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Abstract 24 

Urbanization poses a serious threat to local biodiversity, yet towns and cities with abundant 25 

natural features may harbor important species populations and communities. While the 26 

contribution of urban greenspaces to conservation has been demonstrated by numerous studies 27 

within temperate regions, few consider the bird communities associated with different 28 

landcovers in Neotropical cities. To begin to fill this knowledge gap, we examined how the 29 

avifauna of a wetland city in northern Amazonia (Georgetown, Guyana) varied across six urban 30 

landcover types (coastal bluespace; urban bluespace; managed greenspace; unmanaged 31 

greenspace; dense urban; sparse urban). We measured detections, species richness and a series 32 

of ground cover variables that characterized the heterogeneity of each landcover, at 114 33 

locations across the city. We recorded >10% (98) of Guyana’s bird species in Georgetown, 34 

including taxa of conservation interest. Avian detections, richness, and community 35 

composition differed with landcover type. Indicator species analysis identified 29 species from 36 

across dietary guilds, which could be driving community composition. Comparing landcovers, 37 

species richness was highest in managed greenspaces and lowest in dense urban areas. The 38 

canal network had comparable levels of species richness to greenspaces. The waterways are 39 

likely to play a key role in enhancing habitat connectivity as they traverse densely urbanized 40 

areas. Both species and landcover information should be integrated into urban land-use 41 

planning in the rapidly urbanizing Neotropics to maximize the conservation value of cities. 42 

This is imperative in the tropics, where anthropogenic pressures on species are growing 43 

significantly, and action needs to be taken to prevent biodiversity collapse. 44 

 45 

Key words: avian; bluespace; diversity; greenspace; Guyana; indicator species; species 46 

richness; urban planning 47 
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 48 

RAPID URBANIZATION IS A GLOBAL PHENOMENON (United Nations 2014) THAT POSES A 49 

POTENTIALLY SERIOUS THREAT TO LOCAL BIODIVERSITY (Dearborn & Kark 2010; Sol et al. 50 

2014). During urbanization, natural habitats are modified, fragmented or lost and are replaced 51 

by a novel ecosystem characterized by a mosaic of natural, semi-natural and anthropogenic 52 

features (McDonnell & Pickett 1990; Kowarik 2011; Beninde et al. 2015). This high degree 53 

of heterogeneity changes the composition of ecological communities, creating opportunities 54 

for some species to thrive, while others may decline or go extinct (Concepción et al. 2015; 55 

Seress & Liker 2015). 56 

Greenspaces are often viewed as the principal habitat in towns and cities, providing 57 

the most favorable resources for biodiversity (Kong et al. 2010) and acting as dispersal 58 

corridors throughout the urban matrix (Murgui 2009). However, natural or artificial 59 

waterbodies (‘bluespaces’), buildings and other human-made structures with diverse forms 60 

and functions can also provide food, shelter and breeding sites (Farinha-Marques et al. 2017), 61 

helping to maintain species diversity when there is no natural habitat in close proximity 62 

(Savard et al. 2000). In developed regions of the world, where intensive agricultural use of 63 

the wider landscape has resulted in population declines of species, urban areas are becoming 64 

progressively more important in sustaining regional abundances. Indeed, substantial 65 

proportions of the populations of some previously widespread and common species now 66 

occur in urban environments (e.g. Bland et al. 2004; Peach et al. 2004; Shochat et al. 2010; 67 

Kowarik 2011; Kowarik et al. 2013). Therefore, a clearer understanding of how species 68 

assemblages vary between different landcover types within towns and cities is important, if 69 

decision-makers are to reduce the potentially detrimental impacts of urbanization on 70 

biodiversity through evidence-based land-use planning and proactive conservation 71 

interventions (Goddard et al. 2010; Wu 2014; Oliveira-Hagen et al. 2017; Parris et al. 2018).  72 
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Birds are one of the most-studied taxonomic groups in urban areas, as they can be 73 

monitored inexpensively and are highly responsive to environmental change (Koskimies 74 

1989; Gardner et al. 2008). As such, they are used extensively as bio-indicators of ecosystem 75 

health (Herrando et al. 2017). Avian communities in towns and cities can exist independently 76 

of neighboring rural ones (Chiari et al. 2010) and, in general, are typified by greater 77 

abundances but lower species richness than those in more natural habitats (Ortega-Álvarez & 78 

