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Abstract
The mathematical foundations of imprecise probabil-
ity theory (IP) have been in place for 25 years, and
IP has proved successful in practice. But IP methods
lack rigorous accuracy-centered, philosophical justifi-
cations. Traditional Bayesian methods can be justified
using epistemic scoring rules, which measure the ac-
curacy of the estimates that they produce. But there
has been little work extending these justifications to
the IP framework. This paper makes plea for the IP
community to embrace this research programme. The
plea comes in three parts. Firstly, I outline some initial
work developing scoring rules for imprecise probabil-
ities — IP scoring rules — and using them to shore
up the philosophical foundations of IP. Secondly, I
explain why a range of impossibility results for IP
scoring rules should not dissuade the IP community
from working on the foundations of IP scoring rules.
Finally, I highlight one potential applications for IP
scoring rules: IP aggregation.

Keywords: IP scoring rules, IP Impossibility Theo-
rems, IP Aggregation

1. Introduction

The mathematical foundations of imprecise probability the-
ory (IP) have been in place since (Walley 1991) [28]. And
IP theory has proved successful in practice, e.g., in learn-
ing graphical models, classification, action recognition and
optical character recognition. But imprecise Bayesian meth-
ods lack rigorous accuracy-centered, philosophical justi-
fications. Traditional Bayesian methods can be justified
using what are variously known as epistemic scoring rules,
epistemic utility functions or inaccuracy measures. Scoring
rules measure the accuracy of the estimates that traditional
methods produce, which is roughly a matter of how close
those estimates are to the actual values of the quantities of
interest. Drawing on the work of de Finetti [3] and Savage
[22], contemporary Bayesians like Joyce [6, 7], Schervish
et al. [23] and Pettigrew [18] use scoring rules, together
with resources from decision theory, to show that traditional
Bayesian methods provide decision-theoretically optimal
strategies for securing accurate estimates. This approach
has provided compelling justifications for a wide range of
traditional Bayesian methods and principles: Probabilism,
Conditionalization, the Principle of Indifference and more.

The aim of this paper is twofold: firstly, to outline some
initial work extending these justifications to the IP frame-
work; secondly, to respond to some concerns and highlight
some potential applications in order to incentivise the IP
community to take up this research programme.

2. IP Scoring Rules

Isaac Levi [11, 12, 14] proposed measuring the epistemic
value or utility of a state of full belief K at a world w by the
following quantity:1

V (K,w) = α ·E(K,w)+(1−α) ·T(K,w).

The first component, E(K,w), is the truth-value of belief
state K at w (0 if false, 1 if true), i.e., the truth-value of the
conjunction of all propositions believed in K. It measures
the extent to which K promotes the first of what William
James called our “two great commandments as would-be
knowers”: Avoid error! If K is true, it promotes it fully, i.e.,
to degree 1 (E(K,w) = 1). If false, it promotes it minimally,
i.e., to degree 0 (E(K,w) = 0).

The second component, T(K,w) is K’s degree of infor-
mativeness, which is meant to reflect how virtuous K is at w,
in terms of “simplicity, explanatory and predictive power,
and other allegedly scientific or epistemic” desiderata ([13],
p. 83; [15], p. 179). It measures the extent to which K pro-
motes the second of our two great commandments: Seek
truth! or as Levi reframes it: Seek Valuable Information!
The more informative K is, the closer it comes to promoting
it fully, i.e., to degree 1 (T(K,w)≈ 1). The less informative
K is, the closer it comes to promoting it minimally, i.e., to
degree 0 (T(K,w)≈ 0).

The third component, α , reflects the extent to which you
let one or the other of our two principal epistemic aims —
Avoid error! Seek Truth! — “color your intellectual life.” It
measures the respective degree of priority that you give to
them.

Putting these components together as follows:

V (K,w) = α ·E(K,w)+(1−α) ·T(K,w)

gives us a “summary statistic” that measures the extent to
which K succeeds at striking the optimal balance between

1. See [14, §3.1] and [21].
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IP SCORING RULES: FOUNDATIONS AND APPLICATIONS

promoting our two principal epistemic aims — Avoid error!
Seek Truth! — at w.

