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Abstract

A novel technique is proposed to increase the effective index difference (∆neff )

between higher order modes of a multimode step-index fiber. Multimode fibers

provide a higher effective area and their higher order modes are also resistant

to area reduction due to bending. However, the larger effective area comes

with an increased number of modes which are more prone to mode coupling

and mode mixing. The modal stability is directly related to the effective index

difference between the mode of propagation and its neighboring modes. We

have shown here that the modal stability between LP06 mode and its neigh-

boring antisymmetric LP15 and LP16 modes can be increased more than 54%

by the introduction of air-holes array along the circumference of the fiber. We

have also shown variation in the effective index difference with possible fabri-

cation tolerances that may occur in air-holes size and change in their locations.

Furthermore, the technique presented here can also be applied to increase the

stability of other higher modes of a multimode fiber.
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1. Introduction

Recently, fiber lasers have received significant attention to generate high

optical power with good flexibility and high beam quality [1, 2]. The rapid de-

velopment of high power pump laser diodes (LD) and use of rare-earth materials

in the development of fiber lasers have significantly increased their penetration

in different industrial applications [3, 4, 5]. Compared to other types of lasers,

the long lengths of fiber lasers make them attractive as they provide large single

pass gain for effective power scaling. However, due to the fiber geometry, high

intensity light travels under tight confinement for considerably a longer distance

that results in increased nonlinear effects [6, 7]. These nonlinear effects such as

Self-phase modulation (SPM), Stimulated Brillouin scattering (SBS) and Stim-

ulated Raman scattering (SRS) can destroy the linewidth, spectral and spatial

characteristics of fiber laser output emission [8, 9]. Nonlinearity restricts power

scaling in conventional Single mode fibers (SMF) due to strong light confine-

ment in a relatively smaller core area [10]. In order to mitigate these nonlinear

effects, recent research focus has been to increase the fiber dimensions, such as

large mode area (LMA) fibers. Although, this is considered as an efficient way

to reduce the nonlinear effects significantly, however, maintaining a high beam

quality and achieving a single mode operation becomes difficult with a large core

[11]. A single mode operation in LMA fiber can be achieved by lowering the

numerical aperture (NA) value but due to fabrication limitations and increased

bending loss this value is often restricted to 0.06 [12].

Multimode fibers (MMF) provides a much higher effective area but the ex-

istence of many modes may result in the random mode mixing and energy may

transfer from a desired mode of propagation to its neighboring modes. The

identification and excitation of a selective mode is very important in multi-

mode fibers for lasers and amplifiers related applications. There are differ-

ent techniques proposed for the efficient excitation of a particular higher or-

der mode, such as the use of self-imaging property of multimode interference,

prism-coupling and use of Single mode-Multimode-Multimode fiber structure
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etc. [13, 14, 15]. Recently, higher order modes (HOM) of MMF are used for

high power fiber lasers as they can provide a more stable single mode operation

along with the natural resistance to area reduction due to bending as compared

with fundamental mode [16]. Higher order modes of MMF are also more re-

sistant to the mode coupling as the modal stability between HOMs of given a

MMF increases with the increase in modal order (m). However, external per-

turbations such as bending field overlap interfaces, or fabrication imperfections

can cause energy transfer from a desired higher order LP0m mode to its neigh-

boring antisymmetric LP1,m−1 and LP1,m+1 modes [17, 18, 19]. Mode coupling

strongly depends on the field values [20] at these structural perturbations, but

also on the effective index difference between the interacting modes. Here, the

modal stability is described by the effective index difference (∆neff ) between a

desired mode of propagation and its neighboring modes, assuming other factors

remain similar. The larger fiber dimensions allow fundamental mode along with

other higher order modes to propagate with different effective indices (neff ).

A lower value of ∆neff between the adjacent modes may result in the inter-

mode mixing and can cause interference effects. However, increasing the ∆neff

between these modes can significantly reduce this inter-mode mixing and any

possible interference effects between them.

In this paper, we proposed a novel MMF design to increase the ∆neff be-

tween a higher order symmetric mode and its neighboring antisymmetric modes.

Ruan et al [21] reported different fabrication techniques to generate nanoholes of

different sizes in special type optical fibers. Our proposed design uses strategi-

cally located small air-hole strip which can be fabricated by adopting a similar

approach that is used for the fabrication of Photonic Crystal Fibers (PCF)

[21, 22].