MacGregor-Fors 2009). Nonetheless, most of the studies conducted on urban bird 79 

communities to date have been located in the temperate zones of Europe, Canada and the 80 

USA (Ortega-Álvarez & MacGregor-Fors 2011). Moreover, many have primarily examined 81 

the conservation benefits of greenspace and vegetation (Fontana et al. 2011; Ferenc et al. 82 

2014; Rupprecht et al. 2015), overlooking the contribution that urban bluespaces may play in 83 

harboring avian communities and species abundances (Andrade et al. 2018). 84 

The Neotropics are highly biodiverse and undergoing rapid urbanization, yet there is a 85 

paucity of urban ecological studies undertaken in the region (Ortega-Álvarez & MacGregor-86 

Fors 2011; Pauchard & Barbosa 2013). This is despite the fact that urbanization is likely to be 87 

a contributing factor to species extinctions in the tropics (Laurance & Useche 2009). 88 

Neotropical towns and cities are often characterized by extreme social and economic 89 

inequality, which in turn, may relate to the distribution and quality of urban greenspace 90 

(Boulton et al. 2018). What little research there is on Neotropical urban birds has indicated 91 

that urbanization leads to reduced species richness (Reynaud & Thioulouse 2000; Amaya-92 

Espinel et al. 2019), an increase in overall abundance (Reis et al. 2012; Amaya-Espinel et al. 93 

2019), and larger populations of non-native species (Ortega-Álvarez & MacGregor-Fors 94 

2011; Amaya-Espinel et al. 2019). However, very few studies have examined the bird 95 

communities associated with different types of greenspace and bluespace within towns and 96 

cities. 97 
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Here, we assess how bird species detections vary across a range of urban landcover 98 

types in Georgetown, Guyana. Specifically, we examine differences in the number of bird 99 

detections, species richness and community composition among managed greenspaces (e.g. 100 

parks, cemeteries), unmanaged greenspaces (e.g. abandoned grazing sites, meadows, 101 

wastelands), waterways (e.g. canals, drainage ditches), coastline and built up areas within the 102 

urban boundary. We also conduct an indicator species analysis to determine whether specific 103 

species typify particular landcover types and investigate how dietary guild composition 104 

changes across the urban landscape.  105 

 106 

METHODS 107 

 108 

STUDY AREA. —This study was conducted in the city of Georgetown, the capital of Guyana, 109 

located on the North Atlantic coast of tropical South America, 6° N, 58° W (Fig. S1). The 110 

human population was estimated to be ~118,000 in 2012 (Bureau of Statistics 2012), and the 111 

area extent of the city is ~70 km² (Edwards et al. 2005). Guyana has an average temperature 112 

of 26°C, and two rainy seasons during April-August and November-January (Edwards et al. 113 

2005).  114 

Georgetown is situated in the Upper Amazonia/Guyana Shield ‘major tropical 115 

wilderness area’, which represents one of the most globally pristine terrestrial forest 116 

ecoregions (Cincotta et al. 2000). The city lies below sea level, interlaced by a network of 117 

canals and drains to prevent flooding, as well as a sea wall providing protection during high 118 

tide. (Edwards et al. 2005). Although Georgetown is situated in a country of high rainforest 119 

cover, the landscape surrounding the city is dominated by agriculture and the ocean, with the 120 

nearest primary forest approximately 35 km south. Landcover type within Georgetown varies 121 

from heavily urbanized (areas with a high density of multi-storied buildings) in the city 122 
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center, to greenspace in the form of parks and grassland, and bluespace along canals and 123 

coast. Many residential houses in the city have private gardens that contain a diversity of 124 

vegetation, including fruit and flowering trees, as well as shrubs and grasses.  125 

 126 

SURVEY DESIGN.—During May and June 2017, the bird community of Georgetown was 127 

sampled across 114 point-count locations, 19 per landcover type, of which there were six 128 

(Fig. S1). The six landcover types were: ‘managed greenspace’, ‘unmanaged greenspace’, 129 

‘urban bluespace’, ‘coastal bluespace’, ‘dense urban’ and ‘sparse urban’ (see Table S1 for 130 

definitions). The point-count locations were determined by digitally overlaying a 250 m x 131 

