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Abstract Ontology-based visual query formulation is a viable alternative to tex-
tual query editors in the Semantic Web domain for extracting data from structured
data sources in terms of the skills and knowledge required. A visual query system is
at any moment responsible for providing the user with query extension suggestions;
however, suggestions leading to empty results are often not useful. To this
end, in this article, we first present an approach for projecting OWL 2 ontologies
into navigation graphs to be used for query formulation and then a solution where
an efficient finite index is used to calculate non-ranked approximated extension
suggestions for ontology-based visual query systems using navigation graphs. The
results of our experiments suggest that one can efficiently project an ontology into
a navigation graph, query it for running an interactive user interface, and suggest
query extensions that do not lead to dead-ends.
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1 Introduction

Ontology-based visual query formulation is a viable alternative to textual query
editors in the Semantic Web domain for extracting data from structured data
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2 Vidar N. Klungre et al.

sources in terms of the skills and knowledge required given the increasing use of
ontology-based data access (OBDA) [13,29] approach in various domains [9,10].
A visual query system (VQS) presents a visual interface to users allowing them
to extract information from a structured data source, based on some combination
of filters and other requirements on the information to be retrieved [5,27]. The
intention is to provide data access to users without requiring them to learn a for-
mal query language such as SPARQL. Each VQS needs to find a balance between
expressivity and usability, that is a system that covers the whole expressivity of
SPARQL will hardly be more useful to lay users than a textual query editor [4].
This trade-off differs depending amongst others on the user group, their informa-
tion needs, and the complexity of the data [23]. Simple information needs will be
met by filtering on some attributes of a single class (e.g. black shoes of size 42),
but more advanced use often involves multiple entities of different types (e.g. black
shoes from a small company based in a democratic country). Examples of VQSs
designed for RDF data are Rhizomer [3], SemFacet [1], and OptiqueVQS [24].

As the user interacts with the VQS, a query is constructed in the background,
and a visual representation is usually displayed to the user. The VQS is at any
moment responsible for providing the user with query extension suggestions. This
can be a list of datatype property filters, or object properties connecting to new
concepts. Simple systems may in this case present long, static lists of suggestions
containing all the different values appearing in the underlying data source (e.g.,
[31]). This will ensure that the user finds the suggestion he is looking for somewhere
in the list, but it is not optimal, because the list will likely contain suggestions that
are incompatible with other parts of the partial query. In other words, selecting
such a value will lead to an underlying query which is too restrictive, and hence no
results are returned. This kind of dead-end is not desirable from a user experience
perspective, and more advanced systems solve this by removing, disabling or down-
ranking suggestions (often indicated by a grey font colour) that are not compatible
with the existing query – leaving a shorter, more manageable list to the user
(e.g., [22]). We call this technique adaptive extension suggestion in general, where
the goal is to calculate and suggest the complete set of query extensions that
are compatible with both the existing query, underlying data and the goal of
user, while we call techniques particularly designed for avoiding queries
leading to no results dead-end elimination .

Calculations needed to support adaptive extension suggestion are quite inten-
sive for large datasets. In essence, it requires answers to multiple queries that are
all at least as complex as the partial query itself. For queries with many variables,
which require joins, this will be too slow. Even with very fast hardware, these
queries cannot be executed within tenths of seconds as required for interactive
systems. It becomes clear that some kind of index structure is needed to calculate
the adaptive extension suggestions sufficiently fast. If the query only contains one
variable of a given class, it is possible to achieve desirable performance by using
search engines like Lucene1 or Sphinx2 or similar software to index the data before
use. These indices are known to scale to large datasets, e.g. by partitioning, which
ensures fast response time, and no delay for the user. This setup is quite common

1 https://lucene.apache.org
2 http://sphinxsearch.com
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Query Extension Suggestions for Visual Query Systems 3

in e-commerce systems like PriceSpy3, and a core feature of what is often referred
as faceted search [30]. These search engines require a fixed number of attributes to
index on, which is the case with queries of only one concept. However, we want to
support more complex queries with an arbitrary number of connected concepts,
where no such static list exists. Ensuring good enough performance for such queries
is a challenging task, not something supported by these standard search engines.

In fact, it is impossible to achieve perfect suggestions for arbitrary complex
queries and large datasets with good performance. Some kind of index is needed,
but it would have to be infinitely large in order to support arbitrary complex
queries and large datasets. However, we can support complex queries in an effi-
cient way if the user tolerates some irrelevant suggestions. To this end, in this
article, we focus on dead-end elimination by first presenting an approach
for projecting OWL 2 ontologies into navigation graphs to be used for query for-
mulation and then presenting a solution where an efficient finite index is used
to calculate non-ranked approximated extension suggestions for ontology-based
visual query systems using navigation graphs. The accuracy of these suggestions
depends on the size of the index – a larger index gives equal or better accuracy.
We take a closer look at this trade-off, and search for concrete approximations
that attempts to strike a good compromise between these two. The results of our
experiments suggest that one can efficiently project an ontology into a naviga-
tion graph, query it for running an interactive user interface, and suggest query
extensions that do not lead to empty results sets. The work presented
here provides basis for further refinements, such as fine-grained rank-
ing algorithms and pagination, since the list of possible extensions may
still be overwhelmingly long after eliminating the dead-ends from the
user-experience point of view.

The rest of the article is structured as follows. In Section 2, we present the
formal framework describing the preliminary knowledge such as on navigation
graph and query extensions. In Section 3, we present our contribution on ontology
projection and adaptive query extensions, while we present our evaluations in
Section 4. Finally, we conclude the article and discuss future work in Section 5.

2 Formal Framework

In the followings, we use a number of simplified notions of schema/ontology,
dataset, and query. These are less general than OWL, RDF, and SPARQL, re-
spectively, but they cover the essential notions for VQSs that we require in this
article.

2.1 Ontology and Navigation Graph

It is essential for end users to be able to navigate or browse through an ontology
O, to get a big picture of what classes are there, and what they have in common
in terms of other related classes and properties [8,28,15]. This allows users to
effectively formulate queries and perform domain exploration tasks.

3 http://pricespy.co.uk
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4 Vidar N. Klungre et al.

City Country

StringInteger

partOfCountry

partOfCountry−1

hasName

partOfContinent

hasPopulation

hasName

hasPopulation

Fig. 1: Example navigation graph GO; blue
and yellow nodes are concepts and
datatypes respectively.

City

v0

Country
v1

partOfCountry

v2 > 1.000.000

hasPopulation

v3 > 10.000.000

hasPopulation

Fig. 2: Example query Q conforming to GO;
blue and yellow nodes are concept and datatype
variables respectively.

Based on an underlying ontology, the VQS has to set up rules to control which
queries the user is allowed to make. We assume that all these rules are summarised
into a navigation graph GO = (V,E), where each vertex is associated with either
a concept or a datatype from O, while the directed edges are associated with

property names from O. Furthermore we assume that each edge e = C1
p−→ C2 ∈ E

of GO has an inverse e−1 = C2
p−1

−−→ C1 ∈ E. These inverse edges allow connections
between two related concepts regardless of which one is the starting point. In
essence GO acts like a schema for the whole system, by stating which concepts
and/or datatypes we are allowed to connect via which properties. In fact we require
that all graph structures in our work conform with GO, including queries and
underlying data.

Figure 1 shows an example of a navigation graph containing two concepts
(City, Country), two datatypes (Integer, String), five datatype properties (edges
from concepts to datatypes) and two object properties (partOfCountry and its
inverse).

