints and constraints. The joint type (axial element, EB beam or ROM beam) defines the type of compliant elements in the system. The terms for each linking joint ($T t$ for $T_{j}^{\top}, k x$ to calculate $f_{k_{j}}, v d$ to calculate $f_{v_{j}}, d l$ for $\overline{\rho_{j}}$, in for $f_{u_{j}}$, $k_{_}$mat for $K_{j}, v_{-} m a t$ for V_{j}, and dir for joint active direction) are stored as fields of the sprdmp structure vector. These terms are collected for the whole system in single variables $\left(f j_{-} k\right.$ for $f_{k_{j}}, f j_{-} v d$ for $f_{v_{j}}$, $f j _i n$ for $f_{u_{j}}, f j _s d i$ for $f_{k_{j}}+f_{v_{j}}+f_{u_{j}}$, fj_k_mat for K_{j}, and fj_vd_mat for $\left.V_{j}\right)$. The $\left.r_{-} k s_{[} n_{m} d \times 6\right]$ matrix stores the base and tip position vector of all the sprdmp vector elements. rom.sprdmp stores zeros for rigid links and length of the beam for ROM rods. The code checks if any of the link directions are fixed. lambda row vector and cnst structure vector store the terms for constrain (lambda for $\lambda_{c_{i}}, T$ for $T_{c_{i}}, D$ for $D_{c_{i}}$, and in for u_{c}). $T c n$ for T_{c}, $D c n$ for D_{c}, and $C c n$ for u_{c} are single variables that collect all the constraint terms in the system.

Finally, the code iterates through all the exload vector elements $\left(n_{j}\right)$ and their instances $\left(n_{d}\right)$. The terms for each external load term ($T t$ for $T_{l_{i}}^{\top}$ and ftau for $f_{l_{i}}$) are stored as fields of the loads structure vector. These terms are collected for the whole system in single variables (Ttef for T_{l}^{\top} and ftau_ef for f_{l}).
The structure vectors are used in a framework as in Eq. 9 while the single variables that collect the terms for the whole system form the EOM closed vector form for the whole system. We use the structure vectors to have more flexibility in handling different link types and for faster derivation and optimization of the derived parameters. For a complete definition of the variable names refer to Appendix 2 Algorithm 4-6 and source codes available at Sadati (2017).

Derived parameters are passed to save_func.m and save_mex.m modules for converting to Matlab, C , and C-mex functions and are stored as separate files in a folder named "code" in the active Matlab folder. Matlab matlabFunction, ccode, and codegen functions are used to perform this task. These functions optimize the derived equations by searching for and collecting repeated terms in the code. C-mex functions are only available for structure vectors. The generated Matlab functions are used to debug the model and code, by setting par.equil, par.dyn, and par.modal to 1 . Once the model is debugged, C-mex functions can be used for increased numeric performance, by setting par.equil, par.dyn, and par.modal to 2 . Pseudocode for these modules is presented in Appendix 2 Algorithm 7.

Dynamic System Analysis \& Post-Processing

The system EOM are constructed using the generated functions in the previous step. The save_eom_mex.m module generates the EOM for dynamic and static analysis. The system states are named Z consisting of the geometric states q and Lagrange multiplier λ_{c} vector and their temporal derivatives. This module generates the EOM code as a string

c)

d)

Sym.	Value
$r_{a_{1}}[\mathrm{~mm}]$	4.5
$r_{a_{2}}[\mathrm{~mm}]$	12.5
$r_{p}[\mathrm{~mm}]$	2.5
$r_{p_{o}}[\mathrm{~mm}]$	8.5
$l_{m_{2}}[\mathrm{~mm}]$	50
$l_{m_{3}}[\mathrm{~mm}]$	14.5
$m_{2}[\mathrm{gr}]$	28
$m_{3}[\mathrm{gr}]$	13.47
$\gamma[\mathrm{deg}]$	87
$E[\mathrm{KPa}]$	205
$\sigma\left[\mathrm{Kg} / \mathrm{m}^{3}\right]$	1820
$\mu_{\epsilon}[\mathrm{Ns} / \mathrm{m}]$	$0.1-100$
$\mu_{\alpha}[\mathrm{Nms} / \mathrm{rad}]$	$0.5-1 \mathrm{e}-5$
ν	2

Figure 4. a) Structural design, b) parameters and c) sequences of experiments with a pneumatically actuated STIFF-FLOP continuum appendage. d) The structural parameters and their units are based on experimental measurments.
variable (string_all) and stores it as a Matlab function file, using the Matlab f print f function. The module calls $f j _k$, $f j _v d$, and $f j _i n$ to account for the compliance and inputs in parallel to the system states. Then it iterates through all the mass vector elements and generates a piece of code that calculates and sums up the summation in Eq. 8. The code performs a spatial integration if the mass is a ROM element based on its corresponding element in rom.mass. Then it generates the necessary code for the linking joints in sprdmp, external loads in loads, and constraints in the cnst structure vectors. Finally, the code to calculate Eq. 9 is added to string_all. The differential terms are omitted for static equilibrium analysis. string_all is written in EOM.m file for dynamic simulation and in EOM _eq.m for static analysis. A C-Mex function is generated for each of the above Matlab functions. Pseudocode for this module is presented in Appendix 2 Algorithm 8. A similar module (save_modal_mex.m) generates necessary equations for linear modal analysis based on the system linearized EOM as in Eq. 14. The generated functions are stored in the EOM_modal.m file. par.equil, par.modal, and par.dyn values control if an analysis is performed and which generated function is used.

Static equilibrium analysis is used to solve for the static model of a system or initial equilibrium point before a dynamic simulation. If par.equil is not zero, the equil.m module is used to solve the system static equilibrium. Matlab's fsolve function is used to solve the static equilibrium problem. EOM_eq.m is used if par.equil $=1$, otherwise C-mex function is used. The dyn_sim.m module is used to perform a dynamic simulation, if par.dyn is not zero. Matlab's ode15s or ode113 functions are used to perform a numerical temporal integration, using the EOM.m function if par.dyn $=1$ or using the generated Cmex function otherwise.

The results (analysis time t and states Z) are passed to the anim.m module to generate and record a simple animation of the results. The simple plots show rigid links with continuous lines, ROM continuum links with continuous line curves, and compliant joints (axial elements or beams) with dashed lines. par.anim and par.mov control if an animation is generated and/or recorded to a video format file. the post_proc.m module is considered to perform user-specified
post-processes on the generated data. This file does not have any code by default.
In the next section, different examples of modeling multidimensional continuum and hybrid systems are provided. $T M T D y n$ enables us to provide comparisons between numerical performance and accuracy of using different modeling assumptions and complexity levels. This helps with deciding the most appropriate method for similar hybrid-system modeling tasks.

Case Studies, Validation \& Discussion

Two cases of hybrid rigid-continuum systems are modeled and the results are verified in comparison to experimental results. The studies cases are: E1) dynamic motion of a single STIFF-FLOP continuum appendage in presence of external loading, and E2) dynamic deformation of a fabric sleeve worn on an elbow-like rigid-link pendulum. Different modeling assumptions for continuum rods are tested and compared for E1 in terms of modeling complexity, EOM derivation time, dynamic and static simulation time, and accuracy of the results in comparison with experiments. As a result, the most efficient and accurate method for modeling 1D continuum elements, i.e. continuum rods, is identified. The challenges in modeling a 2D (fabric) continuum media are investigated in E2. The case studies show how the proposed unified modeling framework and software package help in deriving simple Lagrange EOM for hybrid systems. Further discussion is provided on the advantages of such models for controller and observer design tasks.
The mean (M) and Mean Standard Deviation (MSTD) values for the experimentally measured values are compared with the numerical simulation results to evaluate absolute (Err) and percentage error (\%Err) for each case study. A Lenovo Yoga 3 Pro 1370 laptop computer (Intel Core M$5 \mathrm{Y} 71 \mathrm{CPU}, 2 \times 1.2-2.9 \mathrm{GHz}$ cores, 8 GB of RAM) with Ubuntu 18.04 LTS operating system was used to perform the analysis in this paper.

Dynamics of A Continuum Appendage

STIFF-FLOP Continuum Appendage- A STIFF-FLOP (STIFFness controllable Flexible and Learn-able manipulator for surgical OPerations) module Fras et al. (2015) is a
pneumatic continuum appendage (Fig. 4). Earlier tests show their high repeatability and negligible performance change due to aging and fatigue Shiva et al. (2018). The manipulator is made of silicone elastomer (Ecoflex 50 from Techsil) and selective actuation of the three braided pneumatic chamber pairs (6 chambers in total) via separate electronic proportional micro pressure regulators (Camozzi K8P) provides 3DOF (one axial elongation and two side-bendings) of the appendage tip (Appendix 3 Fig. 9). The first chamber pair is placed along the manipulator $+y$-axis with 120 [deg] offset from the other pairs (Fig. 4.a). Chambers in each pair have about 40 [deg] polar offset with each other ($\phi_{p o} \approx 20$ [deg] w.r.t. their symmetry line). The pressure regulators are connected to a compressor (BAMBI MD Range Model 150/500) and controlled via a data acquisition (DAQ) board (National Instruments Inc. NI-DAQmx USB-6411) and its control software. A control diagram for this study is presented in Appendix 3 Fig. 8. An ATI Mini40 6-axis force sensor is mounted at the appendage base and an ATI Nano17 6 -axis force sensor is connected at the manipulator tip to measure the external loads at the appendage tip $\left(f_{l_{t}}\right)$. Fig. 4.b shows the setup elements. Sequences of the experiments with and without tip external loads are shown in Fig. 4.c . The measured and identified structural parameters of the experimental setup are presented in Fig. 4.d.
Modeling Assumptions and Program Input- Each STIFFFLOP module has 3 pairs of braided pneumatic actuators so we set $p_{2 i-1}=p_{2 i}$ for the three input pressures with index $i \in[1,3]$. Their resulting axial force is $f_{u}=\Sigma_{i=1}^{6} p_{i} a_{p}$ and the vector of bending/torsion is $\tau_{u}=\sum_{i=1}^{6} p_{i} a_{\mathrm{p}} r_{O_{i}} \times$ $[0,0,1]$, where r_{p} and $a_{p}=\pi r_{p}^{2}$ are the pneumatic chamber inner radius and area. Links are considered as EB beams with linear elasticity $K_{\epsilon}=\operatorname{diag}\left(a_{\mathrm{c}}[G, G, E]\right)$ and $K_{\alpha}=\operatorname{diag}([E, E, G]) \cdot \operatorname{diag}(J)$ which are diagonal stiffness matrices associated with strains (ϵ) and curvatures/torsion (α) respectively, in the \hat{d}_{i} frame. Here, E and $G \approx$ $E / 3$ are the material elasticity and shear modulus, $J=$ $\pi / 4\left(r_{a_{2}}^{4}-r_{a_{1}}^{4}-6 r_{p}^{4}\right) \cdot[1,1,2]-a_{p} \operatorname{diag}\left(r_{O} . r_{O}^{\top}\right)$ is a 1×3 vector consisting of the cross-section second moments of areas. r_{O} is a matrix of which rows are position vectors of the chambers in the manipulator cross-section plane as

$$
\begin{aligned}
r_{O_{i}} & =r_{p_{o}} \cdot\left[\cos \left(\psi_{o_{i}}\right), \sin \left(\psi_{o_{i}}\right), 0\right], i \in 1 \ldots 6(16) \\
\psi_{o_{2 i-1}} & =\pi / 2-2(i-1) \pi / 3-\psi_{0}, i \in 1 \ldots 3 \\
\psi_{o_{2 i}} & =\pi / 2-2(i-1) \pi / 3+\psi_{0}
\end{aligned}
$$

where r_{o} is the radial offset of the chambers from the center.
The finite length or infinitesimal length masses are assumed to be cylinders which are attached to the point of interests, e.g. joint in discretized methods, at their COM. As a result, we have a symmetric distribution of mass in the body fixed local frames. For ROM the model we assume a hollow disk with differential moment of inertia $\left.J_{m}=\operatorname{diag}\left(\left(r_{a_{2}}^{2}+r_{a_{1}}^{2}\right)[1 / 4,1 / 4,1 / 2]\right) \mathrm{d} m_{2}\right)$, where $\mathrm{d} m_{2}=m_{2} / l_{m_{2}} \mathrm{~d} s$. For discretized methods we have $J_{m}=$ $\left.\operatorname{diag}\left(m_{2}\left(\left(r_{a_{2}}^{2}+r_{a_{1}}^{2}\right)\left[\frac{1}{4}, \frac{1}{4}, \frac{1}{2}\right]\right)+\left(\frac{l_{m_{2}}}{n_{d}}\right)^{2}\left[\frac{1}{12}, \frac{1}{12}, 0\right]\right)\right)$. The effects of actuation chambers are neglected here.

The four modeling assumptions presented in Fig. 2 are implemented using the TMTDyn package as in Tables 4 \& 5. The properties of these models and the abbreviation used to describe each are presented in Table 6.

Numerical Integration Mid-step Function- An intermediate step is applied in the numerical integration to account for the material hyper-elastic deformation Gazzola et al. (2018) as $r^{+}=r / \sqrt{\left|\epsilon_{3}\right|}$ for all radii, $l^{+}=\left|\epsilon_{3}\right| * l$ for link lengths and E^{+}or $G^{+}=E$ or $G /\left|\epsilon_{3}\right|$ Sadati et al. (2018b); Shiva et al. (2018), except for r_{p} which remains constant due to the dense braid constraint ($\gamma \approx \pi / 2$) and in calculating f_{g} which is independent of the cross-section deformation. $\left|\epsilon_{3}\right|$ is the rod mean axial stretch which is $\int_{s=0}^{l} \xi_{3} \mathrm{~d} s$ for ROM model, where $\xi_{i_{3}}=\operatorname{sprdmp}(i) . d l$. For SRL and EBR models we have $\sum_{i=1}^{n_{d}} \epsilon_{i_{3}}$, where ϵ is a part of system total states (Z). The same relation is valid for the EBA model, but $\epsilon_{i_{3}}=$ $\operatorname{sprdmp}(i) . d l$ is the linking EB beam lengths. In addition, the force and moment due to input pressure $f_{u_{p}}, \tau_{u_{p}}$ needs to be updated during the simulation. The code to implement these considerations is provided in int_mid_step.m module. We introduce some symbolic variables in par.sym for $\left|\epsilon_{3}\right|, f_{u_{p}}, \tau_{u_{p}}$ and update their corresponding values in par.var in int_mid_step.m module.

