
                                                                    

University of Dundee

Explosive instability due to flow over a rippled bottom

Guha, Anirban; Raj, Raunak

DOI:
10.5194/npg-26-283-2019

Publication date:
2019

Document Version
Publisher's PDF, also known as Version of record

Link to publication in Discovery Research Portal

Citation for published version (APA):
Guha, A., & Raj, R. (2019). Explosive instability due to flow over a rippled bottom. Nonlinear Processes in
Geophysics, 26(3), 283-290. https://doi.org/10.5194/npg-26-283-2019

General rights
Copyright and moral rights for the publications made accessible in Discovery Research Portal are retained by the authors and/or other
copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with
these rights.

 • Users may download and print one copy of any publication from Discovery Research Portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain.
 • You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 19. Oct. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Dundee Online Publications

https://core.ac.uk/display/228133322?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.5194/npg-26-283-2019
https://discovery.dundee.ac.uk/en/publications/c2300493-4094-4ba2-98b5-6618f44d619b
https://doi.org/10.5194/npg-26-283-2019


Nonlin. Processes Geophys., 26, 283–290, 2019
https://doi.org/10.5194/npg-26-283-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Explosive instability due to flow over a rippled bottom
Anirban Guha1,2,* and Raunak Raj1,*

1Environmental and Geophysical Fluids Group, Department of Mechanical Engineering, Indian Institute of Technology,
Kanpur, U.P. 208016, India
2Institute of Coastal Research, Helmholtz-Zentrum Geesthacht, Geesthacht 21502, Germany
∗These authors contributed equally to this work.

Correspondence: Anirban Guha (anirbanguha.ubc@gmail.com)

Received: 29 March 2019 – Discussion started: 2 April 2019
Revised: 22 July 2019 – Accepted: 22 July 2019 – Published: 21 August 2019

Abstract. In this paper, we study Bragg resonance, i.e., the
triad interaction between surface and/or interfacial waves
with a bottom ripple, in the presence of background veloc-
ity. We show that when one of the constituent waves of the
triad has negative energy, the amplitudes of all the waves
grow exponentially. This is very different from classic Bragg
resonance in which one wave decays to cause the growth of
the other. The instabilities we observe are “explosive” and
are different from normal mode shear instabilities since our
velocity profiles are linearly stable. Our work may explain
the existence of large-amplitude internal waves over peri-
odic bottom ripples in the presence of tidal flow observed
in oceans and estuaries.

1 Introduction

The energy exchange between two counter-propagating sur-
face gravity waves mediated by a bottom ripple, otherwise
known as the “Bragg resonance”, is a widely known phe-
nomenon in oceanography and coastal engineering (Davies,
1982; Mei, 1985; Kirby, 1986). Bragg resonance strongly af-
fects the wave spectrum in continental shelves and coastal
regions (Ball, 1964), modifies the shore-parallel sandbars,
and protects the shoreline from wave attacks (Heathershaw
and Davies, 1985; Elgar et al., 2003). Actually, Bragg reso-
nance is a special kind of resonant triad in which one of the
constituent waves is the bottom ripple, which acts as a sta-
tionary wave (Alam et al., 2009a). Usually, in a classical res-
onant triad (hereafter, “resonant” is suppressed for brevity),
one wave gives energy to the other two waves via nonlinear

interactions such that the individual wave amplitudes remain
bounded at all times.