We might call Levi’s underlying theory of epistemic
value the bipartite theory:

BTEV. A doxastic state D is more or less epistemically
valuable at a world w to the extent that it succeeds at
striking the optimal balance between promoting our
two principal epistemic aims at w: Avoid error! Seek
Truth!

In earlier work [9], I used the bipartite theory of epis-
temic value to delineate a class of reasonable scoring rules
for imprecise credences (IP scoring rules). Much like Levi’s
measure, an IP scoring rule is a function I which maps
IP distributions C (sets of credence functions) and worlds
w to non-negative real numbers, I (C ,w). And like be-
fore, I (C ,w) is a summary statistic that measures the
extent to which C succeeds at striking the optimal balance
between promoting our two principal epistemic aims at
w: Avoid error! Seek Truth! The only difference: Levi’s
quantity, V (K,w), captures K’s positive epistemic value
at w. I (C ,w), on the other hand, captures C ’s epistemic
disvalue at w. If I (C ,w) equals 0, then C is minimally
disvaluable at w (maximally epistemically valuable). It
strikes the best possible balance between avoiding error
and seeking truth. The larger I (C ,w) is, the less epistemi-
cally valuable.

Following Levi, I assumed that I takes the following
form:

Iα(C ,w) = α ·E (C ,w)+(1−α) ·T (C ,w)

The first component, E (C ,w), is meant to measure the
extent to which C promotes the first of our two principal
epistemic aims: Avoid error! An IP distribution avoids
error to the extent that it leaves open accurate credences
functions. In [9], I proposed measuring how well C leaves
open accurate credence functions at w by:

E (C ,w) = min
c∈C

I(c,w)

where I is any (precise) strictly proper scoring rule.
The second component, T (C ,w), is meant to measure

the extent to which C promotes the second of our two
principal epistemic aims: Seek truth! An IP distribution
pins down the truth to the extent that it rules out inaccurate
credence functions. I proposed measuring how well C rules
out inaccurate credence functions at w by:

T (C ,w) = max
c∈C

I(c,w)

Once more, α measures the degree to which you prioritise
avoiding error over seeking truth, or vice versa. So the
proposed class of IP scoring rules take the following form:

Iα(C ,w) = α ·min
c∈C

I(c,w)+(1−α) ·max
c∈C

I(c,w)

Clearly IP scoring rules of this form are overly simplis-
tic. Nevertheless, they are still useful for highlighting some
of the foundational purposes that IP scoring rules might
serve. For example, in [9], I show that for any “conservative”
IP scoring rule of this form (α ≥ 0.5) and any conserva-
tive Hurwicz decision rule — which recommends deciding
between priors by a weighted average of their worst-case
score I −C and best-case score I +

C , i.e. βI −C +(1−β )I +
C

(conservative if β ≥ 0.5) — then some imprecise (non-
singleton) C is optimal. The upshot, roughly, is that impre-
cise priors do a better job than precise priors at balancing
the risk of worst-case catastrophe and the chance best-case
spoils. Any agent who adopts precise priors, rather than
imprecise ones, goes wrong by gambling with the epistemic
utility of her doxastic state in too risky a fashion. Precise
priors represent an overly risky epistemic bet, according to
conservative IP scoring rules and Hurwicz criteria.

This argument helps to illuminate our most basic epis-
temic reasons for preferring IP distributions to precise dis-
tributions. But it also makes a range of simplifying assump-
tions about which factors make IP distributions epistem-
ically valuable, how those factors determine overall epis-
temic value, and how to measure such value. In addition, it
justifies only one plank of imprecise probability theory.

Over the coming years, I hope to provide fully adequate
epistemic justifications for all of imprecise probability the-
ory. This will shore up the philosophical foundations of IP.
My goal for the remainder of this paper is (i) to explain
why a range of impossibility results for IP scoring rules
should not dissuade the IP community from working on
the foundations of IP scoring rules, and (ii) highlight one
cluster of applications for IP scoring rules.

