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Abstract. Spatial image quality metrics designed for camera
systems generally employ the Modulation Transfer Function
(MTF), the Noise Power Spectrum (NPS) and a visual contrast
detection model. Prior art indicates that scene-dependent
characteristics of non-linear, content-aware image processing
are unaccounted for by MTFs and NPSs measured by traditional
methods. The authors present two novel metrics: the log Noise
Equivalent Quanta (log NEQ) and Visual log NEQ. They both
employ Scene-and-Process-Dependent MTF (SPD-MTF) and NPS
(SPD-NPS) measures, which account for signal transfer and noise
scene dependency, respectively. The authors also investigate
implementing contrast detection and discrimination models that
account for scene-dependent visual masking. Also, three leading
camera metrics are revised to use the above scene-dependent
measures. All metrics are validated by examining correlations
with the perceived quality of images produced by simulated
camera pipelines. Metric accuracy improved consistently when
the SPD-MTFs and SPD-NPSs were implemented. The novel
metrics outperformed existing metrics of the same genre. c© 2019
Society for Imaging Science and Technology.
[DOI: 10.2352/J.ImagingSci.Technol.2019.63.6.060407]

1. INTRODUCTION
Spatial image quality metrics (IQM) are proposed in this
article for scene-dependent image capture systems that
apply non-linear content-aware image signal processing
(ISP). Subjective image quality is defined by Engeldrum
as ‘‘the integrated set of perceptions of the overall degree
of excellence of an image’’ [1]. It is often expressed as
the multivariate combination of visuo-cognitive factors—the
‘‘nesses’’—concerning image quality attributes such as res-
olution, sharpness, noisiness, contrast and colorfulness [1].
Spatial image quality relates to the intensity and distribution
of two-dimensional (2D) luminance contrast signals and is
associated with sharpness, resolution, noise and contrast.

Psychophysical evaluations are the only true means
of measuring the overall subjective quality of images
or the perceived magnitude of their individual quality
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attributes. Different methods involve categorical scaling [1],
paired/triplet comparison [2] or comparison with a cal-
ibrated series of ruler images using the ISO 20462 [3]
Image Quality Ruler. The last records observer ratings on a
generalizable ratio Subjective Quality Scale (SQS2) [3], with
increments of just-noticeable difference (JND), and a zero
point that refers to low-quality scenes that are difficult to
identify perceptually.

Despite recent developments in speed and precision
[2, 3], psychophysical image quality evaluations are slow,
expensive and difficult to carry out accurately. IQMs save this
time and expense by mapping the image information—or
data concerning imaging system performance and the
viewing conditions—to output scores that are intended to
correlate with observer quality ratings (Figure 1).

IQMs are employed for online image quality control,
ISP algorithm development and imaging systems design
and optimization. A broad spectrum of metrics has evolved
from several research areas including imaging systems
engineering, information theory, signal/image processing,
computer vision,machine learning, visual psychophysics and
neural physiology [4]. These IQMs are tailored for different
applications. They apply varying levels of calibration, or
curve-fitting, to optimize their correlation with observer
quality ratings from test image datasets that contain different
types of artifacts.

This article focuses specifically on no-reference spatial
metrics suited for image capture systems engineering.
Suitable IQMs break image quality judgement down into
components relating to the different attributes and charac-
teristics of the imaging system and human visual system
(HVS). A recent review [5] by the authors defines the
following spatial IQM genres: Computational IQMs, Image
Fidelity Metrics, Signal Transfer Visual IQMs (STV-IQM) and
Multivariate Formalism (MF-IQM). When each genre was
evaluated from a capture system engineering perspective,
the Computational IQMs and Image Fidelity Metrics were
concluded to be least suitable for the purpose [5].

The STV-IQMs and MF-IQMs—referred to, in this
article, as engineering metrics—employ standard spatial
system performance measures such as the Modulation
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Figure 1. Generalization of image quality metric (IQM) characteris-
tics [5].

Transfer Function (MTF), Noise Power Spectrum (NPS) and
threshold Contrast Sensitivity Functions (CSF) describing
visual spatial sensitivity. The Noise Equivalent Quanta
(NEQ) signal-to-noise (SNR) measure is core to the most
relevant STV-IQMs and is applied widely in capture system
and sensor modeling [6–8]; it also uses the MTF and NPS.

Our recent evaluation of simulated camera pipelines,
however, revealed that the currently employedMTF andNPS
measures characterize systems that apply non-linear content-
aware ISP with limited accuracy [9]. This is because signal
transfer and noise in these systems is scene-dependent (i.e.,
dependent on the input signal). Novel Scene-and-Process-
Dependent MTF (SPD-MTF) and NPS (SPD-NPS) measures
have been developed to characterize such systems more
suitably [9]. Likewise, contextual contrast detection [10] and
discrimination [11] models, which account for each scene’s
contrast spectrum, should be more suitable visual models for
image quality analysis than the currently used CSFs.

This article aims to revise current STV-IQMs and
MF-IQMs to use these state-of-the-art input parameters
and then validate them against their original incarnations.
We also validate two novel STV-IQMs developed in this
laboratory—the log NEQ andVisual log NEQ—that are based
on a similarly revised Scene-and-Process-Dependent NEQ
(SPD-NEQ)measure.

The following sections of the article introduce the
STV-IQMs and MF-IQMs and discuss the limitations of
their current input parameters. We then define the revised
NPS, MTF and CSF parameters. The revised Square Root
IntegralwithNoise (SQRIn), Perceived InformationCapacity
(PIC) and Camera Phone Image Quality (CPIQ) metrics
and the novel log NEQ and Visual log NEQ metrics that
implement these parameters are then defined. The validation
methodology is then presented. This involved comparing
each IQM’s score with observer image quality scores for a
number of test images. The latter were generated by two
camera simulation pipelines that applied either linear or
non-linear ISPs. Finally, we benchmark each IQM’s accuracy
and further analyze correlation plots describing typical
metric behavior.