Not directly related to the problem of wave–triad inter-
actions is the concept of “negative energy waves”. Cairns
(1979) showed that, similar to plasma physics, waves pos-
sessing negative energy may exist in simple fluid dynamical
setups. When a negative energy wave is present in a system,
increase in its amplitude comes at the cost of decrease in the
total energy of the system. Cairns used this concept to ex-
plain numerous linear instabilities, where he explained lin-
ear instabilities in terms of an interaction between the “posi-
tive energy” and the “negative energy” branches of the corre-
sponding dispersion curve. Grimshaw (1984) explored nega-
tive energy concepts using wave action principles and aver-
aged Lagrangians, which reveals that negative energy waves
can only arise in the presence of a background flow. Craik
and Adam (1979) connected the theory of negative energy
waves to the classical triad interaction problem, in which
they theoretically predicted the existence of “explosive tri-
ads”. In an explosive triad, each constituent wave can grow
simultaneously while keeping the total energy of the system
conserved, making it quite different from the “usual” triad.
As already mentioned, the amplitude of one of the waves in a
usual triad decreases to feed energy into the other two waves;
subsequently, these two receiver waves, after reaching their
maximum amplitudes, act as donors by transferring energy
back to the first wave. When one of the constituent waves
of a triad has negative energy and the other two waves have
positive energies, then to compensate the energy decrease in
the negative energy wave, the positive energy waves have to
increase in amplitude, and, hence, there is an increase in am-
plitude of all three waves forming the triad. Explosive growth
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in the context of Bragg resonance would imply that both of
its constituent waves have simultaneous growth while keep-
ing the energy of the system conserved (note that the third
“wave” constituting the Bragg triad is the bottom ripple). We
emphasize here that Bragg resonance has been traditionally
studied in the absence of any background velocity field, and
in such scenarios, explosive growth is impossible.

The present work aims at studying explosive Bragg reso-
nance which occurs as a consequence of the presence of a
velocity field. We find that contrary to typical Bragg reso-
nances, in explosive Bragg resonance the amplitude of the
waves is not limited by energy considerations. This may ex-
plain the presence of large-amplitude internal waves over pe-
riodic bottom ripples such as those in the Rotterdam water-
way (Pietrzak et al., 1990). Such a large-amplitude response
was primarily seen during the strong flood tides and the pres-
ence of a velocity field was deemed essential for the same.
Further, this mechanism of wave generation may also explain
the presence of high-amplitude internal waves in continental
shelves (Alford et al., 2012) whose amplitudes are uncorre-
lated with tidal forcing. We also note here that in the presence
of a vertically nonuniform current, a work similar to ours but
for capillary–gravity waves was performed by Voronovich
et al. (1980). In the present paper, one of our arguments will
be that shear is not necessary for such explosive growth and
that even a uniform mean flow (flowing over a stationary bot-
tom boundary) is sufficient.

In order to explain the explosive Bragg resonance, we first
consider in Sect. 2 a single-layered flow. Here, the system
consists of a surface wave propagating over a rippled bottom
topography and the fluid flowing with a mean velocity pro-
file as shown in Fig. 1a. For explosive instability, we expect
this wave to grow along with its explosive counterpart while
simultaneously conserving the energy of the system. After
highlighting the importance of mean flow in explosive Bragg
resonance and detailing various aspects of negative energy
waves, we briefly examine a more realistic two-layered flow
scenario (Fig. 1b) in Sect. 3. Here we explain why internal
(interfacial) waves would be more susceptible to such reso-
nances. Continuously stratified flows that can support inter-
nal gravity waves have not been studied. We expect explosive
Bragg resonance to be a general phenomenon that can there-
fore be realized in a variety of systems.

2 Theory

A wave of wavenumber k can interact with an undulated bot-
tom of wavenumber kb to transfer some of its energy to the
wavenumbers k± kb. However, this energy transfer is maxi-
mized when the following resonance condition is satisfied:

ki± kr± kb = 0, (1a)
ωi±ωr = 0, (1b)

where ω denotes frequency and the subscripts i and r , re-
spectively, denote incident and resonant waves. For a single-
layered flow (i.e., with no density variation) in the absence
of any mean flow, only one such resonant set can exist at the
first order of nonlinearity (Davies, 1982). In this case, an inci-
dent surface gravity wave of wavenumber ki resonantly inter-
acts with the bottom of twice the wavenumber (i.e., kb = 2ki)
to generate exactly one surface gravity wave, which has a
wavenumber kr = ki and travels in the direction opposite to
the incident wave. This is the classic Bragg resonance con-
dition for surface waves. The corresponding dispersion re-
lation is shown in Fig. 2a. Each wave has been vectorially
represented as (k,ω) (marked by arrows) in the dispersion
diagram, and the corresponding coordinates (or vector tips)
are marked by discs “•”. In this vectorial representation, the
“Bragg triad” forms a vector triangle (in fact, any resonant
triad at the first order of nonlinearity forms a vector triangle
in the dispersion diagram). We observe that the dispersion
relation for a surface gravity wave is symmetrical about the
k axis; i.e., there is no difference between the positively and
negatively traveling waves apart from the direction of propa-
gation.

