

City, University of London Institutional Repository

Citation: Goergen, K., Hebart, M. N., Allefeld, C. ORCID: 0000-0002-1037-2735 and
Haynes, J-D. (2017). The same analysis approach: Practical protection against the pitfalls of
novel neuroimaging analysis methods. Neuroimage, 180, pp. 19-30. doi:
10.1016/j.neuroimage.2017.12.083

This is the accepted version of the paper.

This version of the publication may differ from the final published
version.

Permanent repository link: http://openaccess.city.ac.uk/id/eprint/22840/

Link to published version: http://dx.doi.org/10.1016/j.neuroimage.2017.12.083

Copyright and reuse: City Research Online aims to make research
outputs of City, University of London available to a wider audience.
Copyright and Moral Rights remain with the author(s) and/or copyright
holders. URLs from City Research Online may be freely distributed and
linked to.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

City Research Online

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

1

The Same Analysis Approach:

Practical protection against the

pitfalls of novel neuroimaging

analysis methods

Kai Görgena, Martin N. Hebartbc, Carsten Allefelda*, John‐Dylan Haynesade*

a Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt‐

Universität zu Berlin, and Berlin Institute of Health (BIH); Bernstein Center for Computational

Neuroscience, Berlin Center for Advanced Neuroimaging, Department of Neurology, and Excellence

Cluster NeuroCure; 10117 Berlin, Germany
b Department of Systems Neuroscience, University Medical Center Hamburg‐Eppendorf, Martinistr. 52,

20251 Hamburg, Germany
c Section on Learning and Plasticity, Laboratory of Brain & Cognition, National Institute of Mental Health,

National Institutes of Health, Bethesda MD, USA
d Humboldt‐Universität zu Berlin, Berlin School of Mind and Brain and Institute of Psychology; 10099

Berlin, Germany
e Technische Universität Dresden; SFB 940 Volition and Cognitive Control; 01069 Dresden, Germany

* These authors contributed equally to this work

Correspondence: Kai Görgen, BCCN Berlin, Philippstr. 13, Haus 6, 10115

Berlin, Germany. kai.goergen@bccn‐berlin.de

This manuscript has been published. Please cite as:

Görgen, K., Hebart, M. N., Allefeld, C., & Haynes, J.‐D. (2018). The same

analysis approach: Practical protection against the pitfalls of novel

neuroimaging analysis methods. NeuroImage, 180, 19-30.
doi:10.1016/j.neuroimage.2017.12.083

Highlights

 Traditional design principles can be unsuitable when combined with

cross‐validation

 This can explain both inflated accuracies and below‐chance accuracies

 We propose the novel ʺsame analysis approachʺ (SAA) for checking

analysis pipelines

 The principle of SAA is to perform additional analyses using the same

analysis

 SAA analysis should be performed on design variables, control data,

and simulations

Görgen et al., SAA

2

Abstract

Standard neuroimaging data analysis based on traditional principles of ex-

perimental design, modelling, and statistical inference is increasingly com-

plemented by novel analysis methods, driven e.g. by machine learning meth-

ods. While these novel approaches provide new insights into neuroimaging

data, they often have unexpected properties, generating a growing literature

on possible pitfalls. We propose to meet this challenge by adopting a habit of

systematic testing of experimental design, analysis procedures, and statistical

inference. Specifically, we suggest to apply the analysis method used for ex-

perimental data also to aspects of the experimental design, simulated con-

founds, simulated null data, and control data. We stress the importance of

keeping the analysis method the same in main and test analyses, because only

this way possible confounds and unexpected properties can be reliably de-

tected and avoided. We describe and discuss this Same Analysis Approach in

detail, and demonstrate it in two worked examples using multivariate decod-

ing. With these examples, we reveal two sources of error: A mismatch be-

tween counterbalancing (crossover designs) and cross-validation which leads

to systematic below-chance accuracies, and linear decoding of a nonlinear

effect, a difference in variance.

Keywords: experimental design, confounds, multivariate pattern analysis,

cross validation, below-chance accuracies, unit testing

Görgen et al., SAA

3

Introduction

Research practice in psychology and cognitive neuroscience has traditionally

been guided by principles of experimental design and statistical analysis,

much of which was pioneered by R. A. Fisher (1925, 1935). The purpose of

these principles is to observe effects as clearly as possible under conditions of

noisy and limited data, and to make reliable inferences about the relation be-

tween experimentally manipulated and measured variables in the presence of

potentially confounding influences.

Methodological work has led to an established corpus of design principles,

e.g. counterbalancing (also known as crossed or crossover design) and ran-

domization, and statistical tests (such as t-test and ANOVA; Coolican, 2009;

Cox and Reid, 2000). A researcher can normally apply these without exten-

sive further checks, and their use in published work provides transparency

for reviewers and readers. Cognitive neuroimaging has followed the lead and

adapted these principles to the specific properties of its large, high-

dimensional data sets, leading to mass-univariate GLM-based data analysis

as its main workhorse (Friston et al., 1995; Holmes and Friston, 1998).

However, the complexity of neuroimaging data and the development of new

theoretical ideas about neural processing have motivated a wealth of alterna-

tive analysis approaches, foremost among them multivariate pattern analysis

(MVPA; Haxby et al., 2001). Driven not by standard statistical approaches,

but by machine learning methods such as classification algorithms and cross-

validation (Pereira et al., 2009), they significantly extended the data-analytic

toolbox and made a larger variety of possible effects in neuroimaging data

accessible (e.g. Kamitani & Tong, 2005; Haynes et al., 2005). The drawback of

this methodological plurality is that the soundness of applied methods can no

longer be judged based on an established corpus, and novel methods often

prove to have unexpected properties. This is evidenced by a growing litera-

ture on possible pitfalls, pointing out e.g. that known ways to control con-

founds may no longer work with multivariate analysis (Todd et al., 2013),

accuracies are not binomially distributed when estimated by cross-validation

(Noirhomme et al., 2014; Jamalabadi et al., 2016), or a second-level t-test does

not provide population inference if applied to information-like measures

(Allefeld et al., 2016). It even applies to seemingly small extensions of estab-

lished methodology, like extraction of correlations from a brain map leading

to an inflated estimate (Vul et al., 2009; Kriegeskorte et al., 2009) or the use of

cluster-level statistics with a threshold for which the underlying approxima-

tion might be invalid (Eklund et al., 2016).

We propose to meet these challenges to the validity of novel analysis methods

by adopting a habit of systematic testing of experimental design, analysis

procedures, and statistical inference, both concerning single parts and the

whole analysis pipeline. The common practice of performing “control anal-

yses” on additionally obtained data to rule out confounds (e.g. reaction time

as a proxy for task difficulty) can already be seen as a limited form of such

testing, but our recommendation goes beyond that: In particular, we suggest

Görgen et al., SAA

4

to perform analyses on aspects of the experimental design and simulated null

data. A crucial point in these test analyses is that they should preserve prop-

erties of the actual pipeline as far as possible; in particular, they have to be

performed using the same analysis method as the actual data analysis. For

this reason, we call our proposal the Same Analysis Approach (SAA).

In the following we detail how to use the Same Analysis Approach, both in

worked examples and in a general overview. Along the way, we reveal two

possible confounds in MVPA that are not widely known in the neuroimaging

community: the mismatch between a counterbalanced design and an analysis

using cross-validation, and the unexpected ability of a linear classifier to “de-

code” differences in variance in the absence of differences in the mean. While

we believe that the specific examples of errors presented in this paper are of

general interest, our main aim is to highlight more generally that many types

of unexpected errors can occur when there is a mismatch between design and

analysis. Thus, we provide SAA as a general tool to find such errors that

might affect any particular analysis pipeline in different ways.

Example: Counterbalancing and cross-validation

A researcher intends to perform a simple neuroimaging experiment to test

whether there is a difference between two experimental conditions A and B.

The experiment is performed in four runs. In each run, both conditions are

presented in two consecutive trials. A common confound in such a setup is

the presentation order of the conditions: If A was always presented before B,

it would be unclear if an observed difference was caused by a true difference

between A and B, or whether it was caused by a difference between first and

second trials (Figure 1a). To prevent this, the researcher employs counterbal-

ancing (advocated by e.g. Fisher, 1935): Each experimental condition A and B

is equally often presented in the first and in the second trial, i.e. equally often

together with each level of the potentially confounding factor “trial order”

(Figure 1b). The purpose of counterbalancing is to prevent a bias in the final

analysis even if an effect of trial order was present, because if both conditions

are equally often presented as trial 1 and trial 2, a systematic effect of the con-

found “trial order” will cancel out.

Görgen et al., SAA

5

Figure 1. Example experiment. a,b) Experimental designs to test two experimental

conditions A (no background) and B (grey background) in four runs. Small numbers

(10, 20) are example data for each experimental trial. , denote condition specific
means. The design in panel a) cannot distinguish presentation order effects from ef‐

fects of the experimental conditions, because all first/second trials are also A/B trials.

The observed difference in means 10, 20 could thus arise from a difference
in either condition or trial number. In contrast, the design in panel b) controls the

confound “trial order” using counterbalancing. Even if data (small numbers) would

only depend on the trial number, as in this example, mean and variance of both ex‐

perimental conditions are equal (15), and thus standard statistics such as a t‐
test will not indicate a difference between the conditions: The confound control

worked. c,d) The same experimental design with leave‐one‐run‐out cross‐validated

classification. Panel c) shows partitioning of the data into training and test set for one

cross‐validation fold, and d) demonstrates that systematic misclassification of all test

data arises, resulting in 0% correct predictions. Systematic misclassification will also

occur in all other cross‐validation folds (not shown). Thus, the intended confound

control failed. Note that the reason for this systematic below‐chance accuracy is nei‐

ther an imbalanced number of training or test samples between conditions (nA = nB = 3

in each training set; nA = nB = 1 in each test set), nor is it specific to any particular clas‐

sifier, nor to cross‐validation in general. It is instead caused by a “design–analysis”

mismatch between a counterbalanced design and the cross‐validation scheme em‐

ployed in the analysis.

Counterbalancing works as expected for the t‐test

To test whether counterbalancing works as expected and indeed removes the

confounding effect of trial order, we can calculate what would happen if

there was no difference in the experimental conditions A and B, but the data

were only influenced by the confound “trial order” that is to be controlled.

Figure 1a and 1b show such a situation: Neuroimaging measurements are y =

10 in all first trials and y = 20 in all second trials. Whereas the experimental

design in Figure 1a does not allow to distinguish if an observed difference

between A and B arises from a true difference between the condition or be‐

cause A was always presented before B, the counterbalanced setup in Figure

a) Trial 1 Trial 2
Run 1 A 10 B 20
Run 2 A 10 B 20
Run 3 A 10 B 20
Run 4 A 10 B 20

Mean A=10 B=20

b) Trial 1 Trial 2
A 10 B 20
A 10 B 20
B 10 A 20
B 10 A 20

Mean A=15

B=15

Run 1
Run 2
Run 3
Run 4

Run 1 A 10 B 20 Train

1xA, 1xB

3xA, 3xBRun 2 A 10 B 20
Run 3 B 10 A 20

Run 4 B 10 A 20

c) Trial 1 Trial 2

0% correct, i.e. 50% below chance

d)

20

A B
B

10

A
A B

Test
Classifier"A" "B"

10 20

miscl. miscl.

Görgen et al., SAA

6

1b does allow this distinction. Collecting the counterbalanced measurements

for each condition A and B across runs yields yA = [10 10 20 20] and yB = [20 20

10 10]. Clearly, a t-test would not indicate a significant difference between

both conditions, because the data values are identical in both. Counterbalanc-

ing therefore worked as intended: The factor “trial order” heavily confound-

ed the data, but it had no systematic effect on the outcome of the statistical

test.

Counterbalancing does not work for leave-one-run-out cross-validation

What happens if the counterbalanced but confounded data from Figure 1b is

analysed with cross-validated classification instead of the t-test? Cross-

validated classification is a standard MVPA method to estimate how well a

classifier can learn from examples to predict (“decode”) the experimental

condition of independent data, and can serve to test for statistical dependency

between conditions and data like the t-test above (Haynes and Rees, 2005;

Kriegeskorte et al., 2006; Norman et al., 2006). Although cross-validated clas-

sification is typically applied to multivariate data, it can be applied to one-

dimensional data equally well.1

In the same way as for the t-test above, we can check whether counterbalanc-

ing the potential confound “trial order” will also prevent unexpected effects

on the outcome of the cross-validated classification analysis by assessing its

performance on the confounded but counterbalanced data from Figure 1b.

Selecting a specific cross-validation scheme, i.e. how to separate data into

training and test sets in the different folds, is one required analysis decision.