2. ENGINEERINGMETRICS
We define in this section the STV-IQMs and MF-IQMs and
their input parameters, which are used in the engineering of
image capture systems. These metrics express image quality
as a function of the input signal, the system’s performance
and the observer’s visual sensitivity under the viewing
conditions. Their output scores are causally justified, relating
to the imaging system and the HVS.

Univariate STV-IQMs, such as Acutance [12] (see later
in Eq. (11)), model perceived image quality concerning the

sharpness attribute. Multivariate STV-IQMs are of more
relevance to this article. They account for both sharpness
and noisiness, building upon signal-to-noise relationships
from communications theory [13] and the founding work
of Schade [14] and Nelson [15]. In this article, we revise the
following STV-IQMs: Barten’s [16] Square Root Integral with
Noise and Töpfer and Jacobson’s [17] Perceived Information
Capacity. Their advantage is simplicity since they apply
limited calibration and relate closely to the NEQ [18].

Keelan’sMF-IQM [19] predicts the overall quality loss as
the Minkowski combination [20] of several perceptually cal-
ibrated quality loss metrics for different attributes/artifacts.
The recent IEEE P1858 Camera Phone Image Quality
Standard [12] defines individual attribute metrics for texture
loss, edge Spatial Frequency Response (SFR), local geometric
distortion, visual noise, color uniformity, chroma level
and lateral chromatic displacement. These metrics were
combined to predict overall quality, validated in refer-
ence [21]. The CPIQ overall quality loss metric used in this
article—referred to as the CPIQ metric—employs the texture
loss and visual noise attribute metrics only, thus modeling
the perceived quality concerning sharpness and noisiness.
It is more complicated to implement and computationally
intensive than multivariate STV-IQMs. It also applies higher
levels of calibration including some curve fitting.

2.1 Engineering Metric Input Parameters
The accuracy of the engineering metrics is dependent on the
capability of their MTF, NPS and CSF parameters to describe
the system’s performance in terms of sharpness and noise
as well as the observer’s visual sensitivity, respectively. In
this section, we present sources of inaccuracy in the MTF
and NPS measures currently employed. Such inaccuracies
mainly relate to theMTF andNPS being used to characterize
non-linear, content-aware systems. Both measures originate
from linear system theory that requires systems to be linear,
spatially invariant and homogeneous [18]. We also discuss
the theoretical limitations of currently used CSFs.

The discrete 2DNPS (Eq. (1)) characterizes the power of
the system’s noise, NPS(u, v), versus spatial frequency, (u, v),
using the discrete Fourier transform (DFT) [22]. I(x, y) is
a luminance noise image of size M × N , given by Eq. (2).
g (x, y) is the output image intensity and g (x, y) the expected
intensity. If I(x, y) is a scene, NPS(u, v) is its DFT power
spectrum, or PS(u, v). The rotational average of NPS(u, v)
or PS(u, v) yields the one-dimensional (1D) NPS, NPS(u),
or 1D scene power spectrum, PS(u), respectively.

NPS(u, v)=

∣∣∣∣∣∣∣
M/2∑

x=M
2 +1

N/2∑
y=N

2 +1

I(x, y)e−2π i(ux+vy)

∣∣∣∣∣∣∣
2

(1)

I(x, y)= g (x, y)− g (x, y). (2)

The STV-IQMs currently employ NPSs derived from
captured uniform luminance patches, meaning g (x, y) can
be conveniently assumed constant under certain conditions.
The CPIQ visual noise attribute metric is also derived from
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captured uniform patches [12]. For all capture systems,
however, the amount of noise introduced to uniform patches
and real scenes is not necessarily the same since photon
noise is a function of intensity. Further inaccuracies result
from the application of non-linear content-aware denoising
and sharpening ISPs. These modify the intensity and spatial
distribution of the noise dependent on the local image
structure [9], rendering it both local-content-dependent and
scene-dependent. Uniform patches provide the ideal input
signal for content-aware denoising algorithms, in theory,
and the derived noise image [5] or NPS [9] underestimates
the average real-world noise level of such systems. More
recently, noise measures [23] have been derived using the
more suitable dead leaves target that simulates the ‘‘average
scene’’ power spectrum and other natural scene statistics
(NSS) [24]; but they have not been benchmarked.

The MTF—and the comparable SFR—characterize the
system’s signal transfer capabilities versus spatial frequency.
The STV-IQMs currently employ MTFs derived from (i)
the system’s line spread function measured from a captured
‘‘perfect’’ edge [25], (ii) comparisons of output-to-inputmod-
ulation of captured sinusoids [18] or (iii) output-to-input
comparisons of (white) noise power spectra [26]. MTFs
derived from such signals are not suitable for characterizing
the average real-world performance of scene-dependent
systems that apply non-linear content-aware ISPs. For
example, their failure to account for the JPEG algorithm’s
non-linearity was found to reduce PIC and SQRIn metric
accuracywhenmodeling the perceived quality of compressed
images [26, 27].

Various MTF implementations employ the dead leaves
target to attempt to trigger content-aware ISPs at similar
levels to the ‘‘average natural scene,’’ thus deriving a
more suitable average real-world MTF. The intrinsic dead
leaves implementation compares output-to-input dead leaves
cross-spectra [28]. It is tolerant to noise but is a less suitable
input parameter for IQMs since reversible ISPs are often
unaccounted for, e.g., contrast stretching or sharpening [29].
The direct dead leaves implementation [30] (Eq. (3)) is used
by the CPIQ [12] texture loss attribute metric. In Eq. (3),
PSInput(u) and PSOutput(u) are the input and output 1D
dead leaves power spectra, respectively, and u is the spatial
frequency. NPS(u) is the uniform patch NPS (which is
inaccurate for the reasons stated above).