In the presence of a velocity field, however, the symmetry
between the rightward and leftward traveling waves is de-
stroyed. We find that this not only leads to a modification
in the resonance conditions, but also leads to the formation
of new resonant triads (Raj and Guha, 2019). We assume a
single-layered flow with a “Couette”-type mean velocity pro-
file, i.e., the mean velocity increases linearly from u= 0 at
the bottom (z=−H ) to u= U at the surface (z= 0); see
Fig. 1a. The mean shear is denoted by �≡ du/dz= U/H
and is a constant in this situation. We emphasize here that, al-
though the actual velocity profile is of some relevance, what
matters most is the Doppler shift between the bottom ripples
and the surface. Therefore, even a uniform current (flowing
over a stationary bottom boundary) would have worked just
fine. Mathematically, the dispersion relation in this case is
given by

ω2
in+�tanh(kH)ωin− gktanh(kH)= 0. (2)

Here ωin ≡ ω−Uk is defined as the intrinsic frequency of
the wave, which basically means the frequency obtained af-
ter subtracting the Doppler shift produced by the mean flow.
For this paper, without loss of generality, we have considered
a positive k and have allowed the frequency ω to be either
positive or negative. As a consequence, ω > 0 means a pos-
itively traveling wave, while ω < 0 means a negatively trav-
eling wave in the stationary reference frame. Equation (2), a
quadratic equation in ωin, reveals that the product of the two
roots is negative. Hence, the two branches of the dispersion
curves, shown in Fig. 2b, have intrinsic frequencies of oppo-
site signs. Note that in Fig. 2b, we have plotted ω vs. k (and
not ωin vs. k) in the nondimensional form and have taken the
surface velocity U > 0 without loss of generality. The posi-
tive intrinsic frequency branch has been labeled SG+ and the
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Figure 1. Schematic diagram showing waves over a rippled bottom. The profile of the bottom is ηb. (a) One-layered flow of depth H with
density ρ is assumed. The free surface profile is η. The velocity profile (chosen to be linear) must create a Doppler shift between the free
surface and the bottom. (b) Two-layered flow of depth H ≡ hu+hl with density ρu and ρl is assumed. The free surface (interface) profile is
ηu (ηl). The velocity profile is piecewise linear.

negative one SG−. Below we perform a detailed analysis of
the dispersion curve.

2.1 An analysis of triads using dispersion curves

From Fig. 2b, we see that while ω for the SG+ branch in-
creases monotonically with k, the same is not true for the
SG− branch. For this branch, ω initially decreases with k,
attains a minimum, and then starts to increase. Thus the
sign of ω becomes opposite to ωin; in Fig. 2b this happens
after kH ≈ 3 for U∗ ≡ U/

√
gH = 0.7. The non-monotonic

behavior of ω with k allows a given wave vector (k,ω) to
form multiple resonant triad sets. This is starkly different
from the classic Bragg resonance, where, as mentioned ear-
lier, only one triad condition is possible for a single-layered
fluid (Fig. 2a).

The minimum frequency of the SG− branch1 is labeled
ωmin. The wavenumber at which the SG− branch crosses
the k axis (ω = 0 line) is labeled kz. For every point on the
dispersion curve with frequency ω < |ωmin| (shown in the
shaded region in Fig. 2b), there exist three resonant triads for
any given incident wavenumber. For an example, we choose
a frequency ω0 < |ωmin| and plot ω =±ω0 on the dispersion
curve. There will be four intersections with the dispersion
curve, all shown using bullets (•) in Fig. 2b. An interest-
ing observation here is that three of these above-mentioned
points lie on the same branch of the dispersion curve SG−.
Any two of the four intersection points form a resonant triad
with an appropriately chosen bottom ripple. If the points lie
on the opposite side of the k axis, the bottom’s wavenum-
ber for resonance would be the sum of two wavenumbers
involved, else it would be the difference. For a given |ω0|

less than |ωmin|, a total of six (≡ 4C2) Bragg triads can be

1Note that in this case we have taken �> 0; had we taken
�< 0, we would have got a maximum in the SG+ curve rather
than getting a minimum in the SG− curve. Basically, the dispersion
curve in that case would be a mirror image of Fig. 2 about the line
ω = 0.

