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Abstract 26 

 27 

Ambiguous images are widely recognized as a valuable tool for probing human perception. 28 

Perceptual biases that arise when people make judgements about ambiguous images reveal 29 

their expectations about the environment. While perceptual biases in early visual processing 30 

have been well established, their existence in higher-level vision has been explored only for 31 

faces, which may be processed differently from other objects. Here we developed a new, highly 32 

versatile method of creating ambiguous hybrid images comprising two component objects 33 

belonging to distinct categories. We used these hybrids to measure perceptual biases in object 34 

classification and found that images of man-made (manufactured) objects dominated those of 35 

naturally occurring (non-man-made) ones in hybrids. This dominance generalised to a broad 36 

range of object categories, persisted when the horizontal and vertical elements that dominate 37 

man-made objects were removed, and increased with the real-world size of the manufactured 38 

object. Our findings show for the first time that people have perceptual biases to see man-made 39 

objects and suggest that extended exposure to manufactured environments in our urban-living 40 

participants has presumably changed the way that they see the world. 41 

  42 

 43 

Keywords: natural images, ambiguity, rapid classification, perceptual bias, prior expectations  44 

 45 
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Introduction 47 

 48 

Vision is famously underconstrained, and how we interpret what we see can shed light on both 49 

perceptual and cognitive processes. For example, inferences regarding the 3-dimensional (3D) 50 

environment from 2D retinal images seem to be largely accurate and effortless [1]. The most 51 

natural solutions to “inverse problems” like 3D shape from 2D projections are Bayesian 52 

computations, in which sensory measurements (“likelihoods”) are combined with a priori 53 

expectations (“priors”).   54 

 55 

Prior expectations about the environment can be manipulated in the laboratory. For example, 56 

Körding and Wolpert [2] trained participants to learn a lateral displacement of the visual 57 

feedback they received on their finger position while they reached for a target in a virtual-58 

reality set-up. Following training, when participants had to reach for a target without feedback, 59 

their reach-point was biased in the direction opposite to, and by the magnitude of, the 60 

displacement they had learnt. On the other hand, some priors seem to have arisen on a longer, 61 

evolutionary time-scale. For example, the tuning and distribution of neurons in the primary 62 

visual cortex (V1) seem to have been optimized for encoding the cardinal orientations (i.e., 63 

horizontal and vertical) that are predominant in everyday scenes [3,4].   64 

 65 

It is known that the impact of these priors can increase when the stimulus is degraded or when 66 

the sensory measurements are noisy. In such cases, we rely more on our expectations to guide 67 

our perception [5]. For example, a prior that favors cardinal orientations can make ambiguously 68 

tilted stimuli appear to have less tilt away from the cardinal axes [6,7], or a prior for light 69 

coming from above (and slightly to the left), biases the interpretation of ambiguous images 70 

towards being perceived as lit from above rather than from below [8]. However, the 71 
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aforementioned biases were measured for attributes that vary along simple feature dimensions 72 

such as orientation using artificial stimuli (e.g., Gabor patches). More recently, biases have 73 

also been examined for more complex and meaningful attributes using natural images like 74 

human faces [9,10]. For example, prior expectations are believed to bias observers to report 75 

that a face appears to be gazing at them when the eyes are difficult to see [9] or that ambiguous 76 

facial morphs appear as masculine [10]. Nonetheless, faces represent a unique object category 77 

that is encoded in dedicated neural areas (e.g., Fusiform Face Area) and is considered distinct 78 

from other object categories (hereafter “objects”), even those that we could become experts in 79 

classifying (see [11] for a review). To our knowledge, it remains unclear if perceptual biases 80 

also extend to the categorical attribute of non-social objects that we may encounter in everyday 81 

life.  82 

    83 

Man-made objects are more frequent in urban scenes (e.g., city centres, house interiors) and 84 

non-man-made objects are more frequent in non-man-made scenes (e.g., mountains, forests). 85 

Greene [12] demonstrated this by quantifying the frequency of hand-labelled objects in a large 86 

database of scenes. Participants are also aware of these frequencies [13, 14]. For example, when 87 

required to estimate object frequency by freely listing objects or rating the likelihood of objects 88 

frequently/never occurring in man-made and non-man-made scenes, participants demonstrated 89 

high consistency and reliability, and tended to overestimate frequency [14]. From a Bayesian 90 

point of view, our knowledge of object frequency statistics should lead people who have lived 91 

extensively in urban areas to perceive ambiguous images as what they most expect to encounter 92 

in their urban areas (e.g., man-made objects).  93 

 94 

To test whether our visual experience manifests as perceptual biases toward frequently 95 

encountered categories of object identity, in Experiment 1 we developed a novel, highly 96 
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versatile method of creating ambiguous “hybrid” images (Fig. 1c) by superimposing two 97 

component images from distinct categories. This allowed us to measure biases for categorical 98 

attributes of natural images while controlling for the visibility of the separate components, 99 

bypassing confounds that may arise due to differences in people’s contrast sensitivity to spatial 100 

frequency content. Our aim was to create ambiguous stimuli with two image categories 101 

competing for classification, while ensuring they are equally visible when the hybrid is highly 102 

ambiguous. To achieve this, we minimised the overlap of spatial frequency content between 103 

component images of a hybrid, by filtering one to largely retain orientations near the cardinal 104 

axes (“near-cardinal”) and the other to largely retain orientations near the intercardinal axes 105 

(45° and 135° clockwise of vertical; “near-intercardinal”).   106 

 107 

Accordingly, in Experiment 1, we used animals and flowers as non-man-made categories and 108 

houses and vehicles as man-made categories, to create hybrids and measure categorical biases. 109 

It is known that people detect animal images faster than any other category [15], but these 110 

studies did not manipulate visibility per se. Fast detection is generally inferred from reaction 111 

time measures of behavioural responses (i.e., key presses or saccades). Nonetheless, if animals 112 

do have an advantage, their perception would clearly dominate visibility in briefly flashed 113 

hybrids, and participants would be biased to classify a hybrid with an animal and a non-animal, 114 

more frequently as an animal. In Experiment 1, we found a bias towards man-made objects 115 

(houses and vehicles). However, since most man-made objects in Experiment 1 were larger in 116 

real-world size than non-man-made objects, a bias for larger objects could easily be 117 

misinterpreted as a bias for man-made objects. Therefore, Experiment 2 extends the findings 118 

of Experiment 1 to a broader range of man-made objects, covering a wider range of sizes.  119 

 120 

 121 
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 General Methods 122 

Participants and Apparatus 123 

Ten participants from Queen Mary University of London (QMUL; United Kingdom) and ten 124 

participants from University of Nottingham Malaysia (UNM; Malaysia) took part in 125 

Experiment 1 and 2, respectively. All participants had normal or corrected-to-normal vision 126 

and have lived in man-made environments for at least 10 years preceding the experiment. 127 

Experimental procedures were approved by the QMUL Ethics committee (QMREC1376C) 128 

UNM Science and Engineering Research Ethics Committee (AMHI070319). Written informed 129 

consent was obtained prior to participation.  130 

 131 

Participants were seated in a dimly lit room. A chinrest was used to maintain a distance of 0.57 132 

m from the 16" Dell CRT monitor (1024 × 768 pixels, 60 Hz refresh rate) upon which the 133 

stimuli were presented. At this distance, each pixel subtended 1.8 minutes of visual angle. 134 

Experimental programs were written in Matlab, using the Psychophysics Toolbox [16,17]. 135 

  136 

Experiment 1 Methods: Filtered hybrids 137 

Stimuli 138 

Prior to the experiment, from an initial pool of 500 images obtained from the ImageNet 139 

database [18], we created a 100-image set “C,” within which each image was unambiguously 140 

recognisable as an animal after application of the cardinal filter described below; see 141 

supplementary material 1 (S1) for details on image selection. Next, we created a 100-image set 142 

“I,” within which each image was unambiguously recognizable as an animal after application 143 

of the intercardinal filter described below. Some images appeared in both sets. We then 144 

repeated this process, creating a set C and a set I for flowers, houses, and vehicles. 145 

Consequently, sets C and I contain unfiltered images that can be filtered during the experiment 146 
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using a cardinal and an intercardinal filter, respectively. Example images from all four 147 

categories appear in Fig. 1a. 148 

 149 

Hybrids were created using randomly selected (unfiltered) component images from sets C and 150 

I in two of the four available categories (e.g., house from set C and flower from set I). The C 151 

component was filtered to retain near-cardinal orientations by multiplying its amplitude 152 

spectrum with a cardinal filter. The I component was filtered to retain near-intercardinal 153 

orientations by multiplying its amplitude spectrum with an intercardinal filter. The cardinal 154 

filter’s pass-band was the sum of two wrapped Gaussian functions; one peaking at 0° 155 

(horizontal) and the other peaking at 90° (vertical). Each Gaussian had a half-width at half 156 

height of 23.6°. The intercardinal filter was rotated 45° but otherwise identical to that of the 157 

cardinal filter.  The amplitude of each component’s spatial frequency content was adjusted so 158 

that the two components would have the desired sum (fixed at 1.33	 ×	10') and ratio (an 159 

independent variable) of notionally visible energies. Notionally visible energy (hereafter 160 

“visible energy”) is defined as the dot product between an orientation-filtered image’s power 161 

spectrum and a “window of visibility” (WV) that we created, based on Watson and Ahumada 162 

[19]. (Further details of image processing are available in S1–S3 and fig. S1).  163 

 164 

Calculating the visible energy of components using the WV gives us an index of the effective 165 

contrast of an image after taking into account non-uniformities in contrast sensitivity of spatial 166 

frequency and orientation channels in the early stages of visual processing (e.g., V1). 167 

Therefore, when the two hybrid components’ amplitude spectra are adjusted to have equal 168 

visible energy (i.e., at a log-ratio of 0), we can assume that the two components are roughly 169 

equated for visibility. We also created a unique mask for every hybrid image by phase-170 

scrambling the hybrid. This was achieved by adding the phase spectrum of a white noise pattern 171 
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(300 × 300 pixels with a uniform distribution of pixel intensities between 0 and 1) to the phase 172 

spectrum of a hybrid. A unique white noise pattern was generated for each hybrid we created.     173 

