
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2019 1

Warped Hypertime Representations for Long-term
Autonomy of Mobile Robots
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Abstract—This paper presents a novel method for introducing
time into discrete and continuous spatial representations used
in mobile robotics, by modelling long-term, pseudo-periodic
variations caused by human activities or natural processes. Unlike
previous approaches, the proposed method does not treat time
and space separately, and its continuous nature respects both
the temporal and spatial continuity of the modeled phenomena.
The key idea is to extend the spatial model with a set of
wrapped time dimensions that represent the periodicities of the
observed events. By performing clustering over this extended
representation, we obtain a model that allows the prediction of
probabilistic distributions of future states and events in both
discrete and continuous spatial representations. We apply the
proposed algorithm to several long-term datasets acquired by
mobile robots and show that the method enables a robot to
predict future states of representations with different dimensions.
The experiments further show that the method achieves more
accurate predictions than the previous state of the art.

Index Terms—Mapping, Learning and Adaptive Systems, Ser-
vice Robots

I. INTRODUCTION

ADVANCES in autonomous robotics are gradually en-
abling deployment of robots in human-populated envi-

ronments [1]. Human activity tends to cause changes to the
environments it takes place in, and the mobile robots that share
these environments need to be able to cope with such never-
ending changes. Many authors have shown that environment
models which adapt to changes improve the overall ability
of mobile robots to operate over longer time periods [2]–[6].
Since long-term autonomous operation improves the chances
of observing the environment changes, mobile robots gain the
opportunity to learn the environment structure, but also how
it changes over time [1].

Methods that explicitly represent evolution of the environ-
ment over time endow the robots with the ability to predict
the future state of the world, which has a positive impact
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1 Tomáš Krajnı́k, Tomáš Vintr and George Broughton are with the Artifi-
cial Intelligence Center, Faculty of Electrical Engineering, Czech Technical
University, CZ name.surname@fel.cvut.cz

2 Sergi Molina, Jaime Pulido Fentanes, Grzegorz Cielniak and Tom Duckett
are with Lincoln Centre for Autonomous Systems, University of Lincoln, UK

3 Oscar Mozos is with the Technical University of Cartagena, Spain
Digital Object Identifier (DOI): see top of this page.

a 
[−

]

day 1 day 2

(a, t)

time

π(a, cos(2   t/T), sin(2   t/T))π

hypertime hypertime hypertime

Fig. 1. Method overview: The data points (a,t) observed over time (top,
black) are first processed by frequency analysis [5] to determine a dominant
periodicity T . Then, the time t is projected onto a 2d space (called hypertime)
and the vectors (a, t) become (a, cos(2π t/T ), sin(2π t/T )) (bottom, left).
The projected data are then clustered (bottom, center, blue) to estimate
the distribution of a over the hypertime space (green). Projection of the
distribution back to the uni-dimensional time domain allows to calculate the
probabilistic distribution of a for any past or future time.

on the efficiency of their long-term operation. For example,
models of movement patterns of objects [7] or people [4],
[8] improve motion planning, and explicit models of the
persistence [3], [9] or periodicity [5] of the environment
states improve visual localisation. However, the latter methods
are applicable to a wider range of scenarios. In particular,
Frequency Map Enhancement (FreMEn) [5] can introduce
dynamics into most discrete environmental representations
used in robotics, and was used to improve robotic mapping [5],
[10], localisation [5], [11], [12], path planning [13], robotic
search [14], activity recognition [15], patrolling [16], [17],
exploration [18], [19], task scheduling [20] and human-robot
interaction [21], [22]. Moreover, FreMEn allows for temporal-
context-based novelty and anomaly detection [5], [10], [23],
and it was shown to outperform other temporal models both
in prediction accuracy and computational efficiency [14]–
[16], [19], [22], [23]. FreMEn is based on the assumption
that some of the mid- to long-term processes that exhibit
themselves through environment changes are periodic, e.g.
seasonal foliage changes, day-night illumination or human
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activities characterised by regular routines. By representing the
dynamics of the individual environment model components
in the frequency domain [5], FreMEn can efficiently store
past observations, and provide accurate predictions of the
future environment states. However, it was tailored to models
consisting of components with binary states, e.g. occupancy
grids, landmarks or topological maps.