Experimental Results \& Discussion- Two sets of experiments were carried out with and without external load at the manipulator tip, and for different input pressures. Each experiment takes about 55 [s] and dynamic data for the actuator inputs, the manipulator tip position, orientation, and force were recorded. Sample recordings from the two experiments in comparison to simulation results from EBR model with $n_{d}=4$ are presented in Fig. ??.

Matlab ode15s was used to speed up the numerical integration in our simulation in this section. We observed that except for ROM, other models are very sensitive to the change of cross-section parameters due to the hyperelasticity assumption. Hence, we neglected this change for the SRL, EBR, and EBA cases to avoid any numerical divergence in the simulations. Considering hyper-elasticity effects, if possible, improves the simulation results accuracy by up to \%6. This is in accordance with our previous observations in Sadati et al. (2018b). We set $\mu_{\xi}=0.1, \mu_{\zeta}=$ $1 e-5$ for ROM and SRL, $\mu_{\xi}=100, \mu_{\zeta}=0.5$ for EBR, and $\mu_{\xi}=100, \mu_{\zeta}=0.01$ for EBA model.

Fig. 5 presents a comparison between computational performance and accuracy of these models with experimental results. ROM consumes the least memory and computer CPU time to derive the EOM, but EBA is the best in terms of CPU time for equation optimization. SRL is the worst in this regard. It takes hours to optimize the EOM for a system with more than three consecutive links. The change in system links, either to improve accuracy of a single rod model as presented here or in a system with multiple links, affects the EBA model CPU usage the least. For planar geometries (results are not provided here), a system with three times n_{r} or n_{d} of those presented here consumes the same memory and CPU time. As a result, EBA is the best model for systems with a large number of bodies. EBR and EBA have the best simulation time, as well as static and dynamic, performance. However, EBR showed to be very sensitive to sudden changes in the input pressure and external force values. High viscous damping values were considered to prevent exponentially growing errors (numerical analysis diverge) in this case. As a result, EBR simulation outputs were not

Table 4. TMTDyn package input for different models of a continuum rod, based on a pneumatically actuated STIFF-FLOP continuum appendage. Model labes are as in Fig. 2. Continues in Table 5...
world.g $=[0,0,-g] ;$ gravity
$\operatorname{body}(1) \cdot m=m_{2} / l_{m_{2}} ;$ ROM body
body(1). $I=I_{2}$;
joint (1).second $=\left[1, l_{m_{2}}\right]^{\top} ;$ ROM joint
joint(1).rom.order $=n_{r}$;
joint(1).tr.trans $=[$ inf, inf,inf $] ;$
j oint (1).tr.rot $=[0, i n f, i n f, i n f]$;
joint (1).dof(3).init $=\left(1: n_{r}\right) l_{m_{2}} ;$ DOF properties
joint(1).spring.coeff $=\left[\operatorname{diag}\left(K_{v}\right)^{\top}, \operatorname{diag}\left(K_{u}\right)^{\top}\right]$; EB beam stiffness
joint(1).damp.visc $=\left[\mu_{\xi}, \mu_{\zeta}\right] ;$ EB beam viscous damping
joint(1).damp.pow $=\nu$; viscous damping power law index
joint (1).input $=\left[f_{u_{p}}, \tau_{u_{p}}\right]$; pressure inputs
body (2). $m=m_{3}$; tip force sensor
$\operatorname{body}(2) . I=I_{3}$;
$\operatorname{body}(2) \cdot l_{-} c o m=\left[0,0, l_{m_{3}} / 2\right] ;$
joint(2).first $=\left[1, l_{m_{2}}\right]^{\top} ;$ tip force sensor joint
joint (2).second $=2$; mesh $=[]$; no mesh body
$\operatorname{exload}(1) \cdot e x b o d y=2$; tip load
$\operatorname{exload}(1) \cdot f t a u=\left[f_{l_{t}}, \tau_{l_{t}}\right] ;$
$\operatorname{exload}(1) \cdot \operatorname{tr}(1) \cdot$ trans $=\left[0,0, l_{m_{3}}\right] ;$

```
world. \(g=[0,0,-g] ;\) gravity
\(\operatorname{body}(1) . m=m_{2} / n_{d} ;\) Rigid body
\(\operatorname{body}(1) . I=I_{2 d}\);
body(1).tip \(=\left[0,0, l_{m_{2}} / n_{d}\right]\); only required for animation plots
\(K_{\chi}=\left[\operatorname{diag}\left(K_{v}\right)^{\top}, \operatorname{diag}\left(K_{u}\right)^{\top}\right]\); EB beam stiffness
\(\mu_{\chi}=\left[\mu_{\xi}, \mu_{\zeta}\right] ;\) EB beam viscous damping
\(f_{u_{\chi}}=\left[f_{u_{p}}, \tau_{u_{p}}\right]\); pressure inputs
joint (1).first \(=\left[1,\left(0: n_{d}-1\right)\right]^{\top}\); rigid link series with \(1^{\text {st }}\) one connected to ground
joint (1).second \(=\left[1,\left(1: n_{d}\right)\right]^{\top}\);
joint(1).tr (1).trans \(=\left[0,0, l_{m_{2}} / n_{d}\right] ;\)
joint(1).tr(2).trans \(=[i n f, i n f, i n f] ;\)
joint (1).tr (2).rot \(=[3\),inf \(]\); rotation about \(z-\) axis
joint (1).tr(3).rot \(=[1\), inf \(]\); rotation about \(x-\) axis
joint (1) \(\cdot \operatorname{tr}(4) \cdot\) rot \(=[2\), inf \(]\); rotation about \(y\)-axis
for \(i_{h}=1: 6\); DOF properties then
    joint (1).dof \(\left(i_{h}\right) \cdot\) spring.coef \(f=K_{\chi\left(i_{h}\right)}\);
    joint(1).dof \(\left(i_{h}\right) \cdot d a m p \cdot v i s c=\mu_{\chi\left(i_{d}\right)}\);
    joint(1).dof \(\left(i_{h}\right) \cdot\) damp.pow \(=\nu\);
    joint \((1) \cdot \operatorname{dof}\left(i_{h}\right) \cdot\) input \(=f_{\chi\left(i_{h}\right)} ;\)
end
\(\operatorname{body}(2) . m=m_{3}\); tip force sensor
body(2). \(I=I_{3}\);
body(2).l_com \(=\left[0,0, l_{m_{3}} / 2\right] ;\)
joint(2).first \(=\left[1, n_{d}\right]^{\top}\); tip force sensor joint
joint (2).second \(=2 ;\) mesh \(=[]\); no mesh body
exload(1).exbody \(=2\); tip load
\(\operatorname{exload}(1) \cdot f t a u=\left[f_{l_{t}}, \tau_{l_{t}}\right] ;\)
\(\operatorname{exload}(1) \cdot \operatorname{tr}(1) \cdot \operatorname{trans}=\left[0,0, l_{m_{3}}\right] ;\)
```

reliable for fast dynamic motions. All the models show realtime performance (CPU time <1 [s]) except ROM which has the highest CPU time demand in simulations. ROM presents significantly lower errors, even for $n_{r}=1$, compared to other models, with 6 [mm] absolute error (Abs. Err.) \& 9% normalized error (Norm. Err.) for static motion and 3.5 [mm] \& 5.5% for dynamic motion in experiments without external loads. These values are $12.5[\mathrm{~mm}] \& 19 \%$ for static and $9[\mathrm{~mm}] \& 14 \%$ for dynamic motion in presence of external tip loads. Other models resulted in about twice these error values. This is probably due to the implementation of hyper-elasticity assumptions and the differential nature of the derived EOM. This is in accordance with our earlier results in Sadati et al. (2018b). The accuracy of almost all the models decreases with increasing n_{r} or n_{d}. This is more obvious for ROM and less for EBA. Increasing n_{r} or n_{d} more
than 3 does not increase the modeling accuracy significantly while affecting the numerical performance. Results for EBR were not reliable since high viscous damping values filters parts of the dynamic motion. Our dynamic simulation results are more accurate than the static ones. However, we did not try to optimize the manipulator parameters or numerical analysis properties to find the best results, since this is not our main purpose in this study. It is possible to improve the accuracy by tuning these parameters or finding a way to effectively implement the hyper-elasticity assumption for all the modeling cases. Overall, we observed better accuracy of ROM but better numerical performance of EBA, especially for large systems. In the next section, EBA is adopted to model a hybrid system with a 2D continuum membrane.

Table 5. Continued from Table 4.
world.g $=[0,0,-g] ;$ gravity
$\operatorname{body}(1) \cdot m=\left[0,0, m_{2} / n_{d}\right] ;$ Rigid body
$\operatorname{body}(1) \cdot I=I_{2 d}$;
$\operatorname{body}(1) . t i p=l_{m_{2}} / n_{d}$; only required for animation plots
$K_{\chi}=\left[\operatorname{diag}\left(K_{v}\right)^{\top}, \operatorname{diag}\left(K_{u}\right)^{\top}\right]$; EB beam stiffness
$\mu_{\chi}=\left[\mu_{\xi}, \mu_{\zeta}\right]$; EB beam viscous damping
$f_{u_{\chi}}=\left[f_{u_{p}}, \tau_{u_{p}}\right]$; pressure inputs
joint (1).first $=\left[1,\left(0: n_{d}-1\right)\right]^{\top} ;$ EB beam series with $1^{\text {st }}$ one connected to ground
joint (1).second $=\left[1,\left(1: n_{d}\right)\right]^{\top}$;
joint(1).tr(1).trans $=\left[0,0, l_{m_{2}} / n_{d}\right] ;$
joint(1).tr(2).trans $=[$ inf, inf, inf $]$;
joint (1).tr(2).rot $=[i n f, i n f$, inf $] ;$ EB beam bendings/torsion (α)
for $i_{h}=1: 6$; DOF properties then
joint(1).dof $\left(i_{h}\right) \cdot$ spring.coef $f=K_{\chi\left(i_{h}\right)} ;$
joint $(1) \cdot d o f\left(i_{h}\right) \cdot d a m p \cdot v i s c=\mu_{\chi\left(i_{d}\right)}$;
joint (1).dof $\left(i_{h}\right) \cdot$ damp.pow $=\nu$;
joint(1).dof $\left(i_{h}\right) \cdot$ input $=f_{\chi\left(i_{h}\right)} ;$
end
body(2). $m=m_{3}$; tip force sensor
$\operatorname{body}(2) . I=I_{3}$;
e) EB Beams
(rel. states)

body(2).l_com $=\left[0,0, l_{m_{3}} / 2\right]$;
joint(2).first $=\left[1, n_{d}\right]^{\top}$; tip force sensor joint
joint(2).second $=2$; mesh $=[]$; no mesh body
$\operatorname{exload}(1) \cdot \operatorname{exbody}=2$; tip load
$\operatorname{exload}(1) . f t a u=\left[f_{l_{t}}, \tau_{l_{t}}\right]$;
$\operatorname{exload}(1) \cdot \operatorname{tr}(1) \cdot \operatorname{trans}=\left[0,0, l_{m_{3}}\right] ;$
world.g $=[0,0,-g]$; gravity
body (1). $m=m_{2} / n_{d}$; Rigid body
$\operatorname{body}(1) \cdot I=I_{2 d}$;
$K_{\chi}=\left[\operatorname{diag}\left(K_{v}\right)^{\top}, \operatorname{diag}\left(K_{u}\right)^{\top}\right]$; EB beam stiffness
$\mu_{\chi}=\left[\mu_{\xi}, \mu_{\zeta}\right]$; EB beam viscous damping
$f_{u_{\chi}}=\left[f_{u_{p}}, \tau_{u_{p}}\right] ;$ pressure inputs
joint(1).second $=\left[1,\left(1: n_{d}\right)\right]^{\top}$; series rigid links with absolute states (connected to ground)
joint(1).tr(1).trans $=\left[0,0, l_{m_{2}} / n_{d}\right]$;
joint (1).tr (2).trans $=[$ inf, inf, inf $]$;
joint(1).tr (2).rot $=[0, \inf , \inf , \inf]$; absolute quaternions rotation of each link (α)
joint(2).first $=\left[1,\left(0: n_{d}-1\right)\right]^{\top}$; EB beam series connecting the rigid bodies and $1^{\text {st }}$ one connected to ground
joint (2).second $=\left[1,\left(1: n_{d}\right)\right]^{\top} ;$ joint (2).spring.coef $f=\left[\operatorname{diag}\left(K_{v}\right)^{\top}, \operatorname{diag}\left(K_{u}\right)^{\top}\right]$; EB beam stiffness
joint (2).spring.init $=[0,0$, nan, $0,0,0] ;$ EB beam directions initial state (geometry)
joint(2).damp.visc $=\left[\mu_{\xi}, \mu_{\zeta}\right] ;$ EB beam viscous damping
joint(2).damp.pow $=\nu$; viscous damping power law index
joint (2). input $=\left[f_{u_{p}}, \tau_{u_{p}}\right]$; pressure inputs
body (2). $m=m_{3}$; tip force sensor
body(2). $I=I_{3}$;
$\operatorname{body}(2) . l_{-} c o m=\left[0,0, l_{m_{3}} / 2\right]$;
joint (3).first $=\left[1, n_{d}\right]^{\top}$; tip force sensor joint
joint (3).second $=2 ;$ mesh $=[] ;$ no mesh body
$\operatorname{exload}(1) \cdot \operatorname{exbody}=2$; tip load
$\operatorname{exload}(1) . f t a u=\left[f_{l_{t}}, \tau_{l_{t}}\right]$;
$\operatorname{exload}(1) \cdot \operatorname{tr}(1) \cdot \operatorname{trans}=\left[0,0, l_{m_{3}}\right] ;$

Table 6. Complexity of different rod (1D continuum element) models for a one-segment continuum manipulator with 3 active DOFs (1 axial elongation and 2 side bendings). All the models in our study have one extra rigid body mass at the tip, as tip force sensor, and an external load at the tip, that are not considered in this table.