The stratified leave-one-run-out cross-validation scheme in this example is

common in neuroimaging because – in contrast to data from the same run –

different imaging runs can be considered approximately statistically inde-

pendent. Each run contains equally many samples per class, so the cross-

validation is also balanced. Because the confound “trial order” has been con-

trolled by counterbalancing and we know that there is no effect of the exper-

imental condition, the classifier should not be able to distinguish between the

classes. In a balanced setting with two classes, “cannot distinguish” translates

to a classifier that assigns conditions to data in a non-systematic fashion, lead-

ing to an expected classification performance around 50%.

1 Cross-validated classification is performed by repeatedly splitting the measured data samples

into independent training and test sets, inferring a relation between data and “labels” (experi-

mental conditions) from the training set and quantifying its strength on the test set. In this

example, the data of individual runs is held out in each successive split (“fold”) until all data

served as test data once (Figure 1c). The quality of the inferred prediction is typically measured

by classification accuracy (Figure 1d). Averaging the performance measure across all folds

yields an estimate of how well the classifier would perform on completely new data. This final

performance estimate serves as a measure of information content and – if significantly above

chance (i.e. >50% for two classes) – demonstrates a statistical relationship between experi-

mental conditions and data. See Hebart & Baker (this issue) for a recent overview about differ-

ences and misunderstandings between MVPA and univariate analyses.

Görgen et al., SAA

7

Instead, the obtained accuracy is 0% when performing the analysis, i.e. 50%

below chance. This means that every single data sample was misclassified

(Figure 1d). Despite the absence of a true effect, our result is worse than

chance, demonstrating that in this example counterbalancing completely

failed to control the confound “trial order”.

Standard control data analysis fails to detect the problem

In an actual experiment, a researcher of course cannot know that no true ef-

fect is present in the data. Since the result systematically deviates from chance,

they might even suspect that a true effect is present, but they might not be

sure how to interpret a systematic below-chance accuracy (cf. Allefeld et al.,

2016; Kowalczyk, 2007). Because of this, they would probably conduct further

analysis to look for the source of the unexpected behaviour. For example, the

researcher might perform a control analysis on reaction times that were rec-

orded together with the neural data. The idea is that a potentially confound-

ing variable (attention level, task difficulty, etc.) will influence both the exper-

imental and the control data. Consequently, finding an effect on the control

data would demonstrate that the main results could alternatively be ex-

plained by that confound. In this example, assume that the reaction times

depend solely on trial order, just as for the neuroimaging data. For example,

in first trials participants were more vigilant and responded faster, whereas in

second trials their attention level was decreased and they responded more

slowly (Figure 2).

Following common practice, conventional control analyses are carried out

using standard univariate statistics, typically t-tests or F-tests, even if MVPA

is employed for the main analysis (Todd et al., 2013; Woolgar et al., 2014).

Since in this example reaction times depend solely on trial order, we already

know that a t-test will not indicate any reaction time effect, and thus does not

help explain the puzzling below-chance classification accuracy. Even though

both datasets – brain responses and reaction times – are completely equiva-

lent, the control analysis did not reveal any information about the confound

that occurred in the main analysis. Thus, the control analysis failed its pur-

pose.

Görgen et al., SAA

8

Figure 2. Mismatch between main analysis and control analysis. A standard control

analysis fails to detect the problem from the initial example. Upper panel: Leave‐one‐

run‐out cross‐validated decoding applied to counterbalanced data without a true

experimental effect but with a “trial order” confound leads to a puzzling classifica‐

tion accuracy of 0% (Figure 1b‐d). Lower panel: A t‐test applied to reaction times as

control data does not find a difference and thereby fails to detect the problem gener‐

ated by the mismatch between the counterbalanced design and the cross‐validated

analysis. This may lead to a false sense of certainty that results from the main analysis

were not explained by a confound.

Problem summary

This initial example illustrates two of our main points. First, the design prin‐

ciple (counterbalancing) used in the experimental design comes from the es‐

tablished corpus but was paired with an analysis method (cross‐validated

classification) which does not. What the researcher overlooked here was that

design principles and analysis methods do not stand on their own but work

in tandem, and using another analysis method led to a “design–analysis

mismatch”. Second, using a standard control data analysis to diagnose the

problem failed, because it did not use the same analysis method, producing a

mismatch between main analysis and control analysis. Many problems that

arise with the use of novel analysis methods are caused by these or similar

kinds of mismatch: between design and analysis, different analysis steps, dif‐

ferent design principles, or analysis and statistical assumptions (see below).

Note that the focus of this paper is not the specific problem outlined above,

for which we could provide an explanation and solution at this point; nor is it

to provide an exhaustive overview of possible errors. Instead, we introduce a

general approach to diagnose problems, in form of a principled form of con‐

trol analysis for any number of errors.

We now introduce this control analysis and demonstrate it on the problem of

the initial example. After that, we explain the origin of problem, provide two

solutions, and discuss generalisations (sections “SAA as a guide to solve the

problem of the initial example” and following). We especially point out what

property renders the t‐test valid but cross‐validated decoding invalid and

that employing SAA to potential solutions can help to test if they work as

expected.

Note that the confounding effect that we demonstrate in this example is not a

purely theoretical construct. It is also not simply remedied by increasing the

number of subjects or the number of runs per subject; only substantially in‐

creasing the number of data points per run would help. We demonstrate this

A B A B B A B A
Run 2Run 1 Run 3 Run 4

100 200 100 200 100 200 100 200RT [ms] t-test: no difference

 Neuro [a.u.] cv-MVPA: 0% correct ??

false security that
cv-MVPA is ok

10 20 10 20 10 20 10 20Main data:

Ctrl data:

Görgen et al., SAA

9

on real empirical data with multiple subjects in the supplement (SI2). A nor-

mal-sized empirical data set is also used in our second demonstration of an-

other confounding effect below.

The Same Analysis Approach

Problems like those in the initial example are hard to detect, because seem-

ingly the experiment was designed correctly by using counterbalancing to

neutralize a common confound. While an in-depth examination of design,

analysis, and statistics might have alerted the researcher to the problem, it is

often hard to determine what exactly to look for, especially for novel analysis

methods with little practical experience. Performing empirical control anal-

yses is a good idea, but can systematically fail if analysis methods differ be-

tween main and control analyses, as we demonstrated above.

In addition to theoretical examination and standard control analyses, we pro-

pose to perform the following types of analysis:

Type 1) Apply the same analysis method used for experimental data to variables of the

experimental design. Perform positive and negative control analyses on syn-

thetic noise-free data sets, each created from single variables of the experi-

mental design, and analyse them with the main analysis method. Positive

control analyses (see e.g. Fedoroff and Richardson, 2001) test if design varia-

bles that should influence the experimental outcome – typically the experi-

mental variable – indeed yield significant results; failing these tests demon-

strates that the experimental setup (design, analysis method, or their combi-

nation) are not suitable to detect the effect of interest. In more complex de-

signs these should also test latent design variables that describe dependencies

within the design. Negative control analyses test if design variables that

should not influence the experimental outcome indeed do not yield significant

results; failing these tests indicate that the variable is a potential confound,

and/or that confound control did not work.

Type 2) Apply the same analysis method used for experimental data to empirical con-

trol data. The main analysis method is applied to additionally measured vari-

ables (e.g. reaction times, age, IQ). Since control data provide a proxy for the

main results, here a result indicates how the main analysis would respond if

the actual data were influenced by a confound.

Type 3) Apply the same analysis method used for experimental data to synthetic null

data. Applying the same analysis to multiple realisations of synthetic null

data tests if the false positive rate (the alpha level) is indeed as expected, and

provides other general information on the null distribution of to be expected

outcomes, such as range and shape.

We suggest to start SAA analysis as simple as possible For example, simple

one-factor tests are very efficient at detecting confounds: They are easy to set

up, have high diagnostic power, and we have found them to be useful in

practice. After all, the aim of this article is to provide a framework to efficient-

Görgen et al., SAA

10

ly detect, avoid, and eliminate confounds, not to create unnecessary workload

for experimenters.

SAA to detect the problem of the initial example

To illustrate SAA, we return to the initial example: An experiment with four

runs and two trials per run, one for each experimental condition A and B,

with presentation order counterbalanced across runs. Neurophysiological

data is measured from a single voxel (ROI 1) and a larger region of interest

(ROI 2). Additionally, reaction times are measured (Figure 3a). As assumed

above, the neurophysiological example data are not influenced by the exper-

imental condition, but only by the confounding factor “presentation order".

In applying leave-one-run-out cross-validated classification we find 0% accu-

racy in both ROIs in the main analysis, leaving us with the question how to

interpret this result (Figure 3b).

We now use SAA type 1 (Figure 3c): the same analysis on design variables.

This experiment has the three design variables “experimental condition”

(positive control), “run number” and “trial number” (both negative controls).

The experimental condition can be translated into pseudo-data by using the

assignment A = 1 and B = 2. The analysis result of 100% accuracy confirms

that cross-validated classification could detect an effect of the experimental

manipulation if there was one (“positive control analysis”). Run number (1–4)

and trial number (1 or 2) can be directly used as pseudo-data. Here the analy-

sis on run number results in the expected chance level of 50%, but the analy-

sis on trial number results in 0% correct, providing a strong indication that a

“trial order” confound could explain the observed below-chance accuracy

(failed “negative control analysis”). Apparently, cross-validated classification

is susceptible to this confound even though counterbalancing has been em-

ployed to counteract it.

Following SAA type 2, we next apply the same analysis to the reaction times

as control data, and find again an accuracy of 0%. This provides evidence that

the “trial order” confound indeed influences the data.

Finally, we employ SAA type 3 and apply the same analysis to simulated,

random null data that contain neither an experimental effect nor a confound.

Here the result will be different for each simulation, but performing many

simulations we observe that the classification accuracy fluctuates around 50%

on average, which is the expected chance level. This can be repeated with

random data of different dimensionality and different distributions. See sup-

plemental Table SI 1 (in section SI 3) for more details.

Görgen et al., SAA

11

Figure 3. The Same Analysis Approach (SAA) applied to the initial example. a) De‐

sign variables of initial example (experimental conditions/trial number) and assumed

data (neural data from a one‐dimensional and another high‐dimensional ROI, reac‐

tion times). b) Features of neural data used in the main analysis. One data point (ROI

1: one‐d, ROI 2: high‐d) is available per trial. c) Parallel SAA analysis on test data: one

data point is available per trial, either generated from design properties (condition of

interest, run nr, trial nr), control data (RT), or synthetic null data. Abbreviations in

figure: “Outc.”: Outcome; “Exp.”: Expected; “~50%”: 50% plus/minus statistical devi‐

ation.

Had the experimental design contained additional variables, we could have

systematically gone through all design variables, each time used the design

variable instead of measured data, performed the same analysis on these val‐

ues, and checked if the influence of this variable is as expected.

Note that, except for type 2, SAA does not rely on real data. Therefore, the

problem with this combination of experimental design and analysis method

could have actually been detected (and solved, see below) before data were

collected.

SAA as a guide to solve the problem of the initial example

The analyses above demonstrate that the presentation order confound lead to

below‐chance classification and thereby explains the result of the main analy‐

sis. Further theoretical examination based on these results along the lines of

Figure 1d reveals that the culprit is a mismatch between counterbalanced

design and cross‐validated analysis, in particular that the design factor “trial

order” is not counterbalanced within each training and test set. One element that

might be confusing in this context is the terminology: The analysis is actually

“balanced” in the sense in which the term is normally used in cross‐

validation, which is to say that the number of training samples per class are

equal in each partition. Having both “balanced” data (presentation order) as

well as a “balanced” cross‐validation scheme (number of sample per class)

b) Main analysis

c) Parallel SAA test cases

ROI 2 data (nd)
17

8
...

24
21
...

17
8

...

24
21
...

17
8

...

24
21
...

17
8

...

24
21
...

Exp. variable/Cond. of Interest (label) A B A B B A B A

50%(trial nr) 1 2 1 2 1 2 1 2 ✘0%
100 200 100 200 100 200 100 200 ~50%Reaction Time [ms] ✘0%

0%
0%

??
??

~50%Synthetic null data (1d or more) 5 -3 -4 1 2 4 -3 -3 ✔~50%

1 2 1 2 2 1 2 1 100% ✔100%Cond. of Int. (recoded A:1, B:2)

ROI 1 data (1d) 10 20 10 20 10 20 10 20

Exp. As exp.

Outc.

Outc.