250 m grid over the city via GIS. The predominant landcover type within a 50 m radius 132 

buffer of every grid line intersection, and potential point count location, was evaluated using 133 

Google Earth 2017 satellite imagery and maps obtained from the local authorities. A random 134 

sample of point count locations for each landcover type was then generated. When we 135 

assessed a point count location on the ground, prior to conducting the bird surveys, we 136 

verified whether our landcover categorization was correct by ground truthing. If a point was 137 

inaccessible (e.g. it was private property and permission to survey was not granted, it was 138 

covered by a building), or incorrectly categorized, it was replaced with another from the 139 

random sample. All point count locations were at least 250 m apart from one another to 140 

ensure independence (Silva et al. 2015) and, to avoid potential edge effects, they were all 141 

more than 250 m away from the agricultural fields bordering the city (see Ikin et al. 2014).  142 

To describe the landcover type at each point count location, the percentage (%) 143 

ground-cover of a number of variables (Table 1) was assessed within a 50 m radius (matching 144 

that of the point count area – see below). We also recorded the presence or absence of fruiting 145 

and flowering trees (fruiting only, flowering only, both, or neither) which are likely to 146 
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influence bird communities, as each tree type offers different resources such as food and 147 

shelter (Jankowski et al. 2013). 148 

Each point count location was surveyed once on a clear day between 05:30 and 08:30 149 

(Verner & Ritter 1986). All birds seen or heard within the 50 m radius were recorded during a 150 

15-minute interval (O’Neal Campbell 2008). If birds were interacting with the landcover 151 

type, or flying within 25 m of the highest structure within the 50 m radius, they were 152 

recorded (Huff et al. 2000). Any individuals flying above this height threshold were not noted 153 

as they were deemed to be flyovers. Our bird taxonomy follows Remsen et al. (2019).  154 

 155 

STATISTICAL ANALYSES.—Species accumulation curves and their 95% confidence intervals 156 

were generated to investigate whether the sampling effort was sufficient to represent the bird 157 

community of Georgetown. Error was measured using the CHAO1 function (Chao 1984) in 158 

EstimateS 8.2.0, which calculates true estimated species diversity based on the number of 159 

rare species found in a sample (Colwell 2006). 160 

As point count locations that are geographically closer together may naturally harbor 161 

more similar communities than those further apart, we tested our dataset for spatial 162 

autocorrelation. We did this using a Mantel test to examine the Bray-Curtis coefficients of the 163 

bird communities against geographic distance, conducted in PC-ORD from 999 permutations. 164 

The test revealed that any effect of spatial autocorrelation was weak and non-significant 165 

(r=0.006; p=0.88), meaning that differences in assemblage patterns can be attributed reliably 166 

to landcover type. 167 

We first log10 transformed the bird detection data, as is standard practice, when 168 

conducting community and ordination analyses (McCune & Grace 2002; Suarez-Rubio et al. 169 

2011). To investigate differences in the bird communities between landcover types, we 170 

conducted non-metric multi-dimensional scaling (NMDS; Shepard 1962) from Bray-Curtis 171 
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dissimilarity coefficients of the number of detections per species in each point count location. 172 

The NMDS was conducted in PC-ORD v6.0 (McCune & Mefford 1999). A final ordination 173 

of minimum stress on two axes was generated through a random starting configuration of 500 174 

iterations, split into 250 runs of both randomized and real data (Bicknell et al. 2014). 175 

Kendall’s tau rank correlation coefficient (McCune & Grace 2002) was used to assess the 176 

strongest associations between landcover variables and the bird community. We undertook 177 

this procedure twice, once with all point count locations included, and once with the coastal 178 

bluespace sites removed. The latter was done to facilitate closer visual inspection of the 179 

remaining data.  180 

To assess whether the bird communities were statistically different between landcover 181 

types, we used a multi-response permutations procedure of Euclidean distances (MRPP; 182 

McCune & Grace 2002) between the number of detections per species in each landcover. 183 

This was also carried out in PC-ORD. The analysis was repeated three times: first with the 184 

entire assemblage included in the dataset, second with species removed if they only occurred 185 

once and, finally, with species removed if they occurred twice or less. All three approaches 186 

gave consistent results and, therefore, the results are reported for the entire assemblage.  187 