3. Impossibility Theorems for IP Scoring
Rules

Seidenfeld et al. [25], Schoenfield [24], and Mayo-Wilson
and Wheeler [16] provide a range of impossibility theorems
that seem to threaten the viability of IP scoring rules. These
theorems show that continuous IP scoring rules must fail to
have certain prima facie desirable properties. In particular,
every such scoring rule I renders some IP distribution
C dominated (guaranteed to be less valuable according
to I than some other IP distribution C ∗). In this case,
the IP scoring rule in question fails to satisfy a constraint
known as admissibility. On the face of it, this seems like
a troubling result. Every major result in epistemic utility
theory — a research programme which provides accuracy-
centred justifications for Bayesian norms using scoring
rules — relies on the assumption that precise scoring rules
render probability distributions non-dominated. So it seems
natural to expect reasonable IP scoring rules to render every
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IP distribution (set of probabilities) non-dominated. The
impossibility theorems for IP scoring rules show that no
continuous IP scoring rule can do so. This leads various
authors to conclude that IP methods cannot be motivated
by purely accuracy-centred considerations ([24, p. 14], [16,
p. 15]).

This however is the wrong moral to draw. We should
want IP scoring rules to violate admissibility. Different IP
distributions are better at securing certain types of compet-
ing alethic goods than others. Very roughly, more imprecise
distributions (more inclusive sets of probabilities) do bet-
ter at avoiding error. This comes at a cost however. More
imprecise distributions are less able to positively pin down
the truth, even in their respective best cases. In contrast,
more precise distributions have better best-case proximity
to truth. They positively pin down the truth better in the
best case. But this comes at a cost. It opens them up to
greater error.

Different IP scoring rules reflect different ways of priori-
tising these competing alethic goods (error-avoidance and
proximity to truth). So any IP scoring rule should render
certain IP distributions dominated because certain IP distri-
butions are guaranteed to strike a better balance between
these competing alethic goods than others. IP scoring rules
must violate admissibility to reflect this fact.

Moreover, the fact that IP scoring rules violate admis-
sibility does not threaten their usefulness for providing
accuracy-centred justifications for IP methods. Historically,
epistemic utility theorists have aimed to provide accuracy-
centred justifications for traditional Bayesian methods and
principles by showing that there is some reasonable mea-
sure of epistemic value (precise scoring rule) and some
plausible decision rule that together deliver the same pre-
scriptions as the method or principle in question. This does
not require any single scoring rule or any single decision
rule to feature in the justification of every prima facie plau-
sible method or principle. Likewise, we do not need any
single IP scoring rule and any single decision rule to fea-
ture in the justification of every IP method or principle. It
might well be that certain ways of prioritising competing
alethic goods justify certain IP methods or principles (per-
haps ones that recommend more imprecise distributions),
while other ways of prioritising them justify other methods
or principles (perhaps ones that recommend more precise
distributions).

On the face of it, impossibility theorems also threaten
the usefulness of IP scoring rules for elicitation. If an IP
scoring rule I renders one IP distribution B dominated by
another C — so that C is guaranteed to receive a smaller
penalty than B according to I — then I cannot be used
to incentivise a rational agent whose opinions are captured
by B to report B as her IP distribution. She can always
do better by reporting C . It seems natural to conclude
that since every reasonable IP scoring renders some IP

distribution dominated, IP scoring rules are simply not
useful tools for elicitation.

But again this is the wrong moral to draw. IP scoring
rules can be useful for elicitation if one uses supplemental
elicitation techniques to tailor the IP scoring rule to the
agent in question. In fact, both precise scoring rules and
IP scoring rules need to be tailored in this way. As Savage
[22, §10.4] was well aware, strictly proper (precise) scoring
rules do not in general incentivise rational agents to report
their own precise distribution. For example, an expected
utility maximizer with £3 in her pocket, log utilities, and
credences 〈0.1,0.2,0.7〉 on a 3-cell partition will report
previsions 〈0.136,0.243,0.621〉 if previsions are penalised
by the Brier score. So supplemental elicitation techniques
are needed to gather information about the agent’s utility
function and tailor an appropriate scoring rule for the agent.
Similarly, we might use standard IP elicitation techniques
[1, ch. 15], together with tools for eliciting probabilities
in more complex decision frameworks (e.g., the weighted
expected utility framework) to tailor IP scoring rules that
are useful for elicitation on an agent-by-agent basis.

The upshot is this: impossibility results for IP scoring
rules pose no serious threat to the use of IP scoring rules in
providing value-based justifications for norms governing
imprecise credence.