For our simulations, we have used a step-index multimode fiber with a core

diameter of 50 µm. The numerical aperture of the fiber is calculated as NA =

0.22 with the Ge-doped core and pure Silica cladding having refractive indices of

ncore= 1.457 and nclad= 1.4403, respectively. The operating wavelength of λ =

1.05 µm is considered and COMSOL Multiphysics is used for our simulations.
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Figure 1: Schematic cross-section design with annular air-holes array and refractive index

profile along the radius of a MMF.

For a given MMF, the modal stability between higher order modes increases

with the increase in modal order, m. This means that the ∆neff of a higher

order LP09 mode with its neighboring antisymmetric LP18 and LP19 modes have

a higher value compared to a lower order mode, say LP03 mode with its adjacent

modes. However, exciting a higher order mode may involve more complexity

as the power profile of the incident light is required to match the profile of a

desired higher order mode to avoid any back reflection. Moreover, for given

fiber dimensions the effective area of higher order modes also decreases with the

increase in the mode order. So, it may be useful to enhance the modal stability

for a specific higher order mode.

Here, for our modal analyses, we have used LP06 mode and aimed to increase

the effective index difference between LP15 and LP16 modes. Without any air-

holes the effective indices of LP15, LP06 and LP16 modes are calculated as

1.4530823, 1.4522882 and 1.4514477, respectively. From these values, the resul-

tant effective index differences S1=∆neff (LP15 −LP06) and S2=∆neff (LP06 −

LP16) are calculated as 0.000794095 and 0.000840509, respectively.

To increase the ∆neff between LP06 mode and its neighboring antisymmet-

ric LP15 and LP16 modes, a circular array of air-holes is introduced along the
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circumference of a MMF. Figure 1 shows the schematic view of the proposed

MMF design that includes a circular array of air-holes at a particular distance

from the center inside the core of MMF. The refractive index profile along the

radius of the MMF is also shown in Fig. 1 where the refractive index of the

holes having diameter Hd is considered as nhole=1.0.
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Figure 2: Variations of Hy fields of the LP15, LP06, and LP16 modes along the r-axis of MMF,

contour field profiles in inset and the key points of interest are also shown.

For a given mode, the reduction of its effective index depends on the magni-

tude of its modal field at the location of air-holes. Figure 2 shows the dominant

Hy field variation of LP15, LP06 and LP16 modes along the radius of this MMF.

It can be observed that LP06 mode has a maximum amplitude at the center of

fiber core (r = 0 µm), whereas, LP15 and LP16 modes have zero fields at the

center of the fiber core. The contour field profiles of these modes are also shown

in Fig. 2 as insets. The zero crossing locations where the field value of these

modes is zero are calculated and given in Table 1. Furthermore, zero crossing

positions of LP15 mode are also highlighted with letters A, B, C and D in Fig.

2 to assist further discussions.
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Table 1: Zero crossing locations of field profiles of the LP15, LP06 and LP16 modes along

r-axis (µm).

Mode Zero crossing locations along r-axis (µm)

LP15 0 5.999 10.985 15.925 20.855 -

LP06 3.376 7.855 12.335 16.819 31.305 -

LP16 0 5.041 9.225 13.38 17.523 21.66

2. Results and Discussion

Technique proposed here include an array of air-holes that decreases the

effective indices of LP06 and LP16 modes while keeping the LP15 mode effective

index unchanged. Table 2 shows the field values of LP06 and LP16 modes at

Table 2: Normalized field values of LP06 and LP16 modes at the zero crossings A, B, C and

D points of LP15 mode.

Optical

Modes

A

5.999

B

10.985

C

15.925

D

20.855

LP06 0.3922 0.24435 0.147 0.067695

LP16 0.4258 0.46145 0.3693 0.19815

Field values difference

(LP16-LP06)
0.0336 0.2171 0.2223 0.130455

different zero crossing location of the LP15 mode. An air-holes array introduced

at the zero crossing locations of LP15 mode would decrease the effective indices

of LP06 and LP16 modes, but these decreases will depend on the amplitude of

their field values. For example, at the point, A = 5.999 µm, the field value of

LP15 mode is zero but the normalized field values of LP06 and LP16 modes are

calculated as 0.3922 and 0.4258, respectively, resulting in a field difference of

0.0336. However, at point B = 10.985 µm, the field value difference is calculated

as 0.2171, which is higher than the value calculated at Point A. Similarly, at

point C the field value difference is calculated as 0.2223. Depending on the

6



field value difference, the position of air-holes array can be selected to achieve

a comparable increase in ∆neff between LP06 and its neighboring LP15 and

LP16 modes.