obtained. We again recall here that in the absence of mean
velocity, only one triad would have been possible, as shown
in Fig. 1a.

If we choose ω0 >−ωmin, there would be only one such
triad between the SG+ branch and the SG− branch. In that
case, since both the incident and resonant frequencies will be
positive, the wavenumber of the bottom ripple would be the
difference of the two wavenumbers. However, for the case
when ω0 < ωmin, a stably propagating wave cannot exist and
there will not be any chance of resonance.

2.2 Negative energy waves

As shown in Cairns (1979), the energy per unit area E of
a wave (hereafter, simply referred to as “energy”) with fre-
quency ω, amplitude a, and satisfying the dispersion relation
D(ω,k)= 0, is given by

E =
1
4
ω
∂D

∂ω
|a|2. (3)

The energy of a wave in the words of Cairns (1979) is
“the work done during an idealized process in which the
wave is driven up by an external force applied on a sur-
face in the fluid.” Therefore, a negative energy wave is such
a wave whose introduction into the system lowers the en-
ergy of the system. For a given system, the dispersion rela-
tion D(ω,k)= 0 can be written in multiple forms; for every
form, the factor ∂D/∂ω would be different. However, only
when the dispersion relation for the purpose of calculating
energy is written in the form described in Cairns (1979) do
we obtain the energy of the wave. In this approach an in-
terface z= η(x, t) is chosen, and the pressure p1 (p2) just
above (below) this interface is written as

p1(x, t)=D1(ω,k)η(x, t), (4a)
p2(x, t)=D2(ω,k)η(x, t). (4b)

The dispersion relation is given by

D(ω,k)=D1(ω,k)−D2(ω,k). (5)
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Figure 2. (a) A Bragg triad in the absence of mean velocity. Wavenumber k has been nondimensionalized by 1/H (H ≡ flow depth), and
frequency ω by

√
g/H , i.e., ω∗ ≡ ω/

√
g/H . (b) Bragg triads in the presence of “Couette-type” mean velocity with U∗ ≡ U/(

√
gH)= 0.7.

In the shaded region, three Bragg triads can exist for a given k. For labels, see the text.

The dispersion relation of an intermediate depth surface
gravity wave in the presence of a constant mean shear cur-
rent is found to be

D(ω,k)= ρ

[
(ω−Uk)2

ktanh(kH)
+
(ω−Uk)�

k
− g

]
= 0, (6)

where ρ is the density of the fluid. Hence,

∂D

∂ω
= ρ

ω2
in+ gktanh(kH)
ωinktanh(kH)

. (7)

We observe that in this case, the sign of ∂D/∂ω is depen-
dent only on the sign of ωin, i.e., the intrinsic frequency
of the wave. Therefore, for the SG+ branch, ∂D/∂ω is al-
ways positive, whereas for the SG− branch, it is always neg-
ative. Further, for the SG+ branch, the frequency ω is al-
ways positive. Therefore, according to Eq. (3), the energy
of the SG+ branch is always positive (E > 0). For the SG−
branch, ω < 0 when k < kz, which implies positive energy
for k < kz. However, for k > kz, we have ω > 0, but ∂D/∂ω
still remains negative, which implies a negative energy wave
(E < 0). Therefore, using the negative energy approach of
Cairns, we expect that a wave on the branch SG−, for which
k > kz, will form an explosive Bragg triad with a suitable
positive energy wave.