Type	Model	No. of segments or ROM Polynomial order	Masses	joints	DOFs
		n_{r}	1	1	$6 \times n_{r}$
Continuum	Reduced Order Model (ROM)	n_{d}	n_{d}	n_{d}	$6 \times n_{d}$
Discretized	Series Rigid Link (SRL)	n_{d}	n_{d}	n_{d}	$6 \times n_{d}$
Discretized	Euler-Bernoulli Beam with Relative States (EBR)	n_{d}	n_{d}	$2 \times n_{d}$	$6 \times n_{d}$
Discretized	Euler-Bernoulli Beam with Absolute States (EBA)				

Dynamics of a Fabric Sleeve

Pendulum with Fabric Sleeve Setup-

A fabric sleeve, made of Jersey fabric, was cut and clamped on a rigid-link pendulum, cut to shape out of ABS clear
plastic. The pendulum was fixed with a 1 DOF joint at the top and passively swings. The model was intended to capture the fabric dynamics due to the pendulum free motion. Three magnetic trackers were used to measure the link COM motion, and deformation of two points on the fabric

Table 7. Experiments on free and forced deformations of a STIFF-FLOP continuum appendage. An external load is exerted by a force sensor at the tip of an actuated module while the appendage tip deformation is measured by a magnetic tracker.

Table 8. Sample recordings from the two experiments with a STIFF-FLOP appendage in comparison to simulation results with EBR model with $n_{d}=4$. top) experiments with no external load, middle \& bottom) experiments with tip external loads.
$\left(s_{1}, s_{2}\right)$. The results from such research can be useful for research on wearable sensors. The fabric parameters are not known and identified to present the best correlation with the experiments. Fig. 6 presents the fabric and setup dimensions and the simulation parameters.

Modeling Assumptions and Program Input- The fabric can be modeled as a membrane which is a 2D tensiononly continuum geometry that does not withstand bending or compression. This can be done by assuming the fabric as a net of equally distributed masses with connecting linear springs. Setting $d i r=1$ in the package express that the springs are tension-only elements. We have used a similar method to model a spider web with TMTDyn recently Sadati and Williams (2018). A drawback of such assumptions is that the model does not capture the crumbling of the fabric between the mesh nodes. Also, the membrane assumption may not be accurate for thick fabrics, such as the Jersey fabric used in these experiments. This is more important when the fabric takes shapes such as hollow columns, e.g. a fabric sleeve, that is more resistive against
buckling and bending. The fabric behaves like a shell, a 2D continuum geometry that withstands bending and compression too, in these scenarios. We used EB beam elements to resolve this issue without the need to increase the number of nodes or introducing diagonal connections, e.g forming a tetrahedron mesh. This is a simplifying assumption that may be accurate enough to capture the underlying physics of a system with a thin membrane or shell geometries.
To model the system, we focus on the fabric model and import the link motion in the form of a constraint that follows an already recorded path ($\chi_{c}=\rho_{\text {com }}$) based on the experimental recording of $\rho_{\text {com }}$. We use Eq. 15 to model the proposed constrained system. One geometric constraint is enough to fully define the link 1 DOF motion. Due to the constraint motion of the link, the values for $m_{1} \& I_{m_{1}}$ are not important for our analysis. Index 1 is used to define the link parameters and index 2 for the fabric ones. The fabric deforms when clamped on the link. The overall geometry of the clamped fabric is modeled with FreeCAD software as a wireframe sketch with a 3×5 grid of $n_{d}=15$ nodes and 22

Figure 5. Comparison between computational performance and accuracy of different modeling assumption for a continuum rod (based on experiments with STIFF-FLOP continuum appendage).
edges as in Fig. 6.c. The CAD model is stored in iges format to be imported into the model later. Here, nodes $12 \& 13$ are equivalent to $s_{1} \& s_{2}$. The fabric is clamped at nodes $13 \&$ 15 to the link at $\left[\pm l_{c_{x}}, 0, l_{c_{z}}\right]$. Two sets of six constraints are defined to fully fix each of these two nodes to the link.

The fabric mesh is modeled with lumped masses at the CAD-file wireframe nodes that are interconnected with EB beams. The system states are described with absolute states of the masses. This is similar to the EBA model for continuum rods that was discussed in the previous section. Nodes are rigid lumped masses with an equally distributed mass of m_{2} / n_{d}. The relation for thin plates is used to derive
their second moment of inertia as

$$
\begin{align*}
I_{2}= & \frac{m_{2}}{12 n_{d}} \operatorname{diag}\left(\left[l_{m 2_{y}}^{2}+\left(\frac{l_{m 2_{z}}}{5}\right)^{2},\right.\right. \tag{17}\\
& \left.\left.\left(\frac{l_{m 2_{x}}}{3}\right)^{2}+\left(\frac{l_{m 2_{z}}}{5}\right)^{2},\left(\frac{l_{m 2_{x}}}{3}\right)^{2}+l_{m 2_{y}}^{2}\right]\right) .
\end{align*}
$$

Links are considered as EB ribbons with linear elasticity $\quad K_{\epsilon}=\operatorname{diag}\left(a_{c}[G, G, E]\right) \quad$ and $K_{\alpha}=\operatorname{diag}([E, E, G]) \cdot \operatorname{diag}(J) \quad$ as \quad in the case of continuum rods in previous section. Here, $I=$ $\left[l_{m 2_{y}}^{3} l_{m 2_{b}}, l_{m 2_{y}} l_{m 2_{b}}^{3}, l_{m 2_{y}}^{3} l_{m 2_{b}}+l_{m 2_{y}} l_{m 2_{b}}^{3}\right] \quad$ is \quad a $\quad 1 \times 3$ vector consisting of the cross-section second moments of areas, where $l_{m 2_{b}}=\left(l_{m 2_{x}}+l_{m 2_{z}}\right) / 2$ is the mean width of the ribbons in the x, z-axis directions. The only parameter that needs updating during simulation is u_{c}, the desired acceleration of the pendulum COM position, either in the $x-$ or z-axis direction. To map the nodes motion to the beams

Sym.	Value
$m_{1}[\mathrm{gr}]$	40
$m_{1}[\mathrm{gr}]$	36
$l_{m_{1}}[\mathrm{~mm}]$	270
$l_{\text {com }_{1}}[\mathrm{~mm}]$	135
$l_{m_{2 x}}[\mathrm{~mm}]$	350
$l_{m_{2 y}}[\mathrm{~mm}]$	0.8
$l_{m_{2 z}}[\mathrm{~mm}]$	99
$l_{c_{x}}[\mathrm{~mm}]$	38
$l_{c_{z}}[\mathrm{~mm}]$	30
$\theta_{h}[\mathrm{deg}]$	85
$E[\mathrm{KPa}]$	5
$\mu_{h}[\mathrm{Ns} / \mathrm{m}]$	1 e 2
$\mu_{\epsilon}[\mathrm{Ns} / \mathrm{m}]$	1 e 2
$\mu_{\alpha}[\mathrm{Nms} / \mathrm{rad}]$	1 e 2
ν	1

Figure 6. a) A fabric is cut to form a sleeve around a single link. b) The link forms a passive pendulum with calmped fabric sleeve. The link is fixed with a 1 DOF joint at the top and two magnetic trackers at nodes $s_{1} \& s_{2}$. Red dots are equivalent to the CAD-file nodes. c) CAD-file wireframe of the sleeve in the clamped configuration (as shown by mesh_import.m module) and the modeling parameters.
deformation map, one way is to define the xaxis vector that defines beam specific frames. This results in better accuracy but cumbersome calculations to derive and simulate the system EOM. An alternative assumption is to have the beams in the local body frames, but assuming that they are initially deformed to reach the second connecting body. This is possible by setting init $=[$ nan, nan, nan, nan, nan, nan $]$ which adopts the beam initial geometry $\left(\epsilon_{0}, \alpha_{0}\right)$ to the system initial condition. We use the second method where 2D continuum geometries are modeled. This results in an almost 10 times decrease in the size of the file storing the system EOM. The inputs for the TMTDyn package to model this setup is as in Tables 9.

Experimental Results \& Discussion- Two sets of experiments were carried out to record the fabric deformation at points s_{1} and s_{2}. The static solution for the fabric deformation equilibrium point is challenging to find. The final result is sensitive to the initial guess for the system states that is passed to Matlab's f solve solver and unrealistic solutions may be found if the guessed states are not close enough to the equilibrium states. It is more accurate if a dynamic simulation is performed, by knowing the system initial conditions, to find the deformed states of the system. To test this, the pendulum was set free from an initial angle $\theta_{h_{0}} \approx 85$ [deg] to swing under gravity and its joint internal viscous damping $\left(\mu_{h}\right)$. The fabric and pendulum motions were recorded using magnetic trackers. The pendulum swings passively under gravity. The recorded data for the pendulum was imported as the desired rigid link trajectory in the model (Fig. 7.left), and the simulation results were compared with experimental data for fabric deformation (Fig. 7.right). The simulation results show good accuracy in predicting node motion in the x-axis direction. The overall absolute error is $\approx 10[\mathrm{~cm}](\approx 40 \%$ normalized error based on $l_{z_{s}}$). However, modeling such complex hybrid structures can have other benefits other than capturing the real dynamics with minimum error. For example, it is interesting to observe that the oscillation frequency of the node motion along the z-axis direction is twice the
frequency of their oscillation in the x-axis direction. Also, the fabric is slightly deformed toward gravity (decreasing mean value of sensor readings along the z-axis) during the pendulum swing in both the simulation and experimental results. A simple model for the hybrid system helps in capturing such basics physics which are useful for system design, control, and observation.

Conclusion and Discussion

Simple, reliable, and easy to use models for hybrid rigidcontinuum systems which are suitable for controller and observer design are highly sought in the field of soft robotic research. Current models are either complex with a large state space, which is not suitable for control tasks (e.g. FEM), are not reliable in general unknown cases (e.g. machine learning methods), are not accurate enough (e.g. lumped system method), or are not compatible with energy and Lagrangian based modeling and controller design techniques (the Cosserat beam method). The performance and accuracy of the newly introduced discretized Renda et al. (2018) and reduced-order models Sadati et al. (2018b); Thieffry et al. (2018b) that have promised to overcome these challenges are not yet thoroughly investigated. Additionally, there is no unified framework to implement these methods for hybrid systems with a combination of multi-dimensional rigid and continuum elements.
In this paper, we develop two new models for continuum rods and actuators: a general reduced-order model (ROM), and a discretized model with absolute states and EulerBernoulli beam segments (EBA). These models enable us to perform more accurate simulation of continuum manipulators, as well as modeling 2D and 3D continuum geometries, which has so far been missing in similar investigations Renda et al. (2018). Furthermore, a new formulation is presented for a recently introduced discretized model by Renda et al. (2018); Shiva et al. (2018) which is based on Euler-Bernoulli beam theory and relative states

Table 9. TMTDyn package input for the sleeve fabric models clamped to a rigid-link pendulum. Model labes are as in Fig. 6.

```
world.g \(=[0,0,-g]\); gravity
body \((1) \cdot m=m_{2}\); pendulum rigid link
joint (1).second \(=1\); joint (1).tr.rot \(=[2\), inf \(] ; 1\) DOF rotation around \(y\)-axis
joint(1).dof.init \(=\theta_{h_{0}}\); pendulum initial angle
joint(1).dof.damp.visc \(=\mu_{h} ;\) pendulum joint viscous damping
Import mesh geometry:
mesh.file_name \(=\) cad.iges \(; \mathrm{CAD}\)-file name
mesh.tol \(=1 e-3\); geometry import tolerance
mesh.tr.trans \(=\left[0,0, l_{c_{z}}\right] ;\) mesh geometry initial position/orientation
mesh.tr.rot \(=\left[2, \theta_{h_{0}}\right]\);
mesh.body. \(m=m_{2} / n_{d}\); equally distributed fabric mess over the nodes
mesh.body. \(I=I_{2}\); Describing the mesh absolute DOF with mesh.joint(1):
mesh.joint(1).tr.trans \(=[\) inf, \(\inf\), inf \(] ;\) masses absolute state as system DOFs
mesh.joint(1).tr.rot \(=[0, i n f, \inf , \inf ]\); quaternion representation of orientation
Describing the mesh EB beam connections with mesh.joint(2):
mesh.joint(2).spring.coef \(f=\left[\operatorname{diag}\left(K_{\epsilon}\right), \operatorname{diag}\left(K_{\alpha}\right)\right]\); linear elasticity of beams
mesh.joint (2).spring.init \(=\) nanones \((1,6)\); beam initial state from system geometry
mesh.joint(2).damp.visc \(=\left[\mu_{\epsilon}, \mu_{\alpha}\right]\); linear viscous damping
Pendulum control constraint:
joint(2).second \(=1\);
joint(2).tr2nd.trans \(=\left[0,0,-l_{\text {com }_{1}}\right]\);
joint(2).fixed \(=1\); constraining \(x-\)-axis
joint(2).control \(=u_{c}\); Fabric clamps:
joint(3).first \(=1\);
joint (3).second \(=15\); clamp at node 16 based on mesh file plot
joint(3).tr.trans \(=\left[l_{c_{x}}, 0,-l_{c_{z}}\right]\);
joint (3).fixed \(=\) ones \((1,6)\); fully constrained joint
joint (4).first \(=1 ;\) joint (4).second \(=13\); clamp at node 14 based on mesh file plot
joint(4).tr.trans \(=\left[-l_{c_{x}}, 0,-l_{c_{z}}\right]\);
joint(4).fixed \(=\) ones \((1,6)\);
```


Figure 7. Sample recordings from the two experiments with a fabric worn passive pendulum in comparison with simulation results. Recordings from magnetic trackers attached to: left) pendulum link COM, middle) node s_{1} (12 in CAD-file), and right) node s_{2} (13 in CAD-file). The simulation results show good accuracy in predicting nodes motion in x-axis direction. The fabric slightly relaxes toward gravity while the pendulum swings. It causes slight decreasing values along the z-axis in the experimental recordings. The oscillation frequency of the motion along z-axis is twice the one for x-axis direction. These physics are captured by the simulation results too.
(EBR). These models are built in a new Matlab software package, called TMTDyn Sadati et al. (2015), to develop a modeling and simulation tool for hybrid rigid-continuum systems. The package performance is boosted using a new High Level Language (HLL) text-based interface, a CAD-file import module, automatic formation of the system EOM for different modeling and control tasks, implementing C-mex functionality for improved performance, and other modules for static and linear modal analysis of a hybrid system.