In this paper, we present a method that also aims to ex-
plicitly model periodic changes of the environment, but it can
be applied to continuous, multi-dimensional representations,
and can predict the probability distribution of a given random
variable at a particular time and location. The method first uses
FreMEn [5] to identify (temporally) periodic patterns in the
data gathered. Then, it transforms each time periodicity into
a pair of dimensions that form a circle in 2d space and adds
(concatenates) these dimensions to the vectors that represent
the spatial aspects of the modelled phenomena. Finally, a
generalised model is built by applying traditional techniques
like clustering or expectation-maximisation over the warped
time-space representation. The resulting multi-modal model
represents both the structure of the space and temporal patterns
of the changes or events as shown in Fig. 1. In this way, the
proposed method can turn a spatial representation into a spatio-
temporal one by extending it with several wrapped dimensions
representing time, with each pair of temporal dimensions rep-
resenting a given periodicity observed in the gathered data. We
hypothesise that since the proposed model respects the spatio-
temporal continuity of the modelled phenomena, it provides
more accurate predictions than models which partition the
space into discrete elements, or that models which neglect the
temporal aspects.

We provide a description of the proposed method and
experimental evidence of its capability to efficiently represent
spatio-temporal data and to predict future states of the envi-
ronment. Unlike the previous works [3]–[5], [9], which aim
to introduce time into models that represent the environment
by a discrete set of binary states, such as the visibility of
landmarks or cell occupancy in grids, our method is able
to work with continuous and higher-dimensional variables,
e.g. robot velocities, object positions, pedestrian flows, etc.
Moreover, the method explicitly represents and predicts not
only the value of a given state, but also its probabilistic
distribution at a particular time and location, which can be
useful for task scheduling and planning [24].

Our experiments, based on real world data gathered over
several weeks, confirm that the method achieved more accurate
predictions than both static models and models that aim to
represent time over a discretised space only.

II. RELATED WORK

In mobile robotics, the effects of environment variations
were studied mainly from the perspective of localisation and
mapping, because neglecting the environment change grad-
ually deteriorates the ability of the robot to determine its
position reliably and accurately. Assuming that the world is
non-stationary, the authors of [2], [6], [25]–[27] proposed
approaches that create, refine and update world models in a

continuous manner. Furthermore, Ambrus et al. [28] demon-
strated that the ability of continuous remapping not only allows
to refine models of the static environment structure, but also
opens up the possibility to learn object models from the spatial
changes observed [29].

Unlike the aforementioned works, which focused on the spa-
tial structure and appearance aspects of the changes observed,
other authors [2], [3], [5], [30], [31] focused on modelling
the temporal aspects. For example, [2] and [30] represent
the environment dynamics by multiple temporal models with
different timescales, where the best map for localisation is
chosen by its consistency with current readings. Dayoub et
al. [31] and Rosen et al. [9] used statistical methods to create
feature persistence models and reasoned about the stability
of the environmental states over time. Tipaldi et al. [3]
proposed to represent the occupancy of cells in a traditional
occupancy grid with a Hidden Markov Model. Krajnik et
al. [5] represent the probability of environment states in the
spectral domain, which captures cyclic (daily, weekly, yearly)
patterns of environmental changes as well as their persistence.

The aforementioned approaches demonstrated that consid-
ering temporal aspects (and especially their persistence and
periodicity) in robotic models improves not only mobile robot
localisation [2], [3], [5], but also planning [13], [14] and ex-
ploration [18]. However, these temporal representations were
tailored to model the probability of a single state over time,
and thus were applied only to individual components of the
discretised models, e.g. cells in an occupancy grid [3], [18],
visibility of landmarks [5], traversability of edges in topolog-
ical maps [13] or human presence in a particular room [14].
Since the spatial interdependence of these components was
neglected, the above models were actually considering only
temporal and not spatial-temporal relations of the represented
environments. This results not only in memory inefficiency
(because of the necessity to model a high number of discrete
states separately) but also in the inability of the representation
to estimate environment states at locations where no measure-
ments were taken, e.g. if a certain cell in an occupancy grid is
occluded, its state is unknown even if the neighbouring cells
are occupied, because the cell is part of a wall or ground.