2.2 Queries

Based on the navigation graph GO = (V,E), we can now define the type of queries
we allow. If we represent queries as graphs, where the nodes are query variables,
and the edges are the properties connecting them. We only allow tree-shaped con-
junctive queries Q, since the literature suggests that majority of end-user queries
are in this form [19,27]. We also require that each variable v of Q is typed to
either a concept or a datatype in GO, that is there is exactly one v ∈ V such
that type(v) ∈ V , where type is the typing function. Furthermore type must be a

homomorphism from Q to GO, i.e. for each edge v1
p−→ v2 of Q, there must exist a

corresponding edge type(v1)
p−→ type(v2) in GO. For convenience we separate the

query variables into two separate groups based on whether they are typed to a
concept or a datatype in GO. We call them concept variables and datatype vari-
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Query Extension Suggestions for Visual Query Systems 5

ables respectively. We also allow filters on variables v in Q. This is denoted v ∈ Fv,
where Fv is the set of data values v can take. By default, there are no filters on
any of the variables. We do not include an optional operator, i.e. all variables of
Q have to be bound.

During query construction, the user can at any point select which concept
variable of the partial query Qp he wants to extend from. This variable is called
the focus variable vf , and the corresponding concept Cf = type(vf ) is called the
focus concept. During a query session, both Qp and vf changes frequently as the
user interacts, but at the moment when extension suggestions supposed to be
calculated, they can be considered to be fixed. In order to calculate extension
suggestions, it is crucial to know which variable is in focus. To support this, we
represent the partial query Qp as a rooted tree where vf is the root, and where
each edge points away from vf . We can always do this reorientation because the
query is tree-shaped and all property inverses exists in GO.

Figure 2 displays the tree representation of the query

City(v0) ∧ partOfCountry(v0, v1) ∧ Country(v1)∧
hasPopulation(v0, v2) ∧ (v2 > 1M) ∧ hasPopulation(v1, v3) ∧ (v3 > 10M).

(1)

The query conforms to the navigation graph in Figure 1, its focus variable is
v0, and focus concept is City.

2.3 Datasets and Query Answers

In addition to the ontology O and the corresponding navigation graph GO, we
assume that the VQS has access to an underlying dataset (RDF graph) D. This
RDF graph should adhere to the OWL2 DL restrictions of keeping instances,
classes, object properties, and datatype properties separate, in other words it is a
proper description logic ABox. In addition it must conform with O, i.e. D must be
homomorphic to O. When the partial query is complete, the user will be running
it over D in order to retrieve the results of interest. Our goal however, is to utilise
the data in D to compute and present useful query extensions during the query
construction phase.

Given a query Q and a data graph D that are both homomorphic to GO, we
let Ans #»v (Q,D) denote the results we get by executing Q over D and projecting
the results onto the vector of variables #»v . Ans #»v (Q,D) is a multi-set of tuples,
where the entries in each tuple corresponds to an assignment of the variables in
#»v .

Given two queries Q1 and Q2 we can now define query containment:

Q1 � Q2 ⇐⇒ ∀D, Ans(Q1,D) ⊆ Ans(Q2,D) (2)

If Q1 � Q2 holds, it means that Q1 is more restrictive than Q2. We will also
use the phrase Q1 covers Q2 since the tree representing Q1 fully covers the tree
representing Q2. Furthermore Q1 ∩Q2 represents the query we get by intersecting
the rooted trees represented by Q1 and Q2 modulo query variable names.

Table 1 shows an example dataset D describing four cities, their corresponding
countries and related properties. It is represented as a table, and not as a data
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6 Vidar N. Klungre et al.

City City-name City-pop. Country Country-pop. Country-continent
OS Oslo 0.6M NOR 5M Europe
VI Vienna 1.7M AUT 8.7M Europe
RO Rome 2.9M ITA 60.6M Europe
NY New York 8.5M USA 323M North America

Table 1: Example dataset D describing four cities and their corresponding coun-
tries.

graph for convenience. The example is quite simple, since it does not include any
one-to-many relationships between cities and countries and no data is missing. This
is done by purpose to show how our method works without making the examples
too complex.

We can now execute Q from Figure 2 over D and project over v0 to get all cities
with population higher than 1M and a corresponding country with population
higher than 10M:

Ans(v0)(Q,D) = {NY,RO}

2.4 Query Extensions

We assume that the VQS supports three possible types of query extensions: object
properties, datatype properties and datatype filters. For each of them, the goal is
to provide a ranked list of suggestions S = (s1, s2, . . . , sk), where each tuple si
represents a concrete suggestion. If the user selects si ∈ S, the partial query Qp is
updated to Qp ∧ Qext

si
. Table 2 presents each of the three query extension types,

together with the general form of a suggestion s, and the general extension Qext
s .

Extension type s Qext
s

Type 1. Object property (p, C) p(vf , v) ∧ C(v)
Type 2. Datatype property (p) p(vf , v)
Type 3. Datatype filter (p, x) p(vf , v) ∧ (v ∈ {x})

Table 2: Table showing the three supported query extension types, the general
structure of a suggestion s, and the resulting general extension Qext

s .

All three extension types depend on the property p to connect vf to a new
variable v, hence p is included in each of the three suggestion tuples. If p is an
object property (Type 1), then v must be a concept variable of type C. If however
p is a datatype property and v a datatype variable (Type 2), then the type of
v can be inferred from GO, hence it is not included as a part of the suggestion
tuple or updated query. The two first extensions are what we call existential filters:
They require a new variable v connected to vf , but they do not put any additional
restrictions on it. The third type of extension on the other hand, adds filters to v,
but this can only be done if v is a datatype variable. In theory it would also be
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Query Extension Suggestions for Visual Query Systems 7

possible to add filters on concept variables, but in real life this is not something
users need, because then they would have to know which URIs to filter on. A
better solution is then to filter on a data property related to the concept, such as
its label or id.

Among the three presented extension types, the third is the hardest one to
calculate. In fact, if we can provide adaptive extension suggestions for type 3, we
have also done it for type 2, that is a given property p should only be suggested if
there are no possible datatype filters left. Extension type 1 and 2 are essentially
the same, so they are equally hard to make adaptive suggestions for.

3 Adaptive Extension Suggestions

In this section, we first present our approach for projecting a given ontology into a
navigation graph and then present our solution for adaptive extension suggestions
not leading to any empty results.

3.1 Ontology Projection

Our goal for ontology projection is, given an ontology, to create a directed labelled
graph, called a navigation graph [1,26], whose nodes correspond to the named
classes and datatypes in the ontology and edges between nodes to the object
properties and datatype properties. Let C1, C2, and C3 be classes, r1, r2, and r3
object properties, d1 a datatype property, i1 and i2 individuals, and dt1 a data
type. First, each class and datatype in the ontology is translated to a node in the

navigation graph GO . Then we add edges of the form C1
r1−→ C2 and C1

d1−→ dt1
into the navigation graph derived from the axioms of the ontology. The types of
axioms resulting in an edge are presented with examples in the followings using
description logic (DL) [2].

Ontologies have a propagative effect on the amount of information to be pre-
sented. This case is considered in two forms, namely the top-down and bottom-up
propagation of property restrictions [6,23]. The first form emerges from the fact
that, in an ontology, explicit restrictions attached to a class are inherited by its
subclasses. The second form is rooted from the fact that the interpretation of an
OWL class also includes the interpretations of all its subclasses. Therefore, for a
given class, it may also make sense to derive edges from the (potential) object and
datatype properties of its subclasses and superclasses.