Before moving on, it will prove instructive to explore
precisely how the IP scoring rules in §2 violate admissibil-
ity, and why it is desirable that they do so. In the course
of our exploration, we will restrict our attention to the sim-
plest possible case. In particular, we will focus an expres-
sively weak IP model—lower and upper probabilities—and
restrict our attention to a single proposition X . So, for ex-
ample, we will consider agents who are between 10% and
40% confident in X , i.e., whose lower and upper probabil-
ities for X are 0.1 and 0.4, respectively. In addition, we
will assume that our IP scoring rule Iα is generated by a
strictly proper (precise) scoring rule I (e.g., the Brier score,
spherical score, log score, etc.).

Recall, our IP scoring rules take the form

Iα(C ,w) = α ·E (C ,w)+(1−α) ·T (C ,w)

In the case at hand this boils down to

Iα([x,y] ,0) = α · I(x,0)+(1−α) · I(y,0)

and

Iα([x,y] ,1) = α · I(y,1)+(1−α) · I(x,1)

When we examine the class of IP scoring rules of this form,
what we see is that for each value of α , a different range of
lower probability models are non-dominated. For α ≤ 0.5,
for example, all and only the precise lower probability
functions (i.e. lower probability = upper probability) are
non-dominated. So relative to I0.5, it is permissible to have
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any precise probability x between 0 and 1 (inclusive) for X ,
but no properly imprecise probability.

To have a single way to visualise precise and imprecise
probabilities, represent a precise probability x as a degen-
erate interval [x,x]. Plot intervals [x,y] as pairs 〈x,y〉 in the
unit square [0,1]2. So precise probabilities x between 0 and
1 (inclusive) correspond to points on the line y = x.

Fig 1: Non-dominated credences rel. to I0.5, viz., the pre-
cise credences [x,x] with 0≤ x≤ 1, plotted as points 〈x,x〉
in [0,1]2.

For α = 0.7, in contrast, the non-dominated lower/upper
probability models (intervals) are all imprecise (save for
0 and 1). The intervals that are non-dominated relative to
I0.7 live on the following curve:

Fig 2: Non-dominated credal states rel. to I0.7

For example, the following intervals (lower and
upper probabilities) are all permissible (non-dominated):
[0.1,0.376923], [0.2,0.576471], [0.3,0.7], [0.4,0.784],
[0.5,0.844828], [0.6,0.890909], [0.7,0.927027],
[0.8,0.956098], [0.9,0.98]. These are plotted as points on
the curve in figure 2, e.g., 〈0.1,0.376923〉, 〈0.2,0.576471〉,
etc.

For each distinct α and α∗ (≥ 0.5), the sets of non-
dominated intervals relative to Iα and Iα∗ are disjoint

(save for [0,0] and [1,1] which are always non-dominated).
What’s more, these sets of non-dominated intervals — each
one given by a different curve through the unit square —
partition the space of possible intervals. So for every in-
terval, [x,y], there’s some IP scoring rule that renders it
non-dominated. These curves partition the space of possi-
ble interval-valued credences as follows:

Fig 3: Non-dominated credal states rel. to Iα for a range
of α values between 0.5 and 1.

The picture that emerges is something like this. How you
prioritise avoiding error and positively pinning down the
truth, respectively (captured by α), fixes the stock of IP
distributions (in the case at hand: intervals, or lower/upper
probability functions) available to you. Each such stock
of credal states has a similar structure. No one has fewer
or greater degrees of freedom than any other. If your IP
scoring rule Iα is maximally liberal (α ≤ 0.5), then you
will always adopt a precise probability for X . For exam-
ple, you might adopt a probability of 0.5 for X . But if my
IP scoring rule is more conservative, e.g., α = 0.7, then
I will have a different—and more imprecise—stock of in-
tervals available to me. Where you adopt probability 0.5,
for example, I will adopt the interval [0.3,0.7]. Where you
adopt probability 0.4, I might for example adopt credence
[0.209547,0.590719]. (Both determine the same epistemic
utility ratio if our Iα ’s are generated by the Brier score,
viz., I ([x,y] ,0)/I ([x,y] ,1) = 0.4444.)