Spatio-temporal relations of discrete environment models
were investigated in [4], [32]. Kuczner et al. [4] proposed to
model how the occupancy likelihood of a given cell in a grid
is influenced by the neighbouring cells and showed that this
representation allows to model object movement directly in
an occupancy grid. A similar approach was proposed in [32],
where the direction of traversal over each cell is obtained
using an input-output Hidden Markov Model connected to
neighboring cells. However, these models represent only local
spatial dependencies and suffer from a major disadvantage
of the discretised models – memory inefficiency. Therefore,
in their latest work, [33], [34] model a given set of spatio-
temporal phenomena (the motion of people and wind flow)
in a continuous domain, building their model by means of
Expectation Maximisation. Moreover, [35] shows how to use
this representation for robot motion planning in crowded
environments.

O’Callaghan and Ramos [36] also argue in favour of con-
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tinuous models, showing the advantages of Gaussian Mixture-
based representations in terms of memory efficiency and utility
for mobile robot navigation. Authors of [37] speed up building
and updating of the proposed models by using an elegant
combination of kernels and optimization methods. Moreover,
the method is extended to perform short-term predictions of
the environment state based on the history of recent observa-
tions [38].

Unlike the work of Ramos et al. [37], which is aimed
primarily at modelling the spatial structure, and [33], which
aims to make short-term predictions of the motion of people,
our aim is to create universal, spatial-temporal models capable
of long-term predictions of various phenomena. Inspired by the
ability of the continuous models [33], [37] to represent spatio-
temporal phenomena and the predictive power of spectral
representations [5], we propose a novel method which allows
to introduce the notion of time into state-of-the-art spatial
models used in mobile robotics. Unlike methods, that perform
predictions based on recent observations, our method can
accurately predict the environment states using observations
gathered days to months before the prediction. As demon-
strated in [23], the predictive accuracy of FreMEn and hyper-
time exceeds popular, state-of-the-art methods like facebook’s
Prophet. Moreover, the STRANDS project [1] showed that the
predictions provided have a positive impact on the efficiency
of mobile robot operation in long-term scenarios.

III. METHOD

A. Motivation

Let us consider the scenarios of the STRANDS project [1],
which utilised the FreMEn [5] method, and created robots
that achieved four months of autonomy in human-populated
environments. In the STRANDS deployments, the robots had
to detect anomalies, provide an info-terminal service, and
guide people to designated locations or to other people.
Anomalies were not defined by hard-coded rules, but simply as
events and activities occurring at unusual locations and times.
Thus, the robots had to create models of the usual events and
activities from their past experience and use outlier detection
to identify anomalies. To provide an efficient info-terminal
service, a robot has to position itself close to areas with a
high level of pedestrian traffic. However, to avoid causing
nuisance to people, it should arrive at these locations before
they become crowded. Thus, the robot has to anticipate the
occurrence of people at a given time and location based on its
past experience. To guide people to the designated locations,
the robot needs to be able to plan its path so that it avoids
areas which might be blocked or congested. If the robot is
supposed to guide someone to another person, it needs to
know where that person usually is. To be able to perform the
aforementioned tasks at all, the robot has to be able to localise
itself despite the environment changes and to plan its path so
that it reaches the desired locations in an efficient way. While
predicting closed doors, congestions or localisation failures
from recent observations is beneficial, long-term predictions
based on past experience allow to construct plans that avoid
these situations.

As already demonstrated in the STRANDS project [1],
the efficiency of a mobile robot improves if it can predict
the future states of the environment relevant to the service
provided. However, the predictive engine of the STRANDS
robots was based on the FreMEn method, which, in its original
form, aims to represent independent binary states only. From a
formal point of view, FreMEn represents a given phenomenon
by n independent states si, and can estimate the conditional
Bernoulli distribution p(si = 1|t) of each state for past or
future time t. In contrast, the method presented in this paper
aims to estimate and predict p(a|x, t), where a is the predicted
variable (e.g. landmark visibility, robot velocity, number of
people present etc.), and x, t are the location and time. This not
only alleviates the necessity to spatially discretise the modelled
phenomenon, but also allows to predict other-than-Bernoulli
distributions.

B. Core Idea

The problem of finding the conditional distribution p(a|x, t)
is that while the modelled space x ∈ Rm is constrained, and
thus one can gather an arbitrary number of measurements
from a given location, time unfolds indefinitely and it is
not possible to obtain measurements with the same t, which
makes calculation of the temporal density of some phenomena
difficult.