✔50%Other design variables (run nr) 1 1 2 2 3 3 4 4 50%

a) Design variables and recorded data

1 2 1 2 1 2 1 2Other design variable (trial nr)

100 200 100 200 100 200 100 200Reaction Time [ms]

Exp. variable/Cond. of Interest (label) A B A B B A B A

ROI1

ROI2
Neuro (ROI 1, 1d)
Neuro (ROI 2, nd)

Görgen et al., SAA

12

makes it difficult to detect that the cross-validation is both “balanced and

“not balanced” at the same time.

Note that the origin of the problem in this specific example is indeed only the

missing counterbalancing in each cross-validation fold, and neither the analy-

sis type (t-test vs decoding) nor the dimensionality of the data (the demon-

stration actually is one-dimensional). Cross-validated MANOVA (Allefeld

and Haynes, 2014), cross-validated Mahalanobis distance (Diedrichsen et al.,

2016) used in RSA (Kriegeskorte et al., 2008), or any other cross-validated

distance measure will all suffer from the same problem and systematically

estimate negative distances, which are as confusing as below-chance results.

Two potential solutions and SAA to verify whether they work

One possible remedy for this problem is not to use counterbalancing but ran-

domization, i.e. to randomly decide for each run independently whether to

use the trial order AB or BA. We can now employ SAA again to test if the solu-

tion indeed works as expected, by re-running the same analysis on the design

variable “trial number” for randomized designs. When simulating many ex-

periments, we find that the average classification accuracy is indeed 50% (the

chance level), i.e. that the confound is statistically controlled. Looking at the

individual outcomes, however, we find that 50% accuracy itself never occurs;

rather, 0% occurs in 3/8, 75% in 1/2, and 100% in 1/8 of all randomizations

(supplemental Figure A). SAA thus revealed that randomization does not

seem an ideal solution in this context.

Another possibility to solve the problem would be to keep the design, but to

use a validation scheme which ensures that the confound is counterbalanced

in each test set, i.e. that each contains equally many AB and BA runs. This can

be achieved by leaving out two runs (training sets in the four folds: runs 1 &

2, runs 3 & 4, runs 1 & 4, runs 2 & 3; supplemental Figure B). We can again

employ SAA to test if this new analysis solves the problem. This time the result is

indeed 50% for every single experiment, and not just on average as above.

These two possibilities are of course not exhaustive. Since in this example the

problem is related to the way cross-validation is implemented, another alter-

native would be to replace classification accuracy by a (multivariate) test sta-

tistic that does not need cross-validation.

Please note that the example here has been deliberately chosen to be as small

as possible. The demonstrated systematic negative bias will, however, also

occur in larger, real datasets if trial order has an effect on the data and leave-

one-run-out cross-validation is used. The negative bias may not be as extreme

as in the example, but can easily be large enough to suppress real effects

and/or lead to confusing significant below-chance accuracies. See supple-

mental section SI 2 for a demonstration on a real empirical dataset.

Related work and generalisation (initial example)

Three other causes for systematic below-chance results have been described

previously. The first has been provided by Kohavi (1995), who noted that a

Görgen et al., SAA

13

majority classifier (that simply predicts for each test data the label that is most

common in the training set ignoring any properties of the data) will yield 0%

when leave-one-out cross-validation is employed on a balanced data set (with

equally many samples per class). While the example is simpler than ours and

critically depends on different numbers of exemplars per class, it already has

the same general structure as ours, because again balancing is ignored when

splitting data into training and test sets. The second example is “anti-

learning” (Kowalczyk, 2007), which demonstrates that datasets with specific

properties will always yield below-chance accuracies for a large number of

classifiers, independent of any specific design property or validation scheme.

The third cause hinges on using the binomial test for single cross-validated

accuracy estimates, which will yield too many significant below-chance re-

sults (Jamalabadi et al., 2016; Görgen et al., 2014) and above chance results

(Noirhomme et al., 2014; Görgen et al., 2014). Another scenario in which

counterbalancing also unexpectedly fails to control a confounding factor in

MVPA has been described by Todd et al. (2013). It differs from our example

because in theirs individual decoding analyses are calculated for each unit

(subjects in their example, runs in ours), whereas only a single decoding

analysis using all units is calculated in our example. Other major differences

are that it causes above chance results, not below chance results, and that it

does not depend on any particular cross-validation scheme, which is the crux

in our example.

Our example demonstrates that systematic below-chance classification accu-

racies can be caused by a design–analysis mismatch, which can even occur

when employing only basic experimental methodology. In the specific exam-

ple above, the design variable “trial order” was controlled. The problem,

however, is not specific to controlling time or sequence effects; the same logic

applies to counterbalancing any other variable against the experimental vari-

able. In general, it often has unexpected consequences if design features

which are implemented with respect to the full data set are ignored when

data is split into training and test sets for cross-validation. Examples for this

are cases where each class has an equal number of samples in the full data set

but differing numbers in each training and test set, or cases of “dissolving

strata” such as the assignment of patients and their matched controls to dif-

ferent partitions.

Principles for setting up SAA

In this section, we give a non-exhaustive overview over possible forms of

SAA and the different aspects that have to be considered in setting up an

analysis. Supplement section SI 4 provides more in-depth explanations of

components of individual test cases, and section SI 6 demonstrates the neces-

sary steps to perform SAA for the concrete empirical example below.

Görgen et al., SAA

14

Test data

Design variables: These can be explicit design variables such as the experi-

mental condition or the level of a factor in a factorial design, or implicit de-

sign variables such as the sequential number of the trial within run or the

repetition number of a stimulus.

Control data: These are additionally recorded data such as reaction times, error

rates, motion correction parameters, eye-tracking data etc. Possible across-

subject data include age, gender, IQ, or personality scores.

Simulated data: Simulations open a wide range of possibilities. Data may be

generated so that there is no effect (null data) or there is a specific effect, that

a confound is present or not present, or combinations thereof. They may be

simplistic, for example data consisting of only 1s (constant data), or they may

come from a generative model attempting to capture as many aspects of real

data as possible (distribution, autocorrelation across time and space, hemo-

dynamic response, effect size, variation across measurements, trials, runs,

and subjects). A special case are modified data from the same experiment, e.g.

shifted by one trial (Soon et al., 2014), or experimental data unrelated to the

experiment, such as resting-state data (Eklund et al., 2016).

Mapping function: In some cases, test data may be in a form that cannot be

processed by the “same analysis”. An example is the experimental condition,

which is a nominal label and therefore not compatible with a classifier that

expects numerical input. Such categorical data may be mapped to input data

in several ways: Conditions are arbitrarily assigned numerical values (see

example above), or encoded as multiple dummy variables (1 if a trial belongs

to a condition, 0 otherwise), or assigned to randomly chosen multivariate

patterns. Another case are analyses that use intrinsically multivariate

measures such as pattern correlation or cosine distance, e.g. in representa-

tional similarity analyses (RSA; Kriegeskorte et al., 2008). Here, simple math-

ematical or statistical models can be used to create multivariate data, where

similarities are determined by the input variable. Indeed, there is high value

in creating different test cases that all map the same variable to test data, but

with different mapping functions, to understand how the analysis pipeline

reacts to input that might be encoded different than expected (e.g. if it is not

clear which coding scheme the brain employs to encode a specific stimulus).

Depending on the complexity of the mapping function, there is a continuum

between SAA on a simple design variable and a full-blown simulation.

Test range

The Same Analysis Approach can be applied to different analysis ranges: A

complete pipeline, single parts, or specific combinations of parts. In an MVPA

study, these parts may be pre-processing of data, extraction of single-trial or

run-wise values, cross-validated classification, second-level analysis, and sta-

tistical inference. Depending on the range, the form of both test data and in-

spected outcomes changes, e.g. time series, trial-wise values, run-wise values,

accuracies, test statistic values, p-values, or statistical significance.

Görgen et al., SAA

15

Test case

Together, each combination of test data, mapping function, test range, and

outcome specifies a unique test case.

Expected outcome

Whenever possible, each test case should come with a defined expectation

(e.g. chance level classification if there is no effect), and interpretations if the

expectation is fulfilled or violated. Depending on the test data (see below), an

expectation may be a specific value (e.g. an accuracy of 50%) or a distribu-

tional property (e.g. average accuracy 50%).

Deterministic vs stochastic tests

When the test data are fixed, e.g. noise-free pseudo-data generated by a de-

terministic mapping from a design variable, there is only one corresponding

analysis result, and the interpretation of the result depends on this single

fixed value. For noisy data like experimental control data the outcome is still

fixed, but its interpretation is not straightforward and a statistical test may be

necessary to determine whether the result is significant. In a simulation in-

corporating random variation, the simulation has to be run a sufficient num-

ber of times to assess properties of the distribution of outcome values, e.g.

mean, variance, or number of significant outcomes. For the latter, statistical

testing and simulations can be combined by looking e.g. at the frequency with

which the statistical test indicates a significant result across simulation runs,

to determine whether the test is valid under the given circumstances.

Recommendations when using many statistical tests

It is simple to implement a large number of SAA tests, especially using simu-

lated data. If the results are assessed by a statistical test, the number of false

positives will increase with the number of tests, so that the significance level

has to be adjusted. This raises the question how to balance between sensitivi-

ty and specificity for possible confounds, and how to efficiently detect prob-

lems within many test outcomes. For this purpose, we suggest the following

measures:

Adjusting the significance level only for less important tests. Tests should be sepa-

rated into a small number of important tests, which are targeted at potential

confounds that are expected to exert a strong influence, and a possibly large

number of less important tests that are only performed to be on the safe side.

For the first class, sensitivity (as controlled by the significance level) is kept

high, while the second class is corrected for multiple comparisons.

A priori checks vs problem diagnosis. When SAA is set up prior to data collection

(see below) or when no signs of a problem exist in the analysis of experi-

mental data, the sensitivity can be lower than when trying to find the source

of a concrete problem which is evident in main analysis.

Sorting test cases by influence. Tests should be sorted according to whether a

violation in one test is likely to imply a violation in another test, because the

problems targeted by each overlap. For example, if a test on null data shows

Görgen et al., SAA

16

an unexpected result, it is likely that there is a very deep-seated and general

problem which also influences the outcomes of other, more specific tests.

Interpretation of results. Problem diagnosis should not rest simply on whether

a statistical test gives a significant result, but the researcher should use their

judgement to decide whether a confound is likely to be relevant in the main

analysis. More realistic simulations can help to assess the practical impact of a

confound.

Correlating SAA outcomes and main outcomes as additional check or to

detect location-specificity

If multiple SAA test cases indicate potential confounds, only some of them

may actually affect the main analysis. To check this, correlations can be calcu-

lated between the outcomes of one or multiple SAA test cases and the out-

comes of the main analysis. As with any statistical test, a negative result does

not mean that the tested variable is not a potential confound, but a positive

result strongly indicates that it is (see Reverberi et al., 2012 for an application

example). Moreover, if the same main analysis is performed on different

segments of the data, e.g. brain regions or time points, correlations to SAA

outcomes can be calculated for each segment to detect location-specific con-

founding effects, e.g. a confound may only affect motor cortex but not visual

cortex.

When to use SAA

SAA helps to find solutions when experimental data have already been ac-

quired and their analysis indicates that there may be a problem; in some cas-

es, however, it may come too late at this phase. We therefore recommend to

use SAA systematically during different phases of a study (Figure 4):

Design phase. Tests can already be set up when designing and implementing

an experiment to ensure that the analysis pipeline works as expected and that

the design matches the analysis.

Piloting phase. During behavioural pre-tests or pilot studies tests can be used

to check whether potential confounds are present in participants’ responses.

Main analysis phase. After data collection, tests can be run on control data to

check whether corresponding confounds may be present, or in the worst case,

to diagnose a problem that has become apparent in the main data analysis.

Görgen et al., SAA

17

Figure 4. Guideline for using SAA in different phases of a study.

Empirical Example: Variance confound in classification

In this section, we demonstrate how to use SAA to diagnose a problem on

real empirical data. A researcher performs an experiment where participants

press a button with either the left or right index finger in response to visual

stimuli. Left button presses are more frequent than right button presses, 12 vs

3 trials per run (following e.g. an oddball paradigm, Squires et al., 1975).

BOLD data are recorded in 6 runs from 17 participants. To identify brain re-

gions that carry information about which button was pressed, the researcher

applies leave-one-run-out cross-validated classification to parameter esti-

mates from voxels within a searchlight, using a linear support vector ma-

chine. For a time-resolved analysis, they use finite impulse response (FIR)

regressors comprising 16 two-second time bins (cf. Kriegeskorte et al., 2006;

Soon et al., 2008). Because they are aware that imbalanced data pose a prob-

lem for many classification algorithms (He and Garcia, 2009), they use a sin-

gle set of regressors for modelling left and right button presses, respectively

(Allefeld and Haynes, 2014; Haxby et al., 2011; Norman et al., 2006). For each

FIR time bin, this yields a single parameter estimate image per condition and

run, all of which are then used for time-resolved searchlight classification.