We see different lower and upper probabilities as ap-
propriate responses to the same evidence not because we
disagree about the strength of the evidence, whether or not
it is ambiguous, etc., but rather because we take different
attitudes toward the comparative importance of avoiding
error and pinning down the truth, and different types of
lower/upper probabilities (intervals) do a better job at one
or the other.

The fact that each IP scoring rule yields a single curve of
non-dominated intervals, and that these curves partition the
space of possible intervals as per above, will prove crucial
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in characterising our new rule for aggregating imprecise
probabilities.

4. Current Approaches to Aggregating
Imprecise Credences

IP aggregation principles tell us how to construct an IP
distribution that reflects a group’s opinions when group
members individually have imprecise opinions. Stewart
and Quintana [26], Elkin and Wheeler [4], Nau [17] and
Kriegler et al. [10] specify various IP aggregation prin-
ciples. These authors take a broadly axiomatic approach.
On this approach, you first pin down desirable properties
of an aggregation principle (e.g., IP aggregation princi-
ples should preserve unanimous independence judgments).
Then you identify the methods of aggregation that have
these properties.

It will prove instructive to consider the virtues and vices
of some of these IP aggregation principles, and of the ax-
iomatic approach to IP aggregation more generally. Due to
space constraints, we will consider only two such principles:
convex IP pooling and linear pooling of lower probabilities.

4.1. Convex IP Pooling (Stewart and Quintana)

Convex IP pooling takes any finite collection of IP distri-
butions, C1, . . . ,Cn, and delivers the convex hull of their
union, conv{∪iCi} as the aggregate IP distribution. In the
simple case of interest to us, convex IP pooling takes any
finite collection of intervals (lower and upper probabilities)
for X , [a1,b1] , . . . , [an,bn], and delivers the convex hull of
their union, conv{∪i [ai,bi]} as the aggregate interval.

Convex IP pooling has a number of prima facie desirable
properties. For example, Stewart and Quintana [26], as well
as Elkin and Wheeler [4], both find some version of the
preservation of irrelevance principle plausible.

Preservation of Irrelevance (PIE): If X is irrel-
evant to Y according to each of C1, . . . ,Cn, then
X should be irrelevant to Y according to their
aggregate P .

Convex IP pooling satisfies PIE, at least in one sense. It is a
familiar refrain amongst imprecise Bayesians that univocal
concepts in the traditional Bayesian framework fracture
into families of related concepts in the IP framework. For
example, Couso et al. [5] and Cozman [2] survey a number
of concepts of irrelevance/independence in the IP frame-
work that collapse into a single concept in the traditional
Bayesian framework. Here are two versions of PIE, which
Stewart and Quintana [26] call confirmational irrelevance
preservation (CIP) and stochastic independence preserva-
tion (SIP):

CIP: If {c(X |Y )|c ∈ Ci}= {c(X)|c ∈ Ci} for all
i, then {p(X |Y )|p ∈P}= {p(X)|p ∈P}.

SIP: If c(X |Y ) = c(X) for all c ∈ Ci and all i,
then p(X |Y ) = p(X) for all p ∈P .

Convex IP pooling satisfies CIP but violates SIP. In addi-
tion to preserving irrelevance/independencies, in the sense
specified by CIP, convex IP pooling also commutes with
conditionalization. To make this more precise, let F be an
IP aggregation function. So F(C1, . . . ,Cn) is the aggregate
of IP distributions C1, . . . ,Cn.

Let C E be the result of pointwise conditionalizing C on E,
i.e.,

C E = {c(·|E)|c ∈ C }

Let FE(C1, . . . ,Cn) be the result of pointwise conditional-
izing F(C1, . . . ,Cn) on E. Then F commutes with condi-
tionalization (CC) just in case it satisfies the following:

CC: The result of pointwise conditionalizing
C1, . . . ,Cn on E and then aggregating is the same
as the result of aggregating C1, . . . ,Cn and then
pointwise conditionalizing on E, i.e.,

FE(C1, . . . ,Cn) = F(C E
1 , . . . ,C E

n )

If an aggregation principle violates CC, then it seems
to saddle us with inconsistent verdicts about what the
group should think and do over time. On the face of it,
FE(C1, . . . ,Cn) and F(C E

1 , . . . ,C E
n ) both capture, in some

sense, what the group’s state of opinion should be after
learning E. So if FE(C1, . . . ,Cn) 6= F(C E

1 , . . . ,C E
n ), then

there is no single, consistent answer to what the group
should think post-learning. Moreover, Buckak et al. [8]
argue that if an aggregation principle violates CC, then it
opens the group up to a diachronic Dutch book. So it is a
point in favour of convex IP pooling that it satisfies CC.