However, many events and changes occurring in human-
populated environments are repetitive due to the nature of
human habits. To represent the repetitive nature of these
changes, we project the time t into a set of circles, where every
circle is derived from the periodicity of change Ti detected by
FreMEn in the measured phenomenon. This causes the time-
dependent events with the same periodicity to be projected into
the same areas of a circle that corresponds to the modelled
periodicity, see Figure 1. The distribution of observations
projected into this warped space (i.e. space with ‘wrapped’
or ‘curled’ time dimensions) can be then estimated using
standard statistical and machine learning tools. To predict the
probabilistic distribution of a given variable for a given time
t, we simply project t to the circular space and perform the
prediction there.

The projection of linear time onto a set of wrapped circles
reflects the fact that human activities in the mornings of
different days are more similar than human activities in the
mornings and afternoons of the same day although the same
day afternoon and morning is temporally closer than mornings
of two different days. Furthermore, the projection reflects the
fact that a given phenomenon does not change abruptly during
midnight although 23:59 and 0:01 appear to be distant. An
illustrative example of the method, which estimates p(a|t)
through projection into p(a|cos(2π t/T ), sin(2π t/T )) is in
Figure 1. For the sake of simplicity, this example uses only
one periodicity T and the spatial domain is neglected, i.e.
x ∈ R0.

C. Method Overview

Let us assume that a robot gathered a set containing l mea-
surements of a given phenomenon, obtaining tuples (ai,xi, ti),
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where i ∈ {1 . . . l}, the vector xi describes the location of the
measurement (e.g. position of a detected person or obstacle), ti
corresponds to the time of the measurement and ai represents
the measurement’s value, e.g. the number of detected people,
likelihood of an obstacle or robot velocity in the vicinity of
(xi, ti).

Our method aims to find a p(a|x, t), which would represent
the conditional probability density function of the variable
a given the position x and time t. The proposed method is
composed of five stages: 1) initialization; 2) spatio-temporal
clustering; 3) model error estimation; 4) identification of
periodicities; 5) hypertime space extension. After initialization,
our method repeatedly performs steps 2-4 as long as the model
error, estimated by Eq. (6) during step 3, decreases.

D. Step I: Initialization

To initialize the algorithm, we first store all measurements
(ai,xi) in hxi, where h corresponds to the number of known
periodicities. Since during initialisation, the number of peri-
odicities is unknown, we set h to 0. In the spatio-temporal
clustering stage, we cluster the vectors (hxi), obtaining a
Gaussian mixture model, which represents the spatio-temporal
distribution of the given phenomenon and allows to calculate
conditional probability function ph(a|x, t). In the model error
estimation, we calculate the mean µi of p(a|xi, ti) for all
training samples. Then we calculate the time series hε(ti) as
hε(ti) = µi − ai and its mean squared value Eh, see (6) in
Section III-F. Then, during the identification of periodicities,
we use the FreMEn [5] method to perform spectral analysis
of hε(ti), extract the most prominent spectral component,
and store its period as Th+1. After that, we perform the
hypertime space extension, which extends each vector hxi by
2 dimensions representing a given periodicity of the temporal
domain, i.e.

h+1xi ← (hxi, cos(2π ti/Th+1), sin(2π ti/Th+1)). (1)

Then, we increment h by one and repeat the steps of spatio-
temporal clustering and model error estimation on the now
extended vectors hxi, obtaining an new error Eh. We compare
the model error Eh calculated with the error obtained in the
previous iteration Eh−1 and if Eh < Eh−1, we proceed with
identification of periodicities and hypertime space extension,
extending the vector hxi with another two dimensions repre-
senting another potential periodicity of the modeled phenom-
ena. In cases where the model error starts to increase, i.e.
if Eh ≥ Eh−1, we store the model ph−1(a,x, t) from the
previous iteration as p(a,x, t) and terminate the method.

The resulting model allows to estimate the likelihood of
each value a of a given phenomena at location x and time t.
In our experiments, we show that the function p(a,x, t) allows
to predict the visibility of image features, door states, robot
velocity and number of people occurrences within a given
spatio-temporal volume.