The package is used herein to compare and validate the aforementioned modeling methods in comparison to experimental results on general motion of a STIFFFLOP continuum appendage under external loads. We
observed higher simulation accuracy (with as little as 8$14 \%$ normalized error) and numerical robustness (enabling consideration of material hyper-elasticity) of the ROM model, while EBA is less computationally cumbersome to derive and simulate with near real-time performance. EBR shows high sensitivity to sudden changes in the system actuation inputs and external loads and relatively higher computational cost both in derivation and simulation. The lumped system approach for modeling continuum rods as a hyper-redundant series-rigid-link system (SRL) is investigated as well. SRL has the highest computational cost to derive and optimize the system EOM. This shows the
importance of our investigation on discretized and reduced order methods for modeling hybrid systems.

Finally, the package was successfully tested for modeling a system with 2D continuum geometries. A CAD-file import module was introduced to ease importing simple 2D and 3D continuum geometries in the form of wireframe objects stored in IGES and STL CAD-file formats. A fabric sleeve was fixed to a rigid link pendulum to study cloth dynamics. We observed reliable consistency between our simulation and experimental results. To the best of our knowledge, this study is the first one that investigates low-cost analytical models for deformation of fabrics as a part of a hybrid system. Such models are important for wearable robotics research, and service robots which may deal with fabrics in their tasks. As a part of this case study, we showcased how the package can be used to easily design a nonlinear controller for a hybrid system based on the system nonlinear map (system Jacobian).

We plan to test our package for soft tissue palpation and probing tasks with medical applications. As a result, the package will be benchmarked for a hybrid system with 3D continuum geometry (the tissue sample). A similar study to what presented here for 1 D continuum geometries (rods) on the numerical performance and accuracy of different modeling assumptions, is needed to compare different modeling methods for 2D and 3D continuum geometries in a hybrid system. We are working toward a nonsingular formulation for quaternion rotations involving non-unit quaternions. We also plan to further investigate the numerical stability, convergence, and computational efficiency of the introduced methods and the TMTDyn software package in near future. This is possible with performing standard numerical and modeling tests in comparison to analytical solutions or results from high fidelity modeling methods such as FEM. Our final goal is to use this package for hybrid force and position control and geometry, force and stiffness estimation in soft robotic research.

Acknowledgment

This work is supported by the Leverhulme Trust Research Project, "Computing with spiders' web", number RPG-2016-345, granted to H.H. and F.V.; the U.K. Engineering and Physical Sciences Research Council (EPSRC) Grant EP/N03211X/2, granted to T.N.; European Union H2020 project FourByThree code 637095, granted to K.A., and the Royal Academy of Engineering (research fellowship RF1516/15/11), granted to L.R.

References

Bieze TM, Largilliere F, Kruszewski A, Zhang Z, Merzouki R and Duriez C (2018) Finite Element Method-Based Kinematics and Closed-Loop Control of Soft, Continuum Manipulators. Soft Robotics DOI:10.1089/soro.2017.0079. URL https: //www. liebertpub. com/doi/abs/10. 1089/soro. 2017.0079.
Blanc L, Delchambre A and Lambert P (2017) Flexible Medical Devices: Review of Controllable Stiffness Solutions. Actuators 6(3): 23. DOI:10.3390/act6030023. URL http://www. mdpi.com/2076-0825/6/3/23.

Boyer F (2014) Multibody system dynamics for bio-inspired locomotion: from geometric structures to computational aspects. Bioinspir. Biomim. : 23.
Braganza D, Dawson D, Walker I and Nath N (2007) A Neural Network Controller for Continuum Robots. IEEE Transactions on Robotics 23(6): 1270-1277. DOI:10.1109/ TRO.2007.906248. URL http://ieeexplore.ieee. org/document/4359261/.
Burgner-Kahrs J, Rucker DC and Choset H (2015) Continuum Robots for Medical Applications: A Survey. IEEE Transactions on Robotics 31(6): 1261-1280. DOI:10.1109/ TRO.2015.2489500. URL http://ieeexplore.ieee. org/document/7314984/.
Cianchetti M, Calisti M, Margheri L, Kuba M and Laschi C (2015) Bioinspired locomotion and grasping in water: the soft eight-arm OCTOPUS robot. Bioinspiration \& Biomimetics 10(3): 035003. DOI: 10.1088/1748-3190/10/3/035003. URL http://stacks. iop.org/1748-3190/10/i=3/a=035003?key= crossref. 7e7a029ec68cfb24c606d395db7d7611.
Cianchetti M and Menciassi A (2017) Soft Robots in Surgery. In: Soft Robotics: Trends, Applications and Challenges, Biosystems \& Biorobotics, volume 9, 1 edition. Springer International Publishing. ISBN 978-3-319-46460-2, pp. 75-85. DOI:10.1007/978-3-319-46460-2. URL http://link.springer.com/10.1007/ 978-3-319-46460-2_10.
Cianchetti M, Ranzani T, Gerboni G, De Falco I, Laschi C and Menciassi A (2013) STIFF-FLOP surgical manipulator: Mechanical design and experimental characterization of the single module. In: IEEE International Conference on Intelligent Robots and Systems (IROS). Tokyo, Japan: IEEE, pp. 3576-3581. DOI:10.1109/IROS.2013.6696866.
Cianchetti M, Ranzani T, Gerboni G, Nanayakkara T, Althoefer K, Dasgupta P and Menciassi A (2014) Soft Robotics Technologies to Address Shortcomings in Today's Minimally Invasive Surgery: The STIFF-FLOP Approach. Soft Robotics 1(2): 122-131. DOI:10.1089/soro.2014.0001. URL http://online.liebertpub.com/doi/abs/ $10.1089 /$ soro. 2014.0001.
Coevoet E, Morales-Bieze T, Largilliere F, Zhang Z, Thieffry M, Sanz-Lopez M, Carrez B, Marchal D, Goury O, Dequidt J and Duriez C (2017) Software toolkit for modeling, simulation, and control of soft robots. Advanced Robotics 31(22): 1208-1224. DOI:10.1080/01691864.2017.1395362. URL https://www.tandfonline.com/doi/full/ 10.1080/01691864.2017.1395362.

Della Santina C, Katzschmann RK, Bicchi A and Rus D (2018a) Dynamic Control of Soft Robots Interacting with the Environment. Livorno, Italy: IEEE, p. 9.
Della Santina C, Lakatos D, Bicchi A and Albu-Schffer A (2018b) Using Nonlinear Normal Modes for Execution of Efficient Cyclic Motions in Soft Robots. arXiv:1806.08389 [cs] URL http://arxiv.org/abs/1806.08389. ArXiv: 1806.08389.

Fras J, Czarnowski J, Macia M, Gwka J, Cianchetti M and Menciassi A (2015) New STIFF-FLOP module construction idea for improved actuation and sensing. In: 2015 IEEE International Conference on Robotics and Automation (ICRA). pp. 2901-2906. DOI:10.1109/ICRA.2015.7139595.

Fchslin RM, Dzyakanchuk A, Flumini D, Hauser H, Hunt KJ, Luchsinger RH, Reller B, Scheidegger S and Walker R (2012) Morphological Computation and Morphological Control: Steps Toward a Formal Theory and Applications. Artificial Life 19(1): 9-34. DOI:10.1162/ARTL_a_00079. URL https: //doi.org/10.1162/ARTL_a_00079.
Gazzola M, Dudte LH, McCormick AG and Mahadevan L (2018) Forward and inverse problems in the mechanics of soft filaments. Royal Society Open Science 5(6): 171628. DOI:10.1098/rsos.171628. URL http://rsos.royalsocietypublishing.org/ content/5/6/171628.
Godage IS, Branson DT, Guglielmino E, Medrano-Cerda GA and Caldwell DG (2011) Shape function-based kinematics and dynamics for variable length continuum robotic arms. In: 2011 IEEE International Conference on Robotics and Automation (ICRA). Shanghai, China: IEEE, pp. 452-457. DOI:10.1109/ ICRA.2011.5979607.
Godage IS, Medrano-Cerda GA, Branson DT, Guglielmino E and Caldwell DG (2016) Dynamics for variable length multisection continuum arms. The International Journal of Robotics Research 35(6): 695-722.
Godage IS, Nanayakkara T and Caldwell DG (2012) Locomotion with continuum limbs. IEEE International Conference on Intelligent Robots and Systems : 293-298DOI:10.1109/IROS. 2012.6385810.

Grazioso S, Di Gironimo G and Siciliano B (2018) A Geometrically Exact Model for Soft Continuum Robots: The Finite Element Deformation Space Formulation. Soft Robotics DOI:10. 1089/soro.2018.0047. URL https: / /www. liebertpub. com/doi/full/10.1089/soro.2018.0047.
He L, Herzig N, Lusignan Sd and Nanayakkara T (2018) Granular Jamming Based Controllable Organ Design for Abdominal Palpation. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). pp. 2154-2157. DOI:10.1109/EMBC.2018.8512709.
Hu Y, Liu J, Spielberg A, Tenenbaum JB, Freeman WT, Wu J, Rus D and Matusik W (2018) ChainQueen: A RealTime Differentiable Physical Simulator for Soft Robotics. arXiv:1810.01054 [cs] URL http://arxiv.org/abs/ 1810.01054 . ArXiv: 1810.01054.

Jung J, Penning RS, Ferrier NJ and Zinn MR (2011) A modeling approach for continuum robotic manipulators: Effects of nonlinear internal device friction. In: Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Conference on. IEEE, pp. 5139-5146. URL http: / /ieeexplore. ieee. org/abstract/document/6094941/.
Kapadia AD, Walker ID, Dawson DM and Tatlicioglu E (2010) A Model-based Sliding Mode Controller for Extensible Continuum Robots. In: Proceedings of the 9th WSEAS International Conference on Signal Processing, Robotics and Automation, ISPRA'10. Stevens Point, Wisconsin, USA: World Scientific and Engineering Academy and Society (WSEAS). ISBN 978-960-474-157-1, pp. 113120. URL http://dl.acm.org/citation.cfm?id= 1807817.1807840.

Katzschmann RK, Marchese AD and Rus D (2015) Autonomous Object Manipulation Using a Soft Planar Grasping Manipulator. Soft Robotics 2(4): 155-164. DOI:10.1089/soro. 2015. 0013. URL http://online.liebertpub.com/doi/
abs/10.1089/soro.2015.0013.
McEvoy MA and Correll N (2018) Shape-Changing Materials Using Variable Stiffness and Distributed Control. Soft Robotics 5(6): 737-747. DOI:10.1089/soro.2017. 0147. URL https://www.liebertpub.com/doi/ full/10.1089/soro.2017.0147.
Mustaza SM, Elsayed Y, Lekakou C, Saaj CM and Fras J (2018) Dynamic Modeling of Fiber-Reinforced Soft Manipulator: A Visco-hyperelastic Material-based Continuum Mechanics Approach. Soft Robotics .
Nakajima K, Hauser H, Li T and Pfeifer R (2015) Information processing via physical soft body. Scientific Reports 5: 10487. DOI:10.1038/srep10487. URL https://www. nature. com/articles/srep10487.
Nakajima K, Hauser H, Li T and Pfeifer R (2018) Exploiting the Dynamics of Soft Materials for Machine Learning. Soft Robotics DOI:10.1089/soro.2017.0075. URL https://www.liebertpub.com/doi/full/10. 1089/soro. 2017.0075.
Negrut D and Dyer A (2004) Adams/solver primer. MSC. Software Documentation, Ann Arbor .
Patern L, Tortora G and Menciassi A (2018) Hybrid SoftRigid Actuators for Minimally Invasive Surgery. Soft Robotics 5(6): 783-799. DOI:10.1089/soro.2017.0140. URL https://www.liebertpub.com/doi/full/10. 1089/soro. 2017.0140.
Renda F, Boyer F, Dias J and Seneviratne L (2018) Discrete Cosserat Approach for Multisection Soft Manipulator Dynamics. IEEE Transactions on Robotics : 1-16DOI:10.1109/TRO. 2018.2868815.