MTF(u)=

√
PSOutput(u)−NPS(u)

PSInput(u)
(3)

Our recent camera pipeline simulations suggest that dead
leaves signals may not trigger content-aware ISPs in the same
fashion as the ‘‘average natural scene’’ [9]. Further, for scene-
dependent systems, measurements from a single test target
cannot accurately characterize the system’s performance for
any given input scene.

Finally, engineering metrics [12, 16, 17] generally
employ the CSF that models thresholds of detection of
unmasked narrow-band stimuli [31, 32] as a function

of spatial frequency. Johnson and Fairchild’s luminance
CSF [31] is used by theCPIQmetric. It adaptsMovshon’s [33]
black-box model and accounts for the stimulus spatial
frequency only. The SQRIn and PIC metrics both use
Barten’s [32] luminance CSF that accounts for the stimulus
spatial frequency, angular size and luminance. The IQMs
use the CSF as a frequency domain weighting function.
However, CSFs are not transfer functions and do not account
for higher-level cognitive processes concerning image quality
judgement [34]. Although other black-box visual models
often take into account psychological functions [5], there is
a lack of alternative mechanistic visual models that account
for the psychophysical data and viewing conditions.

The debate is ongoing regarding whether image quality
perception involves threshold or suprathreshold visual
processes [11] or a combination of both [35]. What can
be inferred, however, is that in image quality judgements,
the detection and discrimination of visual signals, image
attributes and artifacts are primarily contextual processes,
which are affected by masking from other image contents as
well as noise.

3. REVISEDMETRIC INPUT PARAMETERS
The imaging performancemeasures that are implemented by
the revised and novel IQMs of this article are defined briefly
in this section. They include various SPD-NPS and SPD-
MTF measures [9] that were developed to characterize cap-
ture systems using content-aware ISPs (e.g., camera phones
and autonomous vehicles). We also discuss the employed
contextual CSF (cCSF) [10] and Visual Perception Function
(cVPF) models [11] that account for visual masking. In
theory, these parameters account for scene dependencies
in spatial imaging system performance and HVS sensitiv-
ity, something that current engineering IQM parameters
do not do.

3.1 Scene-and-Process-Dependent Noise Power Spectra
The SPD-NPS framework [5] derives the NPS of temporally
varying noise in a Scene-and-Process-Dependent noise im-
age. The latter is computed from several captured replicates
of any scene (or test chart) signal. This article implements
three SPD-NPS measures that apply this framework, defined
below. They are summarized in Table I. They account for the
effect of content-aware ISPs on temporally varying noise;
Fixed Pattern Noise (FPN) is unaccounted for.

(i) The dead leaves SPD-NPS [9] implements the SPD-
NPS framework using the dead leaves target to estimate the
average real-world system performance. It is computed as the
rotational average of NPS(u, v) in Eq. (1), where I(x, y) is
given by Eq. (2) if g (x, y) is a captured dead leaves signal
and g (x, y) is the mean image of several captured replicates
of this signal; all other parameters are as shown previously.
Our simulations [9] show that it is a better noise measure for
non-linear systems than the uniform patch NPS.

(ii) The pictorial image SPD-NPS [9] executes the SPD-
NPS framework with respect to a single pictorial scene. Like
the dead leaves SPD-NPS, it is computed as the rotational

J. Imaging Sci. Technol. 060407-3 Nov.-Dec. 2019



Fry et al.: Scene-and-process-dependent spatial image quality metrics

average ofNPS(u, v) in Eq. (1).However, I(x, y) is calculated
by Eq. (2) with respect to the captured scene signal, g (x, y),
and the mean image of several replicate scene captures,
g (x, y); all other parameters are as previously indicated.
Our simulations suggest that it accounts extensively for
scene-dependent variations in temporally varying system
noise without suffering from significant bias, provided that
ten or more replicates are employed [9].

(iii) Themean pictorial image SPD-NPS [9]measures the
average real-world performance of the system with respect
to a number of pictorial scene signals. Thus, it accounts
for scene dependency more comprehensively than the dead
leaves SPD-NPS. It is computed as themean,mP(u), of a large
number (N ) of pictorial image SPD-NPS measurements,
Pi(u), across a representative scene set (Eq. (4)); i denotes
each scene and u is the spatial frequency. If the scene set
represents the characteristics of commonly captured scenes
and Pi(u) is unbiased, the measure tends toward the average
real-world system performance as N increases.

mP(u)=
∑N

i=1 Pi(u)
N

(4)

3.2 Scene-and-Process-Dependent Modulation Transfer
Functions
The SPD-MTF framework [5] is based on the direct dead
leaves implementation (Eq. (3)). It derives the MTF of the
systemwith respect to pictorial scene (or dead leaves) signals,
accounting for system noise using the pictorial image (or
dead leaves) SPD-NPS. This article employs the following
three SPD-MTF measures that apply this framework and are
summarized in Table II:

(i) The dead leaves SPD-MTF [9] characterizes system
signal transfer with respect to a dead leaves signal to estimate
the system’s average real-world signal transfer. It is given
by Eq. (3), where PSInput(u) and PSOutput(u) are input
and output dead leaves power spectra, respectively. It also
implements the dead leaves SPD-NPS, NPS(u). Therefore, it
is a more appropriate measure for non-linear systems than
the direct dead leaves MTF (which uses the uniform patch
NPS but is otherwise identical to this measure).