 174 

Procedure 175 

There were 8 different conditions, characterized by either the cardinal or the intercardinal 176 

component of the hybrid. In 4 conditions, we fixed the cardinal component’s category as the 177 

animal (CA), flower (CF), house (CH), or vehicle (CV), with the intercardinal component 178 

randomly chosen from the remaining 3 categories. In the remaining 4 conditions, we fixed the 179 

intercardinal component to be the animal (IA), flower (IF), house (IH), or vehicle (IV), and the 180 

cardinal component was randomly chosen from the 3 remaining categories. 181 

 182 

Within each condition the log ratio between visible energies of (cardinal and intercardinal) 183 

components was selected at random (without replacement) from the set containing 8 copies of 184 

11 values (-3.66, –2.20, –1.39, –0.41, –0.20, 0, +0.20, +0.41, +1.39, +2.20, +3.66) identified 185 

in exploratory pilot experiments as likely to provide constraint for the psychometric functions 186 

described below. The 8 different conditions were randomly interleaved within each 704-trial 187 

session. In each trial, the participant’s task was to report the category of the hybrid’s most 188 

visible component. 189 

 190 

The experimental procedure is shown in Fig. 1b. Each trial began with presentation of a white 191 

fixation dot (0.3° diameter) centred on a uniform gray background for 1.00 s. This was followed 192 

by a hybrid image that was shown for 0.10 s, immediately followed by a mask for 0.20 s. 193 

Hybrid and mask were presented in the centre of the screen within a hard-edged circular 194 

window (9.4° diameter). After the mask, 4 circular labels (3.8° diameter) of each image 195 

category appeared, and the participant responded using one of four keys ('4 – top left', '5 – top 196 
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right', '1 – bottom left', '2 – bottom right'), which mapped to the screen position of the category 197 

label. The position of a given category listed in one of the 4 labels was randomized on every 198 

trial.  199 

 200 

Experiment 1 Results: Filtered hybrids 201 

Using the Psignifit 4 toolbox [20], we obtained estimates of each participant’s bias (−𝜇), in 202 

each of the 8 conditions, by maximum-likelihood fitting the four parameters (𝜇, 𝜎, 𝛾, 𝜆) 203 

defining a cumulative Normal distribution to the psychometric function mapping log visible 204 

energy ratio (between cardinal and intercardinal components) to the proportion of trials on 205 

which the cardinal component was selected (Fig. S2a). An unbiased observer would select 206 

either component with equal frequency (50% point of a psychometric function) when the two 207 

components have equal visible energy (i.e., at log-ratio = 0), and would therefore have a bias 208 

of 0. However, if the observer is biased, then their 50% point (𝜇) would map to a log-ratio 209 

different from 0 and its sign (e.g., the direction of shift) will determine which component 210 

dominates perception. Accordingly, positive (negative) biases indicate a tendency for the 211 

cardinal (intercardinal) component to dominate perception.  212 

 213 

For each estimate of bias, we evaluated the null hypothesis that the bias does not differ from 214 

zero (using a generalized likelihood-ratio test). For this, we fit the data in each condition again 215 

with a constrained psychometric function that forced the bias to be zero. We compared the 216 

criterion α = 0.05 to the value 1 − 𝐹(−2	 ln 𝐿), where 𝐹 is the cumulative 𝜒6 distribution with 217 

1 degree of freedom and 𝐿 is the ratio of likelihood of the constrained fit to the unconstrained 218 

fit. If the value is less than 𝛼, the bias is significantly different from zero. Figure 1d shows the 219 

number of participants who had positive or negative biases that were significantly different 220 

from zero using this likelihood-ratio test. For any given condition, we also conducted two-221 
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tailed one-sample t-tests to determine if the bias across all participants (mean bias) was 222 

significantly different from zero (Table 1).   223 

 224 

Figure 1d (left hand and middle columns) plots the biases from each condition for each 225 

participant. It is clear from Fig. 1c and Table 1 that classification biases were dependent on the 226 

category of images that formed the hybrid’s components. In general, when the cardinal 227 

component contained an animal or flower the biases were negative, whereas when the 228 

intercardinal component contained them, biases were positive (Fig. 1d). When the cardinal 229 

component contained houses or vehicles biases were positive, whereas when the intercardinal 230 

component contained them biases were negative (Fig. 1d).  231 

 232 

For most observers, animals and flowers required more visible energy than the other 233 

component of the hybrid to be equally likely to be selected in the hybrid (i.e., the log-ratio of 234 

energy that leads to 50% performance), whereas houses and vehicles required relatively less 235 

visible energy than the other component. Purely categorical biases were estimated by fitting a 236 

cumulative Normal distribution to the function mapping log visible energy ratio between the 237 

categorical (e.g., animal) and non-categorical (e.g., flower, house or vehicle) component to the 238 

proportion of trials on which a specific category was selected (i.e., irrespective of filtering; Fig. 239 

S2b). This involved pooling data from conditions in which a specific category was fixed as 240 

either the cardinal or intercardinal component. For example, data from conditions CA and IA 241 

were pooled to plot the proportion of choosing the animal component as dominant against the 242 

log-ratio of visible energy between the animal and the non-animal components. Individual 243 

biases for each image category are given in the right-hand column in Fig. 1d. As summarized 244 

in Fig. S13 and Table 2, group biases were significantly negative for animals and flowers, 245 

whereas they were significantly positive for houses and vehicles.  246 
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 247 

We conducted a repeated-measures analysis of variance (ANOVA) with image category as a 248 

within-subjects factor and found a significant difference between mean categorical biases, F(3, 249 

27) = 25.83, p < 0.001. Pairwise comparisons revealed that mean biases for houses and vehicles 250 

were significantly more positive than those for animals and flowers (p < 0.01; Table S1). There 251 

was no difference in mean biases between houses and vehicles or between those for animals 252 

and flowers (Table S1). 253 

 254 

Experiment 2 Methods: Differences in real-world size 255 

Stimuli 256 

We created new sets C and I (with 100 images in each set) for four different object categories, 257 

as in Experiment 1. The new categories were based on the approximate real-world size (big or 258 

small) of the man-made object / animal in the category (Fig. 2a): big animal (BA), big man-259 

made (BM), small animal (SA), small man-made (SM). Each image category contained a range 260 

of object classes: BA (e.g., camel, elephant, rhinoceros, whale), BM (e.g., bed, cupboard, 261 

bicycle, car), SA (e.g., fish, cat, butterfly, frog) and SM (e.g., cup, watch, key, laptop). All 262 

images were obtained from ImageNet [18] and POPORO [21] databases. Some of these images 263 

had artificial (often uniform) backgrounds while others were taken in their naturally occurring 264 

backgrounds. Unique hybrids and masks were created in the same way as in Experiment 1, 265 

except that to minimise blurring of edges near the image boundaries resulting from windowing 266 

the image (see S2), we zero-padded the image with a 50-pixel pad before applying the window.  267 

Although the hybrids were created from zero-padded component images, they were still 268 

presented to participants within a hard-edged circular window of 9.4° diameter, thus 269 

maintaining identical on-screen stimulus size across all experiments. 270 

 271 
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Procedure 272 

We had 4 unique pairings of categories, namely BA-BM, BA-SM, SA-BM and SA-SM. In 4 273 

experimental conditions, the first of each pair was fixed to be the cardinal component, while 274 

the second was fixed as the intercardinal component. In 4 additional conditions, the first of the 275 

pair was fixed to be the intercardinal component and the second was fixed as the cardinal 276 

component, resulting in a total of 8 conditions. Other aspects of the procedure were identical 277 

to those used in Experiment 1, with the exception that sessions were expanded to 880 trials 278 

each (each session contained 10 copies of the 11 log-ratios in each of the eight conditions). 279 

 280 

Experiment 2 Results: Differences in real-world size 281 

For each participant we obtained maximum-likelihood estimates of the bias for the 8 hybrid 282 

conditions (Fig. 2b left and middle panels). Generalised likelihood-ratio tests were used to 283 

determine the number of observers whose biases significantly differed from zero, and two-284 

tailed one-sample t-tests were used to determine if the mean bias across observers was 285 

significantly different from zero (Table 1). As evident from mean bias values (Fig. S14 and 286 

Table 1), we found large negative biases for all 4 conditions when the cardinal component 287 

contained an animal. When the intercardinal component contained an animal, we found large 288 

positive biases for BA-BM and SA-BM, a weak positive bias for BA-SM and no bias for SA-289 

SM. Taken together, most biases were again towards man-made objects.     290 

 291 

We also obtained biases for each unique category pair in the same manner as in Experiment 1, 292 

whereby a negative bias indicates that the man-made and animal components were chosen with 293 

equal frequency when the man-made component had relatively less visible energy than the 294 

animal component (Fig. 2b right panel;). In general, biases were negative for any given pair. 295 

As revealed by two-tailed one-sample t-tests (Table 2), mean bias was negative and 296 
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significantly different from zero for BA-BM, BA-SM and SA-BM, and was approaching 297 

significance for SA-SM. When collapsed across category pairs, biases were found towards 298 

man-made objects (Table 2): 7/10 individual biases were significant at the level of p < 0.001 299 

and 1/10 was significant at p < 0.05.  300 

 301 

To further evaluate the role of real-world object size and filtering on biases, we conducted a 302 

2 × 2 × 2 repeated measures ANOVA on the “man-made biases”, with animal size (big and 303 

small), man-made size (big and small) and filtering (cardinal and intercardinal) as factors. We 304 

found no main effects of filtering, F(1,9) = 0.53, p = 0.486, and animal size, F(1,9) = 1.66, p = 305 