Here, an array of two hundred air-holes at the zero crossing positions A,

B, C and D of LP15 mode is introduced with each air-hole diameter taken as

Hd = 120 nm. Table 3 shows the absolute change and the percentage change

in ∆neff which is calculated with respect to previous value as shown in Eq. 1.

From Table 3, it can be observed that with the introduction of air-holes at

A to D positions, the modal stability S1 has increased. However, unfortunately,

a noticeable reduction in the modal stability S2 is observed because ∆neff

between LP06 and LP16 modes reduces when air-holes are introduced at position

A.

Table 3: Change in ∆neff with the introduction of air-holes array at the zero crossings of

LP15 mode.

∆neff

Without

holes

A=5.999 µm B=10.985 µm C=15.925 µm D=15.715 µm

Hd=120nm %change Hd=120nm %change Hd=120nm %change Hd=120nm %change

S1=(LP15-LP06) 0.00079409 0.001874673 136 ⇑ 0.001471349 85 ⇑ 0.00102064 29 ↑ 0.000843914 6 ↑

S2=(LP06-LP16) 0.00084050 0.000163878 -81 ⇓ 0.001003126 19 ↑ 0.001187816 41 ⇑ 0.00094461 12 ⇑

% Change =
with holes ∆neff − without holes ∆neff

without holes ∆neff
∗ 100 (1)

This significant reduction around 81% in the ∆neff is due to small field value

difference as the reduction in the effective index of LP06 mode is much higher as

compared to the LP16 mode. However, at position B, the normalized field value

difference between LP06 and LP16 modes is calculated as 0.2171 that resulted in

85% increased in S1 and also 19% increase in S2. Similarly, further away from

the core center these modes have reduced field values, however, the normalized

field difference at position C is calculated as 0.2223. With the introduction of

200 air-holes array at C position the modal stabilities S1 and S2 increase to

29% and 41%, respectively. Similarly, at point D increase in modal stabilities
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are calculated as S1 = 6% and S2 = 12%.
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Figure 3: Change in the ∆neff with the location change of air-holes array along the radius

of the fiber from point B and fixed 200 air-holes each having diameter of 120 nm.

The ∆neff between the LP06 mode and its neighboring antisymmetric LP15

and LP16 modes has increased significantly with the introduction of air-holes

array at B and C positions. However, this increase in effective index difference

S1 and S2 is not of similar magnitude as in case of position B this was calculated

as 85% and 19%, respectively. In order to have a similar or comparable increase

in the ∆neff , the position of air-holes array can be adjusted from its original

position, B = 10.985 µm. Variation in the ∆neff and the percentage change in

the ∆neff is shown in Fig. 3 by solid blue and dashed red lines, respectively,

when the air-holes array is shifted from positionB = 10.985 µm. As the air-holes

array is moved towards the center of the fiber core from position B = 10.985

µm, the modal stability S1 further increases and S2 decreases, which may not

be desirable. When the air-holes array is shifted 0.085 µm towards the core

center at 10.9 µm, the percentage increase in the modal stabilities S1 and S2

are calculated as 99.6% and 0.5%, respectively, but not shown here.

However, when the air-holes array is moved away from the core center to-

wards fiber cladding, the percentage modal stability S1 starts reducing but S2

starts increasing. As shown in Fig. 3 the percentage increase in the effective
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index difference S1 and S2 is nearly equal at position B
′

= 11.27 µm. At posi-

tion B
′
, the ∆neff between LP15 and LP06 modes is calculated as 0.00123656

and 0.00129738 between LP06 and LP16 modes. The percentage increase in S1

and S2 are calculated as 56% and 54%, respectively as shown in Fig. 3 with red

dashed lines.

The same trend continues when the air-holes array is shifted further towards

the cladding. It should be noted that as the location of air-holes is moved away

from the exact zero crossing of the LP15 mode, its effective index will also reduce

slightly, but a better control can be achieved in balancing S1 and S2. Hence, for

our further analyses, we have used B
′

= 11.27 µm as the new central position

for the air-holes array.
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Figure 4: Variations of Hy fields of the LP15, LP06, and LP16 modes along the r-axis of MMF

with the introduction of 200 air-holes array each having Hd = 120nm, contour field profiles

are also in inset.