(ii) The pictorial image SPD-MTF [9] characterizes
system signal transfer concerning a given pictorial scene,
accounting most comprehensively for system scene depen-
dency. It is computed by Eq. (3), where PSInput(u) and
PSOutput(u) are input and output scene power spectra,
respectively. NPS(u) is the pictorial image SPD-NPS. The
input scene should be windowed (i.e., edges are tapered
to a neutral pixel value) to mitigate bias due to periodic
replication artifacts resulting from DFT processing [9]. This
measure builds upon the method of Branca et al. [36]
but mitigates significantly biases from periodic replication
artifacts and noise underestimation [9]. However, it still
suffers from bias due to signal-to-noise limitations that
mainly affect higher frequencies of lower-power scenes at
lower signal-to-noise ratios [9].

(iii) Themean pictorial image SPD-MTF [9] is computed
by Eq. (4) as the mean, mP(u), of the pictorial image

SPD-MTFs for the system, Pi(u), across a broad set of
N typical scenes; u is the spatial frequency. Thus, it
characterizes the system’s average real-world signal transfer,
accounting for system scene dependency. However, the
signal-to-noise bias in (ii) also occurs in this measure.

3.3 Contextual Contrast Sensitivity and Visual Perception
Functions
The cCSF [10] and cVPF [11] are based on Barten’s contrast
detection [32] and discrimination [35] models, respectively,
and employ the Linear Amplification Model [37] to account
for visual masking. These scene-dependent functions were
validated against observer contrast detection/discrimination
datasets, measured from band-limited images of pictorial
scenes. They are summarized in Table III alongside the
standard Barten and Johnson and Fairchild CSFs.

4. REVISED IMAGE QUALITYMETRICS
The SQRIn, PIC, and CPIQ metrics are defined in this
section. Each metric is then modified to implement the
revised input parameters described previously. These include
imaging performance measures and visual models that
account for relevant camera and human visual system scene
dependencies.

4.1 Scene-and-Process-Dependent SQRIn and PIC
Töpfer and Jacobson’s PIC [17] and their reformulation
of Barten’s [16] SQRIn are defined by Eqs. (5) and (6),
respectively. NPSvisual(u) is the internal noise power of the
eye [38], CSF(u) is the Barten CSF [32] and u and umax are
the spatial frequency and cut-off frequency, respectively. k1
and k2 are calibration constants. The original definitions of
the displayed image spectrum, S(u), and total imaging system
noise, N (u), are for analog systems [16, 17].

PIC = k1√∫
∞

0
ln
(

1+
S(u)CSF2(u)

N (u)CSF2(u)+NPSvisual(u)

)
du
u
+ k2

(5)

SQRIn=
k1

ln 2

∫ umax

0[
S(u)CSF2(u)

N (u)CSF2(u)+NPSvisual(u)

]0.25 du
u
+ k2 (6)

We define the revised SQRIn and PIC metrics by
substituting their current MTF, NPS, and CSF parameters
with parameters that account for scene-dependent imaging
system or HVS behavior.

The revised SQRIn and PIC are defined by Eq. (5) and
Eq. (6), whereCSF(u) refers to the BartenCSF, cCSF, or cVPF.
Revised S(u) and N (u) parameters are used (Eqs. (7) and
(8)), whereMTFSPD(u) andNPSSPD(u)denote the SPD-MTF
and SPD-NPS measures, respectively. PSscene(u) is the input
scene 1D power spectrum. γdisp and MTFdisp(u) are the
display’s gamma and its modeled MTF [12], respectively.
NPSdisp(u) is the display’s NPS; it is assumed negligible in

J. Imaging Sci. Technol. 060407-4 Nov.-Dec. 2019



Fry et al.: Scene-and-process-dependent spatial image quality metrics

this implementation.

S(u)= PSscene(u).MTF2
SPD(u).γ

2
disp.MTF2

disp(u)
−1 (7)

N (u)=NPSSPD(u)γ 2
dispMTF2

disp(u)+NPSdisp(u) (8)

4.2 Scene-and-Process-Dependent CPIQ metric
The CPIQmetric is similarly revised by substituting its input
parameters for parameters that account for capture system
andHVS scene dependency. Keelan’s [19]MF-IQM is defined
by Eq. (9), whereQLm is the overall quality loss andQLi is the
quality loss with respect to each attributemetric, i. nmax is the
power parameter (Eq. (10)) where QLmax is the maximum
quality loss under the viewing conditions. The constants c1
and c2 are set to 2 and 16.9, respectively [21].

QLm =

(∑
i
(QLi)nmax

)( 1
nmax

)
(9)

nmax = 1+ c1. tanh
(
QLmax

c2

)
(10)

The IEEE P1858 CPIQ Standard’s [12] texture loss
and visual noise attribute metrics map the imaging chain
Acutance, QT , and the total visual noise metric, �, to JND
units, respectively, using curve-fitting functions derived from
correlations with observers’ data.

Equation (11) defines the imaging chain Acutance [12],
QT , where MTFsystem(u) is the capture system’s direct dead
leaves MTF [30]. MTFdisp(u) is the display’s modeled MTF.
CSF(u) is Johnson and Fairchild’s luminance CSF [31] and u
and umax are the spatial frequency and the cut-off frequency,
respectively.

QT =

∫ umax
0 MTFsystem(u).MTFdisp(u).CSF(u) du∫

∞

0 CSF(u) du
. (11)

The total visual noise metric (�) is computed by trans-
forming captured uniform patch(es) through the linearized
sRGB, CIEXYZ and AC1C2 color spaces. The AC1C2 images
are Fourier transformed and filtered with (i) Johnson and
Fairchild’s luminance and chrominance CSFs [31], (ii) the
modeled display MTF [12] and (iii) a high-pass filter. After
being inverse Fourier transformed, they are converted to the
CIELAB color space via CIEXYZ. � is computed from the
L∗a∗ covariance and the variances of L∗, a∗ and b∗.