3.1.1 Edges Through Object Properties

Domains and Ranges: Domain and range axioms using named classes are trans-
lated to an edge. For instance, example given in Axiom 3 maps to edge C1

r1−→ C2.

∃r1.� � C1 and� � ∀r1.C2 (3)

∃r1.� � C1 and� � ∀r1.(C2 � C3) (4)
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8 Vidar N. Klungre et al.

If a complex class expression, formed through intersection (�) or union (�),
appears as a domain and/or range, then an edge is created for each pair of domain

and range classes. For instance, example given in Axiom 4 maps to edges C1
r1−→ C2

and C1
r1−→ C3.

Object Property Restrictions: Object property restrictions used in class descrip-
tions, formed through existential quantification (∃), universal quantification (∀),
individual value restriction, max (≥), min (≤), and exactly (=), are mapped to

edges. For instance, examples given in Axiom 5 to 7 map to C1
r1−→ C2. Note that

in Axiom 7, there is a complex class expression on the left-hand-side.

C1 � ∃r1.C2 (5)

C1 ≡≤n r1.C2 (6)

∀r1.C1 � C2 (7)

Example given in Axiom 8 includes an individual value restriction and an edge
is created with the type of individual, that is C1

r1−→ C2.

C1 � ∃r1.{i1} , and i1 : C2 (8)

Example given in Axiom 9 includes a complex class expression. In this case,
an edge is created for each named class, that is C1

r1−→ C2 and C1
r1−→ C3.

C1 � ∃r1.(C2 � C3) (9)

Given an enumeration of individuals, an edge is created for each individual’s
type. For instance, example given in Axiom 10 maps to two edges, that is C1

r1−→ C2

and C1
r1−→ C3.

C1 � ∃r1.{i1} � {i2} , i1 : C2 , and i2 : C3 (10)

Inverse Properties: Given an edge in the navigation graph such as C1
r1−→ C2

and an inverse property axiom for the corresponding object property such as given

in Axiom 11, a new edge is created for the inverse property, that is C2
r−1
1−−→ C1.

r1 ≡ r1 (11)

Role Chains: Given two edges C1
r1−→ C2 and C2

r2−→ C3 n the navigation
graph, and a role chain axiom between r1, r2, r3 such as given in Axiom 12, a new
edge is created for r3, that is C1

r3−→ C3.

r1 ◦ r2 � r3 (12)

Top-down Propagation: Given an edge C1
r1−→ C2 in the navigation graph and

a subclass axiom such as as given in Axiom 13, a new edge is added to the graph,
that is C3

r1−→ C2. Analogous edges could be created for subproperties.

C3 � C1 (13)
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Query Extension Suggestions for Visual Query Systems 9

Bottom-up Propagation: Given an edge C1
r1−→ C2 in the navigation graph and

a subclass class axiom such as given in Axiom 14, a new edge is added to the
graph, that is C3

r1−→ C2. Analogous edges could be created for superproperties.

C1 � C3 (14)

3.1.2 Edges through Datatype Properties

Domains and Ranges: Domain and range axioms using datatype properties are
translated to an edge. For instance, example given in Axiom 15 maps to an edge,

that is C1
d1−→ dt1.

∃d1.DatatypeLiteral � C1 and� � ∀r1.dt1 (15)

Datatype Property Restrictions: Datatype property restrictions, formed through
existential quantification (∃), universal quantification (∀), max (≥), min (≤), ex-
actly (=), and value are mapped to edges. For instance, the example given in

Axiom 16 maps to C1
d1−→ dt1.

C1 � ∃d1.dt1 (16)

Top-down Propagation: Given an edge C1
d1−→ dt1 in the navigation graph and

a subclass axiom such as as given in Axiom 17, a new edge is added to the graph,

that is C2
d1−→ dt1. Analogous edges could be created for subproperties.

C2 � C1 (17)

Bottom-up Propagation: Given an edge C1
d1−→ dt1 in the navigation graph

and a subclass class axiom such as given in Axiom 18, a new edge is added to the

graph, that is C3
d1−→ dt1. Analogous edges could be created for superproperties.

C1 � C3 (18)

3.2 Suggestion Functions

As a minimum requirement the VQS should only allow suggestions leading to legal
queries with respect to GO. However, we can increase the user experience by also
considering the underlying dataset D and the partial query Qp. In this article, we
will consider several different suggestion functions S that takes D and Qp as input
and returns a set of suggestions [11]:

S(D, Qp) = {s1, s2, . . . , sk}

If it is clear from the context what D and Qp are, we may omit the input and just
write S.
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10 Vidar N. Klungre et al.

3.2.1 The optimal suggestion function So

We will now formally define the suggestion function that returns the adaptive
extension suggestions we described in Section 1. It is what we consider to be
the gold standard with respect to accuracy, and we call it the optimal suggestion
function So. The idea is simply to execute the generic query Qp ∧ Qext

s over D,
and then project the result onto the variables in the suggestion tuple:

So = Ans(s)(Qo(s),D) where Qo(s) = Qp ∧Qext
s (19)

By selecting extensions from So, the user is guaranteed to not end up with a too
restrictive query, which is exactly what our goal is.

By replacing s with the given suggestion tuples from Table 2, we get the con-
crete formulas for each of the three supported query extension types:

1: So = Ans(p,C)(Qo(p, C),D) where Qo(p, C) = Qp ∧ p(vf , v) ∧ C(v)

2: So = Ans(p)(Qo(p),D) where Qo(p) = Qp ∧ p(vf , v)

3: So = Ans(p,x)(Qo(p, x),D) where Qo(p, x) = Qp ∧ p(vf , v) ∧ (v ∈ {x})

As already indicated. So does not scale very well. The problem is that Qp

(and hence also Qo) is arbitrary large in size and complexity, so there is no way
to guarantee efficient results. Running it directly over D requires too many joins,
and since Qo is arbitrary, it is also impossible to pre-calculate all possible joins
and store them in an index.

We will now show an example of how the optimal suggestion function works.
If we assume that the partial query Qp equals the query Q from Figure 2, and
we want the calculate optimal datatype filter suggestions for the city names of
the focus variable vf = v0, we need to evaluate the query of type 3 from above.
In general, this calculates suggestions for all properties p, but we are now only
interested in the names, since this is the only property of vf without any filters
yet. We know that Qp only returns two cities: RO and NY, hence the relevant
suggestions are So = {(hasName,NewY ork), (hasName,Rome)}.