Kruskal-Wallis H tests in IBM SPSS Statistics (version 24) were used to determine 188 

whether the proportional coverage of each landcover variable differed across the landcover 189 

types. ‘Coastal bluespace’ was dominated by the landcover variable ‘ocean’, which was 190 

observed only in this landcover type and thus excluded from analyses. Post-hoc pairwise 191 

comparisons between landcover types were conducted using Dunn’s (1964) procedure for 192 

Bonferroni corrections.  193 

Each species was grouped according to its primary dietary guild, according to Restall 194 

et al. (2006): piscivore, carnivore, frugivore, granivore, insectivore, omnivore and 195 
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nectarivore. To examine whether the number of species from each dietary guild varied across 196 

landcover types we conducted Kruskal-Wallis H tests.  197 

Indicator species analyses (IndVal) in PC-ORD were used to identify species that 198 

typify the bird communities associated with the six broad landcover types, following the 199 

method described in Dufrêne and Legendre (1997). An indicator value was assigned to each 200 

species as a result of a random reallocation process (4999 permutations), and these were then 201 

tested for significance using a Monte Carlo procedure, with species considered indicators if 202 

this was significant (p < 0.05). High indicator values reflect both high abundance and 203 

prevalence within a landcover type; p-values represent the probability of a similar 204 

observation relative to a randomized dataset. Species that occurred in all landcover types 205 

were excluded from the analysis as they are ubiquitous.  206 

 207 

RESULTS 208 

 209 

LANDCOVER TYPES.—There were significant differences in the percentage ground-cover of 210 

eight of the 10 landcover variables occurring across the six landcover types (Table S2; Fig. 211 

1). None of the landcover variables differed between managed and unmanaged greenspaces, 212 

both of which were dominated by vegetation (Fig. S2). Sparse urban was the only landcover 213 

type that contained fruiting and/or flowering trees in all point count locations (Fig. S3), while 214 

coastal bluespace point locations did not support any fruiting or flowering trees.  215 

 216 
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BIRD COMMUNITIES.—Across the 114 point count locations, 3,408 detections from 98 bird 217 

species were recorded (Table S3). The overall species accumulation curve tended toward an 218 

asymptote, indicating that sampling effort was sufficient, and the 95% confidence intervals of 219 

estimated species richness overlapped with the observed species richness (Fig. S4). In 220 

Georgetown, we recorded over 10% of Guyana’s total avian species. The landcover type with 221 

both the highest bird species richness and detections was managed greenspace, followed by 222 

urban bluespace (Table 2). The lowest species richness was observed in coastal bluespace, 223 

while the lowest detections were recorded in the dense urban landcover. Six species were 224 

found in all six landcover types and accounted for 23% of all individuals recorded (Fig. 2): 225 

greater kiskadee (Pitangus sulphuratus), rock pigeon (Columba livia), ruddy ground dove 226 

(Columbina talpacoti), gray-breasted martin (Progne chalybea), blue-gray tanager (Thraupis 227 

episcopus) and shiny cowbird (Molothrus bonariensis).  228 

The 2-dimensional NMDS ordination with minimal stress accounted for 64% (Fig. 229 

3A) and 54% (Fig. 3C) of the variability in the bird data (with and without the inclusion of 230 

coastal bluespace point count locations respectively). This, in combination with the MRPP, 231 

showed that the bird communities differed significantly between landcover types (global 232 

MRPP: p < 0.001). The assemblage in the coastal bluespace was significantly different from 233 

all other landcover types. The differences between landcover types remained, even when the 234 

procedure was repeated with coastal bluespace removed (global MRPP with coastal 235 

bluespace removed p < 0.001). Pairwise comparisons of the bird communities within 236 

landcover types revealed statistically significant differences between 12 of the 15 landcover 237 

type pairings (Table 3). Plotting vectors of the landcover variables revealed that NMDS axis 238 

1 was significantly associated with Ocean and Tree, while axis 2 was correlated with Shrub, 239 

Building and Road (Fig. 3B; Table S4).  240 
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Insectivorous species were the most abundant, accounting for at least 40% of birds in 241 

each landcover type (Fig. 4), and there were significant differences between the median 242 

number of species in each dietary guild across the six landcovers (Table S5). No significant 243 

differences in dietary guild composition were found between managed greenspace and urban 244 

bluespace, managed greenspace and unmanaged greenspace, and dense urban and sparse 245 

urban landcover types.  246 

Indicator species were identified for each landcover type (Fig 3B; Table 4). The 247 

number per landcover type ranged from one indicator species for sparse urban, through to 12 248 

for the coastal bluespace.  249 

 250 

DISCUSSION 251 

 252 

As urbanization is progressing rapidly throughout the biodiverse Neotropics (Pauchard & 253 