Subject-wise classification accuracy maps are then entered into a second-level

t-test across subjects against the chance level of 50%.2

There are clear expectations for the result of this analysis. First, information

should be localized mainly in motor regions because the analysis contrasts

two different movement conditions. Second, above-chance classification

should be possible no earlier than 4s after button press because of the hemo-

dynamic delay. The results, however, show significant information in large

regions across the entire brain, and already at 0-2s after button press (Figure

5, top). Apparently, something in the analysis went wrong.

2 This example was constructed using data from an unpublished study on rule representation.

Preprocessing, parameter estimation, and second-level analysis of fMRI data were performed

with SPM8 (Wellcome Department of Imaging Neuroscience) and searchlight classification

with The Decoding Toolbox (Hebart et al., 2015) using LIBSVM (Chang and Lin, 2011).

Main analysis

Pilots/
Behavioural pretests

Design
Design
variables

Null data

Design
variables

Null data

Behavioural
data

Design
variables

Null data

Behavioural
data

Neuro
data

Ensure
experimental
integrity

Verification
Debugging

Verification

Phase Test data Purpose

Görgen et al., SAA

18

Figure 5. Results of confounded and corrected example fMRI analyses. Top: Signifi-

cant results of button press classification with variance confound on real data 0–2s

and 4–6s after button press. Run-wise GLM parameter estimates were calculated us-

ing 12 trials for left and 3 trials for right button presses. Bottom: Same as above, but

using 12 left and 12 right button presses to calculate run-wise estimates. – All dis-

played voxels show significant effects at p ≤ 0.001 uncorrected. All larger clusters are

also significant at p ≤ 0.05 FWEc-corrected; only in the corrected analysis at 0-2s no

cluster survives FWEc correction (bottom left). Supplement Figures D (SI 5) contain

more combinations & time bins.

SAA setup

The researcher wants to use SAA to diagnose the suspected problem, check-

ing for temporal, attention, and sequence effects, as well as details of the task.

They create test cases by making the following decisions:

Test data:

Synthetic noise-free positive test

– The condition of interest itself (“side”)

Empirical negative tests

– Attention effects: response time, correctness of response

Synthetic noise-free negative tests

– Temporal effects: number of trials (“ntrial”), time of button press, target

onset

– Sequence effects: value of all these variables from the previous trial (“t-

1”)

– Additional: Constant data that has the value 1 for each trial (“const”)

Görgen et al., SAA

19

Synthetic null‐distribution negative tests

– 10,000 one‐dimensional random null datasets (“randn1”, “randn2”, etc.)

drawn from the standard normal distribution)

Numerical test data (e.g. time, number of button presses) are used as input

values for the analysis as‐is (e.g. the values 1, 2, …, for trial numbers). Cate‐

gorical data (side of button press) are mapped to dummy variables (here a

two‐dimensional vector, that is [1 0] for trials that expect a left button press,

and [0 1] for trials that expect a right button press).

Test range: Test data are generated on the level of single‐trial values, and the

whole analysis from there to the second‐level t‐test on accuracies is consid‐

ered. The analysis steps in this range are: 1) computing run‐wise parameter

estimates, 2) leave‐one‐run‐out cross‐validated classification, and 3) a group

level t‐test applied to subject‐wise classification accuracies. Outcomes are

subject‐wise accuracies (visualized through box plots), p‐values of the second

level t‐test, and the frequency with which the test indicates significance for

null data.

To increase the sensitivity of SAA, the researcher sorts the test cases into dif‐

ferent categories, labelled “sanity checks”, “design random” (test cases for

which the result can vary for different test cases), and “control data” (Figure

6). Supplement section SI 6 provides a more detailed explanation including

the concrete steps to setup this SAA analysis.

Figure 6. SAA results for different test data. Left panel: Distribution of accuracies per

subjects as box plots with medians (filled circles) and outliers (empty circles) before

(grey) and after correction (green). Small dotted line marks the chance level of 50%.

“2nd level p‐values” column provides the p‐values for a one‐sided t‐test across sub‐

jects against 50%. Right panel: Summary for the 10,000 simulated random null data

sets (“randn1” – “randn10000”), showing the relative frequency of cases where the

SAA result was significant (p ≤ 0.05).

Confound Corrected
0

5

10

15

20

25

30

35

si
gn

ifi
ca

nt
 2

nd
 le

ve
l o

ut
co

m
es

 [%
]

nrep=10,000
nsbj=17

Corrected

CV accuracy
50%0% 100%

 p<0.001**
 p=NaN
 p=NaN
 p=0.334
 p=0.269
 p=0.802
 p=0.355
 p=0.355

 p=0.712
 p=0.688
 p=0.693
 p=0.067°
 p=0.434
 p=0.936°
 p=0.946°
 p=0.733
 p=0.500

 p=0.391
 p=0.659
 p=0.688
 p=0.412
 p=0.965°
 p=0.970°

Confound–Cat. 1: Sanity check–
side

ntrials
const

randn1
randn2
randn3

–Cat. 2: Design rand–
cue onset

target onset
trial nr

trial type
target cnd

cue onset (t–1)
target onset (t–1)

trial type (t–1)
target cnd (t–1)

–Cat. 3: Ctrl data–
RT

correct
time button press

RT (t–1)
correct (t–1)

button down (t–1)

randn10000

 p<0.001**
 p<0.001**
 p=NaN
 p=0.022*
 p=0.052°
 p=0.288
 p=0.044*
 p=0.044*

 p=0.411
 p=0.500
 p=0.413
 p=0.028*
 p=0.008*
 p=0.210
 p=0.161
 p=0.007*
 p<0.001**

 p=0.368
 p=0.389
 p=0.500
 p=0.605
 p=0.001**
 p=0.301

randn4-9999 (summary right)

SAA test data Acc per sbj 2nd level p-values 2nd level outcomes of
10,000 random data sets

sbj/boxplot:17

Görgen et al., SAA

20

Interpretation of SAA results

The results shown in Figure 6 show significant effects for several negative

control analyses, for which no effect was expected.

Focusing on the “sanity check” category first, the researcher is reassured by

the outcome of the positive control analysis “side”, which confirms that the

analysis is able to distinguish left and right button presses if there is a differ-

ence between the corresponding trials. There is also a significant effect for

“ntrial”, the number of trials per condition, which is not surprising since

there is a systematic difference between conditions in the number of trials (3

vs 12). By contrast, there is an unexpectedly high number of significant re-

sults for random null data: the second-level t-test rejected the null hypothesis

in 33% (CI95%=[32.1%, 33.9%]) of the 10,000 instances (at α = 0.05) instead of

the expected 5%.

The SAA has therefore confirmed the suspicion that there is a problem. The

increased false positive rate of the null simulations strongly suggests that it

has to be a more general aspect of the design or some property of the analysis

procedure, because neither the experimental variable nor any other design

factor had any influence on the simulated null data. A peculiar property of

the design is the different number of trials in the two conditions. The re-

searcher assumed to have dealt with this by applying classification not to

single-trial data but to run-wise parameter estimates – but what if this was

not enough?

The researcher checks this hypothesis by modifying the SAA analysis so that

equally many trials are used to calculate the estimates for left and right but-

ton presses in each run. Indeed, after this correction (green elements in Figure

6), the number of “significant” results in the 10,000 instances of null data

drops to 5.4% (CI95%=[4.9%, 5.8%]), consistent with a false positive rate of 0.05.

The only test case that remains significant is the positive control using the

variable of interest itself (“side”), which is how it should be.

The result of the corrected analysis on the fMRI data (Figure 5, bottom) con-

firms that the apparent confound has been removed; there is no significant

effect present in the 0–2s time bin, and effects in the 4–6s time bin are located

in motor and sensory regions as expected. Supplemental Figures D.1-D.8 in

supplement section SI 5 show the time-resolved results for all combinations

of 3, 6, and 12 button presses from each side, illustrating that problem is in-

deed caused by the imbalance between trials and not by e.g. differences in

power; choosing the same number of left and right trials always solves the

problem.

Cause of the problem: Variance-based linear classification

As described above, SAA can help to diagnose a problem and to quickly

check whether an approach to resolve it is likely to work. It does not by itself

reveal its cause – this is left to the researcher. To conclude this example, we

briefly explain how the problem arose.

Görgen et al., SAA

21

During experimental setup, the reasoning of the researcher was the following:

1) Classifiers are known to be sensitive to imbalanced training data, therefore

classification is applied to run‐wise parameter estimates, which are essential‐

ly averages across trials. 2) Linear classifiers are sensitive to linear differences

between class‐specific data distributions, i.e. differences in the class means.

3) If there is no effect, trial‐wise data from both classes comes from the same

distribution, and averaging over more or fewer trials does not change the

mean.

The mistake in this argument is that while the difference in number of trials

per condition does not change the mean, it does change the variance of run‐

wise estimates. And contrary to common assumption (Kamitani and Tong,

2005; Naselaris et al., 2011; Norman et al., 2006), linear classifiers can not only

use differences in mean, but also differences in variance to achieve above‐

chance classification (Figure 7). This behaviour is not limited to specific types

of linear classifiers; it applies even to classifiers utilizing the means (cen‐

troids) of the data, such as nearest centroid classifiers or linear discriminant

analysis (explanation in caption of Figure 7, especially panels c,d). More gen‐

erally, linear classification based on the variance of parameter estimates can

come about by differences in the estimability of regressors (Hebart and Baker,

this issue).

Note that successful linear classification that is based on differences in vari‐

ance is not a confound, because the classifier reveals a difference that truth‐

fully exists in the data (see also Davis et al., 2014 for other effects of variability

in MVPA). It can, however, be an interpretation error if this is interpreted as

showing a linear (mean) difference between conditions. In contrast, the em‐

pirical example contains a true confound, because the data from both classes

do not come from different distributions, but the variance difference between

both is induced during the analysis (Figure 7a,b). A detailed simulation for

SVMs and nearest centroid classifiers can be found in the supplemental sec‐

tion SI 7 (Figures E.1 and E.2).

Figure 7. Induction of variance difference by design and successful variance classifi‐

cation with a linear classifier. a) Original probability distribution (one‐dimensional)

of single trial values for two classes (blue, red). b) Averaging (or regressing) different

p
(x
)

p
(x
)

x {mean}

p
(x
)

x {single trial}

3x 12x

x {boundary}
chance

a) c)

ac
cA

B
(x
)

abovechance

p
(x
)

b) d)

acc A: 99%

x {mean}

acc B: 25%

acc AB: 62%

Accuracy (any classifier)
Position NC/LDA
Position SVM

Görgen et al., SAA

22

numbers of trials creates distributions that have the same mean but different vari-

ance. c) Example of a linear classifier (classification boundary: black dashed line) that

classifies between both classes above chance using the nonlinear variance difference

between the two. d) Expected accuracy for classifiers with a decision boundary at

different positions (black line), and probability distribution where a nearest centroid

classifier or linear discriminant analysis (NC/LDA; grey solid line) or an SVM (grey

dashed line) place the boundaries. The expected accuracy (black line) will at mini-

mum be at chance level (when placed exactly at the common mean of both distribu-

tions, or at plus or minus infinity) and otherwise above chance. Because the position

of the boundary varies (grey lines), the expected accuracy for classifying between

classes that differ in the nonlinear mean using a linear classifier is above chance. Note

that successful linear classification between data classes that only differ in variance

(panels c,d) is not a confound, because the classifier truthfully reveals a difference

that exists in the data. It can however be an interpretation error if this is interpreted

as showing a linear (mean) difference. In contrast, the confound in the example arises

because the variance between both classes is induced during the analysis (panels a,b).

Detailed simulations can be found in supplemental section SI 7.

Related work and generalisation (empirical example)

The main aim of this example was to demonstrate how SAA can be employed

in practice. However, the example is also interesting in itself. Averaging be-

fore classification and feature extraction from multiple trials before more

complex data analyses methods are standard analysis procedures. We advise

to test for potential confounding effects through null simulations here. An-

other important point relates to the inference from classification analyses:

Since linear classifiers can successfully extract nonlinear information, success-

ful linear classification does not allow direct inference on the linear versus

nonlinear nature of representations (e.g. Kamitani and Tong, 2005; Norman et

al., 2006; Naselaris et al., 2011; Diedrichsen and Kriegeskorte, 2017; Friston,

2009).