3.2.2 Accuracy measure

Since So is the desired set of suggestions, we will use it to define the accuracy of
any other suggestion function S. To do this we use the well-established measures
of precision and recall, which gives us the following two equations:

precision(S) = |So ∩ S|
|S| recall(S) = |So ∩ S|

|So|
(20)

Among these two accuracy measures, the recall is by far the most crucial one
for our purpose. Imperfect precision may lead to cases where the user
sees extensions leading to no results, while imperfect recall, on the
other hand, may completely block the user from making valid queries.
In fact, since the recall is so crucial, we will in this article only consider
suggestion functions with perfect recall. It is important to understand
that these metrics only indicate of how well a suggestion function re-
moves dead-ends. It must not be confused with precision and recall
related to the final selection of the user.
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3.2.3 The range-based suggestion function Sr

An alternative to the optimal solution which is used by many systems today be-
cause of its simplicity is what we call the range-based suggestion function Sr. This
function aims to gather the full range of suggestions defined by the data, regardless
of the state of the partial query. To do this, it ignores all parts of Qp except for
the focus variable and its type:

Sr = Anss(Qr(s),D) where Qr(s) = Cf (vf ) ∧Qext
s (21)

Since we know that Cf (vf ) is one of the conjunctions in Qp (i.e. Qp is more
restrictive), it is possible to establish a relationship between the two suggestion
functions So and Sr:

Qp � Cf (vf ) ⇒ Qo � Qr ⇒ So ⊆ Sr

From this we can update the formulas for precision and recall:

precision(Sr) =
|So ∩ Sr|

|Sr|
=

|So|
|Sr|

recall(Sr) =
|So ∩ Sr|

|So|
=

|So|
|So|

= 1

It makes sense that So returns fewer suggestions than Sr since it considers all the
restrictions given by Qp. This leads to the fact that Sr has perfect recall, which is
important. The precision of Sr however, is not perfect, and depends on how close
Sr is to So.

Even though the precision of Sr is not perfect, it is still a powerful suggestion
function, because it can be computed very efficiently. The suggestions given by
Sr only depend on the focus concept Cf , which is limited to a relatively small
and finite set of concepts. This means that we can calculate the set of suggestions
for each possible focus concept offline, and index the results. Now the VQS can
easily fetch suggestions during a query session by simply looking up the static set
corresponding to the given focus concept.

Since Sr is well-known, and the default solution for many systems, we consider
this the baseline with respect to accuracy. We will also use Sr as a fallback solution
for the method we present in the following section.

If we assume that the partial query Qp equals Q from Figure 2, we only consider
the concept type City and the corresponding names. This gives us the following
set of suggestions

Sr = {(hasName,Oslo), (hasName, V ienna),

(hasName,NewY ork), (hasName,Rome)}

and precision(Sr) =
|So|
|Sr| =

2
4 = 0.5.

3.3 The Query Extension Index

In this section, we describe our main contribution: a method to efficiently calculate
dead-end free suggestions for all the three possible query extension types in
Section 2.4 with high accuracy. The method requires a query extension index I in
order to ensure sufficient performance, and we will use what we call a configuration

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



12 Vidar N. Klungre et al.

query Z to configure/represent the content of this index. The idea is then to make
suggestions based on just the parts of Qp that are included in Z, and hence I. This
gives basis to the suggestion function SZ

a , which is one of many possible functions
in the family of approximate suggestion functions Sa.

3.3.1 The Configuration Query Z

Before we can construct or use the query extension index I, we need a way to
represent the data it contains. To do this we will use a special query without any
filters called a configuration query Z.

In order to make our system work, it is important that the configuration query
we use has a root of type Cf . This requires a setup with multiple configuration
queries – one for each possible focus concept. However, given a particular partial
query Qp, there will only be one corresponding configuration query Z, so for now
we focus only on this one.

Intuitively Z works as a configuration for our system, by deciding which parts
of D to include in the generated index, and hence which parts of Qp it has consid-
er/ignore when making suggestions (see Section 3.3.3). A large Z will in general
result in a large index, but a corresponding suggestion function SZ

a with high pre-
cision. A small Z, on the other hand, will in general result in a cheaper index with
lower precision. It is also important to consider the structure of Z: Best results
are achieved by including properties and concepts that users are likely to use in
their queries, while making sure that the size of the index does not explode.

In this article, we assume that the configuration query is made in
advance by a human or algorithm with knowledge about the users, the
domain and the dataset. It is impossible for the configuration maker to
know exactly what the partial queries will look like, but based on for
example a query log of the user it will often be possible to estimate it.
This together with the dataset can be used to make a configuration that
leads to a useful but relatively small index. The results we can achieve
depends on properties of the dataset like size and branching degree, but
also on how similar the new query is to the queries in the query log. In
general, we have a trade-off between quality and index size. Datasets
with high branching degree will potentially lead to exponentially growth
in index size, and in these cases the configuration query has to be
relatively small and not very complex.

We are currently working towards an algorithm that can automat-
ically search for the optimal configurations given a threshold on the
index size. This is quite challenging due to the large search space of all
possible configuration queries, but also due to the fact that we need to
execute queries over possibly very large datasets in order to evaluate
them. We believe it is possible to overcome this problem by estimat-
ing the number of answers a query returns, but this is part of another
study.

Above we stated that the root of Z must be of the same type as the focus
variable of Qp, which is Cf . This is necessary in order to be able to compare and
intersect Z with Qp. This becomes clear in Section 3.3.3 when we describe the
approximate suggestion function SZ

a .
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City

v0

Country
v1

partOfCountry

v2

hasName

v3

hasPopulation

v5

partOfContinent

Fig. 3: Example configuration query Z
including a city’s name and population,
and the corresponding country’s continent.

City

v0

Country
v1

partOfCountry

v2 > 1.000.000

hasPopulation

Fig. 4: The pruned query we get by intersecting
Q from Figure 2 and Z from Figure 3.

3.3.2 Index Generation

Since the performance is so crucial when making online suggestions, we need an in-
dex to support this task. This index must be constructed offline, and it is supposed
to serve multiple (online) user sessions. To do this well, it is important to select
a suitable subset of D to index, which is achieved by using a good configuration
query Z.

Given a configuration query Z, the idea is to include all data from D that is
fully or partially covered by it. To do this we first need to construct the modified
version of Z where every branch and subbranch is optional. We call this query
Zopt. Now we get the index by executing Zopt over D:

I = genIndex(Z,D) = Ans(Zopt,D) (22)

One can represent I in two different ways: either as a denormalised table with
one column for each variable in Z, where each row represents a possible assignment
to these variables, or as a data graph, i.e. the subset of D which is covered by Zopt.
Which one of these we use is irrelevant with respect to precision. However, if we
consider performance, the tabular representation is preferred for the type of queries
we have, so we use this in our actual implementation.

Table 3 gives an example of an index table generated from Z in Figure 3 and
the dataset D from Table 1. In this simple example the number of rows is very
small, but in a larger more realistic case, the number of rows will increase rapidly
if many-to-many or one-to-many relationships exists.

3.3.3 The Approximate Suggestion Function Sa

Given a configuration query Z, we have what we need to define the corresponding
suggestion function SZ

a :

SZ
a = Ans(s)(Q

Z
a (s),D) where QZ

a (s) = (Qp ∩ Z) ∧Qext
s (23)
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14 Vidar N. Klungre et al.

City City-name City-pop. Country Country-continent
OS Oslo - NOR Europe
VI Vienna 1.7M AUT Europe
RO Rome 2.9M ITA Europe
NY New York 8.5M USA North America

Table 3: The resulting index table I = genIndex(Z,D) with Z from Figure 3 and
D from Table 1.

Here Qp∩Z is the pruned version of Qp we get by intersecting the trees defined by
Qp and Z. If Qp contains filters on any of the datatype variables, they are kept.

If we assume that Z contains all possible properties related to the root, i.e. the
root is fully saturated, then QZ

a is completely covered by Z. This means that all
data from D that is relevant for QZ

a is also included in I, i.e.

SZ
a = Ans(s)(Q

Z
a (s),D) = Ans(s)(Q

Z
a (s), I)

In other words, we get the same result if we run QZ
a (s) over I instead of D.

The advantage of using I instead of D directly is of course that suggestions are
returned fast enough.

However, if the root of Z is not fully saturated, then our approach will not
return any suggestions related any property p missing. In that case, the system
can always fall back on the range-based solution Sr for p, or simply not give any
suggestions related to it.