Barbosa 2013), research on biodiversity assemblages in the urban areas of this region is 254 

growing increasingly important to inform local conservation priorities (Socolar et al. 2016). 255 

Our study, one of only a few with an urban focus conducted in the Neotropics, demonstrates 256 

that many species are found within towns and cities, and reaffirms that urban bird 257 

assemblages are influenced by landcover type (Villegas & Garitano-Zavala 2010; Fontana et 258 

al. 2011; de Toledo et al. 2012; Pellissier et al. 2012; Kang et al. 2015; Leveau & Leveau 259 

2016; MacGregor-Fors et al. 2016; Dale 2018; Amaya-Espinel et al. 2019). As the majority 260 

of land around Georgetown is agricultural, drawing comparisons with bird communities 261 

inhabiting natural landcovers in close proximity to the city was not possible. However, our 262 

study detected 98 species, more than half the number detected via point counts in the primary 263 

forests of Iwokrama in central Guyana (Bicknell et al. 2015). Indeed, we recorded over 10% 264 

of Guyana’s bird species in the city of Georgetown, including one endemic to the Guianas, 265 
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the blood-colored woodpecker (Veniliornis sanguineus), and the IUCN Near Threatened 266 

semipalmated sandpiper (Calidris pusilla) (Braun et al. 2007; IUCN 2018). Urban landscapes 267 

in the Neotropics can, therefore, provide suitable habitat for high bird diversity and species of 268 

conservation concern (Beninde et al. 2015). By using the same bird survey techniques within 269 

each landcover, we could compare their relative contributions to avifauna of Georgetown. 270 

Although the landcover variables and bird community composition showed some levels of 271 

similarity across landcover types, they differed significantly between six different landcover 272 

types, with urban greenspaces and bluespaces being the most diverse. 273 

Georgetown is heterogeneous in form, comprising a mosaic of greenspaces, built up 274 

areas and waterways. Our results clearly demonstrate that landcover type can influence bird 275 

abundance and community composition, and a range of landcover types in a city is key to 276 

maximizing species richness (Kowarik 2011). Greenspaces are generally expected to be the 277 

most important landcover type for urban biodiversity because they often have the highest tree 278 

cover (Rupprecht et al. 2015; Ferenc et al. 2014). Indeed, Georgetown’s managed 279 

greenspaces are the most species rich and have greater numbers of detections. This finding is 280 

consistent with two other urban bird studies conducted in the Neotropics (e.g. Carbó-Ramírez 281 

& Zuria 2011; MacGregor-Fors et al. 2016). Sufficient amounts of vegetation, such as trees 282 

and shrubs, are thus integral to maintaining diverse urban bird communities, and efforts 283 

should be made to protect existing greenspaces from development (Sandström et al. 2006). 284 

However, variables that were not characterized in this study, such as greenspace patch area, 285 

proximity of landcovers to the city centre, and vegetation structure, could also influence 286 

avian diversity in the landcover types assessed (Khera et al. 2005). For example, Sandström 287 

et al. (2006) demonstrated that greenspaces further from the city centre, were more species 288 

rich than those located in the city centre.  289 
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Georgetown’s canal network is interlaced through areas of relatively low species 290 

diversity (i.e. dense urban and sparse urban landcovers), yet our results highlight that urban 291 

bluespaces had a bird community with a similar species richness and number of detections to 292 

that of managed greenspace. There have been a number of studies that have found evidence 293 

of an increase in the number of individuals in more urbanized sites (Seress & Liker 2015; 294 

Mikami & Mikami 2014). However, this was not the case in our study. The low number of 295 

birds detected in the dense landcover type may reflect bird preference for the bluespaces that 296 

dissect the city, and that Georgetown has a relatively low number of invasive species. 297 