The example also demonstrates that confounds can arise through a combina-

tion of analysis steps that pose no problems individually. These can be de-

tected by simple simulations on synthetic null data if the same analysis is

employed.

Discussion

In this paper, we advocated to systematically check experimental design, da-

ta, analysis methods, and statistical inference, in order to cope with the chal-

lenges and possible pitfalls of novel methods in neuroimaging (including

MVPA). These methods sometimes fail to conform to researchers’ expecta-

tions and intuitions. This leads (a) to situations in which confounding influ-

ences are not controlled and consequently spurious effects are observed or

true effects fail to be identified, or (b) to overly optimistic or pessimistic effect

size estimates. We propose to not blindly rely on such expectations and intui-

Görgen et al., SAA

23

tions but to explicitly check them, by applying the same analysis used for ex-

perimental data also to design variables, control data, and simulated data. We

now discuss a number of points that may need further clarification.

Keep it simple. A main focus of this paper is to introduce design principles to

create efficient control tests. We made a number of suggestions in this paper

how this can be achieved. One main suggestion is “keep it simple”; other

suggestions are to perform positive and negative control analyses on many

simple control datasets that are each influenced by only one synthetic or em-

pirical variable, and to create “time-shifted” datasets by using variable values

from the previous trial to detect sequence effects which are common con-

founds in neuroimaging. Further recommendations to keep SAA effective

include adaptive alarm rate thresholds and correlating SAA to main analysis

outcomes. However, we do not believe that these are the ultimate and only

principles to set up efficient tests, nor that they fit all experimental para-

digms. We rather conceive them as first suggestions, and hope that further

principles for efficient tests will emerge from employing SAA in practice.

When to employ SAA. SAA can be used to diagnose problems that have al-

ready become apparent, but we recommend to use it continuously through all

phases of a study – planning, piloting, and final analysis – to become aware of

possible problems as early as possible. Side benefits of this practice are that it

encourages to consider details of the analysis already at the design phase and

therefore to tailor the design to the questions one wants to ask; that it can be

used for power analysis (if sufficiently realistic simulations are implemented);

and that it helps to detect simple programming errors (both in design and

analysis, because SAA tests depend on both). Indeed, the sole process of set-

ting up SAA at the design phase can prevent programming errors in the first

place, because the coding scheme of variable names and content are fresh in

mind when programming design and analysis at the same time, reducing the

risk of confusion between both. In contrast, if time passes between setting up

design and analysis, e.g. when data is recorded, chances to confuse variable

names or coding schemes are much higher. SAA might also facilitate design

optimization, but we believe that further investigation of potential negative

side effects is necessary.

About our examples. In addition to describing and detailing SAA in general,

we illustrated it in two concrete examples. Their main function in this paper

is to spell out in detail how SAA can be applied and how it uncovers poten-

tial problems with a given data set or design.

However, both of them are also relevant on their own, because they reveal

two relevant problems in MVPA: The initial example demonstrates that the

classic strategy of counterbalancing the experimental design (leading to what

is also known as a crossover designs) to control a confound can become inef-

fectual if combined with an analysis method that uses cross-validation3. The

3 In the specific example, the design variable “trial order” was controlled, but the same logic

applies to any other counterbalanced variable.

Görgen et al., SAA

24

empirical example shows that differences only in variances yield successful

linear classification, specifically demonstrating that inferring linear differ-

ences from linear classification would be invalid (see “Cause of the problem:

Variance-based linear classification”). In addition, we demonstrate that anal-

yses of control data can fail, even if to-be-controlled effects are present, when

different methods are employed for control and experimental analyses. The

fact that neither example depends on the dimensionality of the data (both

work for multi- and univariate data) demonstrates that unexpected con-

founds are also not specifically bound to multivariate analysis, but can occur

for univariate analyses as well.

Relevance. The fact that SAA would detect our examples as well as examples

from the recent literature, both MVPA specific (Todd et al., 2013; Woolgar et

al., 2014; Noirhomme et al., 2014; Görgen et al., 2014; Jamalabadi et al., 2016)

and more general (Kriegeskorte et al., 2009; Vul et al., 2009; Mumford et al.,

2015), demonstrates the potential of SAA in aiding to detect easy-to-overlook

problems. We have found it helpful in personal work, and are looking for-

ward to seeing whether or not that will be the case in general. Finally, we see

employing the same analysis method as especially important for control

analyses, at least in addition to other analysis methods, because – as demon-

strated – they can fail their purposes when different analysis methods are

employed.

Not too few data; more data no remedy.4 A common misconception is that

confounding effects occur only for small data sets, and that more data would

reduce those confounds. While more data can help reducing effects of non-

systematic confounds, simply adding more data is no universal solution, spe-

cifically when confounding effects are systematically induced by design, such

as in the examples that we demonstrate here. Indeed, the empirical example

already has a normal-sized sample, and because the confounding effect is

present in each subject, more subjects would even increase the effect strength.

The same holds for the initial example if the presented design would be used

for multiple subjects and a test would be applied on the group level (see sup-

plemental section SI2). It would also stay a potential confound if the number

of runs is increased. In the idealized case with no noise and no effect (as in the

example), the classification accuracy would stay at 0% correct. In real data, for

increasing number of runs the importance of the confound depends more and

more on the relative effect sizes of confound and experimental effect. If no

experimental effect is present, the primary effect measure (classification accu-

racy) will come closer to chance level, but because the null distribution be-

comes narrower, the confounding effect could still have a significant impact.

Differences between SAA and simulation studies. SAA shares aspects with

standard simulation studies that are routinely used to demonstrate merits

and pitfalls of particular design or analysis methods. Like SAA, simulation

studies demonstrate their claims through computation.

4 Also known as the “more data no cry” fallacy.

Görgen et al., SAA

25

SAA however differs from simulation studies in important aspects. First, it

avoids a particular problem in simulation studies, which is to choose which

settings are important to demonstrate generality. Because SAA is used for a

particular experiment, most parameters (such as number of subjects, etc.) are

fixed. Second, simulation studies typically include complex realistic simula-

tions, to demonstrate the operation of a method in realistic scenarios. In con-

trast, SAA is employed to perform sanity checks, which we believe can be

effectively done with simple simulations. Whether or not this is the case, and

which additional principles can help to create useful control analyses is an

open question, that we believe will need to employ SAA in practice. Thus,

SAA is not a theoretical tool to demonstrate a claim; it is an empirical tool to

help creating better designs and analyses.

SAA and unit testing. SAA has been inspired by the practice of “unit testing”

in software development (Myers et al., 2011), i.e. writing software in the form

of modules that each can be tested independently (for internal function) and

in combination (for adherence to interfaces between modules). The situation

in software development is insofar similar to that in neuroimaging that in

principle the validity of an algorithm may be strictly proven, but the multi-

tude of newly produced code makes that practically impossible. In contrast to

unit-testing, SAA however does not test software modules, e.g. functions of

an analysis package, but instead design–analysis combinations of specific

experiments.

SAA in other fields. SAA shares its rationale with a number of other scien-

tific approaches. It follows the same logic as the routine use of positive and

negative controls in disciplines like chemistry or molecular/cell biology (Fe-

doroff and Richardson, 2001; Johnson and Besselsen, 2002), where the work-

ing of the full analysis pipeline is tested for every experimental data again by

analysing positive and negative probes alongside with the experimental data,

e.g. during PCR, or in medicine, e.g. using diluent and histamine as controls

in skin prick testing during allergy diagnosis (Rusznak and Davies, 1998).

Not a general solution. We would like to point out that although SAA is a

tool that can be generally applied to data analysis pipelines and is not special-

ized to find specific kinds of problems in specific kinds of analyses, there is

no guarantee that it will help to detect any kind of problem in any kind of

analysis. Moreover, SAA in itself does not solve any problem, but merely

points the researcher to possible problems that then have to be resolved on a

case-by-case basis.

Conclusion. We hope that new developments in neuroimaging data analysis

will in the long term lead to the establishment of a new corpus, and in partic-

ular that the heuristics of machine learning methods will be backed up by and

integrated into the theory of statistical inference (Efron and Hastie, 2016).

However, we believe that testing experiments with SAA provides a highly

efficient additional safeguard to detect, avoid, and eliminate confounds, and

can therefore help improving quality and replicability of experimental re-

search.

Görgen et al., SAA

26

Acknowledgments

The authors declare no conflict of interest. This work was supported by the

German Research Foundation (DFG Grant GRK1589/1 & FK:JA945/3-1).

M.N.H. was supported by the German Ministry of Education and Research

(BMBF, Grant No. 01GQ1006), by the Intramural Research Program of the

National Institute of Mental Health (Protocol 93-M-380170, NCT00001360),

and a Feodor-Lynen fellowship of the Humboldt Foundation.

References

Allefeld, C., Görgen, K., Haynes, J.-D., 2016. Valid population inference for

information-based imaging: From the second-level t-test to prevalence

inference. NeuroImage 141, 378–392.

doi:10.1016/j.neuroimage.2016.07.040

Allefeld, C., Haynes, J.-D., 2014. Searchlight-based multi-voxel pattern analy-

sis of fMRI by cross-validated MANOVA. NeuroImage 89, 345–357.

doi:10.1016/j.neuroimage.2013.11.043

Chang, C.-C., Lin, C.-J., 2011. LIBSVM: a library for support vector machines.

ACM Trans. Intell. Syst. Technol. TIST 2, 27.

Coolican, H., 2009. Research Methods and Statistics in Psychology. Routledge.

Cox, D.R., Reid, N., 2000. The Theory of the Design of Experiments. CRC

Press.

Davis, T., LaRocque, K.F., Mumford, J.A., Norman, K.A., Wagner, A.D.,

Poldrack, R.A., 2014. What do differences between multi-voxel and

univariate analysis mean? How subject-, voxel-, and trial-level vari-

ance impact fMRI analysis. NeuroImage 97, 271–283.

doi:10.1016/j.neuroimage.2014.04.037

Diedrichsen, J., Kriegeskorte, N., 2017. Representational models: A common

framework for understanding encoding, pattern-component, and rep-

resentational-similarity analysis. PLoS Comput. Biol. 13, e1005508.

doi:10.1371/journal.pcbi.1005508

Diedrichsen, J., Provost, S., Zareamoghaddam, H., 2016. On the distribution

of cross-validated Mahalanobis distances. ArXiv160701371 Stat.

Efron, B., Hastie, T., 2016. Computer Age Statistical Inference. Cambridge

University Press.

Eklund, A., Nichols, T.E., Knutsson, H., 2016. Cluster failure: Why fMRI in-

ferences for spatial extent have inflated false-positive rates. Proc. Natl.

Acad. Sci. 201602413. doi:10.1073/pnas.1602413113

Fedoroff, S., Richardson, A., 2001. Protocols for Neural Cell Culture. Springer

Science & Business Media.

Görgen et al., SAA

27

Fisher, R.A., 1935. The design of experiments.

Fisher, R.A., 1925. Statistical methods for research workers. Genesis Publish-

ing Pvt Ltd.

Friston, K.J., 2009. Modalities, Modes, and Models in Functional Neuroimag-

ing. Science 326, 399–403. doi:10.1126/science.1174521

Friston, K.J., Holmes, A.P., Poline, J.B., Grasby, P.J., Williams, S.C.R.,

Frackowiak, R.S., Turner, R., 1995. Analysis of fMRI time-series revis-

ited. Neuroimage 2, 45–53.

Görgen, K., Hebart, M.N., Allefeld, C., Haynes, J.-D., 2014. Detecting, Avoid-

ing & Eliminating Confounds in MVPA / Decoding Studies, in: Poster

Presentation at Human Brain Mapping Conference OHBM 2014, Ab-

stract 874, Poster 3463 (Wth); F1000Research 2016, 5:798 (Poster). Pre-

sented at the OHBM 2014, Hamburg, Germany.

doi:10.7490/f1000research.1111808.1

Haxby, J.V., Gobbini, M.I., Furey, M.L., Ishai, A., Schouten, J.L., Pietrini, P.,

2001. Distributed and Overlapping Representations of Faces and Ob-

jects in Ventral Temporal Cortex. Science 293, 2425–2430.

doi:10.1126/science.1063736

Haxby, J.V., Guntupalli, J.S., Connolly, A.C., Halchenko, Y.O., Conroy, B.R.,

Gobbini, M.I., Hanke, M., Ramadge, P.J., 2011. A common, high-

dimensional model of the representational space in human ventral

temporal cortex. Neuron 72, 404–416.

Haynes, J.-D., Deichmann, R., Rees, G., 2005. Eye-specific effects of binocular

rivalry in the human lateral geniculate nucleus. Nature 438, 496–499.