We have now considered three different suggestion functions. If we compare
the formulas each of them uses, and focus on a fixed property, we get the following
relationship between them:

Qp � (Qp ∩ Z) � Cf (vf ) ⇒ Qo � QZ
a � Qr ⇒ So ⊆ SZ

a ⊆ Sr (24)

And from this we can derive the full relationship between the precision and
recall of the functions:

recall(Sr) = recall(SZ
a ) = recall(So) = 1

0 ≤ precision(Sr) ≤ precision(SZ
a ) ≤ precision(So) = 1

Given a partial query Qp, and a fixed property p, each of the three functions
will give us a set of suggestions. So returns the optimal set by considering the whole
structure of Qp, SZ

a returns a larger less precise set by ignoring everything not
covered by Z, and Sr returns an even larger set of suggestions by not considering
the structure of Qp at all.

We will now calculate approximate suggestions using the same input as we
used with So and Sr. The intersection (Qp ∩ Z) can be seen in Figure 4, and it
only includes the filter on the city’s population, which has to be higher than 1M.
We are then left with three city individuals: VI, RO and NY, which gives the
following suggestions for the name property:

So = {(hasName, V ienna), (hasName,Rome), (hasName,NewY ork)}

The corresponding precision of the approximate function is then precision(SZ
a ) =

|So|
|SZ

a | =
2
3 = 0.66.
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3.3.4 Existential Concept Variables

With the index construction method described in Section 3.3.2, the columns repre-
senting concept variables will be filled with only URIs. This data is wasted space:
Users do not need to filter on URIs, and suggested values of URIs are therefore
not needed. However, it is often interesting to know whether an assignment to the
concept variable exists or not, so instead of removing the column completely, we
replace the URIs with boolean values indicating whether an assignment exists or
not. This reduces the index size considerably, compared to the case where all URIs
are stored, because multiple rows where only one URI differs can now be collapsed
into only one row.

By using existential concept variable columns, it becomes quite cheap to include
concept variables in the configurations, since it only requires one more column
of boolean values, while the number of rows stays fixed. In Experiment 1, we
explore how much the accuracy increase by adding another layer of these existential
concept nodes to the index, which is a comparatively cheap investment.

4 Evaluation

We implemented our ontology projection approach and adaptive extension sugges-
tion solution and conducted a series of experiments. The results and findings are
presented in what follows.

4.1 Ontology Projection

The evaluation of ontology projection approach includes its use in practical sys-
tems and a performance evaluation checking its feasibility for use in interactive
applications without any significant delay in a query interface.

4.1.1 Practical Use

The variants of ontology projection approach has been implemented in OptiqueVQS
[27], a visual query formulation tool, and SemFacet [1], a faceted search tool. Both
interfaces support tree-shaped conjunctive queries and their source codes are avail-
able online in GitLab 4 5.

OptiqueVQS (see Figure 5) is a visual query system. It allows users to navigate
the conceptual space and each traversal from a class to another adds a typed
variable-node and object property connecting it to the query graph. OptiqueVQS
was deployed and evaluated in different use cases, including Siemens’ case for
sensor data [25,10], Statoil’s case for oil and gas [27,9], and on generic datasets
[24]. In Figure 5, there is an example query asking for all trains with a turbine
named “Bearing Assembly” and their journal bearing temperature readings in the
associated generator.

4 https://gitlab.com/ernesto.jimenez.ruiz/OptiqueVQS
5 https://github.com/OxfordSemTech/SemFacet
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Fig. 5: OptiqueVQS over a use case provided by Siemens.
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Fig. 6: SemFacet over Yago Knowledge Graph.

SemFacet (see Figure 6) is full-fledged general-purpose faceted search interface.
In typical faceted search, users are presented with facet-values organised in groups
according to facet-names and it is often not allowed to navigate between classes.
SemFacet allows end users to navigate between classes and browse data sets at the
same time. The interface was deployed and evaluated over a slice of Yago database
[1]. In Figure 6 there is an example search for U.S. presidents who graduated from
Harvard or Georgetown, and whose children graduated from Stanford. All these
conditions are combined conjunctively and their constraints apply simultaneously.
One can see that changing the focus of the query, one can either see the presidents
(left part of the figure), or their universities (centre part of the figure), or their
children (right part of the figure).

4.1.2 Performance

Our current implementation of the ontology projector is written in Java, and
used by both OptiqueVQS and the SIRIUS Geoscience image annotation and
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Ontology Axioms Classes SubSlassOf
TMO 1152 225 235

NPD14 4110 142 594
MI 13645 1494 1474

IDOMAL 31101 3159 3556
ENM 105983 12533 17191

Table 4: Key metrics of the ontologies used in the performance evaluation of the
projection algorithm. The columns provide the name of the ontology, the number
of axioms in total, the number of distinct classes and the number of subclass
axioms in the ontology.

classification project 6. It uses the HermiT Reasoner 7 for classification, and RDFox
to do the propagation of properties/edges in the resulting graph. The full source
code is publicly available in GitLab 8.

When evaluating this implementation, we focused on the time spent on con-
structing the navigation graph, and querying over it. The first task is to construct
the navigation graph from a given ontology using the described approach. This
only needs to be done once each time the ontology changes and it is an offline
process, so it is in practice possible to run this on a remote server, and the timing
of this is not very crucial. The second task is to query GO in order to determine
which actions the user is allowed to make. In practice this means to find all out-
going datatype properties and object properties for a given concept in GO. Since
this is done frequently during a query session, it should ideally finish so fast that
the user does not even notice the delay.

We considered 5 different ontologies: Translational Medicine On-
tology9 (TMO), Norwegian Petroleum Directorate Factpages10 (NPD),
Molecular Interactions11 (MI), Malaria Ontology12 (IDOMAL) and eNanoMap-
per13 (ENM). NPD is an ontology covering the Oil&Gas domain, while
the remaining four are from the biology domain. We used the newest
available versions of the ontologies at the time we conducted the ex-
periment (28. January 2019). All of them are listed in Table 4 together
with relevant metrics about them. For each of them we performed the
two evaluation tasks, and all results are presented in Table 5.

The results show that querying over the navigation graph is lightning fast.
In fact, among the ontologies we tested, it never took more than 5ms to fetch
the relevant properties with an average of about 1ms. Note that 100ms is the
suggested limit for having the user feel that the system is reacting instantaneously
[17]. Regarding the task of the constructing the navigation graph, it is much more

6 https://github.com/Sirius-sfi/geoscience-image-classification
7 http://www.hermit-reasoner.com/
8 https://gitlab.com/ernesto.jimenez.ruiz/ontology-services-toolkit/tree/master
9 https://bioportal.bioontology.org/ontologies/TMO

10 https://gitlab.com/logid/npd-factpages/blob/develop/ontology/npd-db.ttl.owl
11 https://bioportal.bioontology.org/ontologies/MI
12 https://bioportal.bioontology.org/ontologies/IDOMAL
13 https://bioportal.bioontology.org/ontologies/ENM
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Ontology Projection creation Datatype properties Object properties
TMO 4001 0.42 0.49
NPD 4573 0.37 0.31
MI 3878 0.3 0.3

IDOMAL 4391 0.3 0.3
ENM 57641 0.3 0.3

Table 5: Performance of the ontology projection for the five given ontologies. The
columns present the name of the ontology, the time it takes to create the navigation
graph, time spent querying for all datatype properties and object properties on
average. All times are given in milliseconds.

complex and hence slower. However, it is still within the reasonable time frame of
one minute for all the tested ontologies, given that this is an offline task.