Figure 4 shows the variation of Hy field profiles of LP15, LP06 and LP16

modes along the radius of the MMF after the introduction of air-holes. Here,

200 hundred air-holes having Hd = 120 nm are introduced at B
′

position along

the circumference of MMF. Following the introduction of air-holes, the effective

indices of LP15, LP06 and LP16 modes are reduced and new values are calcu-

lated as 1.45303814, 1.451801579 and 1.45050419, respectively. Moreover, the

normalized field values at position B
′

after the introduction of air-holes also
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reduced and these new values are calculated as 0.107, 0.098 and 0.3427 for the

LP15, LP06 and LP16 modes, respectively. From the Hy field variations of these

modes shown in Fig. 4, it can be observed that the field profiles modify after the

B
′

position due to the presence of these air-holes. The contour plots of LP15,

LP06 and LP16 modes after the introduction of air-holes are also shown in Fig.

4 as insets.

3. Fabrication tolerance

The drill-and-draw or extrusion technique can be used for the fabrication

of such micro-structured fibers consisting of air-holes [23]. However, with the

smaller air-holes, the fabrication process can become more challenging as due

to drilling in the preform or during the drawing process, air-holes diameter or

their position can slightly change.
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Figure 5: Change in the absolute and percentage effective index difference S1 and S2 with

the variation in the holes diameter with fixed 200 hundred holes.

In order to observe variation in the ∆neff due to change in the air-holes

diameter (from 120 nm) or in their position, further numerical simulations were

carried out. Figure 5 shows the change in the effective index differences S1 and

S2 with the change in the diameter of air-holes introduced at B
′

radial position.
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It can be observed that with the reduction in the air-holes diameter from 120 nm

to a lower value, the effective index difference S1 and S2 also decrease linearly.

When 200 air-holes having a diameter of 80 nm are introduced at theB
′
position,

the percentage increase in the effective index difference decreased and calculated

as S1 = 30.3% and S2 = 30.5%. The respective absolute ∆neff values are also

shown by blue lines in Fig. 5. However, when the air-holes diameter is increased

to more than 120 nm, the percentage increase in the ∆neff also increases and

for a diameter of 160 nm the percentage increase in the effective index difference

is calculated as S1 = 74% and S2 = 71%. The above analysis also shows that

even with the change of ± 40 nm in air-holes diameter, the percentage increase

in modal stability still remains above 30%.
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Figure 6: Change in the real and percentage effective index difference S1 and S2 with the

shift of air-holes array from central location Rloc=11.27 µm.

One of the fabrication related issues may arise if the air-holes array is shifted

from its central position, as for the above case, from B
′

= 11.27 µm. Figure 6

shows the change in the ∆neff and percentage ∆neff with the shift in the air-

holes array position. When 200 air-holes having Hd = 120 nm are introduced

at 11.15 µm (shift of -0.12 µm from B
′

position) the effective index difference

S1 and S2 are calculated as 0.001343699 and 0.001182876, respectively yielding

the percentage as 69.2% and 40.7% for S1 and S2, respectively. Similarly, when
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the air-holes array is shifted to 11.39 µm position which is + 0.12 µm shift from

B
′

position, the resultant effective index differences of S1 and S2 are calculated

as 0.001122553 and 0.001390885, respectively. Here, it should be noted that the

percentage improvement in ∆neff remains above 40% even with the shift of ±

0.12 µm from the central B
′

position.

In Fig. 5, it is shown that the percentage ∆neff was increased up to 56%

with 200 air-holes having 120 nm air-holes diameter. However, considering B
′

a central position for air-holes, we carried out further simulations to achieve

similar effective index difference with less number of air-holes, which may be

easier to fabricate.

Table 4: Multiple combinations of air-holes diameter and quantity to achieve similar increase

in effective index difference.

∆neff

Without

air-holes

200 air-holes array 100 air-holes array 50 air-holes array

Hd=120nm % Increase Hd=176nm % Increase Hd=286nm % Increase

S1=LP15 − LP05 0.000794095 0.00123656 56 0.001246015 57 0.001243745 57

S2=LP05 − LP16 0.000840509 0.001297389 54 0.001286119 53 0.001287225 53

Table 4 summarizes different combinations of air-holes size and resulting

increase in the ∆neff between LP15, LP06 and LP16 modes. When 100 air-holes

with 176 nm diameter are introduced at B
′

position the resultant percentage

increase in S1 = 57% and S2 = 53% are nearly equal to the initially proposed

design with 200 air-holes having Hd = 120 nm. Similarly, when the number of

air-holes is further reduced to 50 and air-holes diameter increased to Hd = 286

nm, the respective percentage increase in ∆neff is calculated as S1 = 57% and

S2 = 53%. Moreover, the number of air-holes can be further reduced along with

the increased Hd (e.g. 25 air-holes having diameter Hd = 580 nm) to achieve a

similar increase in the ∆neff . This shows that the proposed technique is flexible

in terms of the number of air-holes and also their dimensions that can be useful

for a specific fabrication technique considered.
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4. Scalability of Proposed Technique

