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Abstract

We derive an efficient method to calculate exceedance probabilities (EP) for the
Dirichlet distribution when the number of event types is larger than two. Also,
we present an intuitive application of Dirichlet EPs and compare our method to a
sampling approach which is the current practice in neuroimaging model selection.

Contents

1 Introduction 1

2 Theory 2

2.1 Dirichlet exceedance probabilities . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Case I: Bivariate Dirichlet . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.3 Case II: Multivariate Dirichlet . . . . . . . . . . . . . . . . . . . . . . . . 3
2.4 MATLAB code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Application 6

3.1 Political election forecasting . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Neuroimaging model selection . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Conclusion 10

5 References 10

0

http://arxiv.org/abs/1611.01439v1
joram.soch@bccn-berlin.de


1 Introduction

Let r = [r1, . . . , rk] be a 1 × k random vector. Then, r is said to follow a Dirichlet

distribution, if its probability density function is given by (Gelman et al., 2013, p. 579)

p(r) = Dir(r;α) =
Γ(
∑k

j=1 αi)
∏k

j=1 Γ(αj)

k
∏

j=1

r
αj−1
j (1)

where α1, . . . , αk are called concentration parameters and r underlies the constraint that

0 ≤ rj ≤ 1 for j = 1, . . . , k and
k
∑

j=1

rj = 1 . (2)

Let E1, . . . , Ek be some mutually exclusive and collectively exhaustive event types with
the unknown occurence frequencies r1, . . . , rk. Then, Dir(r;α) as given by equation (1)
describes the probability of each frequency combination satisfying the constraint (2).
Since α = [1, ..., 1] invokes a flat distribution over r, αj − 1 can be seen as the number of
pseudo-observations of event type Ej . This is also reflected in the mode of the Dirichlet
which is (Gelman et al., 2013, p. 579)

mode(rj) =
αj − 1

αs − k
with αs =

k
∑

j=1

αj . (3)

The Dirichlet distribution is often used as the conjugate prior for a multinomial likelihood
(Gelman et al., 2013, pp. 578, 584) which gives rise to a Multinomial-Dirichlet model
(see Section 3.1), a generalization of the Binomial-Beta model constituted by a binomial
distribution and a beta distribution.

Let X and Y be two continuous random variables with the joint probability density
function p(x, y). Then, the probability

p(x > y) =

∫∫

x>y

p(x, y) dx dy (4)

is referred to as an exceedance probability (EP) (Stephan et al., 2009, p. 1008), more
specifically the probability thatX exceeds Y . EPs are a useful tool for posterior parameter
inference in Bayesian statistics, since a lot of interesting questions can be understood as
questions for exceedance events. For example, if X and Y are independent and X ∼
N(µx, σx) and Y ∼ N(µy, σy), then

p(x > y) =

∫ +∞

−∞

∫ ∞

y

N(x;µx, σx) N(y;µy, σy) dx dy

= 1− 〈Φµx,σx
(y)〉

(5)

where Φµ,σ is the cumulative distribution function of the normal distribution N(µ, σ).
EPs for the Dirichlet distribution become especially important in group-level Bayesian
model selection (see Section 3.2).
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2 Theory

2.1 Dirichlet exceedance probabilities

For a Dirichlet distribution Dir(r;α), as defined by equation (1), the exceedance prob-
ability ϕj is understood as the probability that rj is larger than all other elements of r
(Stephan et al., 2009, p. 1008):

ϕj = p (∀i ∈ {1, . . . , k|j 6= k} : rj > ri|α) = p

(

∧

i 6=j

rj > ri|α

)

. (6)

Or, using the integral notation from equation (4):

ϕj =

∫

rj=max[r]

Dir(r;α) dr . (7)

2.2 Case I: Bivariate Dirichlet

If k = 2, the Dirichlet distribution reduces to

p(r) =
Γ(α1 + α2)