Although the canals in the city may be subject to relatively high anthropogenic pressure, the 298 

presence of a diverse avian community is encouraging, particularly as waterbird populations 299 

are declining globally (Wetlands International 2012). These waterbird species (e.g. wattled 300 

jacana, pied water tyrant and limpkin, Aramus guarauna) use the waterways for food, shelter, 301 

nesting sites and breeding (Ma et al. 2010). Likewise, vegetation along the canal banks 302 

appears to be important for species usually found in forests (e.g. roadside hawk, violaceous 303 

euphonia, Euphonia violacea, and yellow oriole, Icterus nigrogularis) (Scott et al. 2003; 304 

Fletcher & Hutto 2008). This finding concurs with those reported in Domínguez-López & 305 

Ortega-Álvarez (2014) and López-Pomares et al. (2015), suggesting that riparian corridors 306 

can facilitate species movement and support populations within urban landscapes. As such, 307 

we strongly encourage urban planners, both locally and regionally, to recognize the potential 308 

of urban waterways for bird conservation in towns and cities. In contrast, the coastal 309 

bluespace landcover type had the lowest bird species diversity, but was distinct from the rest 310 

of Georgetown’s bird community because it was home to maritime species not found in any 311 

of the other landcover types.  312 

As expected, landcover types dominated by roads and buildings had lower species 313 

richness than those with greater vegetation cover (Tratalos et al. 2007; Gagné & Fahrig 2011; 314 
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Silva et al. 2015). The relatively lower levels of diversity may additionally reflect the 315 

intensity of human activities and pollution, which represent a hazard to species sensitive to 316 

such disturbances (Herrera-Duenas et al. 2014). The limited variety of feeding resources 317 

available in the dense urban landcover, as highlighted by the low percentage of fruiting and 318 

flowering trees, may have promoted the over dominance of generalist species that are tolerant 319 

to anthropogenic disturbance (e.g. the invasive rock pigeon, and native carib grackle, 320 

Quiscalus lugubris) (Dunn et al. 2006). Increasing urbanization, specifically the replacement 321 

of natural habitat with built-up features and the development of human-related 322 

infrastructures, globally may continue to favor generalist species over specialist species, 323 

which are susceptible to significant changes in their environment (Devictor et al. 2007). 324 

Furthermore, it is possible that urban pressures are causing some of the landcovers assessed 325 

in this study to become an ecological trap (Garmendia et al. 2016). We cannot, however, 326 

determine whether or not this is the case, as we only recorded numbers of detections and have 327 

not examined variables such as breeding success. Where this has been studied explicitly 328 

elsewhere in the world, authors have concluded that urban habitats do not act as ecological 329 

traps for their study species (e.g. northern cardinal, Cardinalis cardinalis, & northern 330 

mockingbird, Mimus polyglottos) (Leston & Rodewald 2006; Stracey & Robinson 2012). 331 

Species from all dietary guilds were observed in almost every landcover type. 332 

Omnivorous and granivorous species, such as the rock pigeon (Dunn et al. 2006), are known 333 

to be successful at adapting to urban landscapes, due to the relative abundance of food 334 

resources (e.g. human refuse) (Kark et al. 2007; Croci et al. 2008; Møller 2009). This 335 

plasticity is also epitomized by species from other dietary guilds; for example, the 336 

insectivorous greater kiskadee (Echeverria & Vassallo 2008) and frugivorous blue-gray 337 

tanager (Sanz & Cuala 2015), both recorded in our research. Indeed, where more heavily 338 

frugivorous bird species are absent in urban areas, the greater kiskadee can also be an 339 



15 
 

important seed disperser (Emer et al. 2018). However, in accordance with another 340 

Neotropical urban bird study (Reynaud & Thiolouse 2000), insectivorous species were the 341 

most numerous in Georgetown. This is likely to be because of the fruiting and flowering trees 342 

occurring across the city which are typically rich in arthropods (Vehviläinen et al. 2008), and 343 

because of the insect communities associated with the many waterways. Moreover, 344 

insectivorous bird species prefer edges (Helle 1983), which characterize most urban 345 

landscapes (Alberti 2005). Nonetheless, Glennon & Porter (2005) assert that the development 346 

of a human-dominated matrix negatively affects insectivorous species. O’Connell et al. 347 

(2000) attribute this negative effect to the loss of specific feeding opportunities as a result of 348 

greater disturbance. Therefore, if development of Georgetown intensifies, leading to canal 349 

culverting or tree removal, it is probable that insectivorous bird species will decline. 350 