E. Step II: Spatio-Temporal Clustering

We represent the probability density function p(a,x, t) by a
mixture of Gaussian models in the hypertime space as follows:

p(a,x, t) = γ

n∑
j=1

wj uj(a,x,
h t), (2)

where uj(a,x,
h t) is a multivariate Gaussian

function of the jth cluster, wj is the cluster weight,
ht = (cos(2π t

T1
), sin(2π t

T1
), . . . , cos(2π t

Th
), sin(2π t

Th
)) is

the projection of time in the hypertime space and γ is a
scaling constant, specified by (3) in Section III-F.

F. Step III: Model error estimation

Projecting the linear time t onto the circular hypertime space
(or its inverse) inevitably changes the scale of the calculated
spatio-temporal density. This is because several time instants
t can project into the same area of hypertime. Thus, we first
need to determine the scaling factor γ in such a way that
the mean value of ai calculated from the model (2) over the
training set vectors (xi, ti) is equal to the average value of ai
on the training set:

γ =

∑l
i=1 ai∑l

i=1 ai
∑n
j=1 wj uj(ai,xi,

h ti)
(3)

After calculating the scaling factor γ, we compute an
estimate of ai at each training set point defined by location
xi and time ti by calculating the mean µi:

µi =

∫
a p(a,xi, ti) da (4)

Then, we calculate the error hε(ti) as the difference between
the mean and the measured values ai

hε(ti) = µi − ai. (5)

Finally, we calculate the mean squared error of the current
model as

Eh =

l∑
i=1

hε2(ti) =

l∑
i=1

(µi − ai)2. (6)

We compare the mean squared error Eh with the one calcu-
lated in the previous iteration Eh−1. If Eh is smaller than
Eh−1, we store the current model, represented by Equation
(2), and we perform another iteration of the method. If
Eh > Eh−1, we terminate the algorithm. Then, the last stored
model (Eq. 2), can be used to predict conditional probabilistic
distribution p(a|x, t). This is calculated in a numerical manner,
i.e. we fix x and/or t at the values we want to perform
the prediction for, then we calculate p(ac,x, t) for values of
ac ∈ A which represent the domain of a, and finally we
normalise the results to ensure that

∑
ac∈A p(ac|x, t) = 1.
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G. Steps IV and V: Identification of periodicities and hyper-
time extension

To identify the periodicities in the error, we use a Fourier-
transform scheme. However, since the data collections for the
experiments were performed by a system operating in real-
world conditions, they were not collected in a (temporally)
regular manner. Thus, we process the time series hε(ti) by
the FreMEn method [5], which, unlike traditional Discrete or
Fast Fourier transforms, is suitable for finding periodicities in
non-uniform and sparse data. In particular, we calculate the
most prominent periodicity Th in the error time-series as:

Th+1 = argmax
Tk

l∑
i=1

|(hε(ti)−h ε̂) e−j 2π ti/Tk |, (7)

where hε̂ is a an average error hε(ti). After establishing the
Th+1, we extend all vectors of the training set hx(ti) by adding
another two components (cos(2π ti/Th+1), sin(2π ti/Th+1)),
i.e. we apply Equation (1).

Thus, at the start of our method, each vector 0xi contains
only the spatial information, i.e. 0xi = (ai,xi), but at the
end, the vector contains 2h additional dimensions modelling
the periodicities observed in the training data.

H. Clustering implementation

While the hypertime extension, error estimation, and period-
icity estimation steps of the method are quite straightforward,
deterministic and computationally inexpensive, the way to
build the model of the probability distribution over the hyper-
time space is key to the method’s predictive accurracy. The
main issue of the hypertime space is its sparsity, because the
time, which is linear and one-dimensional, is projected onto
a multi-dimensional hyper-torus. With the growing number of
modelled periodicities (and thus, the number of temporal di-
mensions), many algorithms that we tested exhibited numerical
instability. Thus, we dedicated a significant effort into testing
various clustering methods, their initialisations and metrics
[39].

In our experiments, we utilise two clustering methods,
which, in our previous experiments, provided the most sat-
isfactory results: the HyperTime Expectation Maximisation
(HyT-EM) and HyperTime K-Means (HyT-KM). The HyT-EM
method is based on the Expectation Maximisation scheme
implementation from the OpenCV library. As the method
requires to specify the number of clusters, we indicate the
method name as HyT-EM k, where k is the number of clusters
used during the experiments (Section IV). To deal with the
occasional numerical instabilities of the OpenCV’s EM imple-
mentation, the HyT-EM method performs eigenvalue analysis
of the model’s covariance matrices and if necessary, it restarts
the EM with different initial positions of the clusters.