Γ(α1)Γ(α2)
rα1−1
1 rα2−1

2 (8)

and therefore becomes a beta distribution

p(r1) =
rα1−1
1 (1− r1)

α2−1

B(α1, α2)
(9)

with the beta function given by

B(α, β) =
Γ(α) Γ(β)

Γ(α + β)
. (10)

Thus, the exceedance probability for this bivariate case simplifies to

ϕ1 = p(r1 > r2) = p(r1 > 1− r1) = p(r1 > 1/2) =

∫ 1

1

2

p(r1) dr1 . (11)

Using the beta cumulative distribution function, it evaluates to

ϕ1 = 1−
B(1

2
;α1, α2)

B(α1, α2)
(12)

with the incomplete beta function

B(x;α, β) =

∫ x

0

xα−1 (1− x)β−1 dx . (13)

As one can see, Dirichlet exceedance probabilities becomes particularly intuitive when
k = 2, because the statement that r1 > r2 is equivalent to the statement that r1 > 1/2.
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2.3 Case II: Multivariate Dirichlet

If k > 2, exceedance probabilities are less intuitive, because in general

ϕj = p(rj = max[r]) > p(rj > 1/2) for j = 1, . . . , k , (14)

i.e. exceedance probabilities cannot be evaluated using a simple threshold on rj, because
rj might be the maximal element in r without being larger than 1/2. In fact, with k = 100,
rj can be max[r] with just being slightly larger than 1/100. In order to account for this,
two approaches can be taken.

Using the first method, exceedance probabilities are calculated via sampling from the
respective distribution. Dirichlet random numbers can be generated by first drawing
q1, . . . , qk from independent gamma distributions with shape parameters α1, . . . , αk and
rate parameters β1 = . . . = βk and then dividing each qj by the sum over all qj (Gelman
et al., 2013, p. 583). This makes use of the relation

Y1 ∼ Gam(α1, β), . . . , Yk ∼ Gam(αk, β), Ys =
k
∑

j=1

Yj

⇒ X = (X1, . . . , Xk) =

(

Y1
Ys
, . . . ,

Yk
Ys

)

∼ Dir(α1, . . . , αk)

(15)

where the probability density function of the gamma distribution is given by

Gam(y; a, b) =
ba

Γ(a)
ya−1 exp[−by] for y > 0 . (16)

Upon random number generation, exceedance probabilities can be estimated as

ϕj =
1

S

S
∑

n=1

[

∧

i 6=j

r
(n)
j > r

(n)
i

]

(17)

where [. . .] refers to Iverson bracket notation, S is the number of samples and r
(n)
j corre-

sponds to the j-th element from the n-th sample of r. Unfortunately, sampling is time-
consuming and precise estimation of Dirichlet exceedance probabilities requires up to 106

samples. We therefore propose another method relying on numerical integration.

Using this second method, exceedance probabilities are again calculated using theorem
(15). Therefore, consider

q1 ∼ Gam(α1, 1), . . . , qk ∼ Gam(αk, 1), qs =

k
∑

j=1

qj (18)

and the Dirichlet variate

r = (r1, . . . , rk) =

(

q1
qs
, . . . ,

qk
qs

)

∼ Dir(α1, . . . , αk) . (19)
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Obviously, it holds that

rj > ri ⇔ qj > qi for i, j = 1, . . . , k with i 6= j . (20)

Therefore, consider the probability that qj is larger than qi, given qj is known. This
probability is equal to the probability that qi is smaller than qj , given qj is known

p(qj > qi|qj) = p(qi < qj |qj) (21)

which can be expressed in terms of the gamma cumulative distribution function as

p(qi < qj |qj) =

∫ qj

0

Gam(qi;αi, 1) dqi =
γ(αi, qj)

Γ(αi)
(22)

where Γ(α) is the gamma function and γ(α, x) is the lower incomplete gamma function.
Since the gamma variates are independent of each other, these probabilties factorize:

p(∀i 6=j [qj > qi] |qj) =
∏

i 6=j

p(qj > qi|qj) =
∏

i 6=j

γ(αi, qj)