We calculate the revised CPIQ metric in three stages:
(i) the texture blur attribute metric is computed from a
Scene-and-Process-Dependent Acutance measure (Eq. (11))
where MTFsystem(u) is an appropriate SPD-MTF measure,
CSF(u) is one of the Barten CSF, cCSF, or cVPF and
all other parameters are as previously described. (ii) The
visual noise attribute metric is computed from a Scene-
and-Process-Dependent noise image, derived using the
SPD-NPS framework. Any one of the Barten CSF, cCSF
or cVPF are used as the luminance CSF during spatial
filtering. (iii) Keelan’s MF-IQM [19] (Eq. (9)) is used to
compute the quality loss with respect to (i) and (ii).

5. NOVEL SIGNAL-TO-NOISE-BASEDMETRICS
In this section, we present the two novel metrics of this
article, the log NEQ and Visual log NEQ; they both employ
the SPD-NEQ measure, which is also novel and is defined
below.

The 2D NEQ (Eq. (12)) is the standard measure of
capture system signal-to-noise performance versus spatial
frequency (u, v) [8]. MTF(u, v) and NPS(u, v) are the 2D
MTF and NPS of the system, respectively. µA is the mean
linear signal. Utilizing 1D MTFs and NPSs yields the 1D
NEQ. The aforementioned limitations of current standard
MTFs and NPSs are carried into the NEQ.

NEQ (u, v)=
MTF2 (u, v)

NPS (u, v) /µ2
A

(12)

The SPD-NEQ is computed by substituting MTF(u, v)
and NPS(u, v) with the 1D SPD-MTF and SPD-NPS, re-
spectively. Consequently, it accounts for the scene-dependent
characteristics of non-linear system signal transfer and noise.
The level to which system scene dependency is accounted
for depends on which SPD-MTF and SPD-NPSmeasures are
implemented.

5.1 Log NEQ and Visual Log NEQMetrics
We propose the log NEQ (Eq. (13)) and Visual log NEQ
(Eq. (14)) as simple, modular and adaptable spatial IQMs.
Our motivation is to produce single figure metrics that
implement the SPD-NEQ to account for scene-dependent
imaging system signal transfer and noise. Both metrics relate
directly to fundamental signal-to-noise relationships with
perceived quality and apply minimal calibration compared
to other spatial IQMs. Computing the logarithm of the
integrated NEQ is justified since it relates to Fechner’s
law [39], Shannon’s Channel Capacity [13], photographic
Information Capacity [40], and the PIC [17]. It was
also justified empirically since it improved the metrics’
correlation with the subjective image quality dataset of this
article.

The log NEQ and Visual log NEQ model perceived
image quality as the logarithm of the integral of a weighted
SPD-NEQ measure, NEQSPD(u). MTF2

disp(u) is the display’s
modeled MTF [12] and u and umax are the spatial frequency
and the cut-off frequency, respectively. CSF(u) refers to one
of the Barten CSF, cCSF, or cVPF. k1 and k2 are calibration
constants relating to the gain (or gradient) and offset (or
intercept) of the metric scores, respectively. The calibration
of these constants is discussed later on in the article.

LogNEQ= k1 log10(∫ umax

0
MTF2

disp(u)NEQSPD (u)
du
u

)
+ k2 (13)

LogNEQVisual = k1 log10(∫ umax

0
CSF2(u)MTF2

disp(u)NEQSPD (u)
du
u

)
+ k2 (14)
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Figure 2. Power spectra for the input scenes to the image capture
simulations.

6. IMAGE QUALITYMETRIC VALIDATION
METHODOLOGY

The methodology for generating all test images and the
subjective image quality ratings dataset is detailed in this
section. We also present our method for producing variants
of each IQM and calibrating them to the SQS2 scale.

6.1 Test Image Dataset
Image quality evaluations were carried out for a series
of test images, generated by linear and non-linear image
capture pipelines [9]. Test images were generated, starting
with 14 original high-quality images, originating from a
Canon DSLR camera equipped with professional lenses [41,
42]. These were downsized using bicubic interpolation and
cropped to 512× 512 pixels. Thumbnails of the original test
scenes and their 1D power spectra are shown in Figure A1
and Figure 2, respectively. These scenes were subsequently
processed by two simulated image capture pipelines that
were tuned to replicate real camera phone artifacts at four
exposure levels.

Both pipelines modeled the following processes identi-
cally: lens blur by convolution with a Gaussian model for a
diffraction-limited lens’s Airy disk; linear SNRs of 10, 20, 40,
and 80 at saturation by 2D Poisson noise; read and dark noise
by Gaussian noise of higher mean and standard deviation at
lower SNRs; sensor quantum efficiency variations by scaling
noise in the R, G and B channels by factors of 2, 1, and 3.3,
respectively. Gain adjustments, noise floor removal, highlight
recovery and Bayer color filter array sampling were also kept
constant for both pipelines.

Further, the linear pipeline employed the following
linear ISPs: demosaicing by Malvar et al. [43], denoising
by 2D Gaussian filtering and sharpening by the
MATLABTMimsharpen unsharp mask. The non-linear
pipeline used the following non-linear content-aware
ISPs: demosaicing by One Step Alternating Projections
(OSAP) [44], denoising by Block Matching and 3D Filtering

Table I. Summary of noise measure parameters.

Table II. Summary of resolution measure parameters.

Table III. Summary of visual model parameters.