0.230. There was a main effect of man-made size, with larger man-made objects producing 306 

larger biases, F(1,9) = 11.58, p = 0.008. The interaction between filtering and man-made size 307 

was significant F(1,9) = 19.83, p = 0.002. Pairwise comparisons further analysing this 308 

interaction revealed that, although man-made biases were larger for big compared to small 309 

man-made objects, this was only significant (p < 0.001) when man-made objects retained near-310 

cardinal orientations. We also found a significant interaction between filtering and animal size, 311 

F(1,9) = 9.95, p = 0.012. Pairwise comparisons revealed that: 1) cardinally filtered animals, 312 

compared to intercardinally filtered animals, produced larger man-made biases for big animals 313 

(p = 0.002) but not for small animals. Further, big animals produced larger man-made biases 314 

compared to small animals when the animals were filtered intercardinally (p = 0.006) but not 315 

cardinally (see Table S2 for additional statistics). 316 

 317 

 318 

 319 

 320 

 321 
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Discussion 322 

 323 

We examined biases in people’s classification of different types of natural images. In 324 

Experiment 1, we found that when an ambiguous hybrid image was formed of structures from 325 

two different image categories, classification was biased towards the man-made categories 326 

(houses and vehicles) rather than towards the non-man-made categories (animals and flowers). 327 

This “man-made bias” is not a bias towards any specific spatial frequency content. Additional 328 

experiments (see S5) revealed that the bias is 1) common across urban-living participants in 329 

different countries, and 2) not simply a response bias. The results of Experiment 2 replicated 330 

and extended the results of Experiment 1 to demonstrate that the bias was affected by the real-331 

world size of man-made objects (but not animal size), with a stronger bias for larger man-made 332 

objects. Reduced biases for small man-made objects may be explained by shared feature 333 

statistics (e.g., curvature) between small (but not large) man-made objects and both small and 334 

large animals [22]. However, we highlight that the bias is not only for larger man-made objects, 335 

because we still obtained man-made biases even when small man-made objects were paired 336 

with animals. We propose that this man-made bias is the result of expectations about the world 337 

that favour the rapid interpretation of complex images as man-made. Given that the visual diet 338 

of our urban participants is rich in man-made objects, our results are consistent with a Bayesian 339 

formulation of perceptual biases whereby ambiguous stimuli result in biases towards frequently 340 

occurring attributes [5].   341 

 342 

We stress that the man-made bias is not merely a manifestation of the relative insensitivity to 343 

tilted (i.e., neither vertical nor horizontal) contours, commonly known as the “oblique effect” 344 

[23,24]. Our participants exhibited biases in favour of man-made objects even when cardinal 345 

orientations had been filtered out of them. This occurred despite the fact that the power spectra 346 
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of houses and vehicles were largely dominated by cardinal orientations, whereas those of 347 

animals and flowers were largely isotropic (S6 and Fig. S6).  Whereas the oblique effect was 348 

established using narrow-band luminance gratings on otherwise uniform backgrounds, it 349 

cannot be expected to influence the perception of broad-band, natural images, such as those 350 

used in our experiments. Indeed, if anything, detection thresholds for cardinally oriented 351 

structure tend to be higher than those for tilted structure, when those structures are 352 

superimposed against broad-band masking stimuli [25].  353 

 354 

We note however that we do not claim that intercardinal filtering removes all easily detectable 355 

structures from the images in man-made categories. Indeed, houses and vehicles almost 356 

certainly contain longer, straighter, and/or more rectilinear contours than flowers and animals. 357 

Therefore, we also performed a detection experiment to examine if increased sensitivity to 358 

structural features that might dominate man-made categories could account for the man-made 359 

biases by measuring detection thresholds (see S7). It revealed that houses and vehicles did not 360 

have lower detection thresholds (i.e., the minimum root mean square contrast required to 361 

reliably detect images from each category) than images from the non-man-made categories. 362 

This finding provides strong ammunition against any sensitivity-based model of the man-made 363 

bias. Whatever structure is contained in the unfiltered images of houses and vehicles, that 364 

structure proved to be, on average, no easier to detect than the structure contained in unfiltered 365 

images of animals and flowers.  366 

 367 

The lack of a bias for animals and a difference in sensitivity between image categories appears 368 

to contradict past findings from Crouzet et al. [15], who report that the detection of animals 369 

precedes that of vehicles using a saccadic choice task. However, comparing contrast sensitivity 370 

(detection) to saccadic reaction (decision) is problematic, especially with high contrast stimuli 371 
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[26]. Secondly, the difference could be attributed to the background of images that must be 372 

classified. While Crouzet et al. [15] controlled contextual masking effects on image category 373 

by presenting images occurring in both man-made and natural contexts, our images in the 374 

detection experiment were embedded in white noise with the same amplitude spectrum as the 375 

image (Fig. S6). As Hansen and Loschky [27] report, the type of mask used (e.g., using a mask 376 

sharing only the amplitude spectrum with the image versus one sharing both amplitude and 377 

phase information with the image) affects masking strength. It is still unclear which type of 378 

masks work best across different image categories [27]. 379 

 380 

Although we carefully controlled the spatial frequency content of our stimuli in Experiments 381 

1 and 2, it is conceivable that the bias toward man-made objects arises at a level intermediate 382 

between the visual system’s extraction of these low-level features and its classification of 383 

stimuli into semantic categories. To investigate whether any known “mid-level” features might 384 

be responsible for the bias toward man-made objects, we repeated Experiments 1 and 2 with 385 

HMAX, a computer-based image classifier developed on the basis of the neural computations 386 

mediating object recognition in the ventral stream of the visual cortex [28,29], allowing it to 387 

exploit mid-level visual features in its decision processes (see S4 and S10). We also classified 388 

hybrids from Experiment 2 with the AlexNet Deep Convolutional Neural Network (DNN), that 389 

could potentially capture more mid-level features ([30]; see S9). Results indicate that human 390 

observers’ bias for man-made images seems not to be a simple function of the lower and mid-391 

level features exploited by conventional image-classification techniques.  392 

 393 

However, we must concede that HMAX and AlexNet do not account for all possible 394 

intermediate feature differences between object categories, for instance 3D viewpoint [31]. If 395 

we are frequently exposed to different viewpoints of man-made but not non-man-made objects, 396 
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this might lead to a man-made bias too. Therefore, more experiments where categorical biases 397 

can be measured after equating object categories for intermediate features are needed to 398 

pinpoint the level at which the man-made bias occurs. Indeed, the bias for man-made objects 399 

might have nothing to do with visual features at all. It may stem from (non-visual) expectations 400 

that exploit regularities of the visual environment [6]. To be clear: we are speculating that the 401 

preponderance of man-made objects in the environment of urban participants could bias their 402 

perception such that it becomes efficient at processing these types of stimuli.   403 

 404 

When might such a bias develop? Categorical concepts and dedicated neural mechanisms for 405 

specific object categories seem to develop after birth, with exposure [32-34]. This suggests that 406 

expectations for object categories are likely to develop with exposure too. However, if 407 

expectations occur at the level of higher-level features associated with object categories, we 408 

cannot discount the possibility that expectations may be innate. For instance, prior expectations 409 

for low-level orientation has been attributed to a hardwired non-uniformity in orientation 410 

preference of V1 neurons [6]. Similarly, we may have inhomogeneous neural mechanisms for 411 

higher-level features too. Recently identified neural mechanisms selectively encoding higher-412 

level features of objects (e.g., uprightness; [35]) add to this speculation. It remains to be 413 

determined when and how man-made biases arise and whether they are adaptable to changes 414 

in the environment. Further, the perceptual bias that we demonstrate may be altered by testing 415 

conditions, which limit its generalisability. For instance, low spatial frequency precedence in 416 

image classification is altered by the type of classification that must be performed (e.g., 417 

classifying face hybrids for its gender versus expression) [36]. 418 

 419 

 420 

 421 
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Table 1. Group statistics on biases from each condition in Experiment 1 and Experiment 2. 515 
Experiment 1 Experiment 2 

Condition Mean 
bias t-statistic Cohen’s d Condition Mean 

bias t-statistic Cohen’s d 

 Cardinal animal 
CA –0.46 –3.97** –1.25 BA-BM –0.37 –2.97* –0.94 
CF –0.89 –5.94** –1.88 BA-SM –0.30 –2.81* –0.89 
CH +0.43 +4.21** +1.33 SA-BM –0.51 –5.35** –1.69 
CV +0.29 +4.26** +1.35 SA-SM –0.50 –3.76** –1.19 

 Intercardinal animal 
IA +0.43 +4.08** +1.29 BA-BM +0.79 +6.00** +1.90 
IF +0.51 +3.81** +1.20 BA-SM +0.25 +1.67 +0.53 
IH –0.49 –3.77** –1.19 SA-BM +0.42 +5.85** +1.85 
IV –0.35 –3.31** –1.07 SA-SM –0.05 –0.61 –0.19 

Note: Single asterisks denote significance at the level of p < 0.05 and double asterisks denote 516 
significance at the level of p < 0.01. 517 
 518 

 519 
Table 2. Group statistics on biases for each category in Experiment 1 and each category pair 520 
in Experiment 2. 521 

Experiment 1 Experiment 2 
Category Mean 

bias t-statistic Cohen’s d Category 
pair 

Mean 
bias t-statistic Cohen’s d 

Animal –0.39 –6.06** –1.92 BA-BM –0.55 –5.27** –1.67 
Flower –0.62 –4.31** –1.36 BA-SM –0.33 –3.39** –1.07 
House +0.44 +5.29** +1.67 SA-BM –0.50 –6.92** –2.19 
Vehicle +0.34 +5.68** +1.80 SA-SM –0.23 –1.96 –0.62 
    Averaged –0.37 –6.41** –2.03 

Note: Single asterisks denote significance at the level of p < 0.05 and double asterisks denote 522 
significance at the level of p < 0.01. The p value for the SA-SM categorical pair in Experiment 523 
2 was approaching significance (p = 0.081). 524 
 525 