While these properties of convex IP pooling are prima
facie desirable, they are not dispositive. For example, Pet-
tigrew [19] rejects PIE for precise aggregation principles
on the basis that structural properties of precise probability
distributions such as p(X |Y ) = p(X) don’t encode judg-
ments at all. So there is no reason to expect reasonable
aggregation principles to preserve such properties, even
when all group members share them. There is reason to
be wary of CC as well. IP aggregation principles strike a
compromise between individual IP distributions. In doing
so, they wash out certain information contained in individ-
ual IP distributions. This provides some reason to update-
and-then-aggregate rather than aggregate-and-then-update.
Updating-and-then-aggregating makes more information
available for the purpose of processing new evidence E,
which plausibly results in a better-informed group posterior.

Convex IP pooling also has some positively troubling fea-
tures. It captures the consensus amongst individual group
members, rather than striking a compromise between their
individual IP distributions. But consensus is a high bar. IP
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distributions that reflect consensus will often be rather un-
informative. Though such distributions undoubtedly have
their place—e.g., in representing common ground amongst
group members—the fact that they wash out such a great
deal of information distributed across the group makes them
ill-suited to (i) inform future research (as the aggregates
that feature in meta-analyses of medical research do), and
(ii) serve as an input to decision-theory (as the aggregates
that feature in summaries for policy makers do).

More worryingly, convex IP pooling yields dominated
aggregates. More carefully, convex IP pooling often ag-
gregates my interval (lower and upper probability) for X ,
[x,y], and your interval, [a,b], in a way that we both agree
is epistemically defective in virtue of being epistemic utility
dominated. Suppose for example that my interval for X is
[0.1,0.376923], and your interval is [0.4,0.784]. Then con-
vex IP pooling delivers [0.1,0.784] as our aggregate. But
[0.1,0.784] is defective from our respective perspectives.
Recall, each IP scoring rule yields a single curve of non-
dominated intervals, and these curves partition the space of
possible intervals. I0.7 is the only IP scoring rule that ren-
ders my interval of [0.1,0.376923] for X non-dominated.
In that sense, it is “my” IP scoring rule. Similarly, I0.7
is the only IP scoring rule that renders your interval of
[0.4,0.784] for X non-dominated. So we both agree, in a
sense, that the appropriate way to balance our two princi-
ple epistemic aims of avoiding error and pinning down the
truth is captured by I0.7. But—and here is the problem for
convex IP pooling—[0.1,0.784] is dominated relative to
our shared IP scoring rule I0.7. We both agree that a much
more informative interval for X , viz., [0.256418,0.652473]
is guaranteed to be better than [0.1,0.784]:

I0.7([0.256418,0.652473] ,0) = 0.173742
< 0.191397 =I0.7([0.1,0.784] ,0)

and

I0.7([0.256418,0.652473] ,1) = 0.250417
< 0.275659 =I0.7([0.1,0.784] ,1)

4.2. Linear Pooling of Lower Probabilities (IP Linear
Pooling)

IP linear pooling takes any collection [x1,y1] . . . [xn,yn] of
intervals for X and outputs any interval of the form[

∑
i

λixi,∑
i

λiyi

]

with ∑i λi = 1 as a permissible aggregate.
Linear pooling is an attractive method for aggregating

precise probability distributions. Carl Wagner [27] shows
that linear pooling is the only aggregation method that (i)
makes the group probability for X depend only on individ-
ual probabilities for X and (ii) outputs a group credence of
zero whenever all individuals have zero credence. Richard

Pettigrew shows that linear pooling alone preserves unan-
imous judgments about the comparative preferability of
actions [20]. In addition, linear pooling is supported by an
expected accuracy argument [19]. On top of this, IP lin-
ear pooling is fairly robust against outliers (unlike convex
IP pooling), and yields informative intervals even when
individual intervals are relatively wide [10, pp. 5045-46].