4.2 Extension Suggestion

In this section we describe the two experiments done on our implementation of
the query extension index. Each of them focuses on the third type of suggestions,
datatype filters, since this is the hardest suggestion task.

4.2.1 Dataset, Ontology and Queries

We used the RDF version of the NPD Factpages15 – a dataset covering details
about oil and gas drilling activities in Norway. This dataset contains 2.342.597
triples, and it has a corresponding OWL ontology containing 209 concepts and
375 properties. The NPD Factpages is actually a RDB, containing information
that all oil companies in Norway are legally required to report to the authorities.
This means that the RDF version, which is generated from this RDB, is fairly
complete and homogeneous. This is optimal for persons who want answers to
complex queries. Among the different concepts we considered in our queries, each
have on average of 14.1 different outgoing datatype properties, and 6.4 outgoing
object properties in NPD Factpages. The number of distinct individuals/literals
each such property leads to is 572 on average (with a median of 12).

The query log distributed with this dataset was not suited for our experiment,
since only a few of the queries had the structure our system required, and none
of them connected more than a few concepts together. Therefore, we constructed
a new query log consisting of complex queries of a more suitable size, with the
goal to cover a wide set of possible cases. The log consists of 29 queries ranging
from 5 to 8 concept variables and 0 to 12 datatype variables, and the corresponding
result sets over the NPD dataset range from just 12 tuples, to over 5 million tuples.
Furthermore Table 6 gives the query size distribution. The complete query
log is publicly available on GitHub16.

15 https://gitlab.com/logid/npd-factpages
16 https://github.com/Alopex8064/npd-factpages-experiments
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Query size 5 6 7 8
Frequency 3 15 2 9

Table 6: Frequency of query size in the query log17 used in the experiments.

4.2.2 Test Cases and General Setup

In both of our experiments we ran multiple test cases, where each test case used
a query Qp from the query catalogue, and a generated concept configuration Z.
By testing multiple Z together with each Qp we got a fairly complete picture of
how our system behaves. For each test case we first constructed the corresponding
index I based on Z and the dataset. Then we calculated suggestions for all of the
three defined suggestion functions, and the corresponding precision they achieved.
We also calculated the cost associated with each choice of Z. This cost differed
between the two experiments, but was related to the size of either Z or I. (See
the individual experiments for details.)

Since we only considered one query Qp at a time, it was pointless to consider
parts of Z which was not covered by Qp itself. Every addition to Z that is outside
Qp will not affect the resulting suggestions. So we focused on the more interesting
cases where Z was fully covered by Qp.

Notice that a real-world scenario would be more complex than our setup with
simple test cases. The success of a concept configuration and its corresponding
index would not only depend on the precision of one single query, but rather a
large set of possibly very different queries. One of our future goals is to develop
methods for finding configurations that works well for a whole catalogue of queries.

4.2.3 Experiment 1: Configuration Type/Size vs Precision

In Experiment 1, we show how the accuracy of Sa changes as configurations of
different size and shape are used. To do this, we first generated a set of random
“configurations cores” c for each query Qp in the query catalogue. Each core
consisted of one or more connected concept variables from Qp, and was just used
as a basis for generating two other concept configurations:

– Dat(c): Every possible datatype property is added to the concept variables in
c.

– ObjDat(c): Every possible datatype property and object property is added to
the concept variables in c.

The only difference between these two configurations, is that ObjDat(c) contains
one extra layer of concept variables. It is relatively cheap (w.r.t. storage usage)
to add these concept variables, as described in Sect. 3.3.4, but the precision will
(potentially) increase by doing it. So the split between Dat(c) and ObjDat(c) was
created in order to measure how much the precision increases.

Both of the two configurations Dat(c) and ObjDat(c) were used in one test
each, where suggestion values for each of the four different suggestion functions of
interest were calculated. They are given below, and they satisfy:

precision(Sr) ≤ precision(SDat(c)
a ) ≤ precision(SObjDat(c)

a ) ≤ precision(So) = 1.
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PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX npd: <http://sws.ifi.uio.no/vocab/npd-v2#>

SELECT * WHERE {
?c1 rdf:type npd:ExplorationWellbore.
?c2 rdf:type npd:Field.
?c5 rdf:type npd:ProductionLicence.
?c3 rdf:type npd:Company.
?c4 rdf:type npd:FieldStatus.
?c8 rdf:type npd:Discovery.
?c6 rdf:type npd:ProductionLicenceStatus.
?c7 rdf:type npd:ProductionLicenceArea.

?c1 npd:explorationWellboreForField ?c2.
?c1 npd:explorationWellboreForLicence ?c5.
?c2 npd:currentFieldOperator ?c3.
?c4 npd:statusForField ?c2.
?c6 npd:statusForLicence ?c5.
?c7 npd:isGeometryOfFeature ?c5.
?c8 npd:includedInField ?c2.

?c1 npd:wellboreBottomHoleTemperature ?a7.
?c2 npd:name ?a8.
?c2 npd:status ?a9.
?c3 npd:name ?a6.
?c4 npd:status ?a5.
?c5 npd:isActive ?a10.
?c5 npd:name ?a11.
?c5 npd:originalAreaSize ?a12.
?c6 npd:status ?a4.
?c7 npd:isStratigraphical ?a1.

FILTER(?a7 >= 150).
FILTER(regex(?a8, "TAMBAR", "i")).

}

Fig. 7: Results for Query 2.6

After running through every test case, the results were grouped by both the
configuration type (Dat or ObjDat) and the size of the configuration, where the size
of a configuration is defined by the number of concept variables in the configuration
core c. Finally the average precision of each group was calculated and the results
visualised.

Results and Analysis: This section contains results from experiment 1.
First we present individual results for three selected queries (Query
2.6, Query 2.8 and Query 3.5) in Figure 7, Figure 8 and Figure 9. Then
follows the resulting averages for queries of size between 5 and 8 in Fig-
ure 10-Figure 13. For a the complete set of queries and corresponding
results, we refer to GitHub18.

The yellow line in each chart shows the precision of the range-based function
Sr, which is always constant. Since this is the suggestion function with the low-
est precision we consider, it acts as a baseline – marking the worst case scenario
for Sa. The blue and red curves show the precision of SDat

a and SObjDat
a respec-

tively. As expected, these two curves are non-decreasing and precision(SDat
a ) ≤

precision(SObjDat
a ) for all configuration sizes.

The precision given by each of the three curves depends mostly on how many
of the important key restrictions of Qp they are able to capture, where a key
restriction is a restriction that reduces the number of instances one could assign

18 https://github.com/Alopex8064/npd-factpages-experiments
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PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX npd: <http://sws.ifi.uio.no/vocab/npd-v2#>

SELECT * WHERE {
?c1 rdf:type npd:ExplorationWellbore.
?c2 rdf:type npd:Field.
?c3 rdf:type npd:Company.
?c4 rdf:type npd:FieldStatus.
?c5 rdf:type npd:ProductionLicence.
?c6 rdf:type npd:ProductionLicenceStatus.
?c7 rdf:type npd:ProductionLicenceArea.
?c8 rdf:type npd:Discovery.

?c1 npd:explorationWellboreForField ?c2.
?c1 npd:explorationWellboreForLicence ?c5.
?c2 npd:currentFieldOperator ?c3.
?c4 npd:statusForField ?c2.
?c6 npd:statusForLicence ?c5.
?c7 npd:isGeometryOfFeature ?c5.
?c8 npd:includedInField ?c2.