 526 

 527 

 528 

 529 

 530 

 531 

 532 

 533 
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Figures 534 

 535 

Figure 1. Experiment 1: a) A representative sample of images from each category. For each 536 

category, unfiltered images are in the left-hand column and the same images after applying a 537 

cardinal (for set C) or an intercardinal filter (for set I) are in the right-hand column. b) Timeline 538 
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of an experimental trial. c) Examples of hybrid images. d) Bar plots showing biases in each 539 

hybrid condition (left-hand and middle columns; positive values indicate biases towards the 540 

cardinal component) and categorical biases estimated irrespective of filtering (right-hand 541 

column; positive values indicate biases for the specific category) for each participant. Empty 542 

blue bars represent biases that significantly differed from zero. Error bars represent 95% 543 

confidence intervals. 544 

 545 

 546 

Figure 2: Experiment 2: a) A representative sample of images from each category (note: each 547 

panel includes images from both sets C and I). b) Bar plots showing biases for each hybrid 548 

condition (left-hand and middle columns; positive biases indicate biases towards the cardinal 549 

component) and for each category pair (right-hand column; positive values indicate biases for 550 
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the animal component). Empty blue bars represent biases that significantly differed from zero 551 

and error bars represent 95% confidence intervals. 552 



 1 

Electronic Supplementary Material 1 

Paper title: A perceptual bias for man-made objects in humans 2 

Authors: Ahamed Miflah Hussain Ismail, Joshua A. Solomon, Miles Hansard & Isabelle 3 

Marechal 4 

Journal name: Proceedings of the Royal Society B 5 

 DOI: 10.1098/rspb.2019.1492 6 

 7 

S1: Image Selection 8 

Each of the 500 images from each category (animal, flower, house and vehicle; 2000 images 9 

in total) was cosine-windowed, filtered with a cardinal filter and was presented to participant 10 

AM (author) for an unlimited duration, in a random order. All images were set to have the same 11 

RMS contrast of 10 × 10$%. Participant AM judged if each image was unambiguously 12 

recognizable as an animal, flower, house or vehicle. From the correctly recognized set of 13 

images, the first 100 were chosen to create set C for each category. The same procedure was 14 

repeated to obtain images for set I, with the exception that instead of a cardinal filter, an 15 

intercardinal filter was applied before presenting the image.   16 

 17 

S2: Image Processing 18 

During the experiment, hybrids were created using a 7-step procedure. In step 1, we randomly 19 

selected (unfiltered) component images from sets C and I in two of the four available categories 20 

(e.g., house from set C and flower from set I). In step 2, each component was converted to 21 

grayscale by computing the weighted sum of red, green and blue channels of an image 22 

(0.299𝑅 + 	0.587𝐺 + 0.114𝐵; [1]). To minimize wrap-around artefacts during Fourier 23 

transformation, pixel intensities of each component were multiplied by a circularly symmetric, 24 

raised cosine window in step 4. 25 



 2 

 26 

The 2-dimensional, circularly symmetric, raised cosine window takes the form given in Eq. 27 

S2a below.  28 

𝑊3,5 = 70.5 + 0.5𝑐𝑜𝑠 ;
𝑟3,5𝜋
𝑅 >?

@

 (S2a) 

where 𝑊 is the window, 𝑟 is the distance of each pixel from the centre of a 2-dimensional array 29 

whose column and row numbers are denoted by 𝑥 and 𝑦, respectively, 𝑅 is the radius of the 30 

window (150 pixels) and 𝑝 is the power to which the cosine function is raised (0.5).  31 

 32 

As suggested by van der Schaaf and van Hateren [2], we applied the window after subtracting 33 

the weighted mean intensity from the image and normalizing it as in Eq. S2b. 34 

 35 

𝐶3,5 = 	 E
𝐼3,5 − 	𝜇

𝜇 I𝑊3,5 (S2b) 

Where 𝐶3,5 is the windowed image, 𝜇 = 	∑ K𝐼3,5 −	𝑊3,5L3,5 ∑ 𝑊3,53,5M , 𝐼3,5 is the image to be 36 

windowed and 𝑊3,5 is the cosine window. Indices 𝑥 and 𝑦 denote the column and row number 37 

of pixels, respectively.     38 

 39 

In step 5, the C and I components were filtered to retain orientations closer to the cardinal axes 40 

(“near-cardinal”) and orientations closer to the intercardinal axes (45° and 135° clockwise of 41 

horizontal; “near-intercardinal”), by multiplying their amplitude spectra with cardinal and 42 

intercardinal filters, respectively. The cardinal filter’s pass-band was the sum of two wrapped 43 

Gaussian functions; one peaking at 0° (horizontal) and the other peaking at 90° (vertical). Each 44 

Gaussian had a half-width at half height of 23.6°. The intercardinal filter was rotated 45° but 45 

otherwise identical to that of the cardinal filter.       46 

 47 
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In step 6, we uniformly adjusted (reduced or elevated) the amplitude of each component’s 48 

spatial frequency content, so that the two components would have the desired sum (fixed at 49 

1.33	 ×	10O) and ratio (an independent variable) of notionally visible energies. Notionally 50 

visible energy (hereafter “visible energy”) is defined as the dot product between an orientation-51 

filtered image’s power spectrum and a “window of visibility” (WV) that we created, based on 52 

Watson and Ahumada [3] (S3 and fig. S1). In step 7, the filtered, scaled components were back-53 

transformed and combined by adding pixel intensities to create a hybrid. 54 

 55 

S3: Window of visibility 56 

The ‘window of visibility’ (WV) was the product of two 2-dimensional filters which were the 57 

same size as the amplitude spectrum of a component. The first was a 'contrast sensitivity filter' 58 

(CSF), whose gain—a truncated log-parabola of spatial frequency (as suggested by Lesmes, 59 

Lu, Baek, & Albright [4]; Eq. S3a)—was independent of orientation. Three out of four 60 

parameters of the truncated log-parabola (𝑓QR3	 = 3.5	cycles	per	degree, 𝛽 = 3.4	octaves and 61 

𝛿 = 0.3 decimal log units below	𝛾QR3) were those best-fitting the ModelFest dataset [3]. The 62 

parameter which represents the peak sensitivity (𝛾QR3) was set at 1. The second filter was an 63 

'Oblique Effect filter' (OEF), which models contrast sensitivity as a function of grating 64 

orientation and was dependent on spatial frequency (Eq. S3b; see [3]). Combining the CSF 65 

with OEF gives the WV, a non-separable filter which models contrast sensitivity as a function 66 

of both spatial frequency and orientation of a stimulus.  67 

 68 

 69 

 70 

 71 

 72 
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The CSF takes the form: 73 

𝑆d(𝑓) = loggh 𝛾QR3 − 𝐾 7
loggh(𝑓) − loggh(𝑓QR3)

𝛽d 2⁄ ?
%

, 

𝑆(𝑓) 	= k
𝑆d(𝑓), 𝑓 ≥ 𝑓QR3																																		

loggh 𝛾QR3 − 𝛿	 , 𝑓 < 𝑓QR3	𝑎𝑛𝑑	𝑆′(𝑓) < loggh 𝛾QR3 − 𝛿
r 

 

 

(S3a) 

 74 

where 𝛾QR3is the peak sensitivity, 𝑓 is the spatial frequency, 𝑓QR3is the peak spatial frequency, 75 

𝛽d = 	 loggh 𝛽 and 𝛽 is the full-bandwidth at half-height (in octaves), 𝛿 is the truncated 76 

sensitivity at low spatial frequencies and 𝐾 is a constant (𝐾 =	 loggh 2). 𝑆(𝑓) and 𝑆d(𝑓) define 77 

sensitivity with and without truncation respectively.     78 

 79 

The OEF takes the form: 80 

𝑆(𝑓, 𝜃) 	= t1 − E1 −	𝑒
;$v$wx >I 𝑠𝑖𝑛%(2𝜃), 𝑓 > 	𝛾	

																																																	1,								𝑓 ≤ 	𝛾
| 

 

(S3b) 

 

 

where 𝑆(𝑓, 𝜃) defines sensitivity (maximum gain = 1), 𝑓 is the spatial frequency, 𝛾 is the spatial 81 

frequency at which sensitivity starts to decline (3.48 cycles per degree), 𝜆 is the slope of decline 82 

in sensitivity (13.57 cycles per degree) and 𝜃 is the orientation.         83 

 84 

 85 

 86 

 87 

 88 

 89 

 90 
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 91 

Figure S1. a) Resultant images from steps involved in creating a hybrid from two sample 92 

images that had already been passed through steps 1 and 2 (see main text). One image is taken 93 

from set C (the house in the figure) and filtered to create the cardinal component (that retains 94 

near-cardinal orientations), whereas the other image is taken from set I (the flower in the figure) 95 

and filtered to create the intercardinal component (that retains near-intercardinal orientations). 96 
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b) An example range of hybrid images with different log-ratios (displayed to the left) of visible 97 

energy between the cardinal and intercardinal components of the hybrid. 98 

 99 

 100 

Figure S2. Example psychometric functions obtained using data from participant AM in 101 

Experiment 1. a) Blue dots plot the proportion of choosing the cardinal component as dominant 102 

(ordinate) against the log-ratio of visible energy between cardinal and intercardinal components 103 

(abscissa). At 0, the two components have equal visible energy. Each subplot represents a 104 

condition (CA - cardinal animal, IA - intercardinal animal, CF - cardinal flower, IF - 105 
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intercardinal flower, CH - cardinal house, IH - intercardinal house, CV - cardinal vehicle, and 106 

IV - intercardinal vehicle). b) Blue dots plot the proportion of choosing the specific category 107 

as dominant (ordinate) against the log-ratio of visible energy between the respective categorical 108 

and non-categorical components. Each subplot refers to a category (A - animal, F - flower, H - 109 

house, V - vehicle). In all plots (a and b), black curves are best-fitting cumulative Normal 110 

distribution functions and solid black vertical lines denote the log-ratio of visible energy at 111 

which the participant judges either component as dominant with equal frequency. 112 

 113 

Table S1. Pairwise comparisons between mean categorical biases in Experiment 1.  114 