(BM3D) [45] and sharpening of individual color channels by
the Guided Image Filter (GIF) [46].

The denoising and sharpening filter input parameters
and the filters’ opacities (Table IV) were tuned to optimize
perceived output image quality after combined sharpening
and denoising at each SNR under the experimental con-
ditions. Reducing the opacity, P , below 100% lowered the
intensity of filtering of the output image, o(x, y), by blending
the unfiltered, g (x, y), and filtered images, d(x, y) (Eq. (15)).
This was the onlyway to optimize subjectively the intensity of
certain ISP filters at higher SNRs. It also tested the robustness
of the IQMs employing SPD-MTFs and SPD-NPSs that are
designed for filtered image signals andnoise, respectively [9].

o(x, y)=
P

100
.d(x, y)+

100− P
100

.g (x, y). (15)

Fifty-six test images were output from each pipeline after
the demosaicing, denoising and sharpening ISP stages. They
covered all permutations of the four SNRs for all 14 input
scenes. Test images from the linear pipeline were selected to
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Table IV. Optimal denoising and sharpening filter opacities.

Pipeline type ISP type Filter Opacity (%)
SNR 10 SNR 20 SNR 40 SNR 80

Linear Denoising Gaussian 85 83 82 80
Sharpening USM 60 60 55 55

Non-linear Denoising BM3D 87 86 86 85
Sharpening GIF 60 70 65 60

represent both pipelines before denoising since the output
images from both pipelines were nearly identical. A total of
280 test images were generated for evaluation.

6.2 Psychophysical Image Quality Evaluations
Psychophysical image quality ratings were recorded for
each test image using the ISO 20462 Image Quality Ruler
paradigm [3]. The image quality evaluations were carried
out using a graphical user interface and a ruler image set,
generated by Allen [41], following ISO 20462 Part 3 [3]. The
subjective quality of each test image was rated by selecting
the corresponding ruler image that matched its quality, from
a series of 30 ruler images of the same scene. These ruler
images differed in terms of sharpness only and ranged in
quality from SQS2 = 3 to SQS2 = 32.

The experimental conditions (Figure 3) were similar to
the requirements of ISO 20462 Part 3 [3] and the standard
sRGB environment [47]. The EIZO ColorEdge CG245W
display was employed with a pixel pitch of 0.27 mm. It
was calibrated to the sRGB color space with white point
luminance of 120 cd/m2. The Nyquist frequency was 20
cycles/degree at the 60 cm viewing distance, which was
restricted by a headrest. The ruler images were calibrated for
these exact viewing conditions [41].

Twenty-seven observers participated, including 10 fe-
males and 17 males of various ethnicities, with approximate
age range of 20–55. Six had prior experience in comparable
image quality evaluations. Observers wore corrective specta-
cles/lenses if required for the viewing distance. Their visual
acuity was confirmed for the given viewing conditions using
a Snellen near vision test card [48].

6.3 Metric Variant Computation and Calibration
Variants of the revised and proposed IQMs were generated,
and calibrated, to be benchmarked against the observer
image quality ratings. A total of 332 variants were created,
employing different permutations of the NPS, MTF, and
CSF parameters in Tables I, II, and III, respectively. The
sensitivity of these variants to imaging system and visual
scene dependency varied considerably.

SPD-MTFs and SPD-NPSs were computed using ten
replicates by adapting MATLABTM code for Burns’s direct
dead leaves MTF implementation [22]. The CPIQ visual
noise metric was computed using Baxter and Murray’s [49]
MATLABTM implementation [50].

Figure 3. Layout of the laboratory equipment for the image quality
evaluations.

Each variant of the log NEQ, Visual log NEQ, SQRIn
and PIC was calibrated to the SQS2 scale by (i) setting k2 to
zero following the method of [27] and (ii) by setting k1 to an
appropriate value, given by Eq. (16), by dividing the mean of
the observer image quality ratings for all test images before
denoising at SNR 80 (best quality), mSQS, by the mean of
the metric’s output scores for these test images when k1 = 1,
denoted by moutput. When employed, the cCSF/cVPF were
normalized to the same integrated area as the Barten CSF.
The metric scores were thus affected by scene-dependent
changes in the cCSFs/cVPFs shape but not changes in their
magnitude.

k1 =
mSQS
moutput

(16)

Variants of the CPIQ metric were calibrated to SQS2
units by subtracting the predicted quality loss (i.e., QLm in
Eq. (9)) from the SQS2 value of 23 corresponding to the SQS2
of the input scenes to the simulations. The cCSF, cVPF, and
Barten CSF, when employed, were normalized to the same
integrated area as Johnson and Fairchild’s luminance CSF, as
used by the IEEE P1858 CPIQ Standard [12].

7. RESULTS
The subjective image quality ratings dataset is first displayed.
Variants of all IQMs are then benchmarked according to their
capability to predict results from this dataset. Correlations
between selected metric variants and this dataset are then
presented, which demonstrate certain behavior of interest.

7.1 Results from Quality Evaluations
Figure 4 presents the observer ratings from the image
quality evaluations. They were not calibrated according to
the average scene relationship [3] since Allen [41] found
this action removed virtually all scene dependency from
the data. Such scene dependencies demanded consideration
in this article since the purpose of the study was to test
whether the scene-dependency of the capture system and
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Figure 4. Observer image quality ratings (SQS2) for each scene after different stages of linear and non-linear processing. Error bars show standard error.

HVS can be accounted for successfully in the selected
metrics. Uncalibrated ratings were used successfully when
evaluating predictions of non-linear JPEG and JPEG 2000
compressed image quality by IQMs [41].