Renda F, Cianchetti M, Abidi H, Dias J and Seneviratne L (2017) Screw-Based Modeling of Soft Manipulators With Tendon and Fluidic Actuation. J. Mechanisms Robotics 9(4): 041012-041012-8. DOI:10.1115/1.4036579. URL http://dx. doi.org/10.1115/1.4036579.
Renda F and Seneviratne L (2018) A Geometric and Unified Approach for Modeling Soft-Rigid Multi-Body Systems with Lumped and Distributed Degrees of Freedom. In: 2018 IEEE International Conference on Robotics and Automation (ICRA). pp. 1567-1574. DOI:10.1109/ICRA.2018.8461186.
Rich SI, Wood RJ and Majidi C (2018) Untethered soft robotics. Nature Electronics 1(2): 102.
Rucker C (2018) Integrating Rotations Using Nonunit Quaternions. IEEE Robotics and Automation Letters 3(4): 2979-2986. DOI: 10.1109/LRA.2018.2849557.

Rucker DC, Jones BA and Webster RJ (2010) A Geometrically Exact Model for Externally Loaded Concentric-Tube Continuum Robots. IEEE Trans Robot 26(5): 769-780. DOI: 10.1109/TRO.2010.2062570. URL https://www.ncbi. nlm.nih.gov/pmc/articles/PMC3091283/.
Rus D and Tolley MT (2015) Design, fabrication and control of soft robots. Nature 521(7553): 467-475. DOI:10.1038/ nature14543. URL http://dx.doi.org/10.1038/ nature14543.
Sadati S (2017) AutoTMTDyn Software Package. URL https://github.com/hadisdt/AutoTMTDyn. Https://github.com/hadisdt/AutoTMTDyn.
Sadati S and Meghdari A (2017) Singularity-free planning for a robot cat free-fall with control delay: Role of limbs and tail. In: 2017 8th International Conference on Mechanical
and Aerospace Engineering (ICMAE). pp. 215-221. DOI: 10.1109/ICMAE.2017.8038645.

Sadati S, Naghibi S and Naraghi M (2015) An Automatic Algorithm to Derive Linear Vector Form of Lagrangian Equation of Motion with Collision and Constraint. Procedia Computer Science 76: 217-222.

Sadati S, Naghibi SE, Althoefer K and Nanayakkara T (2018a) Toward a Low Hysteresis Helical Scale Jamming Interface Inspired by Teleost Fish Scale Morphology and Arrangement. Livorno, Italy: IEEE, p. 7.
Sadati S, Naghibi SE, Shiva A, Noh Y, Gupta A, Walker ID, Althoefer K and Nanayakkara T (2017a) A Geometry Deformation Model for Braided Continuum Manipulators. Front. Robot. AI 4. DOI:10.3389/frobt.2017.00022. URL https://www.frontiersin.org/articles/ 10.3389/frobt.2017.00022/full.

Sadati S, Naghibi SE, Shiva A, Walker ID, Althoefer K and Nanayakkara T (2017b) Mechanics of Continuum Manipulators, a Comparative Study of Five Methods with Experiments. In: Towards Autonomous Robotic Systems, volume 10454. Surrey, UK: Springer International Publishing. ISBN 978-3-319-64106-5 978-3-319-64107-2, pp. 686-702. DOI:10.1007/ 978-3-319-64107-2_56. URL http://link.springer. com/10.1007/978-3-319-64107-2_56.
Sadati S, Naghibi SE, Walker ID, Althoefer K and Nanayakkara T (2018b) Control Space Reduction and Real-Time Accurate Modeling of Continuum Manipulators Using Ritz and RitzGalerkin Methods. IEEE Robotics and Automation Letters 3(1): 328-335. DOI:10.1109/LRA.2017. 2743100. URL http://ieeexplore.ieee.org/ document/8014482/.
Sadati S, Shiva A, Ataka A, Naghibi SE, Walker ID, Althoefer K and Nanayakkara T (2016) A geometry deformation model for compound continuum manipulators with external loading. IEEE. ISBN 978-1-4673-8026-3, pp. 4957-4962. DOI:10. 1109/ICRA.2016.7487702. URL http://ieeexplore. ieee.org/document/7487702/.
Sadati S, Sullivan L, Walker I, Althoefer K and Nanayakkara T (2018c) Three-Dimensional-Printable Thermoactive Helical Interface With Decentralized Morphological Stiffness Control for Continuum Manipulators. IEEE Robotics and Automation Letters 3(3): 2283-2290. DOI:10.1109/LRA. 2018.2805163. URL http://ieeexplore.ieee.org/ document/8288847/.
Sadati SMH, Naghibi SE, Shiva A, Zschaler S, Hauser H, Walker I, Althoefer K and Nanayakkara T (2018d) AutoTMTDyn: A Matlab Software Package to Drive TMT Lagrange Dynamics of Series Rigid- and Continuum-link Mechanisms.
Sadati SMH and Williams T (2018) Toward Computing with Spider Webs: Computational Setup Realization. In: Biomimetic and Biohybrid Systems, Lecture Notes in Computer Science. Springer, Cham. ISBN 978-3-319-95971-9 978-3-319-95972-6, pp. 391-402. DOI:10.1007/978-3-319-95972-6 43. URL http://link.springer.com/chapter/ 10.1007/978-3-319-95972-6_43.

Shiva A, Sadati S, Noh Y, Fras J, Ataka A, Wurdemann HA, Hauser H, Walker ID, Nanayakkara T and Althoefer K (2018) Elasticity vs. Hyperelasticity Considerations in QuasiStatic Modelling of a Soft Finger-like Robotic Appendage for Real-time Position \& Force Estimation | Request

PDF. Soft Robotic Journal (accepted, under print). URL https://www.researchgate.net/publication/ 328583306_Elasticity_vs_Hyperelasticity_ Considerations_in_Quasi-Static_Modelling_ of_a_Soft_Finger-like_Robotic_Appendage_ for_Real-time_Position_Force_Estimation.
Skeel RD and Berzins M (1990) A Method for the Spatial Discretization of Parabolic Equations in One Space Variable. SIAM Journal on Scientific and Statistical Computing 11(1): 1-32. DOI:10.1137/0911001. URL http://epubs.siam. org/doi/10.1137/0911001.
Sutar MK and Pathak PM (2017) Bond Graph Modelling and Control of Hyper-Redundant Miniature Robot for InVivo Biopsy. In: Bond Graphs for Modelling, Control and Fault Diagnosis of Engineering Systems. Springer, Cham. ISBN 978-3-319-47433-5 978-3-319-47434-2, pp. 451-495. DOI:10.1007/978-3-319-47434-2_13. URL https://link.springer.com/chapter/10. 1007/978-3-319-47434-2_13.
Takano R, Mochiyama H and Takesue N (2017) Real-time shape estimation of Kirchhoff elastic rod based on force/torque sensor. In: 2017 IEEE International Conference on Robotics and Automation (ICRA). Singapore, Singapore: IEEE. ISBN 978-1-5090-4633-1, pp. 2508-2515. DOI:10.1109/ICRA. 2017.7989292. URL http://ieeexplore.ieee.org/ document/7989292/.
Thieffry M, Kruszewski A, Duriez C and Guerra Tm (2018a) Control Design for Soft Robots based on Reduced Order Model. IEEE Robotics and Automation Letters : 1-1DOI:10. 1109/LRA.2018.2876734. URL https://ieeexplore. ieee.org/document/8496833/.
Thieffry M, Kruszewski A, Guerra TM and Duriez C (2018b) Reduced Order Control of Soft Robots with Guaranteed Stability. In: European Control Conference ECC18. Limassol, Cyprus. URL https://hal.archives-ouvertes. fr/hal-01747433.
Thuruthel TG, Ansari Y, Falotico E and Laschi C (2018a) Control Strategies for Soft Robotic Manipulators: A Survey. Soft Robotics 5(2): 149-163. DOI:10.1089/soro.2017. 0007. URL https://www.liebertpub.com/doi/ 10.1089/soro.2017.0007.

Thuruthel TG, Falotico E, Renda F and Laschi C (2018b) ModelBased Reinforcement Learning for Closed-Loop Dynamic Control of Soft Robotic Manipulators. IEEE Transactions on Robotics : 1-11DOI:10.1109/TRO.2018.2878318.
Till J and Rucker DC (2017) Elastic Stability of Cosserat Rods and Parallel Continuum Robots. IEEE Transactions on Robotics 33(3): 718-733. DOI:10.1109/TRO.2017.2664879.
Trivedi D, Lotfi A and Rahn CD (2008) Geometrically Exact Models for Soft Robotic Manipulators. IEEE Transactions on Robotics 24(4): 773-780. DOI:10.1109/TRO.2008.924923.
Tunay I (2013) Spatial continuum models of rods undergoing large deformation and inflation. IEEE Transactions on Robotics 29(2): 297-307. DOI:10.1109/TRO.2012.2232532. 00000.
Walker ID, Choset H and Chirikjian GS (2016) Snake-Like and Continuum Robots. In: Springer Handbook of Robotics. Cham: Springer International Publishing, pp. 481498. URL http://link.springer.com/10.1007/ 978-3-319-32552-1_20.

Webster RJ and Jones BA (2010) Design and Kinematic Modeling of Constant Curvature Continuum Robots: A Review. The International Journal of Robotics Research 29(13): 1661-1683. DOI:10.1177/0278364910368147. URL http://ijr.sagepub.com/cgi/doi/10.1177/ 0278364910368147.

Wehner M, Truby RL, Fitzgerald DJ, Mosadegh B, Whitesides GM, Lewis JA and Wood RJ (2016) An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature 536(7617): 451-455. DOI:10.1038/nature19100. URL http://www.nature.com/nature/journal/ v536/n7617/full/nature19100.html.
Wisse M and Linde RQvd (2007) Delft Pneumatic Bipeds. Springer Science \& Business Media. ISBN 978-3-540-72807-8. Google-Books-ID: NE8CmUMdG38C.

Appendices

1. High Level Language

Table 10. HLL inputs' symbol, definition, type, dimension, proposed unit in SI, default values, and user options. $n_{m}, n_{d}, n_{t}, n_{h}, n_{q}$, n_{r}, n_{j}, n_{l} are the number of bodies, repeted bodies in a mesh geometry, concecuitive relative transformtions, DOF definitions, states (generalized coordinates), polynomial order in reduced order model, joints/connections, and external loads in a system, respectively. i is a general counter, [] is an empty variable, - is for not defined, SBD means "Should Be Defined", ROM is for continuum body Reduced Order Model, MK for joint on main kinematic chain, and $\mathbb{N}, \mathbb{Z}, \mathbb{R}$ are for Natural, Integer and Real number sets, respectiely. Different possible presentations of each variable are discussed in extra rows shaded with dark gray (continued in Table 11).

Symbol	Definition	Type [Dimensions]	Default [Unit]	Input Options
par par.anim par.mov par.derive par.fun	control param.s \& var.s animation control save video control derivation control derived function type	struct boolean boolean boolean integer		SBD
			1	-, [], 0: off, 1: on
			0	-, [], 0: off, 1: on
			1	-, [], 0: off, 1: on
			1	-, [],...
		1: single Matlab structures for each element,... 2: separate Matlab functions for each element,... 3: Matlab functions for each EOM matrix/vector,... 4: similar to (3) but in C language		
par.mex par.modal	C-mex file generation linear modal analysis	$\begin{aligned} & \text { boolean } \\ & \in[0,1,2] \end{aligned}$	1	$\begin{array}{r} -,[\text {], 0: off, 1: on } \\ -,[], \ldots \end{array}$
			1	
		0 : off, 1: use with Matlab function, 2: use C-mex function		
par.equil	solve equilibrium point	$\in[0,1,2]$	1	$-,[], \ldots$
		0: off, 1: use with Matlab function, 2: use C-mex function		
par.dyn	dynamic simulation	$\in[0,1,2] \quad 0$ off 1 . use	1	cion,$-{ }^{-}$[],...
			0 : off, 1: use with Matlab function, 2: use C-mex function	
par.nint	spatial integration steps	integer	50	-, \mathbb{N}
world world.g	system general properties gravity vector	struct vector $[1 \times 3]$	$[0,0,0]\left[\mathrm{m} / \mathrm{s}^{2}\right]$	$\begin{array}{r} -,[] \\ -,[], \mathbb{R}_{[1 \times 3]} \end{array}$
$\begin{aligned} & \operatorname{body}\left(i_{m}\right) \\ & \operatorname{body}\left(i_{m}\right) \cdot m \end{aligned}$	inertial elements body mass	struct $\left[1 \times n_{m}\right]$ double $\left[n_{d} \times 1\right]$	$1 \mathrm{e}-9[\mathrm{Kg}]$	$\begin{array}{r} \text { SBD } \\ -,[\text { [}, \ldots \end{array}$
		\mathbb{R} : in a mesh: same value for all elements,... $\mathbb{R}_{\left[n_{d} \times 1\right]}$: individual values for each mesh element		
$\operatorname{body}\left(i_{m}\right) \cdot I$	body inertia	double $\left[3 \times 3 \times n_{d}\right]{ }_{\mathbb{R}_{[3 \times}}$	$1 \mathrm{e}-9\left[\mathrm{Kg} . \mathrm{m}^{2}\right]$ same value for	$-,[], \ldots$ for all elements in a mesh,... values for each mesh element
			$\mathbb{R}_{\left[3 \times 3 \times n_{d}\right]}$: individual values for each mesh element	
body $\left(i_{m}\right) . l$ l_com	COM local pos. vec.	double $\left[n_{d} \times 3\right]$	[0,0,0] [m]	-, [],...
		$\mathbb{R}_{[1 \times 3]}$: same value for all elements in a mesh,... $\mathbb{R}_{\left[n_{d} \times 3\right]}$: individual values for each mesh element		
$\operatorname{body}\left(i_{m}\right) . t i p$	tip local pos. vec.	double $\left[n_{d} \times 3\right] \quad \mathbb{R}_{[1 \times 3}$	$2 \times l . c o m[m] ~-, ~[], \ldots$	
			$\mathbb{R}_{\left[n_{d} \times 3\right]}$: individual values for each mesh element	
$\begin{aligned} & \hline \text { joint }\left(i_{j}\right) \\ & \text { joint }\left(i_{j}\right) \text {.rom } \end{aligned}$	connections \& actuation lines ROM details	$\begin{aligned} & \text { struct }\left[1 \times n_{j}\right] \\ & \text { struct } \end{aligned}$	[]	$\begin{array}{r} \hline \text { SBD } \\ \text { if ROM- } . l(\mathrm{SBD}), \ldots \\ \text { else- -, [] } \end{array}$
... .rom.order	ROM polynomial order	integer	-	if ROM- \mathbb{N} (SBD), ...
$j o i n t\left(i_{j}\right) \cdot \mathrm{first}$	first connecting body	double [1×2or $\left(n_{d}+1\right)$]	[0,0]	-, [],...