Comparison Mean 
difference 

p-
value 

House – Animal +0.83 <0.001 
House – Flower +1.06 0.005 
House – Vehicle -0.09 0.826 
Vehicle – Animal +0.74 <0.001 
Vehicle – Flower +0.96 0.004 
Animal – Flower +0.23 1.000 

Note: p-values displayed are following Bonferroni corrections 115 
 116 

 117 

 118 

 119 

 120 

 121 

 122 

 123 

 124 

 125 

 126 

 127 
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Table S2. Statistics from the ANOVA and pairwise comparisons from Experiment 2. 128 

ANOVA Pairwise comparisons 

Effect F statistic p value Pair t statistic p value 
Filtering +0.53 0.486    
Manmade size +11.58 0.008    
Animal size +1.66 0.230    

Filtering * 
Manmade size +19.83 0.002 

Cardinal animal: 
Big manmade – 
Small manmade  

+0.39 0.707 

   

Intercardinal 
animal: Big 
manmade – Small 
manmade  

+6.72 <0.001 

   
Big manmade: 
Cardinal – 
Intercardinal  

–1.52 0.163 

   
Small manmade: 
Cardinal – 
Intercardinal 

+3.07 0.013 

Filtering * 
Animal size +9.95 0.012 

Cardinal animal: 
Big animal – Small 
animal  

+0.97 0.359 

   
Intercardinal 
animal: Big animal 
– Small animal  

+3.61 0.006 

   
Big animal: 
Cardinal – 
Intercardinal  

+0.70 0.502 

   
Small animal: 
Cardinal – 
Intercardinal 

+4.41 0.002 

Animal size * 
Manmade size +0.42 0.532    

Filtering * 
Manmade size * 
Animal size 

+0.003 0.960    

 129 
 130 

 131 

 132 

 133 

 134 
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S4: Image classification using HMAX 135 

We implemented an extension of the HMAX model [5], to extract feature signatures from 136 

grayscale images in a training set. The model has a four-layer architecture (L1, L2, L3 & L4). 137 

In L1, an input image is convolved with a set of Gabor filters that model response properties 138 

of simple cells [6]. Twelve orientations (linearly spaced between 0° and 165°) were used for 139 

the filters. Other filter parameters (scale, filter size, width and wavelength) are provided in 140 

Table S3. L2 pools responses from neighbouring L1 units with adjacent filter sizes, to obtain 141 

the local maxima. L2 units mimic complex cells [6] and are invariant to changes in scale and 142 

translations. L3 convolves prototype filters with the L2 layer. In the learning phase (i.e., prior 143 

to training a classifier using all images in a training set), prototype filters are learnt from 144 

randomly sampling L2 units of varying spatial size, scale and spatial position, from a subset 145 

(or all) of the training images. We sampled a large number (N) of prototypes to create a 146 

dictionary: 𝑁 = 𝑐 × 𝑠 × 𝑓, where 𝑐 is the number of image categories in the training set that 147 

varied depending on the Experiment, 𝑠 is the number of images from which prototypes are 148 

learnt (either 30 or 50) and 𝑓 is the number of prototypes extracted per image (fixed at 20). 149 

During training, these prototypes are centred at every position and scale over the L2 layer for 150 

comparison against L2 units of any single training image. The final vector of model features 151 

(“signatures”) is computed in L4 by obtaining the maximum response for every single 152 

prototype at any position and scale within an image. L4 signatures and pre-specified categorical 153 

labels of training images are used to train a multiclass classifier using a binary Support Vector 154 

Machine (with the Matlab function ‘fitcecoc’). Using the trained classifier and L4 signatures 155 

obtained from images in a test set, we used the Matlab function ‘predict’ to predict the 156 

categorical labels of images in a test set.          157 

 158 

 159 
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Table S3. Parameters of L1. 160 

Scale Filter size Width Wavelength 

1 7 × 7 2.8 3.5 
9 × 9 3.6 4.6 

2 11 × 11 4.5 5.6 
13 × 13 5.4 6.8 

3 15 × 15 6.3 7.9 
17 × 17 7.3 9.1 

4 19 × 19 8.2 10.3 
21 × 21 9.2 11.5 

5 23 × 23 10.2 12.7 
25 × 25 11.3 14.1 

6 27 × 27 12.3 15.4 
29 × 29 13.4 16.8 

7 31 × 31 14.6 18.2 
33 × 33 15.8 19.7 

8 35 × 35 17 21.2 
37 × 37 18.2 22.8 

 161 
 162 

Evaluating the classifier  163 

To verify the performance of our classifier, we first classified images from a widely used image 164 

database, Caltech101 [7] which allowed us to compare our results with those of Theriault et al. 165 

[5]. We selected ten image categories from Caltech101 (airplane, butterfly, face, leopard, 166 

motorbike, bonsai, piano, sunflower, laptop and watch) from  which thirty images per category 167 

were chosen for the training set and 50 different images from the same categories were chosen 168 

for the test set. Twenty L2 prototypes were learnt from random sampling from each of the 30 169 

training images in each category. This led to a total of 6000 prototypes in the dictionary. We 170 

also evaluated the classifier with the 4 image categories used in our Experiment 1. Again, we 171 

learnt 20 L2 prototypes from each image by randomly sampling from 50 images in each 172 

category. Fifty unique images from each category were present in the training and test sets.  173 

 174 

Table S4 provides data on the classifiers performance for 10 image categories obtained from 175 

the Caltech101 database.  Average performance was 79%, similar to the value (76%) reported 176 
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in Theriault et al. [5]. Also, as shown in Table S4, the classifier reached a performance greater 177 

than 85% for any image category used in our Experiment 1. 178 

 179 

Table S4. Classification accuracy for image categories in the Caltech101 database and those 180 

used in our Experiment 1. 181 

Caltech101 Experiment 1 images 
Airplane 98% Animal 86% 
Butterfly 82% Flower 86% 

Face 82% House 90% 
Leopard 42% Vehicle 94% 

Motorbike 50%   
Bonsai 94%   
Piano 82%   

Sunflower 90%   
Laptop 84%   
Watch 90%   

Average 79% Average 89% 
 182 
 183 

Hybrid classification 184 

First, we trained the classifier with all the unfiltered images from each category used in 185 

Experiment 1 which consisted of unique greyscale images of 141 animals, 135 flowers, 136 186 

houses and 138 vehicles. The test set included 80 hybrid images at each log-ratio of visible 187 

energy, for each of the 8 hybrid conditions in Experiment 1. These numbers were determined 188 

based on how many hybrids in total were shown to the average observer (all 10 participants) 189 

in Experiment 1. Second, the classifier was trained with all the unfiltered images from each 190 

category used in Experiment 2 which consisted of 232 animals and 240 manmade objects. The 191 

test set included 100 hybrid images at each log-ratio of visible energy, for each of the 8 hybrid 192 

conditions in Experiment 2. Again, these numbers were determined based on the average 193 

observer. In both cases, 20 L2 prototypes were learnt from 50 images in each category. 194 

 195 
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Figure S3 plots the proportion of times the classifier classified the hybrids as the cardinal 196 

component for each hybrid condition in Experiment 1 as a function of the log-ratio of visible 197 

energy between cardinal and intercardinal components. Behavioural data for the average 198 

observer is also plotted in the same figure, for comparison. It is clear that the classifier’s 199 

performance only varied systematically, in the direction aligned with the average observer, 200 

when the manmade objects retained near-cardinal orientations. When manmade objects 201 

retained near-intercardinal orientations, the classifier’s performance largely deviated from the 202 

average observer. In two of those conditions, CF and IH, the classifier’s performance varied 203 

systematically in the direction opposite to that of the average observer (i.e., the higher the 204 

visibility of a component, the less likely the hybrid will be classified as that component). Here, 205 

hybrids with highly visible manmade components (houses or vehicles) were often misclassified 206 

as non-manmade (animals or flowers), and those with highly visible non-manmade components 207 

were often misclassified as manmade (See Tables S10 and S11). In the remaining two 208 

conditions, classification remained roughly flat with changes in log-ratio of visibility between 209 

components.  210 

 211 

To further analyse this, we looked at how cardinally (from set-C) and intercardinally (from set-212 

I) filtered component images were classified by the classifier on their own (i.e., not in a hybrid). 213 

Cardinally filtered houses and vehicles were classified with higher accuracy (100% and 80%, 214 

respectively) compared to animals and flowers (43% and 0%, respectively). On the other hand, 215 

intercardinally filtered animals and flowers were classified with higher accuracy (61% and 216 

98%, respectively) compared to houses and vehicles (0% and 12%, respectively). A similar 217 

pattern of results was observed for classifying hybrids in Experiment 2. The classifier’s 218 

performance was only aligned with the average observer when the manmade objects were 219 

cardinally filtered (Fig. S4). Here too, cardinally filtered animals were poorly classified on their 220 
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own (46%) compared to cardinally filtered manmade objects (96%), whereas intercardinally 221 

filtered manmade objects were classified poorly (38%) compared to animals (96%). 222 

 223 

 224 

Figure S3. Proportion of classifying the hybrids (from Experiment 1) as the cardinal component 225 

by the average observer (blue filled circles) and the classifier (green filled squares), plotted as 226 

a function of the log-ratio of visible energy between the cardinal and intercardinal components 227 

of the hybrids. Each subplot represents data from a single hybrid condition in Experiment 1. 228 



 14 

Black curves are psychometric fits to the data from the average observer. Black vertical lines 229 

denote the mean (˗bias) of the cumulative Normal distribution. 230 

 231 

   232 
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 233 

Figure S4. Proportion of classifying the hybrid as the cardinal component by the average 234 

observer (blue filled circles) and the classifier (green filled squares), plotted as a function of 235 

the log-ratio of visible energy between the cardinal and intercardinal components of the 236 
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hybrids. Each subplot represents data from a single hybrid condition in Experiment 2. Black 237 

curves are psychometric fits to the data from the average observer. Black vertical lines denote 238 

the mean (˗bias) of the cumulative Normal distribution. 239 

 240 

S5: Response and amplitude spectra biases 241 

Methods 242 

We recruited 10 urban-living participants from the University of Nottingham Malaysia 243 