2.3 An explosive Bragg resonance pair

To derive the amplitude evolution equations for Bragg
resonance, we represent the constituent surface waves as
(k1,ω1) and (k2,ω2). The waves are expressed in the form
a1(t)exp[i(k1x−ω1t)]+c.c and a2(t)exp[i(k2x−ω2t)]+c.c,
where c.c denotes the complex conjugate. With a stationary
bottom ripple with a wavenumber kb, they satisfy the reso-
nance condition

k1+ k2 = kb, (8a)

ω1+ω2 = 0. (8b)

The amplitude evolution equations for Bragg resonance for
such a case are given by Raj and Guha (2019):

da1

dt
= β1aba2, (9a)

da2

dt
= β2aba1, (9b)

where a1 and a2 are the complex amplitudes of the waves in-
volved and ab is the complex amplitude of the bottom ripple
with overbars denoting the complex conjugates. The coeffi-
cients β1 and β2 in Eqs. (9a) and (9b) can be derived follow-
ing Fredholm’s alternative, the procedure of which has been
elaborated in Raj and Guha (2019). In this particular case of
uniform shear, the coefficients are as follows:

β1 = i
k1(ω1−Uk1)

2 (ω2−Uk2)

coshk1H sinhk2H
[
gk1tanhk1H + (ω1−Uk1)

2
] , (10a)

β2 = i
k2(ω2−Uk2)

2 (ω1−Uk1)

coshk2H sinhk1H
[
gk2tanhk2H + (ω2−Uk2)

2
] . (10b)

The coefficients β1 and β2 are purely imaginary. Further-
more, it can be easily seen that the signs of β1 and β2, re-
spectively, depend on the signs of ω1−Uk1 and ω2−Uk2
only, i.e., only on the intrinsic frequencies of the respective
waves. Thus the sign of the product β1β2 depends only on the
sign of the product of the intrinsic frequencies of the waves
forming the resonant pair. As noted before, the intrinsic fre-
quency of the SG+ branch is positive for all k, while that of
the SG− branch is negative for all k.

We can also express Eqs. (9a) and (9b) as

d2a1

dt2
=−β1β2|ab|

2a1, (11a)

d2a2

dt2
=−β2β1|ab|

2a2. (11b)

Nonlin. Processes Geophys., 26, 283–290, 2019 www.nonlin-processes-geophys.net/26/283/2019/
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Hence, for explosive growth,

−β1β2 > 0⇒ (ω1−Uk1)(ω2−Uk2) > 0. (12)

This basically means that the intrinsic frequencies have to be
of the same sign, or in other words, the two points must lie
on the same branch of the dispersion curve in Fig. 2b. Fur-
thermore, Eqs. (8a) and (8b) assume that the actual frequen-
cies of the resonant pair must be of opposite signs. There-
fore we deduce that for Bragg resonance to give rise to ex-
plosive growth, if the actual frequencies of the waves are of
opposite signs, then the intrinsic frequencies must have the
same sign. This is precisely the condition satisfied by all the
Bragg triads formed by the waves with 0< ω < |ωmin| on
the SG− branch, with the waves on the same branch with
ωmin < ω < 0.

2.4 Explosive Bragg resonance from the negative
energy perspective

To understand how the waves in Sect. 2.3 constitute a positive
energy–negative energy pair, we write the coefficients β1 and
β2 in terms of ∂D/∂ω. Using Eq. (7) along with Eqs. (10a)
and (10b), we obtain

β1 = iλ

(
∂D

∂ω

)−1

ω1,k1

, (13a)

β2 = iλ

(
∂D

∂ω

)−1

ω2,k2

, (13b)

where λ= (ω1−Uk1)(ω2−Uk2)[sinh(k1H)sinhk2H ]
−1.