?c1 npd:wellboreBottomHoleTemperature ?a7.

FILTER (?a7 >= 190).
}

Fig. 8: Results for Query 2.8

to the root so much that it also causes a large reduction in the possible facet
values. The query used in Figure 7 (Query 2.6) for example has one important
key restriction on the data property name of the Field concept variable in depth
2 of Qp. Since this key restriction is associated with a datatype variable, both
SDat
a and SObjDat

a perform about equally well. The slight difference between SDat
a

and SObjDat
a is caused by other much less important restrictions, which SObjDat

a

manages to capture, but SDat
a does not. If this chart had shown the best case

scenario, the precision would have been perfect already at size 2, because that
is the point it would reach the Field concept node. But since we average over
multiple differently shaped configurations, and the branching factor of Qp is close
to 2, the two lines moves steadily upwards until they reach size 5. At this point
the configuration is guaranteed to cover the key restriction regardless of its shape.

Query 2.8 in Figure 8 has two key restrictions: the first restriction is associated
with a datatype property filter on the root node (wellboreTemperature ≥ 190).
This is captured by all the configurations we used in the experiment, and the
difference between Sr and SDat

a at size 1 shows the effect of capturing it. The
other key restriction is associated with the Field concept variable in depth 2.
Since SObjDat

a includes one additional layer of concept variables, it captures this
already from size 1, while SDat

a on the other hand, needs to be of the correct
shape in order to capture it, hence the steadily rising curve, similar to Query 2.6
in Figure 7.

Query 3.5 in Figure 9 is a linear query (the tree has only one branch), so there
is one possible configuration core for each configuration size. Hence, the resulting
curve only shows that one case of growing configuration. This query also has two
key restrictions. The first one is an object property restriction in depth 2 of the
query – the effect of capturing this restriction is shown by the precision increase of
SObjDat
a between size 1 and 2. The second restriction is a data property restriction

associated with the only concept variable in depth 6 of the query. This restriction
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PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX npd: <http://sws.ifi.uio.no/vocab/npd-v2#>

SELECT * WHERE {
?c1 rdf:type npd:ExplorationWellbore.
?c2 rdf:type npd:Field.
?c3 rdf:type npd:FieldOperator.
?c4 rdf:type npd:Company.
?c5 rdf:type npd:BAA.
?c7 rdf:type npd:BAAArea.

?c1 npd:explorationWellboreForField ?c2.
?c3 npd:operatorForField ?c2.
?c3 npd:fieldOperator ?c4.
?c5 npd:baaOperatorCompany ?c4.
?c7 npd:isGeometryOfFeature ?c5.

?c7 npd:areaSize ?a3.

FILTER(?a3 >= 300).
}

Fig. 9: Results for Query 3.5

Fig. 10: Average precision of size 5 queries. Fig. 11: Average precision of size 6 queries.

is very hard to capture for both SObjDat
a and SDat

a , but when the configuration
reaches size 6, and the whole query is covered by each of their configurations, the
resulting precision becomes perfect.

The rules that control SObjDat
a and SDat

a also apply to Sr. It only performs
well if it is able to capture all of the important key restrictions. But since Sr

never considers Qp, it will in fact always perform poorly if one or more such key
restrictions exists. Figure 7 and Figure 8 both show examples where this happens.
For each of those cases the precision of Sr is only 0.22. This is quite low compared
to 0.50, which is the average precision of size 8 queries given by Figure 13.

The charts in Figure 10-Figure 13 display the average over all queries grouped
by query size. The relation Sr ≤ SObjDat

a ≤ SDat
a still holds over the averages. The

first thing to notice from the average results is the relatively high precision of the
range-based function. In our experiment, its precision ranged from 0.22 to 0.96,
with an average of 0.56. This does not sound too bad, but user studies done with
OptiqueVQS show that the users are not always satisfied with Sr, which actually
motivated us to start exploring Sa as an alternative.
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Fig. 12: Average precision of size 7 queries. Fig. 13: Average precision of size 8 queries.

In the cases where key restrictions are associated with object properties, SObjDat
a

performs much better than SDat
a . In fact, it quite often returns suggestions with

perfect precision, as shown in Figure 8. The average difference between SObjDat
a

and SDat
a , shown in Figure 10-13, indicates that it is worth adding this extra layer

of object properties to the configuration, especially since the resulting increase in
the index size is relatively small (one extra boolean column).

The average results in Figure 10-13 are highly influenced by the
individual queries of the relevant size, especially for queries of size 5
and 7 where the average is based on only 3 and 2 queries respectively.
Hence, we cannot conclude anything about how the query size affects
the precision.

4.2.4 Experiment 2: Index Size vs Precision

In Experiment 2 we made a direct comparison between the index size and the
precision. We did this by first making one test case for every query Qp, and each
possible configuration Z covered by it. Then, for each such test case, we calculated
both the size of the table generated by Z, and the precision of SZ

a . Finally, we
analysed and visualised the results.

Results and Analysis: Figure 14 shows the results for one of the tested queries
(Query 6.2), visualised as a scatter plot, where each point represents a test case/-
concept configuration/index table. Some of the points are pareto-optimal, which
means that neither of the two dimensions (precision and index size) can be im-
proved without weakening the other. These points are located in the bottom right
part of the plot (smaller index and higher precision are better), and are connected
by line segments. The frontier of pareto-optimal points shows how large the index
must be in order to achieve a given precision in a best-case scenario, i.e. when the
configuration is chosen optimally.

There are two reasons for using the best-case scenario:

1. The configuration is a part of the setup process of our system, and is supposed
to be optimised by experts or an algorithm.

2. The number of possible configurations in total is infinite, so using the average
or something similar would be impossible.
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Fig. 14: Scatter plot for Query 6.2. Pareto
optimal configurations are connected. Index
size is not normalised.

Fig. 15: Pareto-optimal configurations for all
queries with median (red) and upper quartile
(blue). Index size is normalised.

So while we cannot expect to achieve results like this consistently, it does give an
indication of what might be achieved with an optimal choice of configuration. The
fact that we investigate the best-case scenario also explains why it is sufficient
to only consider the configurations covered by Qp. For any configuration Z � with
branches outside Qp, there exists another concept configuration Z which leads to
the same precision, but a smaller index. Visually, the set of all such test cases would
appear as points above the already existing points, and hence not be candidates
for pareto-optimality.

The set of pareto-optimal points for each query defines a monotonically in-
creasing curve. Let Zmin and Zmax denote the configurations used for the first
and last of these points. Zmax is the configurations that is isomorphic to Qp. I.e.
it fully covers Qp, but it has no branches outside of it. The precision given by this
configuration is perfect, but it also uses the largest index of the pareto-optimal con-
figurations. Zmin on the other hand contains only the root and all local datatype
properties. This is the smallest configuration that can provide suggestions for each
of the local datatype properties.

When we look at the pareto-optimal configurations for all the different queries,
we see that the index size of Zmin differs depending on the focus concept of the
query. We can’t expect the index to become smaller than a table of the instances
of the class along with their attributes, which mostly depends on the number of
instances in the dataset. So in order to compare them under equal conditions, we
normalised the index size by dividing by the index size of Zmin. The index size
then becomes just a factor, where e.g 2.0 means that the index is twice as large as
the index constructed from Zmin. The pareto-optimal points for all the 29 queries
are displayed in Figure 15 (normalised index size), together with the median (red)
and upper quartile (blue).