(Malaysia). All participants had normal or corrected-to-normal vision. Written, informed 244 

consent was obtained prior to their participation. Experimental procedures were approved by 245 

the Ethics committee of University of Nottingham Malaysia (AMHI070319). All stimuli were 246 

presented on a 16" CTX 1765D monitor (1024 × 768 pixels, 60 Hz refresh rate).  247 

 248 

The stimuli and procedure were identical to Experiment 1, with an exception. We added two 249 

types of hybrid images for each hybrid condition, both having a log-ratio of visible energy of 250 

0 (i.e., equal energy in both components), namely “PS” and “PN”. PS was a phase-scrambled 251 

version of a typical hybrid image created in the same manner as in Experiment 1 and designed 252 

to examine if biases were due to differences in amplitude spectra of the images. PN was created 253 

using a component noise pattern with a Gaussian distribution of pixel values, but a 1 𝑓�⁄  254 

amplitude spectrum, where 𝛼 = 1.10 and designed to examine response biases. The 𝛼 value 255 

(spectral slope) was determined based on the mean 𝛼 reported in [8] who measured 𝛼 values 256 

of natural images. After that, a unique, second component noise pattern was generated using 257 

an identical procedure, and the two component noise patterns were added to create the PN. 258 

Eight PS and PN stimuli were shown to each participant and they were randomly interleaved 259 

within a block along with trials showing typical hybrids at varying log-ratios of visible energy. 260 
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A unique PS or PN stimulus was created for every single presentation. Backward masks used 261 

were always phase-scrambled versions of the hybrid.         262 

 263 

Results 264 

First, for typical hybrids presented at all possible log-ratios of visible energy, we found 265 

manmade biases similar to those obtained in Experiment 1 (Figure S5; Table S5). Next, we 266 

compared classification between the 3 different types of hybrids, whose components were 267 

matched to have equal visible energy. After collapsing across data from all 8 hybrid conditions 268 

(resulting in 64 trials per hybrid type), we measured the percentage of trials in which the 269 

manmade component was chosen as more dominant for each hybrid type (Table S6). This 270 

measure was subjected to a repeated measures one-way ANOVA which revealed a significant 271 

difference between the mean percentages for the 3 hybrid types, F(1,14) = 28.44, p < 0.001. 272 

Bonferroni corrected pairwise comparisons showed that our typical hybrids were classified as 273 

manmade (mean = 65%) more often than PS (mean  = 42%; p = 0.006) and PN (mean = 37%; 274 

p < 0.001) hybrids. There was no significant difference between the means of PS and PN (p = 275 

0.471). 276 

 277 



 18 

 278 
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Figure S5. Experiment 4 biases: a) Bar plots showing biases in each condition (left and middle 279 

panel: CA - cardinal animal, IA - intercardinal animal, CF - cardinal flower, IF - intercardinal 280 

flower, CH - cardinal house, IH - intercardinal house, CV - cardinal vehicle, and IV - 281 

intercardinal vehicle) and categorical biases (right panel: A - animal, F - flower, H - house and 282 

V - vehicle) for each participant. Blue bars represent biases that significantly differed from zero 283 

based on likelihood ratio tests. Error bars represent 95% confidence intervals. b) Mean biases 284 

across participants for each condition (orange bars) and category (green bars) as plotted in a. 285 

Error bars denote ±1 standard deviation of the sample.   286 

 287 

Table S5. Experiment 4 results: Group statistics on biases for hybrid conditions, and 288 

categorical biases. 289 

Biases for hybrid conditions Categorical biases 

Condition Mean 
bias 

One 
sample t-
statistic 

Cohen’s 
d Category Mean 

bias 

One 
sample t-
statistic 

Cohen’s 
d 

CA  –2.85* –1.08 Animal  –4.57** –1.73 
CF  –4.37** –1.65 Flower  –4.83** –1.83 
CH  +3.65** +1.38 House  +2.84* +1.07 
CV  +1.74 +0.66 Vehicle  +7.51** +2.84 
IA  +3.38* +1.28     
IF  +6.04** +2.28     
IH  –2.26# –0.85     
IV  –3.87** –1.46     

Note: Single asterisks denote significance at the level of p < 0.05, double asterisks denote 290 
significance at the level of p < 0.01, and # denotes marginal significance (p = 0.05). 291 
 292 

 293 

 294 

 295 

 296 

 297 

 298 
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Table S6. Percentage of trials where the manmade component was judged as dominant, for the 299 

three different hybrid types.  300 

Participant Typical (%) PS (%) PN (%) 
AI 66 39 44 
CL 61 41 38 
SM 69 48 44 
QJ 61 42 25 
AS 59 33 36 
MM 78 38 30 
NF 67 36 39 
NL 56 61 42 
Mean 65 42 37 

 301 
 302 

S6: Orientation anisotropy 303 

We calculated the orientation “anisotropy” of images used in each experiment by applying the 304 

same filters used during hybrid creation. For any single image, the anisotropy can be calculated 305 

by filtering a cosine-windowed image, once with a cardinal filter and then with an intercardinal 306 

filter. Here we define anisotropy as the log ratio of energies, after cardinally and intercardinally 307 

filtering the image: 𝐴 = 	 ln(𝐸� 𝐸�⁄ ), where 𝐴 is the anisotropy, 𝐸�  is the energy after cardinal 308 

filtering and 𝐸� is the energy after intercardinal filtering. A positive anisotropy value denotes 309 

relatively greater energy near cardinal orientations. We quantified the mean anisotropy across 310 

all images for each set (C and I) and each category used in Experiments 1 and 2, and these 311 

values are plotted in Fig. S6. Statistics comparing mean anisotropies between categories and 312 

sets are provided below (Table S7). Overall, for Experiment 1, irrespective of the set, man-313 

made categories were relatively more anisotropic compared to non-man-made categories. A 314 

similar pattern was true for images used in Experiment 2 too, where both man-made categories 315 

were more anisotropic than any animal category. 316 

 317 
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 318 

Figure S6. Mean anisotropy of each image category and each image set, for both Experiments 319 

1 and 2. For any subplot, bars are colour coded to represent individual categories and the 320 

absence or presence of a black border around the bar denotes whether images were from set C 321 

or set I, respectively. In all cases, error bars denote ±1 standard deviation of the sample. 322 

 323 

Table S7. Pairwise comparisons on orientation anisotropy between image categories in 324 

Experiments 1 and 2  325 

Experiment Comparison Mean difference p-value 
1 Animal – Flower –0.10 0.003 
1 Animal – House –0.65 <0.001 
1 Animal – Vehicle –0.46 <0.001 
1 Flower – House –0.75 <0.001 
1 Flower – Vehicle –0.56 <0.001 
1 House – Vehicle +0.19 <0.001 
2 Big-animal – Small-animal -0.07 0.520 
2 Big-animal – Big-man-made -0.36 <0.001 
2 Big-animal – Small-man-made -0.22 <0.001 
2 Small-animal – Big-man-made -0.29 <0.001 
2 Small-animal – Small-man-made -0.14 0.006 
2 Big-man-made – Small-man-made +0.15 0.004 

Note: p-values are Bonferroni corrected.  326 
 327 

 328 

 329 
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S7: Detection thresholds 330 

Methods 331 

Stimuli 332 

We expanded the image set in Experiment 1 to include 555 images per category to create target 333 

and non-target images. To create a target, we started with a Gaussian white-noise pattern of the 334 

same size as any image (300 × 300 pixels), having an RMS contrast of 10.00 × 10-2. Secondly, 335 

an image was randomly chosen from one of four available categories (e.g., house) and a 336 

circularly symmetric raised cosine window was applied as in Experiment 1. The noise’s 337 

amplitude spectrum was replaced with the image’s amplitude spectrum. Finally, the noise and 338 

the image were combined (by adding pixel intensities) to create a target stimulus (Fig. S7). The 339 

non-target was created in a similar manner except that the image was phase-scrambled before 340 

combining with the noise (Fig. S7) to preserve the Fourier energy distribution of the image 341 

while distorting the higher-order structure.  342 

 343 

Procedure                       344 

In each trial, we varied the image category used to create target and non-target stimuli and 345 

randomly selected two unique images from the same image category. One image was 346 

superimposed on noise to create the target stimulus and the other was phase-scrambled and 347 

superimposed on noise to create the non-target. RMS contrasts used for the target and non-348 

target were identical and was randomly picked from one of 11 possible values {1.00, 1.26, 349 

1.58, 2.00, 2.51, 3.16, 3.98, 5.01, 6.31, 7.94, 10.00} × 10-2. RMS contrast of the unique noise 350 

patterns generated in every trial for the target and non-target was set at 10.00 × 10-2. Each 351 

combination of image category and RMS contrast was repeated in 20 trials. A trial began with 352 

a white fixation circle (0.3° diameter) on a uniform gray background, shown for 1.00 s. 353 

Subsequently, the participant saw the first stimulus followed by the second, each presented for 354 
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0.05 s. After each stimulus, a uniform gray screen was presented for 0.30 s. The order of 355 

presentation of the target and the non-target was randomized across trials. Participants 356 

performed a two-interval-forced-choice task to indicate which stimulus interval contained an 357 

image classifiable as an animal, flower, house or vehicle by pressing keys ‘1’ (for first) or ‘2’ 358 

(for second). 359 

 360 

Figure S7. Sample images from each category used as target and non-target stimuli in the 361 

detection experiment; top row - unscrambled images superimposed on noise, bottom row - 362 

phase-scrambled images superimposed on noise (A - animal, F - flower, H - house and V - 363 

vehicle). 364 

 365 

Results 366 

We obtained estimates (Fig. S8) of each participant’s 63% correct threshold (𝛼; point of 367 

inflection of the sigmoid), for each of the four image categories, by maximum-likelihood fitting 368 

a Weibull distribution to the psychometric function mapping log target RMS contrast to the 369 

proportion of trials on which the target (rather than the phase-scrambled non-target) was 370 

selected. A repeated measures ANOVA (with image category as a within-subjects factor) 371 