The ratings were generally higher after combined
denoising and sharpening, for which the tuning was
optimized. As expected, non-linear ISPs caused the greatest

scene-dependent variations. They also produced higher-
quality images than the respective linear ISPs at lower
SNRs because they preserved genuine image signal content
or mitigated the amplification of noise. Variances of the
scenes’ susceptibility and observers’ sensitivity to quality
losses increased at lower SNRs. The former was lower than
the latter, as observed previously by Keelan [19].
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Table V. Benchmarking of highest and lowest performing variants of each metric in
terms of Mean Absolute Error (MAE).

7.2 Benchmarking of Image Quality Metrics
When evaluating the robustness of each metric to changes
in its input parameters, the main factors we consider are the
accuracy of its most accurate variant (Table V) and the range
of accuracies across all variants of the metric (Figure 5).

Table V benchmarks themost and least accurate variants
of eachmetric in terms of their Mean Absolute Error (MAE).
The MAE describes specifically the mean difference in
SQS2 units between the metric scores and the ideal linear
relationship with the observer quality ratings, shown by the
pink line in Figures 6–8. Thus, if a variant has an MAE of 2,
then it can be expected to predict the perceived quality of a
given image with an accuracy of±2 JNDs.

The CPIQmetric produced the variants with the highest
overall accuracy, followed closely by the new Visual log NEQ
and log NEQ metrics of this article, and the PIC. However,
the CPIQ metric was highly sensitive to changes in its input
parameters (Fig. 5), in particular, the CSF. This led to it also
producing the least accurate variants of all. We expect this

Figure 5. The range of Mean Absolute Error (MAE) values across all
variants of each metric.

unpredictable behavior to be due to curve-fitting ‘‘forcing’’
the metric to its original input parameters.

The STV-IQMs—which include the PIC, SQRIn, log
NEQandVisual logNEQ—showed greater consistencywhen
their input parameters were changed, especially for the
linear pipeline (Fig. 5). The proposed log NEQ and Visual
log NEQ metrics yielded the most accurate variants from
this genre. Moreover, for the non-linear pipeline, the latter
metric produced the most accurate variants out of all the
metrics tested. This demonstrates the power of these simpler,
more adaptable signal-to-noise-based metrics and the novel
SPD-NEQ measure at their core.

Implementing the various SPD-NPSs and SPD-MTFs
generally improved the metrics’ accuracy for the non-
linear pipeline. This was despite the reduced ISP filter
opacities giving the current standard MTF/NPS measures
an advantage. Tables benchmarking the MAE of every
variant of each IQM demonstrated the consistency of
these improvements. IQMs utilizing the SPD-NPSs and
SPD-MTFs were often of comparable accuracy for the linear
and non-linear pipelines.

The most accurate variants of each metric used SPD-
NPSs or noise images derived from scenes. This demon-
strates the robustness of the SPD-NPS framework and the
benefits of accounting most comprehensively for system
noise scene dependency. In contrast, the uniform patch NPS
was used by the vast majority of the lowest accuracy variants,
substantiating previous observations that the dead leaves
SPD-NPS is a more generally appropriate measure [9].

When considering the appropriateness of the revised
MTF, NPS and CSF parameters, evaluating their effect upon
the accuracy of the log NEQ and Visual log NEQ is of
particular relevance due to the simplicity and ‘‘purity’’ of
these new metrics. The most accurate variants of these
IQMs used the dead leaves SPD-MTF. This suggests that
the negative effect of bias in the pictorial image SPD-MTF
outweighed the benefit of accounting more comprehensively
for system scene dependency. Nevertheless, the CPIQmetric
and SQRIn performed most accurately with pictorial image
SPD-MTFs. This demonstrates the potential benefits of the
measure, which we suggest should be developed further to
address measurement bias, especially when considering the
success of the respective SPD-NPS measure.

The highest performing variants of each metric all used
the Barten CSF. Implementing the cCSF or cVPF generally
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affected negatively the metrics’ accuracy. This was also the
case when the cCSF/cVPF were not normalized. Changing
the CSF parameter did not affect the accuracy of the PIC
or SQRIn significantly. This was because the high display
luminance reduced visual noise to a level where changes in
the CSF parameter canceled themselves out.

Benchmarking with respect to the Root Mean Square
Error (RMSE) and Spearman’s Rank Order Correlation
Coefficient (SROCC) displayed comparable trends to those
in Table V.

7.3 Further Analysis of Metric Correlations
We analyze in this section correlations between output scores
of the selected IQM variants and the observer quality ratings.
The analysis demonstrates the typical IQM behavior and
any significant changes resulting from revision of their input
parameters.

We observe that when the log NEQ employed the
more relevant dead leaves SPD-NPS (Fig. 6b) instead of the
uniform patch NPS (Fig. 6a), it no longer overestimated
perceived image quality after non-linear sharpening or
denoising; interestingly, it also produced similar correlations
to the linear pipeline. Utilizing SPD-NPSs derived from
pictorial scenes led to further improvements (Fig. 6c). The
above was also true for the PIC, SQRIn and Visual log NEQ.
Respective variants of the latter metric performed similarly
to those in Fig. 6 but showed improved accuracy.

The SQRIn overestimated perceived image quality at
high SNRs, resulting in a curved distribution (Fig. 7). This
corroborates Töpfer and Jacobson’s observation [17] that un-
der some conditions, the metric does not describe perceived
image quality linearly with noise and in accurate JND units.
This is expected to be due to the underestimation of the
perceived intensity of noise at near-threshold levels [17].
The PIC displayed the same behavior to a lesser extent. We
conclude that our simulations exceeded the SNR threshold
to which the SQRIn and PIC apply, which is understandable
since both metrics were developed and calibrated for analog
systems with generally higher noise.