The overall results from Figure 15 seems promising, as most of the transitions
between pareto-optimal points (black line segments) are more horizontal than
vertical. This means that with clever selection of configuration branches, one can
transition to a much higher precision without having to increase the index very
much. The median and upper quartile have similar horizontal profiles, but with
a slight increase as they approach 100% precision, resulting in a more convex
curve. In other words, the last 10% precision will cost us more than any
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other 10% increase. In a real-life scenario it will also never be possible
to guarantee 100% precision because the users may construct queries
not seen by the system before, so aiming for 100% precision is not a
reasonable option anyway.

From Experiment 1 and Figure 11 we know that the average precision of Sa

when using the smallest possible configuration for each query (Zmin) is 0.61.
Figure 15 shows that this precision can be increased to 100% with an index that
is less than 2.1 times larger, with the exception of three19 queries that are orders
of magnitude higher. This is caused by their highly restrictive filters on branches
far away from the root. The median goes up to 90% precision with about
2.5% increase in index, while going from 90% to 100% precision costs
us an additional 10% increase in index size.

How well a configuration works, and what the optimal configura-
tion is, depends to a high degree on the actual dataset and queries
constructed by the users. Some datasets have a high branching degree,
which causes the index to grow faster than for other datasets, and/or
some query catalogues may have queries of very similar shape, (pos-
sibly) resulting in higher precision for configurations including these
shapes. Therefore, we should be careful about generalising the results
of this experiment to other datasets and query catalogues.

5 Related Work

Regarding ontology projection, visualisations for different aspects of the Semantic
Web such as ontology visualisation, query formulation, and search are relevant for
the work presented here, since they mainly require end users to examine and inter-
act with the elements of a given ontology. However, to best of our knowledge, none
of the existing works deal with projecting navigation graphs from ontologies, al-
though the inverse exists such as for ontology axiomatization through diagramming
[20]. Among others [8], the graph paradigm is often used to depict the structure
of ontological elements and relationships as they reflect the interconnected nature
of ontology classes. There are various approaches using graphs for ontology visu-
alisation and exploration such as GrOWL [14] and KC-Viz [16]. Similarly, tools
for visual query formulation also often use the graph paradigm to depict the in-
formation needs and domain exploration such as gFacet [7] and NITELIGHT [21].
In a graph-based approach, classes are often represented as nodes and properties
as edges.

Non graph-based approaches, such as form-based, still use a navigation ap-
proach for browsing through ontology classes. Examples include Rhizomer [3], a
faceted search tool, and PepeSearch [31], a form-based query formulation tool.
Typically, form-based approaches are meant to operate on a single class level;
however, as in the case of Rhizomer and PepeSearch, navigation between classes is
an essential instrument. OptiqueVQS and SemFacet represent these two different
paradigms, that is graph-based and form-based respectively. In OptiqueVQS, the
navigation graph is used to explore the domain, while a constrained tree-shaped

19 There are two queries pointing towards (1.0, 110.5) and one pointing towards (1.0, 39.3).
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representation is used for query visualisation instead of a graph for usability pur-
poses, while SemFacet allows navigation between classes and employs form ele-
ments rather than graphical visualisations. We refer interested readers to related
publications [1,27] on these tools including end user experiments.

Regarding data-driven adaptive suggestions, there are plenty of systems that
suggest filters on the facets of a single class. In fact, this a core feature of faceted
search, which is quite common on websites like e.g. Ebay 20 and PriceSpy 21.
Popular implementations of faceted search includes e.g. Apache Solr 22 and Elas-
ticsearch 23. Since these systems only consider one class at a time, they
can afford to calculate dead-end extensions with both perfect precision
and recall, which distinguish them from our system.

All existing systems that support multiple connected classes while aiming to
provide adaptive extension suggestions has some kind of weakness. SemFacet [1]
is one of these systems. It relies on a highly scalable in-memory RDF triple store
(RDFox) in order to get sufficient performance, but even this does not help if the
queries are very complex. Other systems like e.g. DISQOVER [18] restricts
the user by only allowing extensions leading to query with result count
under a given threshold. Many of these systems are both mature and
feature-rich, and provides more than the dead-end elimination our sys-
tem delivers. One example of this is ranking, which is useful when the
number of valid extensions is so large that one must prioritise what to
display to the user. The dead-end elimination we provide can be consid-
ered to be a (binary) ranking method in this respect. To our knowledge,
no previous work has considered the particular query extension index we present,
or the approximation of suggestions that comes with it.

6 Conclusion

In this article, we focused on ontology-based VQSs from an end-user perspective
and explored means for using ontologies for the query formulation task, that is how
one can navigate through the concepts of a given ontology and how elements of
an ontology could be efficiently and effectively suggested to an end user without
leading to any empty results. We first presented an approach for projecting
ontologies into navigation graphs for the purpose of supporting query formulation
and ontology exploration tasks. However, one should note that such an approach
is useful in general for supporting ontology-based user interfaces. Ontology to
graph projection approach is implemented and tested in two different VQSs and
experiment results suggest that we can efficiently project a given ontology into
a navigation graph and query it. Secondly, we introduced three query extension
suggestion functions for eliminating dead-ends: an optimal one that is slow for
large datasets and complex queries; a range based one that is rather inaccurate,
but allows fast implementation; and a configurable family of intermediate (precise
enough and fast enough) solutions to the problem, based on only looking at a part
of the constructed query. We conducted a series of experiments to conclude that

20 https://www.ebay.com/
21 https://pricespy.co.uk/
22 http://lucene.apache.org/solr/
23 https://www.elastic.co/
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1. good approximations to the best set of suggestions can often be reached by
taking into account only relatively small parts of the constructed query.

2. the precision of the approximations can often be improved dramatically by
including the presence of required object properties in the configuration, rather
than only connected datatype properties.

3. modest increases in index size will (in many cases) lead to a significant increase
in accuracy.

In future work we intend to further improve the suggestions given to
users by providing a ranking on the extensions that are not dead-ends.
This ranking could be based on either the underlying data and/or a
given query log [12]. Furthermore, we would like to consider alternative storage
formats for the pre-joined index. In particular a document database like Mon-
goDB could be suitable. A related question is how to share storage space between
indices for sub- and super-classes in the type hierarchy. The viability of our ap-
proach depends on a good choice of the facet configuration: it should be possible to
determine an optimal configuration given a log of previous user queries. Another
approach to reducing the index size is to work with buckets that combine ranges of
facet values. Suitable bucketing strategies can also be determined from the query
log and data.
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3. Brunetti, J.M., Garćıa, R., Auer, S.: From Overview to Facets and Pivoting for Inter-
active Exploration of Semantic Web Data. International Journal on Semantic Web and
Information Systems 9(1), 1–20 (2013). DOI 10.4018/jswis.2013010101

4. Catarci, T.: What Happened When Database Researchers Met Usability. Information
Systems 25(3), 177–212 (2000). DOI 10.1016/S0306-4379(00)00015-6

5. Catarci, T., Costabile, M.F., Levialdi, S., Batini, C.: Visual Query Systems for Databases:
A Survey. Journal of Visual Languages and Computing 8(2), 215–260 (1997). DOI
10.1006/jvlc.1997.0037

6. Grau, B.C., Giese, M., Horrocks, I., Hubauer, T., Jiménez-Ruiz, E., Kharlamov, E.,
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