\mathbb{N} : body number, if MK- single mass, else- attached to single body or to $1^{\text {st }}$ element in a mesh,... $[\mathbb{N}, \mathbb{N o r} \mathbb{R}]_{[1 \times 2]}$: body number $\operatorname{first}(1)$, attached to element number $\operatorname{first}(2)(\in \mathbb{N})$ in a mesh or... or axial length $s=\operatorname{first}(2)(\in \mathbb{R})$ in a ROM body,... $\mathbb{Z}_{\left[1 \times\left(n_{d}+1\right)\right]}$: body number first(1), if MK- creates a mesh with n_{d} bodies,... else- attached to elements with number $\operatorname{first}(2: \ldots)$ in a mesh
joint $\left(i_{j}\right)$.second second connecting body $[\mathbb{N}, \mathbb{N} \text { or } \mathbb{R}]_{[1 \times 2]}$: body number second(1), if MK- creates ROM continuum rod with length second $(2)(\in \mathbb{R})$ joint $\left(i_{j}\right) \cdot \operatorname{tr}\left(i_{t}\right) \quad$ local transformations to $1^{\text {st }}$ body... contact point location/orientation translation vector
struct $\left[1 \times n_{t}\right.$]
double $[1 \times 3]$
-, [], .trans, .rot
[0,0,0][m]
-, [],...
$\mathbb{R}_{[1 \times 3]}$: set elements to inf to create a DOF,... if $\operatorname{ROM}-\mathbb{R}_{[1 \times 3]}$ represents the local strain vector

Table 11. ...continued from Table 10 (continued in Table 12).

\mathbb{R} : coefficient of the DOF spring and if mesh or ROM- same for all of its instances in the mesh or ROM coefficients,... $\mathbb{R}_{\left[n_{d} \times 1\right]}$: coefficient of the DOF springs of each element in mesh ... spring.init DOF spring initial (resting) value double $\left[n_{d} \times 1\right] \quad 0[\mathrm{~m}]$ or $[\mathrm{rad}]$
\mathbb{R} : initial value for the DOF spring and if mesh or ROM- same for all of its instances in the mesh or ROM coefficients,... $\begin{array}{ccc}\ldots \text {..spring.init DOF spring initial (resting) value double }\left[n_{d} \times 1\right] \quad 0[\mathrm{~m}] \text { or }[\mathrm{rad}] & -,[], \ldots \\ \mathbb{R} \text { : initial value for the DOF spring and if mesh or ROM- same for all of its instances in the mesh or ROM coefficients,... }\end{array}$ $\mathbb{R}_{\left[n_{d} \times 1\right]}$: initial value for DOF springs of each element in mesh...
set each element to nan to automatically find that initial value based on system DOFs initial conditionspring.compr DOF spring compression ratio double $\left[n_{d} \times 1\right]$
-, [],...
$\mathbb{R} \in(0,1]:$ compression ratio for the DOF spring and if mesh or ROM- same for all of its instances or coefficients,...
$\mathbb{R}_{\left[n_{d} \times 1\right]}$: compression ratio for DOF springs of each element in mesh
... .dof $\left(i_{h}\right) . d i r$
DOF active direction integer $\left[n_{d} \times 1\right] \quad 0$

0
$-,[$],...
-1 : compression only (e.g. soft contact), 1 : elongation only (e.g. rope), 0 : both directions (e.g. regular spring)
... .dof $\left(i_{h}\right) . \operatorname{damp} \quad$ Viscous damping parallel to DOF
... .damp.visc DOF viscous damping coefficient struct double $\left[n_{d} \times 1\right] \quad 0[\mathrm{Ns} / \mathrm{m}]$ or $[\mathrm{Nms} / \mathrm{rad}]$
-, [], .visc, .pow \mathbb{R} : coefficient of the DOF damping and if mesh or ROM- same for all of its instances in the mesh or ROM coefficients,... $\mathbb{R}_{\left[n_{d} \times 1\right]}$: coefficient of the DOF damping of each element in mesh .. .damp.pow

DOF viscous damping power
\mathbb{R} : power value for the DOF non-Newtonian viscous damping and if mesh or ROM- same for all of its instances in... the mesh or ROM coefficients,... $\mathbb{R}_{\left[n_{d} \times 1\right]}$: power value for DOF damping of each element in mesh double $\left[n_{d} \times 1\right] \quad 0[\mathrm{~N}]$ or $[\mathrm{Nm}] \quad-,[], \ldots$ ents,... $\mathbb{R}_{\left[n_{d} \times 1\right]}$: value of the DOF input of each element in mesh
Only for ROM or spring/damper/input connection without any DOF (not for constrains):
joint $\left(i_{j}\right)$.dir
joint active direction
integer $\left[n_{d} \times 1\right] \quad 0$
-, [],...
-1 : compression only (e.g. soft contact), 1 : elongation only (e.g. rope), 0 : both directions (e.g. regular spring)... ignored for constraints (when fixed field is present)
joint $\left(i_{j}\right)$.xaxis joint $\left(i_{j}\right)$.spring
joint x-axis direction w.r.t. local frame spring link
integer $\left[n_{d} \times 3\right]$ struct
[] [m]
[]
$-,[], \mathbb{R}_{\left[n_{d} \times 3\right]}$
$-,[], \ldots$
coeff, init, .compr
$\mathbb{R}_{\left[n_{d} \times 1 \text { or6 }\right]}$: coefficient(s) of the joint/beam springs for each element in mesh

Table 12. ...continued from Table 11.

Symbol	Definition	Type [Dimensions]	Default [Unit]	Input Options
ıt	ting)	double ${ }_{n} \times 1$ or6]	0 [m] \& [rad]	
\mathbb{R} : initial value for the link spring and if beam or ROM- same for all the directions,... $\mathbb{R}_{[1 \times 6]}$: stiffness of the beam or ROM directions (strains and curvature/torsion),... $\mathbb{R}_{\left[n_{d} \times 1 \text { orf] }\right]}$: initial value(s) for joint/beam springs of each element in mesh,... matically find that initial value based on system DOFs' initial condition (not for ROM)				
... .spring.compr	spring compression ratio	double [$n_{d} \times 1$ or6]	1	
$\mathbb{R} \in(0,1]$: link spring compression ratio and if mesh or ROM- same for all the directions,... $\mathbb{R}_{[1 \times 6]}$: link spring compression ratio for the beam or ROM directions (strains and curvature/torsion),...				
$\mathbb{R}_{\left[n_{d} \times 1 \text { or6] }\right.}$: link spring compression ratio of each element in mesh				
$\text { joint }\left(i_{j}\right) \cdot d a m p$ damp.visc	Viscous damping connection link viscous damping coefficient	struct double [$n_{d} \times 1$ or6]	$\begin{aligned} & {[]} \\ & 0[\mathrm{Ns} / \mathrm{m}] \&[\mathrm{~N} \end{aligned}$	$\begin{array}{r} -,[], \text { visc, .pow } \\ -,[], \ldots \end{array}$

\mathbb{R} : power value for the link viscous damping and if beam or ROM- same for all the directions,... $\mathbb{R}_{[1 \times 6]}$: damping power value of the beam or ROM directions (strains and curvature/torsion), ... $\mathbb{R}_{\left[n_{d} \times 1 \text { or6] }\right]}$: power value for the damping of each element in mesh
joint $\left(i_{j}\right)$.input load (input) along the joint double $\left[n_{d} \times 1\right.$ or6 $] \quad 0[\mathrm{~N}] \&[\mathrm{Nm}] \quad-,[], \ldots$
\mathbb{R} : value of the input load along the joint and if beam or ROM- same for all the directions,... $\mathbb{R}_{[1 \times 6]}$: input value of the beam or ROM directions (strains and curvature/torsion),... $\mathbb{R}_{\left[n_{d} \times 1 \text { or } 6\right]}$: input value of the joint for each element in mesh
joint $\left(i_{j}\right)$.fixed constraint directions boolean $\left[n_{d} \times 6\right] \quad 0 \quad \mathbb{R}_{d} \times 1$ or6 $]$. input value of the joint for each element in mesh
$[1 \times 6]$ boolean vector: constraint directions that are set to $1, \ldots$ $\left[n_{d} \times 3\right]$ boolean matrix: different constraint directions for each element in a mesh,... ignored for ROM (when rom filed is present)
joint $\left(i_{j}\right)$.control constraint desired acceleration
double $\left[n_{d} \times 6\right] \quad 0$
-, [],...
0 : fixed constraint,...
\mathbb{R} : same constraint control for all the fixed directions,...
$\mathbb{R}_{[1 \times 6]}$: different controls for each of the fixed directions,... $\mathbb{R}_{\left[n_{d} \times 6\right]}$: different constraint controls for each element in a mesh,... ignored for ROM (when rom filed is present)