 24 

performed on mean thresholds (across participants) revealed no significant difference in 372 

detection thresholds between image categories, F(3,27) = 0.14, p = 0.936.  373 

 374 

Figure S8. Detection thresholds for each image category. Each uniquely coloured bar 375 

represents an individual participant. Error bars denote 95% confidence intervals. 376 

 377 

S8: Power spectra of unfiltered images 378 

For all images in both sets C and I, of Experiments 1 and 2, we computed the total power at 379 

near-cardinal and at near-intercardinal orientations. To obtain the total power at near-cardinal 380 

orientations, we filtered a cosine windowed grayscale image with a cardinal filter and obtained 381 

the sum of its power spectral density. The total power at near-intercardinal orientations is 382 

obtained with a similar procedure, but with the application of an intercardinal filter. These two 383 

measures were obtained for all images of both sets C and I, of each category in Experiments 1 384 

and 2. Descriptive statistics are provided in Tables S8 and S9.   385 

 386 

 387 

 388 

 389 

 390 

 391 
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Table S8. Mean total power at near-cardinal and near-intercardinal orientations for images used 392 

in Experiment 1. ±1 Standard deviations are provided inside parentheses.  393 

   Total power × 10O (standard deviation) 
Near-cardinal: Set C Near-intercardina1: Set C 

Animal Flower House Vehicle Animal Flower House Vehicle 
2.28 

(2.01) 
2.03 

(1.42) 
2.85 

(1.25) 
3.95 

(1.81) 
1.83 

(1.48) 
1.92 

(1.68) 
1.25 

(0.60) 
1.95 

(0.80) 
Near-cardinal: Set I Near-intercardinal: Set I 

Animal Flower House Vehicle Animal Flower House Vehicle 
2.12 

(1.52) 
2.21 

(1.66) 
2.83 

(1.21) 
3.76 

(1.70) 
1.73 

(1.31) 
2.01 

(1.83) 
1.19 

(0.59) 
1.96 

(0.92) 
  394 
 395 

Table S9. Mean total power at near-cardinal and near-intercardinal orientations for images used 396 

in Experiment 2. ±1 Standard deviations are provided inside parentheses.  397 

   Total power × 10O (standard deviation) 
Near-cardinal: Set C Near-intercardina1: Set C 

Big 
animal 

Small 
animal 

Big 
manmade 

Small 
manmade 

Big 
animal 

Small 
animal 

Big 
manmade 

Small 
manmade 

8.6 
(7.88) 

12.7 
(16.4) 

7.5 
(8.99) 

18.0 
(21.49) 

6.1 
(3.66) 

7.3 
(7.49) 

4.4 
(4.10) 

9.6 
(10.34) 

Near-cardinal: Set I Near-intercardinal: Set I 
Big 

animal 
Small 
animal 

Big 
manmade 

Small 
manmade 

Big 
animal 

Small 
animal 

Big 
manmade 

Small 
manmade 

8.4 
(7.55) 

11.3 
(14.22) 

7.5 
(9.06) 

16.5 
(19.95) 

6.0 
(3.48) 

6.8 
(6.87) 

4.3 
(4.15) 

9.0 
(9.41) 

 398 
 399 

 400 

 401 

 402 

 403 

 404 

 405 

 406 

 407 
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Table S10. Proportion of times hybrids at each log-ratio of visible energy were classified as 408 

an animal (A), flower (F), house (H) or vehicle (V), for the hybrid conditions in which the 409 

cardinal component was fixed in Experiment 1. 410 

Co
nd

iti
on

 

Log-ratio of visible energy 

Ca
te

go
ry

 

–3
.6

6 

– 2
.2

0 

– 1
.3

9 

– 0
.4

1 

– 0
.2

0 

0.
00

 

+0
.2

0 

+0
.4

1 

+1
.3

9 

+2
.2

0 

+3
.6

6 

Ca
rd

in
al

 a
ni

m
al

 0.20 0.29 0.38 0.68 0.60 0.68 0.66 0.78 0.63 0.60 0.44 A 

0.74 0.69 0.59 0.23 0.34 0.16 0.13 0.14 0.06 0.00 0.00 F 

0.00 0.00 0.00 0.03 0.03 0.08 0.10 0.03 0.21 0.25 0.44 H 

0.06 0.03 0.04 0.08 0.04 0.09 0.11 0.06 0.10 0.15 0.13 V 

Ca
rd

in
al

 fl
ow

er
 0.40 0.46 0.45 0.63 0.58 0.55 0.55 0.69 0.48 0.45 0.30 A 

0.56 0.50 0.53 0.30 0.34 0.38 0.30 0.23 0.09 0.00 0.00 F 

0.00 0.00 0.00 0.03 0.03 0.01 0.09 0.04 0.33 0.48 0.70 H 

0.04 0.04 0.03 0.05 0.06 0.06 0.06 0.05 0.11 0.08 0.00 V 

Ca
rd

in
al

 h
ou

se
 

0.40 0.39 0.43 0.29 0.29 0.19 0.15 0.05 0.03 0.00 0.00 A 

0.58 0.54 0.43 0.26 0.19 0.15 0.04 0.05 0.00 0.00 0.00 F 

0.00 0.00 0.03 0.28 0.38 0.40 0.70 0.79 0.90 1.00 0.99 H 

0.03 0.08 0.13 0.18 0.15 0.26 0.11 0.11 0.08 0.00 0.01 V 

Ca
rd

in
al

 v
eh

ic
le

 0.28 0.35 0.43 0.30 0.24 0.11 0.13 0.10 0.04 0.00 0.00 A 

0.73 0.63 0.41 0.18 0.10 0.16 0.09 0.04 0.00 0.00 0.00 F 

0.00 0.00 0.00 0.01 0.00 0.03 0.01 0.05 0.16 0.16 0.15 H 

0.00 0.03 0.16 0.51 0.66 0.70 0.78 0.81 0.80 0.84 0.85 V 

Note: the right hand-column provides the category label produced by the classifier for hybrids. 411 

 412 

 413 
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Table S11. Proportion of times hybrids at each log-ratio of visible energy were classified as 414 

an animal (A), flower (F), house (H) or vehicle (V), for the hybrid conditions in which the 415 

intercardinal component was fixed in Experiment 1. 416 

Co
nd

iti
on

 

Log-ratio of visible energy 

Ca
te

go
ry

 

–3
.6

6 

– 2
.2

0 

– 1
.3

9 

– 0
.4

1 

– 0
.2

0 

0.
00

 

+0
.2

0 

+0
.4

1 

+1
.3

9 

+2
.2

0 

+3
.6

6 

In
te

rc
ar

di
na

l a
ni

m
al

 0.64 0.68 0.63 0.44 0.38 0.53 0.44 0.35 0.23 0.19 0.10 A 

0.36 0.33 0.30 0.31 0.10 0.10 0.08 0.08 0.04 0.00 0.00 F 

0.00 0.00 0.01 0.06 0.20 0.16 0.24 0.30 0.35 0.56 0.64 H 

0.00 0.00 0.06 0.19 0.33 0.21 0.25 0.28 0.39 0.25 0.26 V 

In
te

rc
ar

di
na

l f
lo

w
er

 0.01 0.09 0.11 0.34 0.23 0.30 0.31 0.38 0.20 0.15 0.15 A 

0.99 0.91 0.84 0.48 0.31 0.24 0.18 0.08 0.00 0.03 0.00 F 

0.00 0.00 0.00 0.05 0.19 0.10 0.20 0.25 0.41 0.50 0.50 H 

0.00 0.00 0.05 0.14 0.28 0.36 0.31 0.30 0.39 0.33 0.35 V 

In
te

rc
ar

di
na

l h
ou

se
 0.29 0.48 0.30 0.41 0.39 0.46 0.53 0.48 0.34 0.34 0.21 A 

0.71 0.50 0.48 0.36 0.31 0.25 0.11 0.09 0.01 0.01 0.00 F 

0.00 0.00 0.03 0.08 0.03 0.05 0.08 0.11 0.28 0.40 0.45 H 

0.00 0.03 0.20 0.15 0.28 0.24 0.29 0.33 0.38 0.25 0.34 V 

In
te

rc
ar

di
na

l v
eh

ic
le

 0.30 0.31 0.34 0.36 0.34 0.34 0.38 0.43 0.34 0.31 0.26 A 

0.55 0.51 0.46 0.23 0.29 0.21 0.13 0.16 0.01 0.00 0.00 F 

0.00 0.00 0.01 0.13 0.14 0.28 0.21 0.25 0.53 0.63 0.66 H 

0.15 0.18 0.19 0.29 0.24 0.18 0.29 0.16 0.13 0.06 0.08 V 

Note: the right hand-column provides the category label produced by the classifier for hybrids. 417 

 418 

 419 
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Hybrid collection 420 

 421 

Figure S9. A sample collection of hybrids (log-ratio = 0) from Experiment 1 in conditions 422 

where the cardinal component was fixed to be the animal, flower, house or vehicle.     423 

 424 

 425 

 426 

 427 

 428 
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 429 

Figure S10. A sample collection of hybrids (log-ratio = 0) from Experiment 1 in conditions 430 

where the intercardinal component was fixed to be the animal, flower, house or vehicle.     431 

 432 

 433 

 434 

 435 

 436 

 437 
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 438 

Figure S11. A sample collection of hybrids (log-ratio = 0) from Experiment 2 in conditions 439 

where the animal component was filtered cardinally. 440 

 441 

 442 

 443 

 444 

 445 

 446 
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     447 

Figure S12. A sample collection of hybrids (log-ratio = 0) from Experiment 2 in conditions 448 

where the animal component was filtered intercardinally. 449 

 450 

 451 

 452 

 453 

 454 

 455 
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 456 

Figure S13. Experiment 1 results: Mean biases across participants for each condition (orange 457 

bars) and category (green bars) as plotted in a. Error bars denote ±1 standard deviation of the 458 

sample.   459 

 460 

 461 

Figure S14. Mean biases across participants for each condition (orange bars) and category-pair 462 