Γ(αi)
. (23)

Although it can be easily calculated using implementations of the gamma function and
the lower incomplete gamma function in numerical software packages, this probability
is still dependent on qj. In order to obtain the exceedance probability ϕj, qj has to be
integrated out. From equations (6) and (20), it follows that

ϕj = p(∀i 6=j [rj > ri]) = p(∀i 6=j [qj > qi]) . (24)

Using the law of marginal probability, we have

ϕj =

∫ ∞

0

p(∀i 6=j [qj > qi] |qj) p(qj) dqj . (25)

With (23) and (18), this becomes

ϕj =

∫ ∞

0

∏

i 6=j

(p(qj > qi|qj)) Gam(qj ;αj, 1) dqj . (26)

And with (22) and (16), it becomes

ϕj =

∫ ∞

0

∏

i 6=j

(

γ(αi, qj)

Γ(αi)

)

q
αj−1
j exp[−qj ]

Γ(αj)
dqj . (27)

In other words, the exceedance probability is an integral from zero to infinity where
the first term in the integrand conforms to a product of gamma cumulative distribution
functions and the second term is a gamma probability density function.
To our knowledge, the integral in (27) cannot be solved analytically. This means that
Dirichlet exceedance probabilities for k > 2 must be calculated using numerical integra-
tion. In the next section, we provide MATLAB code for this task.
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2.4 MATLAB code

The following code separately handles the cases k = 2 and k > 2 and is already optimized
to avoid overflow and underflow due to very large or very small numbers in the latter
case. The integral function used in line 27 was introduced in MATLAB R2012a, so this
code should work from this version onwards.

01 function exc_p = Dir_exc_prob(alpha)

02 % _

03 % Exceedance Probability for Dirichlet-distributed random variables

04 % FORMAT exc_p = Dir_exc_prob(alpha)

05 % alpha - a 1 x K vector with Dirichlet concentration parameters

06 % exc_p - a 1 x K vector with Dirichlet exceedance probabilities

07

08 % Get dimensionality

09 %-----------------------------------------------------------------------%

10 K = numel(alpha);

11

12 % Analytical computation, if bivariate Dirichlet

13 %-----------------------------------------------------------------------%

14 if K == 2

15 % using the Beta CDF

16 exc_p(1) = 1 - betainc(1/2,alpha(1),alpha(2));

17 exc_p(2) = 1 - exc_p(1);

18 end;

19

20 % Numerical integration, if multivariate Dirichlet

21 %-----------------------------------------------------------------------%

22 if K > 2

23 % using Gamma CDFs

24 exc_p = zeros(1,K);

25 for j = 1:K

26 f = @(x) integrand(x,alpha(j),alpha([1:K]~=j));

27 exc_p(j) = integral(f,0,alpha(j)) + integral(f,alpha(j),Inf);

28 end;

29 end;

30

31 % Integrand function for numerical integration

32 %-----------------------------------------------------------------------%

33 function p = integrand(x,aj,ak)

34

35 % product of Gamma CDFs

36 p = ones(size(x));

37 for k = 1:numel(ak)

38 p = p .* gammainc(x,ak(k));

39 end;

40

41 % times a Gamma PDF

42 p = p .* exp((aj-1).*log(x) - x - gammaln(aj));
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3 Application

3.1 Political election forecasting

In a political election, people can – if they go to the election and if they do not invalidate
their ballot paper – usually decide between a finite number k of non-overlapping parties.
This means that political parties can be understood as event types E1, . . . , Ek “occuring”
with certain frequencies r1, . . . , rk in the voting population. Since (2) holds true when we
restrict ourselves to the voting population filling valid ballot papers, r might be modelled
using a Dirichlet distribution given by (1), especially when making inferences about r
before the election.
Inferences about r before the election are usually based on voting polls. The following
table displays voting polls for two elections in the Federal Republic of Germany that
happened in 2005 and 2013. The first survey was performed by Forschungsgruppe Wahlen

on behalf of the public TV service ZDF and was published on 09/09/2005 (nine days
before the actual election). The second survey was conducted by Infratest dimap on behalf
of the public TV service ARD and was published on 10/01/2013 (ten days before the
actual election).