The CPIQ metric (Fig. 8) was linearly correlated with
the observer ratings for all permutations of the input
parameters. These correlations did not follow the ‘‘ideal’’
linear relationship with gain = 1 and offset = 0, however.
The main cause of this gain in the original CPIQ metric’s
correlation (Fig. 8a) was the effects of content-aware ISPs,
although its correlation still suffered from some offset for the
linear pipeline. Employing the Barten CSF and the various
SPD-MTF and SPD-NPS measures reduced generally both
the gains and offsets of the linear regression and rendered
the correlations for the linear and non-linear pipelines more
similar. This was despite the limitations of changing the input
parameters in a metric that employs pre-calibration with
observers’ ratings.

8. CONCLUSIONS
Two novel metrics—the log NEQ and Visual log NEQ—
were presented in this article. Leading engineering IQMs,

Figure 6. Observer image quality ratings versus output scores of log NEQ
variants employing (a) the direct dead leaves MTF [30] and uniform patch
NPS, (b) the direct dead leaves MTF [30] and dead leaves SPD-NPS
and (c) the pictorial image SPD-NPS and dead leaves SPD-MTF. (c) is the
most accurate log NEQ variant. All test images were generated by the
non-linear pipeline.

modeling spatial image quality, were also revised, including
the IEEE P1868 CPIQ metric [12], SQRIn [16] and
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Figure 7. Observer image quality ratings versus metric scores for the
highest performing SQRIn variant, which employed the pictorial image
SPD-MTF and SPD-NPS. All test images were generated by the non-linear
pipeline.

PIC [17]. Substituting the MTF, NPS, and CSF parameters
with equivalent scene-dependent measures (i.e., SPD-MTF,
SPD-NPS, cCSF, and cVPF) created variants of each metric.
All metric variants were benchmarked using different
permutations of these measures.

The log NEQ and Visual log NEQ relate directly to the
novel SPD-NEQ signal-to-noise measure and apply minimal
calibration, which is well prescribed and depends on the
given experimental conditions only. Thus, revising their
input parameters does not, in theory, offer any violation
to these metrics. Variants of these IQMs were generally
more accurate than those of the comparable SQRIn and PIC
metrics and almost as accurate as those of the CPIQ metric.
This not only demonstrates the relevance of the fundamental
NEQ and SPD-NEQ measures to quality modeling, but it
is also a very exciting outcome, considering the metrics’
simplicity and ‘‘purity.’’

TheCPIQmetric produced themost accurate variants of
all, but the other variants ranged widely in terms of accuracy.
We expect that the latter was due to the CPIQ metric’s
pre-calibration and suggest that the accuracy of the log NEQ
and Visual log NEQ variants informs better regarding the
appropriateness of the various input parameters.

Implementing the SPD-NPSs consistently improved the
accuracy of all IQMs. This was particularly the case for SPD-
NPSs derived from scenes. This indicates that the SPD-NPS
framework is more suitable for quality modeling than the
uniform patch NPS and corroborates previous conclusions
that it is robust, and accounts for scene dependencies in
temporally varying system noise [9].

Figure 8. Observer image quality ratings versus output scores of CPIQ
metric variants employing (a) input parameters specified in the IEEE P1858
CPIQ Standard [12] including the direct dead leaves MTF [30], uniform
patch noise image and Johnson and Fairchild luminance CSF [31]; (b) the
pictorial image SPD-MTF, noise images computed from pictorial image
replicates and the Barten CSF [32]. (b) is the highest performing CPIQ
metric variant. All test images were generated by the non-linear pipeline.

For three out of five metrics tested, the most accurate
variants employed the dead leaves SPD-MTF. The other two
metrics performed most accurately using the pictorial image
SPD-MTF. Thus, there appear to be trade-offs between the
negative effect of bias in the latter measure and the positive
effect of it accounting more comprehensively for system
signal transfer scene dependency.

Research efforts in deriving SPD-MTFs from extracted
pictorial scene edges continue [51]. It remains to be seen
whether the resultantMTFs are more suitable parameters for
image quality modeling.

Utilizing contextual detection (cCSF) or discrimination
models (cVPF) that account for visual masking did not
improve IQM accuracy, regardless of whether or not they
were normalized.
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We recommend further investigations to establish
whether (i) contextual visual models have a genuine role in
quality modeling, (ii) validating the IQMs using real capture
systems corroborates the results of this article, and (iii)
the IQMs of this article describe accurately the quality of
compressed images (JPEG and JPEG 2000).

The novel and revised IQMs of this article and their
SPD-MTF, SPD-NPS, cCSF, and cVPF input parameters
represent a new paradigm of image quality models, imaging
systems characterizationmeasures and human visual models
that account for relevant scene dependencies in spatial
imaging systemand visual performance. The benefits of these
more complex measures/metrics are demonstrated in this
article and in our previous work [52].

APPENDIX A
Abbreviations
cCSF. . .Contextual Contrast Sensitivity Function
cVPF. . .Contextual Visual Perception Function
CPIQ Metric. . . IEEE P1858 CPIQ Standard Metric
Log NEQ. . . Log Noise Equivalent Quanta Metric
MF-IQM. . .Multivariate Formalism Image Quality Metric
PIC. . .Perceived Information Capacity Metric
SPD-MTF. . . Scene-and-Process-Dependent MTF
SPD-NEQ. . . Scene-and-Process-Dependent NEQ
SPD-NPS. . . Scene-and-Process-Dependent NPS
SQRIn. . . Square Root Integral with Noise Metric
STV-IQM. . . Signal Transfer Visual Image Quality Metric
Visual logNEQ. . .Visual logNoise EquivalentQuantaMetric

Figure A1. Input scenes to the image capture simulations. All scenes were captured and processed by Allen [41].
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