Additionally, urban areas offering increased feeding opportunities may act as a sink for 351 

species from the surrounding rainforest (Schreiber & Kelton 2005). 352 

Indicator species analysis identified landcover type preferences for 29 of the bird 353 

species recorded in Georgetown, from across different dietary guilds. This could be driving 354 

avian species richness in the city (Tews et al. 2004). Species with high indicator values for 355 

urban bluespace landcover, such as wattled jacana and pied water tyrant, were uncommon or 356 

absent from built up areas containing little to no freshwater, further suggesting that these 357 

species heavily rely on the canal system in the city. The high number of indicator species 358 

found in the coastal bluespace landcover, all of which were seabirds, can be attributed to 359 

coastal habitat preference of these species. Furthermore, in accordance with our findings, 360 

snowy egret and whimbrel have been previously recorded having a strong association with 361 

coastal urban habitats (Seigel et al. 2005; Tejera & Rodríguez 2014). Aside from coastal 362 

bluespace, the managed greenspace landcover had the highest number of indicator species, 363 

including tropical kingbird and cattle egret, both of which have previously been observed in 364 
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urban greenspaces (Phalen et al. 2010; Leveau & Leveau 2016). Moreover, the high indicator 365 

value of blue-black grassquit within unmanaged greenspace is not surprising, given that they 366 

are typically found within high grass and scrubland throughout the Neotropics (Wilczynski et 367 

al. 1989).  368 

Studies such as this are useful within the wider context of growing anthropogenic 369 

pressure on tropical ecosystems and the urgent calls being made to take action to prevent 370 

biodiversity collapse (Barlow et al. 2018). As a coastal settlement, Georgetown is highly 371 

susceptible to the threat of sea level rise as a result of climate change. Damage to urban 372 

infrastructure, permanent inundation and shifts in salinity gradients as a result of flooding, 373 

will probably alter the landcover type quality, putting bird communities under increasing 374 

pressure to adapt to these changes (Solecki & Marcotullio 2013).  375 

Both species and landcover information should be integrated into urban land-use 376 

planning processes to maximize bird conservation in the rapidly urbanizing Neotropics. As 377 

urban bird species richness is influenced by both local and landscape characteristics (Savard 378 

et al. 2006), generating an integrated, but differentiated management plan for Georgetown’s 379 

landcover types could prove a useful tool for maintaining native birdlife. Enhancement of 380 

biodiversity in towns and cities can improve the quality of life of urban residents and, in turn, 381 

increase support for biodiversity conservation (Soga et al. 2016; Schebella et al. 2019). This 382 

is particularly important for Georgetown and other coastal cities located in relatively pristine 383 

ecoregions like the Guiana Shield (Mittermeier et al. 2011), where the adverse effects of 384 

urbanization and climate change on bird communities are likely to increase dramatically in 385 

the coming decades (de Toledo et al. 2012: Solecki & Marcotullio 2013).  386 

 387 

 388 

 389 
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TABLES 705 

TABLE 1. Description of the variables used to assess the vegetation, waterbody and 706 

impervious surface ground-cover of six landcover types in Georgetown, Guyana.  707 

 708 

Ground cover 

surface 

Landcover 

variable name 

Definition 

Vegetation Tree 

Shrub 

Grass 

Woody vegetation above 2 m. 

Woody vegetation below 2 m. 

Herbaceous vegetation.  

Impervious 

surface 

Building 

 

Road 

 

Pavement 

 

A structure standing permanently in one place. Includes houses, factories, 

walls and fences. 

An area that has been paved for vehicles to travel along. Also includes off-

road tracks used for vehicular transport on a regular basis.  

A hard or highly compacted surface. Includes pedestrian walkways, hard 

court recreation facilities, vehicle parking, cemetery infrastructure and the 

sea wall promenade.  

Waterbodies Ocean 

Pond 

 

Canal 

 

Drain 

Coastal waters. Includes mudflats that are exposed during low tide.  

Permanent (human-made) and ephemeral (flooded areas) standing bodies 

of water. 

Artificial waterways, wider than 2 m in width, which have been 

constructed as a defense against flooding. 

Artificial channels, less than 2 m in width, which have been constructed as 

a defense against flooding. 