Election Respondents CDU SPD FDP Grüne Linke Other

Federal election,
Germany 2005

N = 1,299 41 % 34 % 7 % 7 % 8 % 3 %

State election,
Lower Saxony 2013

N = 1,001 40 % 33 % 5 % 13 % 3 % 6 %

Voting polls can be considered as data acquisition for a Multinomial-Dirichlet model. Each
respondent corresponds to one observation i = 1, . . . , n and respondents choose between
mutually exclusive and collectively exhaustive options j = 1, . . . , k. This is done in order
to infer the unknown frequencies r of these options in the whole population. Suppose that
option j was selected nj times in a poll with

∑k

j=1 nj = n and prior knowledge about
r is given by α0. Then, the posterior distribution over r is given by αnj = α0j + nj and
informs us about the likelihood of each frequency combination in the population that the
respondents were sampled from.
We asssume that the polling results were not corrected for selection biases (which however
is usually the case) and that non-voters were excluded from the polling results (such
that percentages add up to 100 %). Furthermore, we apply a uniform prior distribution
over r given by α0 = [1, . . . , 1]. Therefore, posterior parameter estimates are given by
αnj = 1 + pj/100 ·N in each poll where pj refers to the percentage reported for party j in
the polling results. Rounded alpha estimates are given in the following table.

Election CDU SPD FDP Grüne Linke Other

2005 534 443 92 92 105 40

2013 401 331 51 131 31 61
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These alpha parameters define a Dirichlet distribution over voting frequencies that can
be used to make posterior inference by quantifying the probability of posterior state-
ments like rCDU > rSPD that are of interest when predicting the outcome of the election.
Calculating exceedance probabilities for such a posterior distribution is equivalent to cal-
culating the probability that a certain party will win the election in terms of receiving
the maximum number of votes among all the parties.
For the first election (Germany, 2005), we calculate exceedance probabilities for each
party. For the second election (Lower Saxony, 2013), we calculate exceedance probabilities
for the three blocks “CDU & FDP” (forming a center-right coalition), “SPD & Grüne”
(forming a center-left coalition) and “Linke & Other” (the remaining parties). This is
done by marginalizing the posterior distribution with respect to these groups based on
the agglomeration theorem for the Dirichlet distribution

(r1, . . . , rk) ∼ Dir(α1, . . . , αk) ⇒

(

∑

j∈S1

rj, . . . ,
∑

j∈Sl

rj

)

∼ Dir

(

∑

j∈S1

αj, . . . ,
∑

j∈Sl

αj

)

(28)

where S1, . . . , Sl are disjoint subsets of S = {1, . . . , k} partitioning the whole set of op-
tions, just like it is done by the three political groups mentioned above. Upon marginal-
ization, exceedance probabilities are calculated for the newly obtained distribution. In
this way, we make inferences not about which party will win the election, but about
which part of the political spectrum will most likely be able to form a coalition. In the
following table, we report these exceedance probabilities.

Election CDU SPD FDP Grüne Linke Other

2005 99.82 % 0.18 % 0 % 0 % 0 % 0 %

Election CDU & FDP SPD & Grüne Linke & Other

2013 37.04 % 62.96 % 0.00 %

This means that, according to the voting polls listed above, the CDU was most likely to
win the federal election in 2005 and the center-left wing parties were more likely though
far from certain to win the state election in 2013. We list actual election results in the
following table.