Therefore Eqs. (9a) and (9b) can be written as(
∂D

∂ω

)
ω1,k1

da1

dt
= iλabā2, (14a)(

∂D

∂ω

)
ω2,k2

da2

dt
= iλabā1. (14b)

Although we have written the expressions in this form for
a special case of a single-layered flow, such a form is very
general. In fact, for the case of triad interactions involving
three waves, a similar set of equations was obtained by Craik
and Adam (1979). Using Eqs. (13a) and (13b) along with the
condition for explosive instability, i.e., Eq. (12), we get(
∂D

∂ω

)
ω1,k1

(
∂D

∂ω

)
ω2,k2

> 0. (15)

This basically means that energy coefficients ∂D/∂ω of the
two waves are of the same sign. However, we know from
Eqs. (8a) and (8b) that the frequencies are of opposite signs.
Hence, the energy of the two waves, given by Eq. (3), must
be of opposite signs for an explosive instability to occur.

2.5 Another explosive Bragg resonance pair

Here we consider the case where the two frequencies are of
the same sign. The resonance condition in this case is given
by

k2− k1 = kb, (16a)
ω2−ω1 = 0. (16b)

The amplitude evolution equation is found to be

da1

dt
= β1aba2, (17a)

da2

dt
= β2aba1, (17b)

where β1 and β2 remain the same as that in Eqs. (11a) and
(11b). The above equations can be written as

d2a1

dt2
= β1β2|ab|

2a1, (18a)

d2a2

dt2
= β2β1|ab|

2a2, (18b)

which implies that the condition for explosive growth is

β1β2 > 0⇒ (ω1−Uk1)(ω2−Uk2) < 0. (19)

Hence, if the actual frequencies of the waves are of the same
sign, the intrinsic frequencies must be of opposite signs for
explosive instability to occur. As we have mentioned ear-
lier, having opposite signs of intrinsic frequency in this case
means that the waves must be on different branches, i.e., one
on SG+ and the other on SG−, but have the same sign of
actual frequency. As an example, this will correspond to the
Bragg triad formed by the two black dots in the upper-half
plane (i.e., ω > 0) in Fig. 2b. Using Eqs. (13a), (13b) and
(19) along with Eqs. (16a) and (16b), we will indeed find
that the energy of the two waves must be of opposite signs
for the occurrence of explosive instability.

2.6 Generalized analysis

We have already shown the existence of Bragg resonant tri-
ads that give rise to explosive growth for a single-layered
flow with shear present. We have shown for this case that
for explosive instability, the dispersion curve must cross the
ω = 0 axis for explosive instability (assuming the reference
frame attached to the bottom). Furthermore, if the intrinsic
frequency of a wave is ωin, then for it to change sign, a ve-
locity U in the opposite direction must be present, implying
that for some value of k, |Uk|> |ωin|. Given the fact that the
frequency of a gravity wave varies as ωin ∼ k

1/2 and that for
a vorticity wave, ωin ∼ k

0, for some value of k, |Uk| will ex-
ceed |ωin|. Therefore, mathematically, an explosive triad will
always exist for any value of U . However, as can be seen
from Eq. (10a), the coefficients β1 and β2 are proportional

www.nonlin-processes-geophys.net/26/283/2019/ Nonlin. Processes Geophys., 26, 283–290, 2019
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Figure 3. Growth of amplitudes of a wave on the SG− branch
which resonates a wave on the same branch. The incident wave
wavenumber is k1H = 0.06, while the resonant wave has the
wavenumber krH = 3.13. Other relevant parameters are kbH =
3.19, ω1/

√
g/H =−0.0213, ω2/

√
g/H = 0.0213, U/

√
gH =

0.70, N = 2048, M = 2, a1s/H = 2.5× 10−5, ab/H = 0.025, and
T1/1T = 1024. Here, “N” denotes the number of Fourier modes
used in numerical simulation, whereas “M” denotes the order of
nonlinearity taken into account. (See Raj and Guha, 2019 for de-
tails.)

to (coshk1H sinhk2H)
−1 and (sinhk1Hcoshk2H)

−1, respec-
tively; hence, for higher values of k, they rapidly tend to-
wards 0. Thus, for very low velocities, explosive triad con-
ditions may be satisfied for a very large value of k, but the
growth rate tends to zero in such cases. Physically, higher
values of kH refer to the deep water case where waves are
far away from the bottom and hence do not feel the bottom’s
effect, even though the resonance condition is satisfied, tech-
nically. Further, in a general setting where different interfaces
are moving at different velocities, it may not be possible to
form a polynomial equation in terms of intrinsic frequency.
In any case, the energy of waves can always be found out
and, hence, the necessary condition for the existence of an
explosive Bragg pair is that a branch of the dispersion curve
with negative energy must exist.