\mathbb{R} : reference body number, uses $1^{\text {st }}$ element for mesh or tip for ROM,... $\mathbb{R}_{[1 \times 2]}$: always uses $\operatorname{refbody}(2)$ element for mesh or at $s=\operatorname{refbody}(2)$ for ROM, \ldots $\mathbb{R}_{\left[1 \times\left(n_{d}+1\right)\right]}$: uses refbody(2:$\left.\ldots\right)$ elements for mesh or at $s=\operatorname{refbody}(2: \ldots)$ for ROM
$\operatorname{exload}\left(i_{l}\right) \cdot \operatorname{tr}\left(i_{t}\right)$ local transformations to contact... struct $\left[1 \times n_{t}\right.$]
-, [], .trans, .rot point location/orientation
... .tr $\left(i_{t}\right)$.trans
... .tr $\left(i_{t}\right)$.rot
translation vector rotation vector
double $[1 \times 3]$
[$0,0,0$] [m]
double $[1 \times 2$ or 4$] \quad[0,0][-$-rad $]$
$\mathbb{R}_{[1 \times 2]}:$ consist of rotation axis \& rotation angle respectively,... $\mathbb{R}_{[1 \times 4]}$: rotation expressed with a quaternion $\left[Q_{0}, Q_{\rho}\right]$ double $\left[n_{d} \times 6\right] \quad[0,0,0,0,0,0][\mathrm{N}, \mathrm{Nm}]$
2. Algorithms

```
Algorithm 1: Algorithm for system declaration in "system.m". See Table 10-12.
    Result: System model, simulation \& analysis
    par.anim, .mov, .derive, .fun, .mex, .equil, .dyn, .nint; modeling parameters
    if par.derive then
        syms, par.sym; symbolic structural parameters
    end
    par.var; default structural parameters
    world.g, body, joint, mesh, exload; system geometry
    Default routines:
    if par.derive then
        tmt_eom_derive(...); EOM derivation
    end
    if par.equil then
        equil(...); solve for equilibrium
    end
    if par.dyn then
        modal (...); system linear modal analysis
    end
    if par.mov then
        Set video recording parameters
    end
    for dynamic simulation intervals do
        if par.dyn then
        dyn_sym(...); solve system dynamics
        end
        if par.anim then
            \(\operatorname{anim}(\ldots)\); simple animation \& record video
        end
    end
    if par.mov then
        Close recorded video file
    end
    post_proc(...); post-processing the results
    save('code/results.mat' ); save results in a file
```

```
Algorithm 2: Algorithm for importing "IGES" file geometries, using Matlab igesToolBox toolbox, in
"mesh_import.m".
    Data: body, joint, mesh, par
    Result: mesh_body, mesh_joint; mesh elements
    \(n_{m}\); find current number of body instances
    [mesh.body, mesh.joint \(]=\operatorname{check}(\) par, [], mesh.joint, mesh.joint, [], []); Default values for mesh body \& joints
    Import mesh file: makeIGESmex (); compile the c-files
    lines; load line elements from IGES-file and transform them based on mesh.tr
    for \(i=1\) :numel(lines); find nodes and links do
        \(i_{j}, i_{j l}\); number of DOF \& linking joints
        link_joint \(\left(i_{j_{l}}\right)=\) mesh.joint(2); assign link joints \& default values
        Find new nodes:
        if new node then
            \(i_{p}=i_{p}+1\); number of points
            points \(\left(i_{p},:\right)=\left[\right.\) lines \(\left.(i) \cdot p 1(1: 3), 0, i_{j l}\right]\); update point sets
        else
            if new mass then
                \(i_{b}=i_{b}+1 ; i_{j}=i_{j}+1 ;\) number of bodies and DOF joints
                Set node mass and DOF properties:
                mesh_body \(\left(i_{b}\right)=\) mesh.body;
                mesh_joint \(\left(i_{j}\right)=\) mesh.joint \((1)\);
                mesh_joint \(\left(i_{j}\right)\).first|second \(=i_{b}+n_{b}\); link the joint to the new body index
                points \(\left(i_{p}, 4\right)=i_{b}+n_{b}\); record the node body index
            else
                link_joint \(\left(i_{j_{l}}\right)\). first \(\mid\) second \(=i_{b}+n_{b}\); update linking joint info.
            end
    end
    Similar procedure for the links' \(2^{\text {nd }}\) end
    end
    mesh_joint \(=[\) mesh_joint, link_joint \(]\); concatenating the imported DOF \& linking joints
    plotIGES(lines); plot the IGES object and label the nodes
```

```
Algorithm 3: Algorithm for system parameters check and default values in "check.m".
    Data: par, world, body, joint, exload, mesh
    Result: s, world, body, joint, exload, par; System structural parameters
    syms \(s\); axial length variable for ROM elements
    mesh_import (...); assign bodies and DOF joints and links to a mesh file
    par; set default values for undefined modeling parameters
    world; set default values for world.g
    for \(i_{b}=1: n_{b}\);number of bodies do
        for \(i_{j}=1: n_{j}\);number of joints do
            if joint.second \(=i_{b}\); is in MK then
                \(n_{d}=\) numel \(\left(\right.\) joint \(\left(i_{j}\right)\).first) -1 ; number of mesh (repeated similar) elements
                body; set default values for body, with dimension \(n_{d}\)
            end
        end
    end
    for \(i_{j}=1: n_{j}\);number of bodies do
        joint.first, .second, .rom; set default values
        for \(i_{b}=1: n_{b}\);number of joints do
            if joint.second \(=i_{b}\);is in MK then
                mainkin \(=1 ;\) MK index
            end
        end
        if numel (joint.first, .second) \(=2\); series of links then
            joint \(\left(i_{j}\right) \cdot\) first, \(. \operatorname{second}\left(2: \operatorname{joint}\left(i_{j}\right) \cdot f i r s t, \cdot \operatorname{second}(2)+1\right)=1: \operatorname{joint}\left(i_{j}\right) \cdot \operatorname{second}(2) ;\)
        end
        \(n_{d}=\boldsymbol{m a x}\left(\left[\operatorname{numel}\left(j \operatorname{oint}\left(i_{j}\right) \cdot f i r s t\right), \ldots\right.\right.\)
        numel \(\left(\right.\) joint \(\left(i_{j}\right)\).second \(\left.)\right]\) ); number of mesh elements
        joint \(\left(i_{j}\right)\).tr.trans, .rot; Default values
        for \(i_{1}=1 \operatorname{numel}\left(j \operatorname{joint}\left(i_{j}\right) \cdot t r\right)\) do
            rotrans \(=\left[j \operatorname{joint}\left(i_{j}\right) \cdot \operatorname{tr}\left(i_{1}\right) \cdot \operatorname{trans}, j\right.\) oint \(\left(i_{j}\right) \cdot \operatorname{tr}\left(i_{1}\right) \cdot\) rot \(] ;\) transformation vector
            for \(i_{2}=1\) :numel(rotrans) do
                if \(\operatorname{isinf}\left(\right.\) rotrans \(\left.\left(i_{2}\right)\right)\); DOFs then
                        \(n_{q}=n_{q}+1\); Number of DOFs
                            joint \(\left(i_{j}\right) \cdot \operatorname{dof}(n q)\); DOF Default values, with dimension \(n_{d}\)
    if joint \(\left(i_{j}\right)\).rom; ROM geometries then
            for \(i_{r}=1: \operatorname{joint}\left(i_{j}\right) \cdot \operatorname{second}(2) ;\) ROM order do
                \(i_{r c}=i_{r}\);
                                if \(i_{2}<4 ; \mathrm{x}, \mathrm{y}, \mathrm{z}\) Boundary Condition then
                        \(i_{r c}=i_{r}+1\); corrected order
                            end
                                \(S=\left[S, s_{r c}^{i_{r}}\right] ;\) vector of shape functions
            end
            joint \(\left(i_{j}\right)\).dof \((n q)\). init \(_{s}\) default values;
            for \(i_{r}=1\) :numel \(\left(\operatorname{joint}\left(i_{j}\right) \cdot \operatorname{dof}\left(n_{q}\right) \cdot i n i t\right)\); axial positions do
                        \(s_{0}=j o i n t\left(i_{j}\right) \cdot d o f\left(n_{q}\right) \cdot\) init \(_{s}\left(i_{s}\right)\);
                                \(S_{0}=\left[S_{0} ; \mathbf{s u b s}\left(S, s, s_{0}\right)\right]\); axial position vector
                                if \(i_{2}=3\); \(\mathbf{z}\) boundary condition correction then
                                \(b_{0}=\left[b_{0}, s_{0}\right] ; \mathbf{z}\) boundary condition correction
                                else
                                    \(b_{0}=\left[b_{0}, 0\right] ;\)
                                    end
            end
                            \(j \operatorname{joint}\left(i_{j}\right) \cdot \operatorname{dof}\left(n_{q}\right) \cdot\) init \(=\operatorname{inv}\left(S_{0}\right)\left(j \operatorname{joint}\left(i_{j}\right) \cdot d o f\left(n_{q}\right)\right.\).init \(\left.-b_{0}\right)\); inverse problem for initial values
                    \(j \operatorname{joint}\left(i_{j}\right) \cdot d o f\left(n_{q}\right) \cdot s=S\); shape function vector
                    end
                    end
            end
        end
        if joint \(\left(i_{j}\right) \cdot \operatorname{tr} 2 n d\); links other than MK then
            joint \(\left(i_{j}\right) . \operatorname{tr} 2 n d\); default values
            joint \(\left(i_{j}\right)\).dir, .xaxis, .spring, .damp, .input, .fixed; default values for axial or beam links and constraints, with dimension \(n_{d}\)
        end
        if \(\operatorname{joint}\left(i_{j}\right)\).rom; ROM elements then
            joint \(\left(i_{j}\right)\).spring, .damp, input; default values for ROM links
        end
    end
    for \(i_{l}=1: n_{l}\);number of external loads do
        \(n_{d}=\) numel \(\left(\operatorname{exload}\left(i_{l}\right) . b o d y\right)\); number of mesh elements
        \(\operatorname{exload}\left(i_{l}\right) \cdot e x b o d y, . r e f b o d y, . t r, . f t a u ;\) default values, with dimension \(n_{d}\)
    end
    Handle mesh for mesh_import.m module:
    mesh.file_name, .tol, .body, .joint, .tr; default values \& error check
```

```
Algorithm 4: Algorithm for deriving TMT EOM in "tmt_eom_derive.m". Continues in Algorithm 5.
    Data: par, world, body, joint, exload, mesh; system geometry and modeling parameters
    Result: \(q\), u, lambda, par system states \& saving derivations to HDD
    [body_mesh, joint_mesh] =mesh_import (mesh, par); import mesh geometries from a CAD-file
    Concatenating all the system joint and body elements
    \([s\), world, body, joint, exload, par, symbols \(]=\mathbf{c h e c k}(\) par, world, body, joint, exload, mesh); parameters' check \& default values
    Deriving state vector and local transformations:
    for \(i_{j}=1: n_{j}\) all joints do
        for \(n_{d}=1: \max \left(\left[\operatorname{numel}\left(\operatorname{joint}\left(i_{j}\right) \cdot\right.\right.\right.\) first \(), \operatorname{numel}\left(\operatorname{joint}\left(i_{j}\right) \cdot\right.\) second \(\left.\left.)\right]\right)-1\) mesh elements do
            for \(i_{3}=1: \operatorname{size}\left(j \operatorname{joint}\left(i_{j}\right) \cdot \operatorname{tr}\right)\) number of transformations do
        rotrans \(=\mathbf{s y m}\left(\left[j \operatorname{joint}\left(i_{j}\right) \cdot \operatorname{tr}\left(i_{3}\right) \cdot \operatorname{transjoint}\left(i_{j}\right) \cdot \operatorname{tr}\left(i_{3}\right) \cdot\right.\right.\).rot \(\left.]\right)\); transformational vector
        for \(i_{2}=1\) :numel(rotrans) do
                            if \(\operatorname{rotrans}\left(i_{2}\right)==\inf\) DOF element then
                        if ROM then
                                \(n_{r}=j \operatorname{joint}\left(i_{j}\right) \cdot \operatorname{second}(2) ;\) ROM order
    else
    | \(n_{r}=1 ;\)
    end
    for \(i_{r}=1: n_{r}\) do
                                if joint \(\left(i_{j}\right) \cdot \operatorname{dof}\left(i_{r}\right) \cdot\) equal2 geometric constraint then
                                \(q, \dot{q}, q_{0}\); form states and initial value vectors
                                else
                                Repeat previous states based on the constraint
                            end
    end
    \(\operatorname{sprdmp}\left(i_{q}\right) \cdot T t, . k x, . d l, . i n i t, . i n, . k \_m a t, . v d \_m a t, . d i r ;\) compliant element terms for \(i_{q}\) state: transpose of
        transformation matrix \(T t\), elastic term \(k x\), change of state \(d l\), initial value init, direct input \(i n\), linear stiffness matrix
        k_mat, linear viscous damping matrix \(v d \_m a t\), and active direction dir
    \(f j_{-} k, f j_{-} v d, f j \_i n, f j_{-} s d i, f j_{-} k \_m a t, f j \_v d \_m a t\); collecting terms for all states
    if ROM then
                            \(\operatorname{rotrans}\left(i_{2}\right)=q\left(\mathrm{end}-i_{r}+1\right.\) : end \() j\) joint \(\left(i_{j}\right)\). dof.s; from ROM series
                            if \(i_{2}=3 ; z\) boundary condition then
                            \(\operatorname{rotrans}\left(i_{2}\right)=\operatorname{rotrans}\left(i_{2}\right)+s ;\)
                end
    else
                \(\operatorname{rotrans}\left(i_{2}\right)=q\left(i_{q}\right) ;\) regular states
    end
end
end
\(j \operatorname{joint}\left(i_{j}\right) \cdot Q\left(i_{d}\right) \cdot l o c=j o i n t\left(i_{j}\right) \cdot Q\left(i_{d}\right) \cdot l o c \times Q(\) rotrans \()\); forming local quaternions
\(j \operatorname{joint}\left(i_{j}\right) \cdot T Q\left(i_{d}\right) \cdot l o c=j \operatorname{joint}\left(i_{j}\right) \cdot T Q\left(i_{d}\right) \cdot l o c \star \Xi(\) rotrans \()\); local transformation quaternions pair
            end
            if joint \(\left(i_{j}\right) \cdot \operatorname{tr} 2 n d\) then
                        joint \(\left(i_{j}\right) \cdot Q 2 n d\left(i_{d}\right) \cdot l o c, \cdot T Q 2 n d\left(i_{d}\right) \cdot l o c ;\) local rotation \(\&\) transformation for \(2^{\text {nd }}\) end of a joint similar to above
            end
        end
    end
```

```
Algorithm 5: Continoued from Algorithm 4. Continues in Algorithm 6.
Deriving inertial terms:
    for \(i_{m}=1: n_{m}\); number of bodies do
        for \(i_{j}=1: n_{j}\); all joints do
            if \(\operatorname{joint}\left(i_{j}\right) \cdot \operatorname{second}(1)=i_{m}\); MK joint then
                    for \(i_{d}=1\) :numel \(\left(\operatorname{joint}\left(i_{j}\right)\right.\).first \()-1\); number of mesh elements do
                        \(n_{m d}=i_{m d}+1 ;\) all body counter
                        if ROM then
                            \(Q, T Q=\operatorname{subs}\left(\operatorname{body}\left(j \operatorname{joint}\left(i_{j}\right) \cdot f \operatorname{first}(1)\right) \cdot Q, \cdot T Q(1) \cdot a b s, s, \operatorname{joint}\left(i_{j}\right) \cdot f i r s t(2)\right)\); specific axial location