Election CDU SPD FDP Grüne Linke Other

2005 35.2 % 34.2 % 9.8 % 8.1 % 8.7 % 4.0 %

2013 36.0 % 32.6 % 9.9 % 13.7 % 3.1 % 4.7 %

Thus, with regard to the final results, both predictions were correct, but only with some
reservations: In 2005, the CDU won the election by a much closer margin than expected
which lead to heavy criticism of forecasting institutes; and in 2013, the race between
the center-right and the center-left was too close to call until late into the election night
which is also reflected in the lower maximal exceedance probability in this comparison.
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3.2 Neuroimaging model selection

Consider Bayesian inference on data y using model m with parameters θ. Then, p(y|m)
is the probability of the data y, given only the model m, regardless of particular values
of the parameters θ which are integrated out of the likelihood function p(y|θ,m). This
probability is called “model evidence” or “marginal likelihood” and can act as a model
quality criterion in Bayesian inference. In neuroimaging, a hierarchical model has been
proposed (Stephan et al., 2009) that allows to make inferences on model frequencies and
optimal model structure in a population, given log model evidences log p(y|m) for a
number of subjects from this population and a number of models. This is called group-
level or random-effects Bayesian model selection (RFX BMS).
We consider model evidences p(yi|mj) for the data from subjects i = 1, . . . , N analyzed
using models j = 1, . . . ,M . Then, the hierarchical population proportion model underly-
ing RFX BMS is given by the following probability densities:

p(y|m) =
N
∏

i=1

p(yi|mi) =
N
∏

i=1

M
∏

j=1

p(yi|ej)
mij

p(m|r) =

N
∏

i=1

Mult(mi; 1, r) =

N
∏

i=1

M
∏

j=1

r
mij

j

p(r|α) = Dir(r;α) =
Γ(
∑M

j=1 αj)
∏M

j=1 Γ(αj)

M
∏

j=1

r
αj−1
j

(29)

where y = {y1, . . . , yN} represents measured data, m is an N × M indicator matrix
representing the multinomial variable “model”, r is a 1 ×M vector of unknown model
frequencies in the population and α is a 1×M vector of concentration parameters.
Accounting for different subjects being best explained by different models, a Variational
Bayesian (VB) algorithm has been developed (Stephan et al., 2009) to infer a posterior
distribution over model frequencies p(r|y) from prior concentration parameters α0:

α = α0 = [1, . . . , 1]

until convergence

uij = exp

[

log p(yi|ej) + ψ(αj)− ψ

(

M
∑

j=1

αj

)]

βj =

N
∑

i=1

uij
ui
, ui =

M
∑

j=1

uij

α = α0 + β

end

p(r|y) = Dir(r;α)

(30)

Upon model estimation, exceedance probabilities can be calculated for the Variational
posterior Dirichlet distribution in order to make quantitative statements about the “win-
ning model”, i.e. the model that best explains a given set of data.
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The model in equation (29) can be seen as a simple extension of a Multinomial-Dirichlet
model (see Section 3.1) where the occurences of event types are not observed directly,
but through model evidences p(y|m).
Originally, RFX BMS was introduced for dynamic causal models (DCMs) (Stephan et
al., 2009; Penny et al., 2010; Rigoux et al., 2014) where the log model evidence is approx-
imated using the variational free energy (Friston et al., 2006). However, the approach
can also operate on general linear models (GLMs) (Rosa et al., 2010) which requires log
model evidences to be calculated voxel-wise (Penny et al., 2007), i.e. separately for each
measurement location in the brain.
Here, we apply RFX BMS to a study on orientation pop-out processing (Bogler et al.,
2013) where brain activity data was acquired using functional magnetic resonance imag-
ing (fMRI) and analyzed using voxel-wise univariate general linear models (GLMs). We
constructed two model spaces, one having three models and the other having nine mod-
els. For each model in each of the 22 subjects, we calculated a cross-validated log model
evidence (cvLME). For both model spaces, we estimated the RFX BMS model resulting
in posterior densities p(r|α). From these posterior densities, we calculated exceedance
probabilities ϕ in all 53,268 in-mask voxels.
We compared EP calculation using the numerical integration approach given in equa-
tion (27) and using the provided code (see Section 2.4) against the sampling approach
given in equation (17) which is currently implemented in the software package Statistical
Parametric Mapping (SPM) as the function spm_dirichlet_exceedance.m. Resulting
EP calculation times are given in the following table.