(green bars) as plotted in a. Error bars denote ±1 standard deviation of the sample. 463 

 464 

 465 

 466 

 467 

 468 

 469 

 470 

 471 
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S9: Hybrid classification with AlexNet Deep Convolutional Neural Network 472 

 473 

AlexNet is a Deep Convolutional Neural Network (DNN) that has 8 layers and is trained on 474 

over a million images from the ImageNET database and can classify novel images into one of 475 

1000 image classes [9]. Here we aimed to examine how AlexNet can classify hybrid images 476 

presented to our participants in Experiment 2 and compare its results with our behavioural 477 

results. We used the pretrained version of AlexNet that is available to be downloaded in Matlab.   478 

 479 

First, we ensured that AlexNet could classify the orientation-filtered component images of 480 

hybrids on their own. Cardinally and intercardinally filtered images from both animal and man-481 

made categories were subjected to classification. These image sets included both small and 482 

large objects. The classifier classified each image into one of 1000 image classes and produced 483 

its corresponding label (e.g., “goldfish”, “violin”). These class labels were assigned into one of 484 

two superordinate categorical labels in order to facilitate comparison with categorical labels 485 

used by our participants in Experiment 2, namely “Animal” or “Man-made” (see Table Sx). 486 

There were a few class labels that cannot be classified as animal or man-made (e.g., 487 

“cauliflower”, “admiral”) and these class labels were assigned a superordinate label of 488 

“ambiguous”. This led to a total of 78 out of 1000 class labels to be considered as ambiguous 489 

(see the file AlexNet.xlsx in the Dryad repository (doi:10.5061/dryad.1v2j41v) for a full list of 490 

all class labels and their associated superordinate categorical labels).    491 

 492 

We had 8 sets of test images, as characterised by the superordinate category, real-world size of 493 

objects and filtering type. There were 100 images in each set. We found that the pretrained 494 

AlexNet DNN could classify orientation filtered man-made objects with high accuracy, 495 

irrespective of whether they were filtered cardinally (large man-made = 99% and small man-496 
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made = 87%) or intercardinally (large man-made = 91% and small man-made = 91%). 497 

However, it suffered when classifying orientation filtered animals, irrespective of filtering 498 

cardinally (large animal = 31% and small animal = 7%) or intercardinally (large animal = 22% 499 

and small animal = 15%). The average classification accuracy of the pretrained version was 500 

55.38%.  501 

 502 

Following the poor classification performance of the pretrained version in classifying 503 

orientation filtered animals, we fine-tuned the pretrained AlexNet DNN to optimise it for our 504 

image collection, by using the transfer learning technique. Here, AlexNet was retrained by 505 

using two sets of training images. One set included 70% of all of our animals (large and small) 506 

while the other included 70% of all of our man-made objects (large and small). This retrained 507 

network was validated on the remaining 30% of our animal and man-made objects. The 508 

validation procedure resulted in an overall transfer learning classification accuracy of 93.66%. 509 

 510 

Subsequently, the retrained network was used to classify orientation filtered component images 511 

of hybrids on their own. In this case, cardinally filtered man-made objects were classified with 512 

high accuracy (large objects = 99%, and small objects = 91%). However, accuracy for 513 

intercardinally filtered man-made objects were reduced (large = 48%, small = 74%) compared 514 

to the pretrained network. Classification accuracy for animals improved compared to the 515 

pretrained version, for both cardinally (large = 89%, small = 80%) and intercardinally (large = 516 

97%, small = 78%) filtered images. 517 

 518 

Despite reduced accuracy in classifying intercardinally filtered man-made objects, the average 519 

classification accuracy of the retrained version was 82%, which was higher than that of the 520 

pretrained version. For this reason, we used the retrained DNN to classify hybrid images from 521 
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Experiment 2. Figure S15 plots the proportion of times the retrained DNN classified hybrids 522 

as its cardinal component as a function of the log-ratio of visible energy between the hybrid 523 

components. Behavioural results of the average observer from Experiment 2 are also plotted in 524 

the same figure to facilitate comparison. In general, the proportion of times the retrained 525 

network classified hybrids as the cardinal component increased with increasing log-ratio of 526 

visible energy between the hybrid components. Therefore, we fitted psychometric functions to 527 

the retrained AlexNet’s classification data for each hybrid condition (see Fig. S15). However, 528 

there were no cases where the network’s classification closely resembled classification 529 

performance of the average observer. In general, the retrained network classified hybrids more 530 

often as animals (especially when the animal component in the hybrid was less/barely visible), 531 

irrespective of how the hybrid components were filtered. Accordingly, we found biases towards 532 

animals for all 8 hybrid conditions. This cannot be attributed to poor classification of man-533 

made components by the network, because when orientation filtered component images were 534 

classified on their own, classification accuracy was lower only for intercardinally filtered man-535 

made objects, whereas accuracy for cardinally filtered man-made objects was close to optimal.  536 

 537 
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 538 

Figure S15. Experiment 2 classification: proportion of classifying the hybrid as the cardinal 539 

component by the average observer (blue filled circles) and AlexNet (green filled squares), 540 

plotted as a function of the log-ratio of visible energy between the cardinal and intercardinal 541 
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components of the hybrids. Each subplot represents data from a single hybrid condition. Black 542 

curves are psychometric fits to the data from the average observer. Gray curves are 543 

psychometric fits to the data from AlexNet. Solid black vertical lines denote the mean (˗bias) 544 

of the cumulative Normal distribution for the average observer. Solid gray vertical lines denote 545 

the mean (˗bias) of the cumulative Normal distribution for AlexNet (note: these lines are not 546 

visible in the left panel because the means (-biases) were less than the lowest log-ratio of visible 547 

energy. Dotted black vertical lines denote zero bias. 548 

 549 

S10: Hybrid classification with HMAX trained on orientation filtered images  550 

When an HMAX model trained on unfiltered images classified hybrids from Experiments 1 551 

and 2, its classification differed qualitatively from that of human participants (see S4). For one 552 

thing, the frequency with which it selected the cardinal component did not always rise with 553 

ratio between cardinal and intercardinal energies (e.g., it fell with cardinally filtered flowers). 554 

It also proved to be incapable of classifying cardinally filtered non-man-made and 555 

intercardinally filtered man-made objects on their own (i.e., not in hybrids; see S4). To 556 

determine whether this failure should be ascribed to a mismatch between the orientation bands 557 

from which features were extracted during training and hybrid classification, we trained a 558 

second version of HMAX (for Experiment 1 only) on both cardinally and intercardinally 559 

filtered images (note: this is not an ideal comparison to the average observer because the human 560 

visual system is not trained on filtered images per se).  561 

 562 

HMAX was trained with four sets of 100 images, containing 50% of images from each of our 563 

4 categories (animal, flower, house and vehicle). In each training set half the images were 564 

cardinally filtered (i.e., from set-C), while the other half were intercardinally filtered (i.e., from 565 

set-I). During the learning phase, 20 L2 prototypes were learnt from each of the 100 images in 566 
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a given set. The trained HMAX classifier was then used to classify four sets of 100 images, 567 

containing the remaining 50% of images from the 4 categories. Again, in each set, half the 568 

images were cardinally filtered, while the other half was intercardinally filtered. We found 569 

good classification accuracy for cardinally filtered animals (76.67%), flowers (70%), houses 570 

(70%) and vehicles (96.67%). As for intercardinally filtered images, classification was 571 

relatively poorer for animals (50%) and houses (53.33%), compared to flowers (73.33%) and 572 

vehicles (93.33%). Although the classifier suffered in some cases, overall classification 573 

accuracy was higher than the HMAX model that we had trained with unfiltered images. Most 574 

certainly, training the HMAX model with filtered images has improved classification accuracy 575 

for intercardinally filtered man-made objects and cardinally filtered non-man-made objects (cf. 576 

S4).   577 

 578 

Next, we retrained the HMAX model with all the cardinally and intercardinally filtered images 579 

from each of the 4 categories. This retrained classifier was used to classify hybrids from all 8 580 

hybrid conditions in Experiment 1. Figure S16 plots the HMAX model’s classification 581 

performance as a function of the log-ratio of visible energy between the two hybrid 582 

components, for each of the 8 hybrid conditions. We found that, in all 8 hybrid conditions, 583 

HMAX produced the general pattern similar to the average observer where the proportion of 584 

choosing the cardinal component increased with increasing visible energy of the cardinal 585 

component in the hybrid. This pattern was not present in all hybrid conditions when HMAX 586 

was trained on unfiltered images (cf. S4). Therefore, we fitted a psychometric function to the 587 

HMAX data (i.e., from the model trained on filtered images) for each hybrid condition. As 588 

shown in Fig. S16, HMAX biases were in the same direction as the average observer for 5/8 589 

hybrid conditions, but were shifted in the opposite direction for 3/8 hybrid conditions (i.e., 590 
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when animals, flowers and houses were the fixed component in the hybrid and were filtered 591 

intercardinally).   592 

 593 

 594 
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Figure S16. Experiment 1 classification: proportion of classifying the hybrid as the cardinal 595 

component by the average observer (blue filled circles) and HMAX trained with orientation 596 

filtered images (red filled circles), plotted as a function of the log-ratio of visible energy 597 

between the cardinal and intercardinal components of the hybrids. Each subplot represents data 598 

from a single hybrid condition. Black curves are psychometric fits to the data from the average 599 

observer. Gray curves are psychometric fits to the data from the HMAX model. Solid black 600 

vertical lines denote the mean (˗bias) of the cumulative Normal distribution for the average 601 

observer. Solid gray vertical lines denote the mean (˗bias) of the cumulative Normal 602 

distribution for the HMAX model. Dotted black vertical lines denote zero bias. 603 

 604 

 605 
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