Haynes, J.-D., Rees, G., 2005. Predicting the orientation of invisible stimuli

from activity in human primary visual cortex. Nat. Neurosci. 8, 686–

691.

He, H., Garcia, E., 2009. Learning from Imbalanced Data. IEEE Trans. Knowl.

Data Eng. 21, 1263–1284. doi:10.1109/TKDE.2008.239

Hebart, M.N., Baker, C.I., this issue. Deconstructing multivariate decoding for

the study of brain function. NeuroImage.

Hebart, M.N., Görgen, K., Haynes, J.-D., 2015. The Decoding Toolbox (TDT): a

versatile software package for multivariate analyses of functional im-

aging data. Front. Neuroinformatics 8, 88. doi:10.3389/fninf.2014.00088

Holmes, A.P., Friston, K.J., 1998. Generalisability, random effects & popula-

tion inference. NeuroImage 7, S754.

Jamalabadi, H., Alizadeh, S., Schönauer, M., Leibold, C., Gais, S., 2016. Classi-

fication based hypothesis testing in neuroscience: Below-chance level

classification rates and overlooked statistical properties of linear par-

ametric classifiers. Hum. Brain Mapp. 37, 1842–1855.

doi:10.1002/hbm.23140

Johnson, P.D., Besselsen, D.G., 2002. Practical aspects of experimental design

in animal research. ILAR J. 43, 202–206. doi:10.1093/ilar.43.4.202

Görgen et al., SAA

28

Kamitani, Y., Tong, F., 2005. Decoding the visual and subjective contents of

the human brain. Nat. Neurosci. 8, 679–685. doi:10.1038/nn1444

Kohavi, R., 1995. A study of cross-validation and bootstrap for accuracy esti-

mation and model selection, in: Ijcai. pp. 1137–1145.

Kowalczyk, A., 2007. Classification of Anti-learnable Biological and Synthetic

Data, in: Kok, J.N., Koronacki, J., Mantaras, R.L. de, Matwin, S., Mlad-

enič, D., Skowron, A. (Eds.), Knowledge Discovery in Databases:

PKDD 2007, Lecture Notes in Computer Science. Springer Berlin Hei-

delberg, pp. 176–187. doi:10.1007/978-3-540-74976-9_19

Kriegeskorte, N., Goebel, R., Bandettini, P., 2006. Information-based function-

al brain mapping. Proc. Natl. Acad. Sci. U. S. A. 103, 3863–3868.

doi:10.1073/pnas.0600244103

Kriegeskorte, N., Mur, M., Bandettini, P., 2008. Representational similarity

analysis–connecting the branches of systems neuroscience. Front. Syst.

Neurosci. 2.

Kriegeskorte, N., Simmons, W.K., Bellgowan, P.S., Baker, C.I., 2009. Circular

analysis in systems neuroscience: the dangers of double dipping. Nat.

Neurosci. 12, 535–540.

Mumford, J.A., Poline, J.-B., Poldrack, R.A., 2015. Orthogonalization of Re-

gressors in fMRI Models. PLoS ONE 10, e0126255.

doi:10.1371/journal.pone.0126255

Myers, G.J., Sandler, C., Badgett, T., 2011. The Art of Software Testing. John

Wiley & Sons.

Naselaris, T., Kay, K.N., Nishimoto, S., Gallant, J.L., 2011. Encoding and de-

coding in fMRI. Neuroimage 56, 400–410.

Noirhomme, Q., Lesenfants, D., Gomez, F., Soddu, A., Schrouff, J., Garraux,

G., Luxen, A., Phillips, C., Laureys, S., 2014. Biased binomial assess-

ment of cross-validated estimation of classification accuracies illus-

trated in diagnosis predictions. NeuroImage Clin. 4, 687–694.

Norman, K.A., Polyn, S.M., Detre, G.J., Haxby, J.V., 2006. Beyond mind-

reading: multi-voxel pattern analysis of fMRI data. Trends Cogn. Sci.

10, 424–430. doi:10.1016/j.tics.2006.07.005

Pereira, F., Mitchell, T., Botvinick, M., 2009. Machine learning classifiers and

fMRI: A tutorial overview. NeuroImage, Mathematics in Brain Imag-

ing 45, S199–S209. doi:10.1016/j.neuroimage.2008.11.007

Reverberi, C., Görgen, K., Haynes, J.-D., 2012. Distributed Representations of

Rule Identity and Rule Order in Human Frontal Cortex and Striatum.

J. Neurosci. 32, 17420–17430. doi:10.1523/jneurosci.2344-12.2012

Rusznak, C., Davies, R.J., 1998. Diagnosing allergy. BMJ 316, 686.

Soon, C.S., Allefeld, C., Bogler, C., Heinzle, J., Haynes, J.-D., 2014. Predictive

brain signals best predict upcoming and not previous choices. Front.

Psychol. 5, 406. doi:10.3389/fpsyg.2014.00406

Görgen et al., SAA

29

Soon, C.S., Brass, M., Heinze, H.-J., Haynes, J.-D., 2008. Unconscious determi-

nants of free decisions in the human brain. Nat. Neurosci. 11, 543–545.

doi:10.1038/nn.2112

Squires, N.K., Squires, K.C., Hillyard, S.A., 1975. Two varieties of long-latency

positive waves evoked by unpredictable auditory stimuli in man.

Electroencephalogr. Clin. Neurophysiol. 38, 387–401. doi:10.1016/0013-

4694(75)90263-1

Todd, M.T., Nystrom, L.E., Cohen, J.D., 2013. Confounds in multivariate pat-

tern analysis: theory and rule representation case study. Neuroimage

77, 157–165.

Vul, E., Harris, C., Winkielman, P., Pashler, H., 2009. Puzzlingly High Corre-

lations in fMRI Studies of Emotion, Personality, and Social Cognition.

Perspect. Psychol. Sci. 4, 274–290. doi:10.1111/j.1745-6924.2009.01125.x

Woolgar, A., Golland, P., Bode, S., 2014. Coping with confounds in multivoxel

pattern analysis: What should we do about reaction time differences?

A comment on Todd, Nystrom & Cohen 2013. NeuroImage 98, 506–

512. doi:10.1016/j.neuroimage.2014.04.059

SI for Görgen et al., SAA 1/21

Supplemental Information to
The Same Analysis Approach:

Practical protection against the pitfalls of novel
neuroimaging analysis methods

Kai Görgena, Martin N. Hebartbc, Carsten Allefelda*, John-Dylan Haynesade*

a Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of

Health (BIH); Bernstein Center for Computational Neuroscience, Berlin Center for Advanced Neuroimaging, Department of Neurology, and
Excellence Cluster NeuroCure; 10117 Berlin, Germany
b Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20251 Hamburg, Germany
c Section on Learning and Plasticity, Laboratory of Brain & Cognition, National Institute of Mental Health, National Institutes of Health,
Bethesda MD, USA
d Humboldt-Universität zu Berlin, Berlin School of Mind and Brain and Institute of Psychology; 10099 Berlin, Germany
e Technische Universität Dresden; SFB 940 Volition and Cognitive Control; 01069 Dresden, Germany
* These authors contributed equally to this work

Content

1 Possible solutions to the initial example .. 2
2 Empirical demonstration of the initial example ... 3
3 SAA for the introductory example .. 4
4 Test cases components .. 5
5 Additional fMRI results for empirical example ... 8
6 SAA setup ... 16
7 Variance confound decoding in simulations (Nearest Centroid and linear SVM) .. 19
8 Supplemental References .. 21
Figures
Figure SI A. First possible solution to the initial problem: statistical control. ... 2
Figure SI B. Second possible solution to the initial problem: counterbalance each training set. 2
Figure SI C. Demonstrating the effect of the initial example on a real dataset. ... 3
Figure SI D.1. Bin 1 (0-2s). ... 8
Figure SI D.2. Bin 2 (2-4s). ... 9
Figure SI D.3. Bin 3 (4-6s). ... 10
Figure SI D.4. Bin 4 (6-8s). ... 11
Figure SI D.5. Bin 5 (8-10s) .. 12
Figure SI D.6. Bin 6 (10-12s). ... 13
Figure SI D.7. Bin 7 (12-14s). ... 14
Figure SI D.8. Bin 8 (14-16s). ... 15
Figure SI E.1. Variance decoding with a nearest-centroid classifier. ... 19
Figure SI E.2. Above chance decoding with a linear SVM classifier... 20
Tables

Table SI 1 – SAA for the introductory example. .. 4
Table SI 2 – SAA coding for a single example run. .. 16

SI for Görgen et al., SAA 2/21

1 Possible solutions to the initial example

Figure SI A. First possible solution to the initial problem: statistical control. The first solution to “solve” the

initial problem is through statistical control, i.e. to randomly select a presentation order for each run

individually. a) Outcome of all potential experiments with four runs (AB: measuring A before B; BA: B before A).

When the data exclusively depends on “trial order” as in the initial example, the expected outcome (the

average across all possible realizations) is 50% correct and thus the cross‐validated estimate is unbiased as

expected. Each single experiment does however strongly deviate from 50%, and indeed no single experiment

will reach 50% (but either 0%, 75%, or 100%; black bars). b) Data from panel a as histogram (blue) compared to

the binomial distribution (orange).

Figure SI B. Second possible solution to the initial problem: counterbalance each training set. Ensuring that

the factor that should be counterbalanced (here the presentation order AB or BA) will indeed be

counterbalanced in the training set of each cross‐validation fold. This has the advantage that the outcome of

each individual experiment will be unbiased.

−50 −37.5 −25 −12.5 0 12.5 25 37.5 50

al
l p

os
si

bl
e

co
m

bi
na

tio
ns

accuracy minus chance

AB AB AB BA
AB AB AB BA

AB AB BA AB
AB AB BA BA
AB BA AB AB
AB BA AB BA
AB BA BA AB
AB BA BA BA
BA AB AB AB
BA AB AB BA
BA AB BA AB
BA AB BA BA
BA BA AB AB
BA BA AB BA
BA BA BA AB
BA BA BA BA

a) Outcome of all possible random AB BA combinations
for introductory example

2x Ab, 2x Ba:

Ab Ab Ba Ba
Ab Ba Ab Ba
Ab Ba Ba Ab
...

3xAb, 1xBa or
1xAb, 3xBa:

Ab Ab Ab Ba
Ab Ab Ba Ab
...

Ab Ab Ab Ab
Ba Ba Ba Ba

−50 −37.5 −25 −12.5 0 12.5 25 37.5 50
0

1

2

3

4

5

6

7

8

accuracy minus chance

A
ve

ra
ge

 n
um

be
r o

f o
cc

ur
en

ce
s

(o
f 1

6)

b) Histogram of (a)

CV accuracies, all permutations
Binomial (n=16, p=50%)

Train

Validate

1 2 3

A B

B A

A B

B A

4
CV fold

Session 1

Session 2

Session 3

Session 4

SI for Görgen et al., SAA 3/21

2 Empirical demonstration of the initial example

Figure SI C. Demonstrating the effect of the initial example on a real dataset. The same dataset as for the

empirical example was used for the example (n=17 participants, 6 runs per participant; see empirical example

in main paper for full setup). One HRF regressor was calculated for the first and the second trial for each run

and participant. In general, searchlight classification analyses were then conducted for each participant, and

the resulting accuracy maps were statistically analysed with a second level test (see main paper for more

details). Specifically, three decoding analysis were conducted: Analysis 1 [top]) classifying first vs second trials

with leave‐one‐run‐out; the results (top) demonstrate that a strong order confound exists in real fMRI data.

Analysis 2 [middle]) Again leave‐one‐run‐out cross‐validate classification, but this time counterbalancing first

and second trials across runs, i.e. have three runs with the first trials in condition A and three with the second

trials, and vice versa for condition B. The results (middle) demonstrate that outcome is as predicted in the

initial example: While the order effect does not lead to false positives anymore, it does lead to significant

below chance accuracies (that might be confusing). Analysis 3 [bottom]) The same analysis classification as in

analysis 2, but modifying the cross‐validation such that in each training set the factor trial order is

counterbalanced again, i.e. using all combinations of two AB and two BA runs to train and the remaining data

to test. As predicted, the results (bottom) have neither false positive nor false below‐chance accuracies. Thus,

this analysis achieved what counterbalancing was expected to achieve in the first place: It neutralized the

confounding effect of trial order, i.e. it did led to neither above nor below chance accuracy biases.

SI for Görgen et al., SAA 4/21

3 SAA for the introductory example
Table SI 1 – SAA for the introductory example. Abbreviated column names: Expectation (Exp.), result (Res.), as

expected (as exp.). See SI section 4 below for explanation of column headers. ~ indicates that the values not fixed but
stochastic, i.e. that single test outcomes vary around the provided value.