The HyT-KM method was designed to deal with the afore-
mentioned issues, making it more suitable for clustering over
the hypertime space, where the training data become sparser
as the number of temporal dimensions increases. HyT-KM first
initialises the cluster centres using k-means based clustering.
Inspired by [33], [35], [40], we use the mixtures of cosine

distance for hypertime and the Euclidean metrics for other
variables. After initialisation, it calculates the covariace matri-
ces of the clusters and then it proceeds with the Expectation
Maximisation procedure, while using the cosine distance for
temporal dimensions. In contrast to HyT-EM, HyT-KM does
not require to specify the number of clusters in advance.
Instead, the algorithm tries to analyse the temporal structure
of the hypertime space prior to the hypertime expansion step.
In particular, it starts with n = 1 clusters. It builds models
with n and n+1 clusters and calculates the sum of amplitutes
TΣ(n) and TΣ(n+ 1) of the frequency spectrum of the error
hε(ti)

TΣ(n) =

K∑
k=1

l∑
i=1

|(hε(ti)−h ε̂) e−j 2π ti/Tk |. (8)

If TΣ(n) > TΣ(n+1), the model with n+1 clusters is stored
and the number of clusters n is incremented by 1. If TΣ(n) ≤
TΣ(n + 1), the method simply proceeds with the hypertime
expansion step.

IV. EXPERIMENTS

The purpose of the experimental evaluation is to assess the
predictive capability of the proposed method and its utility
for different robotic tasks. The performance of the method is
evaluated in four different scenarios, which require predictions
of variables of different dimensionalities. The data for these
experiments were collected by robotic sensors in real world
conditions over periods of several weeks. These scenarios re-
late to a real deployment of a mobile robot in human populated
environment, see Section III-C and [1], where we discussed
how a long-term operating robot will benefit from the predic-
tive capabilities of models that explicitly represent temporal
behaviour of environment states with different dimensions.
To evaluate the efficiency of our method, we compare five
different temporal models: Mean, which predicts a value as
an average of its past measurements, Hist n, which divides
each day into n intervals and predicts the given variable as
an average in a relevant time of a day, FreMEn m, which
extracts m periodic components from the variable’s history
and uses these periodicities for prediction, HyT-EM k, which
uses the expectation-maximisation of k-component Gaussian
Mixture Model over the hypertime space, and finally HyT-KN,
as described in Section III-H. The experimental evaluation is
performed by an automated system [41], which first optimises
each method’s parameters (number of intervals n, number of
periodicities m, and number of clusters k) and then runs a
series of pairwise t-tests to determine which methods perform
statistically significantly better than other ones in terms of their
prediction error. The results of the statistical evaluations are
shown on the right sides of the Figures 2-5, where an arrow
from A to B indicates that method A achieved statistically
significantly less erroneous predictions than method B. To
enable the reproducibility of the results, the evaluation system,
source codes and datasets are available online [42].

A. Door state
The first scenario concerns a single binary variable, which

corresponds to the state of a university office door. The door
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was continuously observed by an RGB-D camera for 10 weeks
to obtain the training set, and for another 10 weeks to obtain
10 testing sets, each one week long. Since the RGB-D data
processing was rather simple, the data contains noise, because
people moving through the door caused the system to indicate
incorrectly that the door was closed.

To compare the efficiency of the predictions, we cal-
culated the mean squared error ε of the various temporal
models’ predictions p(t) to the ground truth s(t) as ε =∑
T (p(t)− s(t))2/|s(t)|. The results shown in Fig. 2 indicate
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Fig. 2. Door state prediction error. The left figure shows the MSE for the
training (week 0) and testing (weeks 1-9) datasets. An arrow from model A
to model B in the right figure indicates that A’s prediction error is statistically
significantly lower than prediction error of model B.

that both hypertime-based models outperformed the other
ones, including FreMEn [5]. Similarly to the results of [5],
both methods indicated that that the best predictions are
achieved by modeling three most prominent periodicies. In
this experiment, these corresponded to one day, four hours
and one week.