Finally, we point out that for the case of explosive triads
between three waves (discussed in Craik and Adam, 1979),
the existence of negative energy did not necessarily mean ex-
plosive interaction. The explosive instability occurs when out
of the three waves involved, the wave of greatest frequency
has energy of opposite sign from the other. However, in this
case of Bragg resonance, only two waves are involved, with
the third wave being the bottom ripple with zero frequency
and the other two waves having the same magnitude of fre-
quency. Therefore, if the bottom is at rest, Bragg resonance
involving waves with opposite energy will necessarily mean
an explosive growth.

We have also numerically simulated a case of explo-
sive instability using a higher-order spectral (HOS) code

(Alam et al., 2009b), which was extended by Raj and Guha
(2019) to incorporate shear into it. Both the incident wave
and the resonant waves are on SG−. The incident wave
with a wavenumber k1H = 0.06 interacted with the bot-
tom ripples of wavenumber kbH = 3.19 to resonate a wave
with wavenumber k2H = 3.13. Other relevant parameters are
mentioned in the caption of the figure. It can be seen that
within 20 time periods, the amplitude of the resonant wave
has become over 10 times that of the initial amplitude of the
incident wave.

3 Explosive resonance in a two-layered flow

In this section, we consider a two-layered flow with a den-
sity ρu and mean shear �u in the upper layer and a density
ρl and mean shear �l below it. By a two-layered flow we
do not necessarily mean that there has to be a density dif-
ference between the two layers. We simply mean that there
has to be either a shear jump or a density jump (or both) be-
tween the two layers, which may lead to a perturbation vor-
ticity generation at the interface. We have already discussed
the theory of explosive Bragg resonance; this section mainly
shows that in a two-layered setting, achieving the explosive
Bragg resonance needs significantly less velocity. In a two-
layered density stratification without any velocity field, there
exist four different modes of wave propagation – two surface
modes and two interfacial modes – propagating symmetri-
cally in both directions. Whereas, for a one-layered setting,
the energy transfer was limited to the surface only, in this
case, waves on the pycnocline may also participate in the
energy exchange. The intrinsic frequency of a gravity wave
on a pycnocline is significantly less than that of the surface
because the density contrast at the air–water interface is far
more than the density contrast at the pycnocline. Therefore,
the condition for explosive instability, i.e., |Uk|> |ωin|, may
be satisfied at significantly lower values of U and k for the
interfacial mode. As can be seen from Fig. 4a, a uniform cur-
rent with a small Froude number of 0.1 may also lead to the
negative energy branch (IG−) and, consequently, any Bragg
triad involving a negative energy branch will be prone to ex-
plosive growth. One such Bragg triad has been shown using
discs “•” in the figure.

Further, in cases where the density ratio limits towards
one (R→ 1), there cannot exist a gravity wave at the inter-
face. However, if there is a shear jump, then the interface
may support a vorticity wave. Thus, there still may be energy
transfer from the surface to the vorticity interface through
Bragg resonance. The other way such an energy transfer can
happen is through a wave–triad interaction, which was the
theme of the paper by Drivas and Wunsch (2016). For wave–
triad interaction involving a vorticity wave, no such explo-
sive instability was reported by Drivas and Wunsch (2016),
but for Bragg resonance, we find that the resonant interac-
tions involving the vorticity wave are prone to explosive in-
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Figure 4. (a) Dispersion curves for a uniform current (flowing over a stationary bottom boundary). U∗u = U
∗
l = U

∗
b = 0.1, hu/hl = 1/3,

and ρu/ρl = 0.95. (b) Dispersion curves for shear in the bottom layer and single density fluid. U∗u = U
∗
l = 0.1, U∗b = 0, hu/hl = 1/3, and

ρu = ρl. Dashed curves have negative energy. U has been non-dimensionalized with
√
gH , where H = hu+hl.