Test
case #

Intention Diagnostic
information

Mapping
function

Mapped data Exp. Res. As exp.

 A B A B B A B A
1 Test analysis can be significant Exp. cond. y=[A:1;B:2] 1 2 1 2 2 1 2 1 100% 100% ok
2

Test factor trial nr. has no influence
on result (esp. because it’s
counterbalanced)

Trial nr. y=x 1 2 1 2 2 1 2 1 50% 0% !!!

3

Test behavioural difference
(influence of hidden factors)

RT y=x 100 200 100 200 200 100 200 100 50% 0% !!!

4a

Test false positive rate on null data,
1D, many reps

Random
data 1D

y=x 5 0 3 -4 -1 4 3 5 ~50% ~50% ok

4b

Test false positive rate on null data,
High-D, many reps

Random
data High-D

y=x

-3
2
3
⋮

 0
-3
-2
⋮

-1
-4
0
⋮

1
0
2
⋮

2
5
4
⋮

 3
-2
 5
⋮

-2
1
0
⋮

 2
-3
-4
⋮

~50% ~50% ok

SI for Görgen et al., SAA 5/21

4 Test cases components

4.1 Intention and the initial expectation
In most conditions, the intention behind a test case is to test if the outcome of an analysis on a specific

experimental design agrees to the expectation of the experimenter. While these expectation are often implicit,

performing SAA often helps to make them explicit. Expectations might arise from intuitions about how a

variable is supposed to influence the final result (e.g. an experimental manipulation should lead to a

measurable effect when there is one), about the expected result of a given statistical measure (e.g.

counterbalancing for removing confounding influences), an assumption on the generation of an experimental

design (e.g. that every task condition occurs equally often), etc. The expectation can either be that the

outcome has a fixed value (i.e. will always be the same), or that it comes from a distribution with defined

properties (e.g. in the case of statistical control). Whenever possible, the expectation should include a clear

description which result would confirm the expectation and which would violate it. In many cases violations of

expectations can be obvious, as was the case in the initial example. In other cases it might be more difficult to

detect a violation (see 4.7).

4.2 Diagnostic information
Diagnostic information is a variable that participates in generating pseudo-data. While in principle any

information can be used as diagnostic information, in the following we will list typical examples. First of all, any

design variable from the experimental design can be used as diagnostic information for SAA. This includes

standard design variables such as the experimental condition, but also hidden design variables such as trial

number or stimulus repetition. A second and related type of variable are covariates that are not part of the

original experimental design, such as age, gender, IQ, or personality scores. Third, control data such as error

rates, response times, pupil responses etc. can be interesting variables to test with SAA. Particularly

noteworthy is to time-shift variables to detect temporal or sequence effects (e.g. always using the value of the

previous trial). Finally, some diagnostic information can be used to perform sanity checks of the analysis

pipeline. One such piece of diagnostic information is null data1. Another one is “1-data” (i.e. using the value 1

for each trial), which helps to detect basic internal problems of the pipeline such as biases towards one class in

classification. The same diagnostic information can be used as input to multiple test cases (see main

manuscript), e.g. to test the effect of different mapping functions, different experimental ranges, or different

analysis methods, and one test case can have one or multiple sources of diagnostic information as input.

4.3 Analysis range: Selecting part of the experimental pipeline to check
Different SAA test cases can test the behaviour of different ranges (parts, units) of the experimental pipeline,

from a single analysis step to multiple steps to the entire processing pipeline. Examples for analysis ranges in

MVPA are cross-validated decoding, group-level analyses on decoding statistics (e.g. t-test on accuracy across

subjects), or feature estimation (e.g. the generation of beta estimates from a BOLD time series).

4.4 Mapping functions: Generating pseudo-data from diagnostic information
For each variable that is tested with SAA, we need to generate data y’ that only depends on the selected

diagnostic information, but not on any other information, so that it is possible to uniquely ascribe the final

result to the influence of the mapped diagnostic information. We do so by calculating

y'i= fi(xi)

where fi is a suitable mapping from the selected diagnostic information xi to potential data. This transformation

is a crucial step for SAA. The choices that primarily determine the mapping function are the analysis range, the

analysis method, and assumptions about how the selected pieces of diagnostic information influence the data.

1 To make simulations comparable to real analyses, the dimensionality of simulations should match the intrinsic

dimensionality of the recorded data. The intrinsic dimension of the data is the “effective” number of variance components,

and can e.g. be visually assessed by plotting the eigenvalues of the covariance matrix of the data – a scree plot – or defined

numerically using properties of the eigenvalue spectrum (see e.g. Wackermann & Allefeld, 2009, p. 202f). The intrinsic

dimensionality of data is typically not the dimension of the recording channels (e.g. fMRI voxels or EEG electrodes), but is

often lower, but can also be higher (e.g. when multiple recording time points are combined, e.g. in time-frequency analyses).

SI for Görgen et al., SAA 6/21

Statistically speaking, a mapping functions implements a statistical model how the diagnostic information

influence the measured data. The analysis range determines the format of the generated data. For example,

testing the entire analysis pipeline of an fMRI experiment requires creating artificial BOLD time series, but for

analyses that work on individual trial estimates (such as cross-validated decoding in the initial example) it can

suffice to use the values of a design variable as data directly. Two simple but common mapping functions are:

1. Identity f(x) = x: A common assumption in neuroimaging is that a stimulus-responsive neuronal population

will exhibit a linear relation between input x and measurements y (e.g. the more light the higher the neuronal

response). The identity function y’ = x can be used in such cases if the analysis method is not sensitive to

scaling effects.

2. Categorical f(x) = [xi=1; else 0]n: Another widespread assumption is that different stimuli evoke different

patterns of brain activity. These might be spatially distinct such as different regions encoding houses and

faces (Kanwisher et al., 1997), or they might overlap, like for orientation tuning in V1 (Hubel & Wiesel, 1962,

1968). Diagnostic information that encodes categorical information (e.g. a design variable that codes the

target stimulus category “house” as “1” and “face” as “2”) can be recoded using dummy coding from

standard statistics. For example2, if a variable contains four categories encoded by the values 1 to 4, x = 2

will be mapped to y’ = [0 1 0 0].

Other examples for mapping functions to generate data to test ranges that need temporally extended data

(e.g. BOLD or EEG data) are the standard convolutions of onset and duration vectors with a canonical

hemodynamic response function, which are routinely used as input to the general linear model in fMRI

analyses. Spatial and/or temporal autocorrelations in the data can be added by employing additional spatial

and/or temporal convolution (see e.g. Schreiber & Krekelberg, 2013). Such data can also be useful to create

test cases for representational similarity analysis (RSA; Kriegeskorte et al., 2008).

4.5 Analysis
The analysis to use in a SAA test case is directly dictated by the SAA core, the “same analysis principle”: The

same analysis that should be used as in the main analysis. This includes using the same code, the same

parameters, the same trials that go into the analysis, etc. (where this is not possible, the analysis should be

kept as similar as possible). If different analyses should be run on the recorded data, each analysis needs to be

tested with different test cases.

4.6 Outcome measures
There are numerous types of problems that can be detected using SAA, and these types depend on the chosen

outcome measure that determine the result. But as for the analysis: There is not really anything to decide here,

because the outcome measure is dictated by the intention, the analysis, and the selected range. For example,

when testing cross-validated decoding, then primary outcome measures are classification accuracy or area

under the receiver operating characteristic curve (AUC). When using SAA to test whether statistical outcomes

are valid, then p-values, proportion of statistically significant results or range of confidence intervals could be

used. When using SAA with artificially generated data, Monte-Carlo simulations can test whether the empirical

alpha level matches the intended alpha level, e.g. whether indeed no more than 5% of all null simulations will

be decided significant for α = 0.05. Finally, for testing general distributional assumptions, the mean or shape of

the null could be tested. These are merely examples of typical outcome measures that can be used with SAA.

4.7 Comparing initial expectations and results
Once the result of a SAA test case is calculated, it is finally compared to the initial expectation of the

experimenter (if such an expectation exists, which is indeed often the case). In general, we suggest using both

(i) computational methods (that may or may not include statistical assessment) and (ii) visualization of the

outcomes to test whether the outcome matches the expectation, because both complement each other3. One

2 More generally, if n different values exist, each value i will be mapped to an n-dimensional vector containing a 1 at dimension

i and 0 elsewhere.
3 Humans can detect unexpected patterns in data because they rely on (often implicit) intuitions when thinking about data.

Here, visualization helps to update intuitions and to detect deviations from intuitions. However, because humans are prone

SI for Görgen et al., SAA 7/21

example for computational methods that do not require statistical assessment would be decode the variable of

interest from itself, i.e. using the same data as input and output, because should always yield an accuracy of

100% and should be significant. Another example would be performing a t-test on a perfectly counterbalanced

experiment, because this should always yield the t-value t = 0 and should not be significant. In contrast, test

cases that include stochastic influences at some point require statistical assessment of outcomes, e.g. those

that use statistical control during the design or use null data as diagnostic information to test that not

(significantly) more than α × 100% of the outcomes are reported significant. Note that statistical assessment

can of course itself give a false positive, so not every significant outcome is necessarily alarming (indeed, some

significant deviations are expected if multiple SAA tests are performed which requires adjustment for multiple

testing, see main paper).

to over-interpreting patterns in data and might miss differences that look small on the visualisation, employing statistical

methods to test clearly defined assumptions is important as well.

SI for Görgen et al., SAA 8/21

5 Additional fMRI results for empirical example
Figures D.1-D.8 show the decoding analyses results for the variance confound example that include all pairwise

combinations of 1st level regressors created with 3/6/12 left button presses (rows) and 3/6/12 right button

presses (columns) per run, respectively, for all time bins between 0-16s (FIR bins 1-8). The diagonal in each plot

(always 2x2 brain renderings belong together) shows the three confound-free analyses in which equally many

button presses were available for the left and the right condition. Note again that the number of button

presses only differed to create first level regressor images, but that the decoding analyses were all run on

equally many examples for left and right (always 6 images per class, one per experimental run).

Figure SI D.1. Bin 1 (0-2s). Decoding analyses for the variance confound example that include all pairwise

combinations of 1st level regressors created with 3/6/12 left button presses (rows) and 3/6/12 right button

presses (columns) per run

SI for Görgen et al., SAA 9/21

Figure SI D.2. Bin 2 (2-4s). Decoding analyses for the variance confound example that include all pairwise

combinations of 1st level regressors created with 3/6/12 left button presses (rows) and 3/6/12 right button

presses (columns) per run

SI for Görgen et al., SAA 10/21

Figure SI D.3. Bin 3 (4-6s). Decoding analyses for the variance confound example that include all pairwise

combinations of 1st level regressors created with 3/6/12 left button presses (rows) and 3/6/12 right button

presses (columns) per run

SI for Görgen et al., SAA 11/21

Figure SI D.4. Bin 4 (6-8s). Decoding analyses for the variance confound example that include all pairwise

combinations of 1st level regressors created with 3/6/12 left button presses (rows) and 3/6/12 right button

presses (columns) per run

SI for Görgen et al., SAA 12/21

Figure SI D.5. Bin 5 (8-10s) Decoding analyses for the variance confound example that include all pairwise

combinations of 1st level regressors created with 3/6/12 left button presses (rows) and 3/6/12 right button

presses (columns) per run

SI for Görgen et al., SAA 13/21

Figure SI D.6. Bin 6 (10-12s). Decoding analyses for the variance confound example that include all pairwise

combinations of 1st level regressors created with 3/6/12 left button presses (rows) and 3/6/12 right button

presses (columns) per run

SI for Görgen et al., SAA 14/21

Figure SI D.7. Bin 7 (12-14s). Decoding analyses for the variance confound example that include all pairwise

combinations of 1st level regressors created with 3/6/12 left button presses (rows) and 3/6/12 right button

presses (columns) per run

SI for Görgen et al., SAA 15/21

Figure SI D.8. Bin 8 (14-16s). Decoding analyses for the variance confound example that include all pairwise

combinations of 1st level regressors created with 3/6/12 left button presses (rows) and 3/6/12 right button

presses (columns) per run

SI for Görgen et al., SAA 16/21

6 SAA setup
Here we explain how the SAA analysis of the main paper has been conducted in more detail. This might also

help researchers that what to implement SAA for their study.

6.1 Data extraction & dummy coding
The first step is to extract the data for each trial. In the main neural analysis, we need to create a list with onset

and length of each event for each condition that we are interested in. For example, we might have Left and

Right button presses in one run in the trials trials(L): {3, 4, 7, 12} and trials(R): {1, 2, 6, 13}, and these might

occur at onsets(L): {17, …} and onset(R): {24, …} seconds after trial onset.