The reason behind the superiority of the hypertime-based
methods is that FreMen approximates the training data by
only one (sinus) function per observed periodicity. This causes
difficulties when modeling states, which are influenced by
several processes with the same periodicity or when repre-
senting short duration, regular events. The hypertime-based
methods combine the advantages of mixture-based represen-
tations, which can approximate arbitrarily-shaped, multimodal
functions, with the ability of FreMEn to represent their natural
periodicities. For an illustrative example of the advantages of
GMM and FreMEn models, leading to their combination in
this work, please see our earlier work [14].

B. Topological localisation

In this scenario a robot has to determine its location in an
open-plan university office based on the current image from its
onboard camera and a set of pre-learned appearance models
of several locations. Since the appearance of these locations
changes over time, it is beneficial to utilise appearance models
that explicitly represent the appearance variations [5], [6],
[9], [43]. This experiment compares the impact of different
temporal models, which predict the visibility of environmental
features at these locations, on the robustness of robot locali-
sation. To gather data about the changes in feature visibility,
a SCITOS-G5 robot visited eight different locations of the
university office every 10 minutes for one week, collecting a
training dataset with more than 8000 images. After one week,
the robot visited the same locations every 10 minutes for one

day, collecting 1152 time-stamped images used for testing.
The training set images were then processed by the BRIEF
method [44], which shows good robustness to appearance
changes [45]. The extracted features belonging to the same
locations were matched and we obtained their visibility over
time, which was then processed by the temporal models
evaluated. Thus, we obtained a dynamic appearance-based
model of each location that can predict which features are
likely to be visible at a particular time.

During testing, the robot uses these models to calculate the
likelihood of the features’ visibility at each of the locations
at the time it captured an image by its onboard camera
(or extracted a time-stamped image from the testing set). In
particular, it selects the n most likely-to-be-visible features at
each location and time, matches these features to the features
extracted from its onboard camera (or testing set) image, and
determines the model with the most matches as its current
location. The localisation error is calculated as the ratio of
cases when the robot incorrectly estimated its location to the
total number of images in the testing set. The dependence of
the average localisation error on the particular temporal model
and number of features n used for localisation is shown in
Figure 3. The results indicate that the localisation robustness
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Fig. 3. Temporal model performance for feature-based topological localisa-
tion. The left figure shows the dependence of localisation error rate on the
number of features predicted by a given temporal model. An arrow from
A to B in the right indicates that A’s localisation error rate is statistically
significantly lower than localisation error rate of model B.

of the methods that take into account the rhythmic nature of the
appearance changes outperform the Mean method, which relies
on the most stable image features. Moreover, the methods that
model these cyclic changes in a continuous manner perform
better than the Hist method which models different times of
the day in separate, as shown in Figure 3.

C. Velocity prediction

This scenario concerns the ability of our representation to
predict the velocity of a robot while navigating through a given
area, which depends on how cautiously it has to move due to
the presence of humans. Thus, this experiment is concerned
with the ability of our method to predict a one-dimensional
continuous variable (robot velocity) for a given time and
location.

The velocities and times of navigation for our evaluation
were obtained from a database obtained with a SCITOS-G5
mobile platform, which gathered data in an open plan research
office for more than 10 weeks. Since the robot was used for
other purposes, the data were not gathered in a regular way, but
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contain long hiatuses, see [13]. Typically, the average velocity
of the robot did not show much variation, but in cases it had to
navigate close to workspaces and through doors, the velocity
varied significantly. To evaluate the ability of our approach to
predict the robot velocity, we split the dataset into an 8-weeks
long training set and two testing sets of 1-week duration. As
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Fig. 4. Navigation velocity reconstruction and prediction errors. The left
figure shows the MSE for the training and testing sets. An arrow from A to
B in the right indicates that A’s prediction error is statistically significantly
lower than velocity prediction error of model B.

in the case of door state prediction, we calculated the mean
square error of the predictions provided by our models, and
compared them to find out which of the methods provide the
most accurate predictions. While the HyT-KM reconstruction
error (i.e. error calculated on the training data) is higher, its
prediction error is lower compared to Mean, FreMEn and Hist
methods, see Figure 4. Since the velocity of the robot is always
between 0 and 1, we applied FreMEn directly to the velocity
values v ∈< 0, 1 > and considered the FreMEn prediction
for a particular time a velocity. The same scheme was used to
predict the robot velocity in [1].