Figure 5. (a) Incident interfacial mode wave packet with k1H = 2.1 at t = 0. (b) The incident mode grows while simultaneously resonating
with a surface mode with k2H = 0.1. Other relevant parameters are kbH = 2.0,U∗u = U

∗
l = 0.1565,U∗b = 0,hu/hl = 1/3,ρu/ρl = 0.95,

ω∗1 = ω
∗
2 = 0.1095, N = 1024, M = 2, ai = 0.01hu, ab = 0.1H , and T1/1T = 512. U has been non-dimensionalized with

√
gH , where

H = hu+hl.

Figure 6. Growth of amplitudes of a wave on the IG+ branch which
resonates a wave on the SG+ branch. Parameters are the same as in
Fig. 5. The subscript “i” indicates that the amplitudes are measured
at the pycnocline.

stability if shear is in the bottom layer. For a piecewise lin-
ear velocity profile with Uu = Ul = U > 0,Ub = 0 for which
�u = 0,�l = U/hl, the dispersion relation is given by

ω3
in+

�lTl

(1+ TuTl)
ω2

in−
gk(Tu+ Tl)

(1+ TuTl)
ωin−

gk�lTuTl

(1+ TuTl)
= 0, (20)

where Tu = tanhkhu and Tl = tanhkhl.
It can be easily seen from the above Eq. (20), which is a

cubic equation in ωin for�l > 0, that the product of the three
roots is positive. Further, we know that one gravity wave
branch has a positive intrinsic frequency, while the other
has negative intrinsic frequency. This basically means that
the vorticity wave branch must have a negative intrinsic fre-
quency. However, for any value of a positive velocity U , the
frequency of vorticity waves becomes positive. The disper-
sion relation showing the negative energy branch (IV−) has
been plotted in Fig. 4b.

In order to better visualize explosive resonance, we have
also simulated an explosive case in a two-layered flow. The
incident wave is a relatively short interfacial mode with a
wavenumber k1H = 2.1, whereas the resonant wave is a sur-
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face mode with the wavenumber k2H = 0.1. The bottom rip-
ple has a wavenumber kbH = 2.0, the velocity at the bottom
is zero and the velocity at both the surface and the interface is
U/
√
gH = 0.1565. Figure 5a shows the wave packet at t = 0

and Fig. 5b is the wave packet at the final time. The resonant
wave with a large wavelength can also be observed.

Further, we have also plotted the variation of Fourier trans-
form of the interface with time in Fig. 6. Increase in both
the amplitudes pertaining to k = k1 and k = k2 shows “ex-
plosive” growth.

4 Conclusions

Bragg resonance has been traditionally understood in the ab-
sence of any background velocity field, and in such scenar-
ios, the amplitude of one wave decays to cause a growth in
the amplitude of the other wave. However, in the presence
of a velocity field, we show that it is possible to have an ex-
ponential growth in the amplitudes of the waves. Notably,
even though the presence of a velocity field is necessary, this
exponential growth is not a consequence of linear instabil-
ity because the velocity field chosen is not linearly unstable
to perturbations. Further, this simultaneous growth happens
without any violation of the law of conservation of energy
similar to the explosive instability arising due to wave–triad
interaction (Craik and Adam, 1979).

We have explored the possibilities of explosive triads (i.e.,
all the waves involved in the system grow while keeping the
energy conserved) where one of the involved waves is the
bottom ripple. Although we have shown it for certain veloc-
ity profiles, the fundamental reason is the Doppler shift of
the waves with respect to the bottom. Unlike wave–triad in-
teraction, where involvement of a negative energy wave may
lead to explosive growth, in the case of Bragg resonance, the
presence of such a wave will lead to explosive growth. For a
single-layered flow, the velocity required for the formation of
an explosive triad is moderately high; however, when a pyc-
nocline is present, explosive instabilities can occur even for
small velocities. This is because of low intrinsic frequency of
the interfacial gravity wave due to which even a low velocity
can Doppler shift the intrinsic frequency to change the sign
of the observed frequency.
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