In parallel, for the SAA analysis we create lists for each condition that contain information about each variable

that we want to analyse. For example, the “task condition” variable lists for this run might look like:

TaskCondition(L): {A, D, C, B}, TaskCondition(R): {C, D, A, B}. See Table SI 2 below for a full coding example.

Because the “task condition” variable is categorical, we need to perform dummy-coding as an additional step,

because there is no intrinsic ordering of the conditions A-D. We do so by creating a 4-dimensional binary

representation [a b c d], where always the current task condition is 1 and all the others are 0 (e.g. a trial of

condition “A” would be represented as [1 0 0 0], “B” as [0 1 0 0], etc.).

Table SI 2 – SAA coding for a single example run.

Predictors Left Button Press Trials, Run 1 Right Button Press Trials, Run 1
Trialnr 3 4 7 12 1 2 6 13
Decoding Class L L L L R R R R
Onset 17 … 24 …
TC (Task
Condition)

A D C B C D A B

…
Constant 1 1 1 1 1 1 1 1
Randn 1 0.7

random numbers from N(0, 1)
Randn 2 -0.2
… 1.2
Randn n -0.8
Dummy coding
TC.A 1 0 0 0 0 0 1 0
TC.B 0 0 0 1 0 0 0 1
TC.C 0 0 1 0 1 0 0 0
TC.D 0 1 0 0 0 1 0 0
Trial summaries
Mean(trialnr) 6.5 5.5
Mean(TC=A) 0.25 0.25
Mean(TC=B) …
…

6.2 Run-wise summaries
In this example, decodings are performed on run-wise beta estimates rather than on individual trials. We thus

need to parallel this step for our SAA tests. This step can be omitted in studies that decode on single trial data

directly (another popular approach in neuroimaging). Different motivations underlie calculating 1st level

regression estimates (“betas”): The main ones are de-mixing of the voxel time series caused by overlapping

effects of different factors, de-convolution of the HRF (often called “temporal compression”), and linear

averaging for noise-reduction. Because in SAA we want to test whether variables that are independent

covariates in the main analysis could cause effects in the dependent measured variable of the main analysis,

the only motivation that we need to parallel is linear averaging. Thus, we can parallel the beta regression

estimation by calculating run-wise means for each signal. (If we had calculated other measures than linear

means, or if we want to test the hypothesis that other than linear influences of the independent variables

SI for Görgen et al., SAA 17/21

cause differences in brain activity (e.g. deviation from the mean), we might want to calculate also other

summary measures such as the variance or the like here.)

6.3 SAA: Multiple comparison correction in result displays
As visual aid, we show second level outcomes in a graded scheme to not be confused too fast. Variables can

either be Bonferroni significant, significant, or show a trend. To also detect potential malicious below chance

influences we also display these, but not colour-coded like the variables that could cause false-positive results.

All variables that are not random (class 1 side, ntrials, and const, class 2) are not included to calculate the

correction (because they are not random processes), and the correction is only calculated for the variables that

are indeed displayed. The whole purpose of this procedure is to easier detect potentially harmful confounds,

because of course a variable might still be confounding even if it is not detected here.

6.4 Suggested classes for SAA tests
To ease interpretation, we suggest to sort SAA tests into four classes that seem typical for decoding studies:

“Sanity checks” (Class 1), “guaranteed outcome” (Class 2), “average outcome” (Class 3), and “control data”

(Class 4). A fifth class that is mentioned below which we haven’t included in the analysis here are variables that

can be included for unit testing. The classes are ordered by consecutive influences: Confounds of variables with

smaller class numbers will probably also influence variables with larger class numbers, but not vice versa. So

problems in classes with smaller numbers should be solved first.

Class 1: The first class of variables contains sanity checks. If these already fail, everything else will probably fail,

too. In the example, we have added three such checks: First, if we can decode button press side if our data is

button press side. This should yield a decoding accuracy of 100% in each and every single case, and if it doesn’t,

there seems to be a severe problem in the code. Second, we included a constant regressor that is always “1”

for each trial. Here, decoding on the mean (=”1”) should result in 50% accuracy in our case, because we used

leave-one-pair-out cross-validation. Decoding on the sum might be ok if everything else seems fine, because we

had an unequal number of trials but we averaged them, so a significant result here should not bother us too

much. Finally, this class also contains the 10,000 ‘randn’ variables that contained random data for each trial.

Because we used a significance level of α=5%, single significant outcomes are not interesting for us, but only if

significantly more than 5% of the 10,000 tests return significant results.

Class 2: The next class contains design variables that should always yield a certain outcome, in each and every

single experiment. An example would be a variable that we had balanced against the button press variables,

e.g. were we had equally many left and right button presses for level of that variable. Here, decoding should

never be possible using left and right button presses. Thus, an alarming outcome for such a variable would be

any deviation from chance level, not only if the 2nd level t-test result is significant. No such variable is included

in the current example, but it typically is in many experiments.

Class 3: The outcome of other design principles might not be as strict, but should guarantee that on average

the design variables are unbiased. All design principles that we used in our example fall into this category,

because they all have been (pseudo-)randomized. The interpretation of the results of variables in this class

differs between design creation and confound detection during data analysis. During the design creation stage,

many designs should be created to ensure that the creation process is valid on average (see ‘randn’ analysis

above). During the data analysis stage, we want to check whether the concrete design that was randomly

drawn for actual data collection is ok.

An idea that easily comes into mind here is design selection, i.e. not to take any random design but to continue

creating designs until one is found that has no confounds at all before collecting data. However, a couple of

critical issues need to be considered here: First, it is often impossible to generate designs so that every variable

is completely confound-free. Second, selecting designs based on certain criteria reduces (often drastically) the

space from which designs are drawn, and thus might introduce new confounds in variables that have not been

used for selection. Thus, one might not want to generate the best possible design but just to throw out designs

that are really bad. Finally, when using a design selection procedure, it is important to make sure that the

designs that are selected by this procedure are themselves unbiased on average, and then to only use a

random design from this pool of allowed designs; otherwise one runs into the problem of “double dipping”

(Kriegeskorte et al., 2009).

SI for Görgen et al., SAA 18/21

Class 4: The final class in the example SAA analysis are the control variables ‘reaction time’, ‘time button of

button press’, and ‘answer correct or wrong’. Control data is routinely analysed in MVPA studies, but is

typically analysed with different methods than the main data of interest, potentially causing to both overlook

potential confounds because the other method is not sensitive to it (or vice versa).

Class 5: A final class that we did not include in this example analysis but that is probably helpful to detect

confounds (or bugs) in a design is to include variables for unit testing. In general, one can add any variable in

this class. The only difference to the previous classes is that one does not really expect confounds in these

variables, and thus the false positive control should be much more liberal. Specifically, we suggest to calculate

separate multiple comparison corrections for this class and all other classes, so that the results of the analyses

of other classes stay the same independent of how many unit testing analyses one conducts. In general,

multiple comparison correction in SAA results displays only works as a visual aid, not as statistical tests.

SI for Görgen et al., SAA 19/21

7 Variance confound decoding in simulations (Nearest Centroid and

linear SVM)

Figure SI E.1. Variance decoding with a nearest-centroid classifier. Scenario: 10-fold Leave-one-pair-out cross-

validation with 20 random 1d numbers per dataset, 100,000 simulations. The data of both conditions is drawn

from two normal distributions, that have the same mean and but differ in their variance (class1: N(m=0, sd=1);

class 2: N(m=0, sd=2)). Top left: Occurrence probability of all possible n correct (from 0/20 to 20/20), results in

simulation (blue) deviate systematically (red) from the binomial distribution (black), including a shift of the

mean (p(C)=0.51 instead of .50; shown below right plot). As predicted, this is driven by predicting Class 1 (with

smaller variance) higher (p(C1)=0.56, +6% from chance), the misclassifying class 2 (p(C2)=0.47, -3% from

chance). Top right: Distribution of data centroids for each class (blue, black; centroids are the means of the

training data) and the positions of the NN-classifiers (green). Although the classifier peaks at 0, it also occurs at

both sides. Bottom: Additional insights in the classifier behaviour at different positions. Most interesting should

be % correct at different positions (cyan), that is on average 50% for classifiers at position 0 but increases (as

predicted) if the classifier is positioned left or right. Integrating over all positions thus results in the observed

above chance decoding accuracy. The purple line shows the average direction of the classifier at each position

(fraction of pointing to the left).

SI for Görgen et al., SAA 20/21

Figure SI E.2. Above chance decoding with a linear SVM classifier. Setting like in figure E.1 above. The SVM can

distinguish the classes even better (p(C)=0.55 correct) because the classifier has a wider spread and more

frequently occurs outside the middle (green curve in upper right and lower plot).

SI for Görgen et al., SAA 21/21

8 Supplemental References
Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional

architecture in the cat’s visual cortex. The Journal of Physiology, 160(1), 106–154.
Hubel, D. H., & Wiesel, T. N. (1968). Receptive fields and functional architecture of monkey striate

cortex. The Journal of Physiology, 195(1), 215–243.
Kanwisher, N., McDermott, J., & Chun, M. M. (1997). The fusiform face area: a module in human

extrastriate cortex specialized for face perception. The Journal of Neuroscience: The Official
Journal of the Society for Neuroscience, 17(11), 4302–4311.

Kriegeskorte, N., Mur, M., & Bandettini, P. (2008). Representational similarity analysis–connecting
the branches of systems neuroscience. Frontiers in Systems Neuroscience, 2. Retrieved from
http://www.ncbi.nlm.nih.gov/pmc/articles/pmc2605405/

Kriegeskorte, N., Simmons, W. K., Bellgowan, P. S., & Baker, C. I. (2009). Circular analysis in systems
neuroscience: the dangers of double dipping. Nature Neuroscience, 12(5), 535–540.

Schreiber, K., & Krekelberg, B. (2013). The Statistical Analysis of Multi-Voxel Patterns in Functional
Imaging. PLoS ONE, 8(7), e69328. doi:10.1371/journal.pone.0069328

Wackermann, J., & Allefeld, C. (2009). State space representation and global descriptors of brain
electrical activity. Electrical Neuroimaging, 191–214.

	The Same Analysis Approach
	Abstract
	Introduction
	Example: Counterbalancing and cross-validation
	Figure 1. Example experiment.
	Counterbalancing works as expected for the t-test
	Counterbalancing does not work for leave-one-run-out cross-validation
	Standard control data analysis fails to detect the problem
	Figure 2. Mismatch between main analysis and control analysis.

	Problem summary

	The Same Analysis Approach
	SAA to detect the problem of the initial example
	Figure 3. The Same Analysis Approach (SAA) applied to the initial example.

	SAA as a guide to solve the problem of the initial example
	Two potential solutions and SAA to verify whether they work
	Related work and generalisation (initial example)

	Principles for setting up SAA
	Test data
	Test range
	Test case
	Expected outcome
	Deterministic vs stochastic tests
	Recommendations when using many statistical tests
	Correlating SAA outcomes and main outcomes as additional check or to detect location-specificity
	When to use SAA
	Figure 4. Guideline for using SAA in different phases of a study.

	Empirical Example: Variance confound in classification
	Figure 5. Results of confounded and corrected example fMRI analyses.
	SAA setup
	Figure 6. SAA results for different test data.

	Interpretation of SAA results
	Cause of the problem: Variance-based linear classification
	Figure 7. Induction of variance difference by design and successful variance classification with a linear classifier.

	Related work and generalisation (empirical example)

	Discussion
	Keep it simple.
	When to employ SAA.
	About our examples.
	Relevance.
	Not too few data; more data no remedy.
	Differences between SAA and simulation studies.
	SAA and unit testing.
	SAA in other fields.
	Conclusion.

	Acknowledgments
	References

	Supplemental Information
	1 Possible solutions to the initial example
	2 Empirical demonstration of the initial example
	3 SAA for the introductory example
	4 Test cases components
	4.1 Intention and the initial expectation
	4.2 Diagnostic information
	4.3 Analysis range: Selecting part of the experimental pipeline to check
	4.4 Mapping functions: Generating pseudo-data from diagnostic information
	4.5 Analysis
	4.6 Outcome measures
	4.7 Comparing initial expectations and results

	5 Additional fMRI results for empirical example
	6 SAA setup
	6.1 Data extraction & dummy coding
	6.2 Run-wise summaries
	6.3 SAA: Multiple comparison correction in result displays
	6.4 Suggested classes for SAA tests

	7 Variance confound decoding in simulations (Nearest Centroid and linear SVM)
	8 Supplemental References