D. Human presence

Finally, we validated the proposed approach on 2-
dimensional data indicating the positions of people in several
corridors of the Isaac Newton Building at the University of
Lincoln. Data collection was performed by a mobile robot
equipped with a Velodyne 3d laser rangefinder, which was
placed at a T-shaped junction so that its laser range-finder was
able to scan the three connecting corridors simultaneously. To
detect and localize people in the 3d point clouds provided
by the scanner, we used an efficient and reliable person
detection method [46]. Since we needed to recharge the robot
occasionally, we did not collect data on a 24/7 basis and
recharged the robot batteries during nights, when the building
is vacant and there are no people in the corridors. Similarly to
the previous case, the robot was often used for other purposes,
resulting in large gaps in the data collected. Thus, our dataset
spanned from early mornings to late evening over several
weekdays. Each day contains approximately 28000 entries,
which correspond to hundreds of walks by people through
the monitored corridor. To quantitatively evaluate the model
quality, we again split the gathered data into training and test
sets, and learn the model from the training set only. Then, we
partition the timeline of the test data into a spatio-temporal
3d grid. For each cell g, we count the number of detections
dg that occurred and compare this value with the value pg
predicted by a given spatio-temporal model. To better visualise
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Fig. 5. Human presence prediction results. The left figure shows how the
mean squared error reduced for a particular model granularity compared to the
Mean model. An arrow from A to B in the right indicates that A’s prediction
error is statistically significantly lower than velocity prediction error of model
B.

the methods’ prediction improvements, we show the reduction
of the mean square error compared to the Mean model in
Figure 5. To make a comparison with other models, we apply
the FreMEn method on each of the grid cells independently
and then predict the most likely number of events at a given
time in a particular cell. Since the error is dependent on the
partitioning used, we tested the method for grids of various
cell sizes ranging from 5 to 20 cm and 5 to 30 minutes.
Since the number of people passing through a cell follows
a Poisson distribution, we employed FreMEn modification
proposed in [22], which allows to process non-binary values.
However, the number of passing people exceeds one only in
rare occations, and one would obtain almost the same results
by using the original FreMEn [5].

To demonstrate the model’s ability to estimate the spatio-
temporal distribution over time, we let it predict the most
likely occurrence of people for different times and composed
a video [47] showing how the predicted distributions of the
people depend on time.

V. CONCLUSION

We presented a novel approach for spatio-temporal mod-
eling for robots that are required to operate for long periods
of time in changing environments. The method models the
time domain in a multi-dimensional hyperspace, where each
pair of dimensions represents one periodicity observed in the
data. This multi-dimensional, warped time model is used to
extend the state space representing a given phenomenon. By
projecting the robot’s observations into this space-hypertime
and clustering them, we create a continuous, spatio-temporal
model (distribution) of the phenomenon observed by the robot.
Knowledge of the spatio-temporal distribution is then used to
predict the probabilistic distribution of a given phenomenon
at a given time and location.

Using data collected by a mobile robot over several weeks,
we show that the method can represent the spatio-temporal
dynamics of binary and continuous variables, and use the
representation to make predictions of the future environment
states, resulting in significantly better performance than the
previous state of the art.

The main contribution of the article does not rest in the
clustering methods, but in the alternative representation of
the time domain, which, unlike the linear time, respects the
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repetitiveness of events and changes imposed by naturally-
occurring cycles. Moreover, we outline a formulation of the
problem, which allows to apply the aforementioned method
to most environmental models used in the robotic domain. We
believe that this human-oriented circular representation of time
will allow service robots to synchronise their activities with
the habits of people they are supposed to serve.

One of the major problems we have encountered is the
instability of clustering methods on the multi-dimensional
hypertime space. Thus, in the future, we will evaluate the
performance of different clustering algorithms on the proposed
representation considering models capable of treating spatial
and temporal domains in separate or employing only a subset
of the detected periodicities [48]. Furthermore, the observed
distribution is heavily influenced by the way in which the robot
samples the environment, i.e. where and when it takes the mea-
surements. Thus, we will study spatio-temporal exploration
methods, which will allow a mobile robot to automatically
select a location and time to obtain data useful to refine and
improve the spatio-temporal model. Moreover, we will extend
the spatio-temporal modeling approach towards its ability to
take into account sensor noise in way similar to standard
Bayesian update applied to states with fixed probabilistic
values.

To allow use of the method by other researchers, we provide
its baseline open source code and datasets at chronorobotics.tk
and fremen.uk.
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