Model Space Integration Sampling Ratio

3 models 03:08 min 33:58 min 10.84

9 models 13:44 min 97:58 min 7.13

This shows that numerical integration outperforms random sampling by a factor of 7 to
11. We expect that sampling time increases linearly with number of models (more random
numbers need to be generated) whereas integration time will grow faster than linear (the
integrand gets more and more complex). Therefore, with more models, the advantage of
the integration approach might disappear or even reverse. However, with a lot of models
in RFX BMS, it is also not reasonable anymore to compute model EPs, but to group
models into model families using (28) and then calculate family EPs.
Also note that for the sampling approach, we only used S = 105 samples which is below
the recommended number of samples S = 106 (the default value in the SPM function).
Whereas the precision of the sampling approach critically depends on the number of
samples, the accuracy of numerical integration is very high, because it only depends on
the MATLAB implementation. Here, we used MATLAB R2013b on a 64-bit Windows 7
PC with 16 GB RAM and eight CPU kernels working at 3.40 GHz.
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4 Conclusion

We have derived an efficient method to calculate exceedance probabilities for the Dirichlet
distribution based on numerical integration over a product of gamma cumulative distri-
bution functions multiplied with a gamma density. Moreover, we have provided MATLAB
code for implementing this method and presented two applications.
Using the example of political election forecasting, we have investigated the properties of
Dirichlet EPs in their application to survey data. Turning to the example of neuroimaging
model selection, we have shown that EP calculation using numerical integration clearly
outperforms a sampling approach based on randum number generation which is currently
used for model inference in neuroimaging, especially fMRI data analysis.

5 References

[1] Bogler C, Bode S, Haynes JD (2013): “Orientation pop-out processing in human visual
cortex”. NeuroImage, vol. 81, pp. 73-80.

[2] Friston KJ, Mattout J, Trujillo-Barreto N, Ashburner J, Penny WD (2006): “Varia-
tional free energy and the Laplace approximation”. NeuroImage, vol. 34, pp. 220-234.

[3] Gelman A, Carlin JB, Stern HS, Dunson DB, Vehtari A, Rubin DB (2013): Bayesian
Data Analysis, 3rd Edition, Chapman & Hall, Boca Raton.

[4] Penny WD, Flandin G, Trujillo-Barreto N (2007): “Bayesian Comparison of Spatially
Regularised General Linear Models”. Human Brain Mapping, vol. 28, pp. 275-293.

[5] Penny WD, Stephan KE, Daunizeau J, Rosa MJ, Friston KJ, Schofield TM, Leff AP
(2010): “Comparing Families of Dynamic Causal Models”. PLoS ONE, vol. 6, iss. 3,
art. e1000709.

[6] Rigoux L, Stephan KE, Friston KJ, Daunizeau J (2014): “Bayesian model selection
for group studies – Revisited”. NeuroImage, vol. 84, pp. 971-985.

[7] Rosa MJ, Bestmann S, Harrison L, Penny W (2010): “Bayesian model selection maps
for group studies”. NeuroImage, vol. 49, pp. 217-224.

[8] Stephan KE, Penny WD, Daunizeau J, Moran RJ, Friston KJ (2009): “Bayesian
model selection for group studies”. NeuroImage, vol. 46, pp. 1004-1017.

10


	1 Introduction
	2 Theory
	2.1 Dirichlet exceedance probabilities
	2.2 Case I: Bivariate Dirichlet
	2.3 Case II: Multivariate Dirichlet
	2.4 MATLAB code

	3 Application
	3.1 Political election forecasting
	3.2 Neuroimaging model selection

	4 Conclusion
	5 References