But linear pooling also faces a number of well-known
objections. For example, linear pooling fails to preserve ir-
relevancies/independences, and also fails to commute with
conditionalization. In addition, various desirable features
of linear pooling of precise probability distributions do not
carry over to IP linear pooling. For example, Pettigrew’s
expected accuracy argument for linear pooling has no ana-
logue in the IP setting. More importantly, IP linear pooling
yields dominated aggregates just as convex IP pooling does.
The same is true of Elkin and Wheeler [4] and Nau’s [17]
proposed IP aggregation principles.

5. Epistemic Utility Based Aggregation

We will now outline and defend a family of novel methods
for aggregating lower and upper probabilities. To do so, we
will need a few tools. Firstly, if you have lower and upper
probabilities given by [a,b] for X , then we will call Iα

with

α =
−b+ab+

√
ab−a2b−ab2 +a2b2

a−b

“your IP scoring rule.” The reason is this: this is the unique
IP scoring rule (of the form outlined in §2) that renders
your interval non-dominated. For any β 6= α , Iβ renders
the interval [a,b] for X dominated in the sense that there’s
some other interval [x,y] such that

Iβ ([x,y] ,0)< Iβ ([a,b] ,0)

and
Iβ ([x,y] ,1)< Iβ ([a,b] ,1)

Next, if Iα is my IP scoring rule and Iβ is your IP scoring
rule, then any Iγ with α ≤ γ ≤ β is a compromise between
our respective scoring rules. The rationale is roughly this.
α captures how epistemically liberal/conservative I am.
And β captures how epistemically liberal/conservative you
are. Any γ between our respective degrees of epistemic
liberalness/conservativity determines an IP scoring rule
Iγ that captures a compromise between our respective
epistemic values. More generally, if n individuals have
epistemic utility functions Iα1 , . . . ,Iαn , then any Iγ with
mini αi ≤ γ ≤maxi αi is a compromise.

We will present epistemic utility based aggregation in
steps, starting with the simplest case and working up to
more complex ones.
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5.1. The Simple Case

In the simplest possible case, n individuals have intervals
[a1,b1] , . . . , [an,bn] for X , and they all share an IP scoring
rule Iα . In this case, epistemic utility based aggregation
recommends the following.

EU Aggregation (Unique IP Scoring Rule): If
n individuals have intervals [a1,b1] , . . . , [an,bn]
for X , and they all share an epistemic utility func-
tion Iα , then any reasonable aggregate must take
the following form:[

x,
α2x

1−2α +α2− x+2αx

]
where mini ai ≤ x≤maxi ai.

If our n individuals share an IP scoring rule, Iα ,
then [a1,b1] , . . . , [an,bn] all sit on the same curve of non-
dominated intervals. The proposed IP aggregation principle
really says two things. Firstly, it says that reasonable aggre-
gates must sit on the same curve, and so are non-dominated
relative to the shared IP scoring rule Iα . Secondly, it says
that reasonable aggregates must sit between the two most
extreme intervals, i.e., the ones that are closest to [0,0]
(closest to certain that X is false) and [1,1] (closest to cer-
tain that X is true).

Consider, for example, individuals with the follow-
ing intervals for X : [0.1,0.376923], [0.2,0.576471] and
[0.5,0.844828]. These individuals share the IP scoring rule
I0.7. EU Aggregation demands that reasonable aggregates
sit on the segment of the following curve that intersects
with the light blue region:

Fig 4: Aggregates of [0.1,0.376923], [0.2,0.576471] and
[0.5,0.844828].

This simple form of epistemic utility based aggregation
is justified by an epistemic utility argument. Here it is:

1. Measure of Epistemic Value: The epistemic value
or utility of lower/upper probabilities [a,b] for X at a
world w is measured by

Iα([a,b],w)=α · min
x∈[a,b]

I(x,w)+(1−α)· max
x∈[a,b]

I(x,w)

2. Dominance: If n individuals have credences
[a1,b1] , . . . , [an,bn] for X and a shared epistemic util-
ity function Iα , then any reasonable aggregate [x,y]
should be non-dominated relative to Iα .

3. No Worse Than the Worst: Any reasonable ag-
gregate [x,y] should never be worse than the epis-
temic utility of the worst individual in the group, i.e.,
Iα([x,y] ,w)≤maxi Iα([ai,bi] ,w).