Furthermore, we have used similar approach to enhance the effective index

difference between LP08 mode and its neighboring antisymmetric LP17 and LP18

modes. Figure 7 shows the Hy field variation of LP17, LP08 and LP18 modes

along the radius of the MMF. The contour field profiles of these modes are also
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Figure 7: Variations of Hy fields of the LP17, LP08, and LP18 modes along the r-axis of MMF,

contour field profiles in inset and the key points of interest are also shown.

shows in Fig. 7 as insets. Unlike LP15 mode, the LP17 mode has more zero

crossing locations labeled as positions A to F in Fig. 7. These zero crossing

positions of LP17, LP08 and LP18 modes are also given in Table 5. The effective

indices of LP17 and LP08 and LP18 modes are calculated as 1.4495339, 1.4484630

and 1.4473461, respectively.

Without introduction of air-holes, the modal stabilities S
′

1 = ∆neff (LP17 −

LP08) and S
′

2 = ∆neff (LP08 − LP18) between these modes are calculated as

0.001070831 and 0.001116877, respectively. As discussed in the introduction

that the modal stability increases with the increase in the modal order (m),

hence the original ∆neff values for LP08 mode is higher than that of the LP06

mode.

Using the similar approach as discussed earlier, an array of 200 air-holes
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Table 5: Zero crossing locations of field profiles of the LP17, LP08 and LP18 modes along

r-axis (µm).

Mode Location of zero crossings along r-axis (µm)

LP17 0 4.30 7.90 11.50 15.10 18.60 22.20

LP08 2.40 5.80 9.10 12.40 15.80 19.10 22.40

LP18 0 3.80 7.00 10.10 13.20 16.40 19.50

with diameter Hd = 120 nm are introduced at the zero crossing locations of

LP17 mode and the resultant increase in the modal stabilities S
′

1 and S
′

2 are

calculated. The effective index differences due to air-holes at point D = 15.10

µm are calculated as S
′

1 = 0.00137816 and S
′

2 = 0.00154139 which represents

29% and 38% increase in the percentage modal stabilities, respectively.

For an identical increase in the percentage modal stabilities S
′

1 and S
′

2, the

location of air-holes array is adjusted from D = 15.10 to D
′

= 15.0. The

resultant increase in the modal stabilities with the combination of different air-

holes size and quantity are given in Table 6. The percentage increase in the

modal stability of S
′

1 = 34% and S
′

2 = 36% is achieved with the 200 air-holes

having Hd = 120 nm. A similar percentage increase is calculated when 100 air-

holes having Hd = 180 nm and 50 air-holes having Hd = 300 nm are introduced

at the position D
′

along the radius of MMF, as given in Table 6. This shows

that the proposed technique is scalable and can be used for a given higher order

mode as required and its neighboring modes in a MMF. Moreover, a different

combination of air-holes numbers and their size can also be chosen to achieve a

similar increase in the ∆neff .

5. Conclusions

A novel approach is proposed to increase the modal stability of higher order

modes in a multimode fiber using air-holes. Multimode fibers provide higher

effective area along with the increased modal stability in higher order modes.
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Table 6: Different combinations of air-holes diameter and quantity to increase the ∆neff

between LP08 mode and its neighboring antisymmetric LP17 and LP18 modes.

∆neff

Without

air-holes

200 air-holes array 100 air-holes array 50 air-holes array

Hd=120nm % Increase Hd=180nm % Increase Hd=300nm % Increase

S1=LP17 − LP08 0.001070831 0.001437158 34 0.001437728 34 0.00143702 34

S2=LP08 − LP18 0.001116877 0.001515669 36 0.00151080 35 0.001504782 35

We have shown that the effective index difference ∆neff between LP06 mode

and its neighboring antisymmetric LP15 and LP16 modes can be increased more

than 54% by introducing air-holes along the circumference of multimode fiber.

The increased modal stability reduces the modal cross talk and interference

between HOMs of MMF and may result in a better performance for fiber lasers.

The proposed technique is also scalable and we have shown that the percentage

∆neff between LP08 mode and its neighboring LP17 and LP18 modes can also

be increased to more than 34% by using the proposed method. Moreover, it

was noted that with the introduction of air-holes the effective area also slightly

reduces, but the improvement in the modal stability has increased significantly.
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