                            end
                            \(j\) joint \(\left(i_{j}\right) \cdot Q, . T Q\left(i_{d}\right) \cdot a b s ;\) deriving absolute rotations \& transformations
                        \(r_{-} j t i p s ; ~\left[n_{m b} \times 6\right]\) matrix of bodies both ends positions
                        \(\operatorname{body}\left(i_{m}\right) \cdot Q, . T Q\left(i_{d}\right) . l o c, . a b s\); body kinematics
                        mass \(\left(i_{m d}\right) . v_{-} c o m\), .omega; deriving COM velocities
                        \(\operatorname{mass}\left(i_{m d}\right) . M, . T, . D d, . f g\); deriving EOM inertial terms
                        \(M, T, D d, f g v\); collecting terms for all bodies
                    end
                    break; jump to next body
            end
        end
    end
    Compliant links \& constraints
    for \(i_{m}=0: n_{m}\) number of bodies do
        for \(i_{j}=1: n_{j}\) all joints do
            if joint \(\left(i_{j}\right) \cdot \operatorname{second}(1)=i_{m}\) and joint \(\left.\left(i_{j}\right) \cdot \operatorname{tr} 2 n d\right)\) double ended link then
                            for \(i_{d}=1: \max \left(\left[\operatorname{numel}\left(\operatorname{joint}\left(i_{j}\right)\right.\right.\right.\).first \()\), numel \(\left(\operatorname{joint}\left(i_{j}\right)\right.\).second \(\left.\left.)\right]\right)-1\) number of mesh elements do
                    if ROM then
                            \(Q, T Q=\operatorname{subs}\left(\operatorname{body}\left(j \operatorname{joint}\left(i_{j}\right) \cdot f i r s t(1)\right) \cdot Q, \cdot T Q, \cdot Q 2 n d, \cdot T Q 2 n d(1) \cdot a b s, s, j o i n t\left(i_{j}\right) \cdot f i r s t(2)\right) ;\) specific axial
                            location
                            end
                            joint \(\left(i_{j}\right) \cdot Q, . T Q, . Q 2 n d, . T Q 2 n d\left(i_{d}\right) \cdot a b s\); deriving absolute rotations \& transformations
                    compliant and constraint elements:
                    \(i_{j d}=i_{j d}+1\); all joint counter
                    \(r_{k} s ;\left[n_{j d} \times 6\right]\) matrix of links' both ends positions
                    if numel \(\left(\right.\) joint \(\left(j_{c}\right.\) ount \()\).spring.coef \(f\left(n_{m}\right.\) esh,\(\left.\left.:\right)\right)=1\) then
                    Axial elements:
                            \(l_{j 0}\); initial length based on input parameters or initial geometry
                            \(\operatorname{sprdmp}\left(i_{j d}\right) . T t, . k x, . d l, . i n i t, . i n, . k \_m a t, . v d \_m a t ;\) compliant element terms for axial element
else
                    Beam elements:
                            \(r_{j 0}, Q_{j 0}\); rotate initial position/orientation vector to beam frame xaxis
                                    \(r Q_{j 0}=\left[r_{j 0}, Q_{j 0}\right]\); initial position/orientation vector based on input parameters or initial geometry
                                    \(\operatorname{sprdmp}\left(i_{j d}\right) . T t, . k x, . d l\), .init, \(. i n, . k \_m a t, . v d \_m a t ;\) compliant element terms for beam
end
\(\operatorname{sprdmp}\left(i_{j d}\right)\).dir; active directions
    \(f j_{-} k, f j_{-} v d, f j_{-} i n, f j_{-} s d i, f j_{-} k \_m a t, f j_{-} v d \_m a t\); collecting terms for all links
    Constraints:
    for compliant directions (3 or 6) do
                            if joint \(\left(i_{j d}\right)\).fixed; fixed direction then
                            \(i_{c d}=i_{c d}+1\); constraint counter
                            \(\lambda, c n s t\left(i_{c d}\right) \cdot T, . D, . i n\); constraints Lagrangian and EOM terms
                            \(T c n, D c n, C c n\); Collect terms for all constraints
                    end
                    end
                    end
            end
            if ROM then
                    for \(i_{d}=1: \max \left(\left[\operatorname{numel}\left(\operatorname{joint}\left(i_{j}\right) \cdot \operatorname{first}\right)\right.\right.\), numel \(\left(\operatorname{joint}\left(i_{j}\right) \cdot\right.\) second \(\left.\left.)\right]\right)-1\) number of mesh elements do
                        \(i_{j d}=i_{j d}+1 ;\) all joint counter
                            \(d r_{j d}, d Q_{j d}\); differential position and orientation vectors
                            \(\operatorname{sprdmp}\left(i_{j d}\right) . T t, . k x, . d l, . i n i t, . i n, . k \_m a t, . v d \_m a t\), ,dir; compliant element terms for beam
                                    fj_k, fj_vd, fj_in, fj_sdi, fj_k_mat, fj_vd_mat; collecting terms for all links
                    end
            end
        end
    end
```

```
Algorithm 6: Continoued from Algorithm 5.
    External loads:
    for \(i_{l}=1: n_{l}\); number of bodies do
        for \(i_{d}=1\) :numel \(\left(\operatorname{exload}\left(i_{j}\right) \cdot\right.\) exbody \()-1 ;\) number of mesh elements do
            \(n_{l d}=i_{l d}+1 ;\) all body counter
            \(\operatorname{exload}\left(i_{j}\right) \cdot Q\left(i_{d}\right) \cdot l o c, \operatorname{exload}\left(i_{j}\right) \cdot T Q\left(i_{d}\right) \cdot l o c ;\) local rotations \& transformations
            if \(\operatorname{exload}\left(i_{l}\right) \cdot e x b o d y=\) ROM then
                \(Q, T Q=\operatorname{subs}\left(\operatorname{body}\left(j \operatorname{oint}\left(i_{j}\right) \cdot f i r s t(1)\right) \cdot Q, \cdot T Q(1) \cdot a b s, s, j o i n t\left(i_{j}\right) \cdot f i r s t(2)\right)\); specific axial location
            end
            \(\operatorname{exload}\left(i_{j}\right) \cdot Q, . T Q\left(i_{d}\right) \cdot a b s\); deriving absolute rotations \& transformations
            \(r_{-} e f ;\left[n_{m b} \times 3\right]\) matrix of loads' exerting point positions
            ftau_abs; \([1 \times 6]\) transforming load vector from \(\operatorname{exload}\left(i_{l}\right)\).refbody frame to reference frame
            loads \(\left(i_{m d}\right) . T t\), ftau; deriving terms for external load action
            Ttef, ftau_ef; collecting terms for all external loads
        end
        break; jump to next body
    end
    save_func(...); pass derivation for optimization and forming Matlab, C-mex \& C functions
```

```
Algorithm 7: Algorithm for optimizing derived EOM and saving on HDD, in "save_func.m" \& "save_mex.m".
Data: EOM terms
    Result: Saved functions on HDD
    vars_mex \(=[\operatorname{zeros}(1, \operatorname{numel}(\) par.sym \()), \mathbf{z e r o s}(1, \operatorname{numel}([q \lambda u])), 0]\); function input format
    switch par.fun do
        case 1: Matlab function for body, sprdmp, cnst, loads structures
        case 2: Matlab function for separate terms in body, sprdmp, cnst, loads
        case 3: Matlab function for collective terms
        case 4: C function for collective terms
    end
    save_mex (...); generate C-mex files from above functions. The file has the same structure as above.
```

```
Algorithm 8: Algorithm for forming full system EOM and saving on HDD, in "save_eom_mex.m". Similar algorithms
are used for static equilibrium (without temporal differential terms in the same file) and modal analysis (calling
functions for \(f j_{-} k \_m a t, f j \_v d \_m a t, k_{-} m a t, v d \_m a t\) in \(s a v e \_m o d a l \_m e x . m\) file) codes.
Data: par, analysis; system parameters and analysis type
Result: Updated par \& Saved function for EOM on HDD
    Initialize: remove figure handles and symbolic parameters from par
    Write to file write the following in a Matlab \& C-mex function file
        function \(\dot{X}=\operatorname{EOM}(t, X\), par \()\) function file header: \(X=[q, \lambda, \dot{q}, \dot{\lambda}]\)
        \([z, p a r]=\) int_midstep \((t, X, p a r)\); update \(z \&\) par in each integration mid-step if needed
        \(f_{k_{q}}, f_{v_{q}}, f_{u_{q}} ;\) call functions for states compliance
    end
    for \(i=1: n_{m}\); all masses do
        Write to file
            for \(s=s_{0}:\) par.rom.mass \((i)-s_{0}\); do
                    \(\left[M, T_{m}, D, f_{\sigma}\right]=\operatorname{mass}_{i}(\) par.var, \(X, s)\); call function
                    \(\bar{M}=\bar{M}+T_{m}^{\top} M T_{m} \mathrm{~d} s\); inertial terms
                    \(d_{m}=d_{m}+T_{m}^{\top} M\left(-D * \dot{q}+f_{\sigma}\right) \mathrm{d} s ;\)
        end
    end
end
for \(i=n_{q}+1: n_{j d}\); all compliant links do
        Write to file
                for \(s=s_{0}:\) par.rom.mass \((i)-s_{0}\); do
                    \(\left[T_{k}, k, v, u\right]=\operatorname{sprdmp} F_{i}(\) par.var, \(X, s)\); call function
                    \(w_{v}=w_{v}+T_{k}^{\top} v \mathrm{~d} s\);
                    \(w_{k}=w_{k}+T_{k^{\top}}^{\kappa^{\top}} k \mathrm{~d} s\);
                    \(w_{u}=w_{u}+T_{k}^{\top} u \mathrm{~d} s ;\)
        end
    end
end
for \(i=1: n_{l}\); all external loads do
    Write to file
            \(\left[T_{l}, f_{l}\right]=\) loads \(F_{i}(\) par.var, \(X, 0)\); call function
            \(w_{l}=w_{l}+T_{l}^{\top} * f_{l}\);
            end
        end
end
for \(i=1: n_{c}\); all constraints do
    Write to file
            \(\left[T_{c i}, D_{c}, i n\right]=c n s t F_{i}(\) par.var, \(X, 0)\); call function
            \(T_{c}=\left[T_{c}, T_{c i}\right] ; \quad d_{c}=\left[d_{c},-D_{c} \dot{q}+u_{c}\right] ; \quad\) end
        end
end
Forming EOM to file
Write:
    \(\bar{M}=\left[\bar{M}, T_{c}^{\top} ; T_{c}, \operatorname{zeros}\left(n_{c}, n_{c}\right)\right] ;\)
    \(d=\left[\left(d_{m}+f_{k_{q}}+f_{v_{q}}+f_{u_{q}}+w_{k}+w_{u}+w_{v}+w_{l}\right) ; d_{c}\right] ;\)
    \([\ddot{q}, \ddot{\lambda}]=\mathbf{i n v}(\bar{M}) d ;\)
    \(\dot{X}=[\dot{q}, \dot{\lambda}, \ddot{q}, \ddot{\lambda}] ;\)
end
Write EOM function to file "EOM_eq.m" \& "EOM.m";
```

```
Algorithm 9: Algorithm for static equilibrium, in "equil.m".
    Data: par; system parameters
    Result: \(X_{0_{e}}\), par; equilibrium point \& updated system parameters
    \(n q F\) (par.var); recall model states, initial values, \& number of different elements
    \(X_{0}\); states initial guess
    save_eom_mex (par, 0); generate static equilibrium EOM
    if par.equil \(==1\); then
        equilfun \(=@ E O M_{\_} e q\); use Matlab function
    else
        equilfun \(=@ E O M_{-}\)eq_mex; use C-mex function
    end
    \(X_{0_{e}}=\mathbf{f s o l v e}\left(\right.\) equilfun, \(X_{0}\) ); use Matlab "fsolve" to find equilibrium point
```

```
Algorithm 10: Algorithm for linear modal analysis, in "modal.m".
    Data: X, par; system states \& parameters
    Result: \(\Phi_{\omega}, M_{\omega}, K_{\omega}, V_{\omega}, \omega, \eta_{\omega}\); terms of modal state space \& natural frequencies
    \(n q F\) (par.var); recall model states, initial values, \& number of different elements
    \(X\); current states
    save_modal_mex (par); generate function for modal analysis
    if par.modal \(==1\); then
        modalfun \(=@ E O M \_\)modal; use Matlab function
    else
        modal fun \(=\) @EOM_modal_mex; use C-mex function
    end
    \([\bar{M}, \bar{K}, \bar{V}]=\operatorname{modalfun}(X) ;\) EOM linearized terms in state space
    \(\left[\Phi_{\omega}, \omega\right]=-\mathbf{e i g}(\mathbf{i n v}(\bar{M}) \bar{K})\); undamped modal analysis
    \(M_{\omega}, K_{\omega}, V_{\omega}, \omega, \eta_{\omega}\); Solve for natural frequencies, EOM terms in modal space, and modal damping ratio
    Plot the mode shapes
```

```
Algorithm 11: Algorithm for dynamic simulation, in "dyn_sim.m".
    Data: \(X_{0}\), par; system initial states \& parameters
    Result: \(t, X\), par; dynamic simulation results \& updated system parameters
    \(n q F\) (par.var); recall model states, initial values, \& number of different elements
    \(X_{0}\); form states initial vector if not provided from static equilibrium analysis
    save_eom_mex (par, 1); generate EOM for dynamic simulation
    if \(\operatorname{par} . d y n==1\); then
        odefun \(=@ E O M ;\) use Matlab function
    else
        odefun \(=@ E O M \_\)mex; use C-mex function
    end
    \([t, X]=\) ode15s or ode113 \(\left(\right.\) odefun, \(\left.X_{0}\right)\); use Matlab ODE numerical solvers for dynamic simulation
```

```
Algorithm 12: Algorithm for plotting a simple animation, in "anim.m".
    Data: \(t, X\), par; simulation time steps, system states \& parameters
    Result: \(r_{\_}\)anim, rjtip, rks, par; structure \& matrix variable for links' tip position, \& updated system parameters
    par.n_massanim, par.n_ks_anim; determine number of bodies and compliant links
    if ROM link presents then
        par.n_animpoints \(=50\); points plotting along a link
    else
        par.n_animpoints \(=2 ;\)
    end
    for \(t\); for all time steps do
        for par.n_animpoints; plotting points do
            \(r k s F \_m e x(\ldots), r j t i p F \_m e x(\ldots)\); bodies and links positions for \(p a r . n \_m a s s_{a} n i m, . n \_k s \_a n i m ;\) all bodies and links do
            r_anim.mass, .sprdmp; store the links' tips in a structure
                rjtip, rks; store the links' tips in a separate matrices
            end
            end
    end
    Determine plotting area
    for \(t\); for all time steps do
        plot3(par.n_massanim); plot bodies with solid line
        plot3(par.n_ks_anim); plot compliant links with dashed line
    end
```


3. STIFF-FLOP Experimental Setup

Figure 8. Control diagram for a STIFF-FLOP module.

Figure 9. Axial and side bending of a pneumatically actuated STIFF-FLOP continuum appendage. The system has 3 DOFs via three internal actuation chambers.

[^0]: ${ }^{1}$ Department of Engineering Mathematics, University of Bristol, bristol, UK
 ${ }^{2}$ Department of Imaging and Biomedical Engineering, Kings College London, London, U.K.
 ${ }^{3}$ Department of Engineering and Materials Science, Queen Mary University of London, London, UK
 ${ }^{4}$ Department of Informatics, Kings College London, London, UK
 ${ }^{5}$ Dyson School of Engineering, Imperial College London, London, UK
 ${ }^{6}$ University of Tennessee, Knoxville, TN, USA
 ${ }^{7}$ Clemson University, Clemson, SC, USA

[^1]: *Available at https://github.com/hadisdt/AutoTMTDyn