4. Theorem: Dominance and No Worse Than the
Worst are satisfied by all and only the aggregates
permitted by EU Aggregation (Unique IP Scoring
Rule).

C. EU Aggregation (Unique IP Scoring Rule).

Premise 2 seems non-negotiable. If all individuals share
an IP scoring rule—which recall reflects the epistemic
values that rationalise their individual lower and upper
probabilities—and they agree that [x,y] is dominated by
[x′,y′] relative to that scoring rule, then [x,y] is a subopti-
mal compromise between their individual (non-dominated)
lower and upper probabilities. Premise 3 is less secure and
proposed only as a working hypothesis. The basic thought
is this: if we want EU Aggregation to underpin some type
of “wisdom of the crowds” result (something like: aggre-
gates have more epistemic utility than the average utilities
of individuals), then something like No Worse Than the
Worst seems desirable. Of course, it could turn out that ag-
gregation procedures which allow aggregates to sometimes
do worse than the worst end up reliably outperforming
procedures that always require aggregates to be at least as
good as the worst. But barring some positive reason to think
that we must trade off between having a not-too-low floor
(guaranteed to be at least as good as the worst individual)
and having high average epistemic utility (or perhaps high
objective expected epistemic utility), it seems we ought to
shoot for both. The former might even help to secure the
latter.

5.2. The Slightly Less Simple Case

In the slightly less simple case case, n individuals have
intervals [a1,b1] , . . . , [an,bn] for X , but do not share an IP
scoring rule. In future work, I hope to characterise the class
of aggregates that make the following true:

EU Aggregation (No Unique IP Scoring
Rule): If n individuals have interval-valued cre-
dences [a1,b1] , . . . , [an,bn] for X , and they have
(possibly distinct) IP scoring rules Iαi , then for
any reasonable aggregate [x,y], the following
should be true: there is some compromise Iβ

between the Iαi ’s that makes [x,y] satisfy Dom-
inance and No Worse Than the Worst.
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Though I have no such general characterisation to offer
here, it is straightforward enough to specify the relevant
class in any given case. Consider, for example, two individ-
uals with the following intervals for X : [0.238,0.393] and
[0.668,0.966]. The first interval is rendered non-dominated
by I0.59, the second by I0.791. So EU Aggregation (No
Unique IP Scoring Rule) demands that reasonable aggre-
gates sit in the following region, which is bounded by the
curves of non-dominated intervals associated with I0.59
and I0.791.

Fig 5: Aggregates of [0.238,0.393] and [0.668,0.966].

To close, I will apply EU aggregation to a data set from
Kriegler et al. [10] and briefly outline some virtues of
EU aggregation. Kriegler et al. elicited lower and upper
probabilities for the occurrence of a number of climate
events from 43 scientists. We will only consider one partic-
ular event: the melting of the Greenland ice sheet (MGIS)
assuming the most extreme temperature corridor (global
mean temperature capped at 2◦ increase through 2200).
Kriegler et al. aggregate individual intervals using IP linear
pooling. Individual expert intervals are pictured in black;
IP linear pools using a range of weightings are pictured in
red, yellow and green.

To apply epistemic utility based aggregation, I used a
simple uniform weighting of individual IP scoring rules
Iαi to arrive at a compromise IP scoring rule Iβ . I also
used a uniform weighting of individual estimates to deter-
mine an aggregate on the curve of non-dominated inter-
vals relative to Iβ . Clearly, a more sophisticated method
for setting individual expert weights is desirable (e.g.,

based individual self-assessments of expertise, or cross-
assessment of expertise). The resulting aggregate is given
by [0.0153442,0.318378] (pictured in blue).

Epistemic utility based aggregation has a number of epis-
temic and practical virtues. Firstly, and most importantly,
it yields non-dominated aggregates. Also, as illustrated by
the application to the Kriegler et al. data set, EU based
aggregates strike a genuine compromise between individual
lower and upper probabilities. They do not simply rep-
resent consensus amongst the group. As such, EU based
aggregates are informative enough to serve as and input
to decision theory and inform future research. Finally, like
IP linear pooling, epistemic utility based aggregation is
relatively robust against outliers.
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