 709 
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TABLE 2. Total and mean bird species richness, and total and mean number of detections, 714 

for the six landcover types surveyed within Georgetown, Guyana.  715 

 716 

Landcover type Total species 

richness 

Mean species 

richness (±SE) 

Total species 

detections 

Mean species 

detections  

Managed greenspace 72 16.30 (1.08) 846 44.52 

Unmanaged greenspace 56 13.50 (1.08) 590 31.05 

Urban bluespace  60 13.30 (1.18) 710 37.36 

Coastal bluespace 26 6.37 (0.45) 440 23.15 

Sparse urban 46 7.79 (0.67) 475 25.00 

Dense urban 29 7.79 (0.66) 347 18.26 

Total 98  3408  
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TABLE 3. MRPP pairwise comparisons of the bird communities within the six landcover 730 

types in Georgetown, Guyana. Significant differences, after Bonferonni corrections for 731 

multiple comparisons, are shown in bold.  732 

 733 

Bird community pairwise comparisons t-statistic p-value 

Coastal bluespace vs. Dense urban -13.85 <0.001 

Coastal bluespace vs. Urban bluespace -14.52 <0.001 

Coastal bluespace vs. Managed greenspace -13.73 <0.001 

Coastal bluespace vs. Unmanaged greenspace -14.45 <0.001 

Coastal bluespace vs. Sparse urban -11.82 <0.001 

Dense urban vs. Urban bluespace -7.16 <0.001 

Dense urban vs. Managed greenspace -8.85 <0.001 

Dense urban vs. Unmanaged greenspace -4.06 <0.01 

Dense urban vs. Sparse urban -0.35 0.29 

Urban bluespace vs. Managed greenspace -1.71 0.06 

Urban bluespace vs. Unmanaged greenspace -4.49 <0.001 

Urban bluespace vs. Sparse urban -4.46 <0.001 

Managed greenspace vs. Unmanaged greenspace -2.54 <0.01 

Managed greenspace vs. Sparse urban -4.57 <0.001 

Unmanaged greenspace vs. Sparse urban -0.74 0.20 
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TABLE 4. Indicator species for each of the six landcover types in Georgetown, Guyana, 742 

determined using IndVal (Dufrêne & Legendre 1997). Only species with indicator values 743 

(Obs IV) significantly larger than random, based on Monte Carlo tests (4,999 permutations, 744 

p<0.05), are listed. High indicator values reflect both high species abundance and 745 

prevalence within a landcover type.  746 

 747 

Landcover type Common name Latin name Dietary guild Obs IV p-value 

Managed greenspace Wing-barred seedeater Sporophila americana Granivore 25.0 0.001 

 Tropical kingbird Tyrannus melancholicus Insectivore 24.4 0.003 

 Lesser kiskadee Pitangus lictor Insectivore 21.1 0.004 

 Orange-winged amazon Amazona amazonica Frugivore 18.9 0.008 

 Violaceous euphonia Euphonia violacea Omnivore 15.8 0.025 

 Silver-beaked tanager Ramphocelus carbo Omnivore 15.3 0.027 

 Cattle egret Bubulcus ibis Omnivore 24.4 0.041 

Unmanaged greenspace Blue-black grassquit Volatinia jacarina Granivore 39.9 0.001 

 Short-crested flycatcher Myiarchus ferox Insectivore 18.9 0.004 

Urban bluespace Wattled jacana Jacana jacana Insectivore 34.7 0.000 

 Pied water-tyrant Fluvicola pica Insectivore 25.1 0.001 

 Striated heron Butorides striata Piscivore  20.1 0.012 

 Yellow-chinned spinetail Certhiaxis cinnamomues Insectivore  19.1 0.014 

 Snail kite Rostrhamus sociabilis Carnivore 18.9 0.014 

Coastal bluespace Black skimmer Rynchops niger Piscivore 36.8 0.001 

 Collared plover Charadrius collaris Insectivore 36.8 0.001 

 Snowy egret Egretta thula Insectivore 68.0 0.001 

 Scarlet ibis Eudocimus ruber Insectivore 36.8 0.001 

 Little blue heron Egretta caerulea Carnivore 57.5 0.001 

 Neotropical cormorant Phalacrocorax brasilianus Piscivore 26.3 0.001 

 Tricolored heron Egretta tricolor Carnivore 35.1 0.001 
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 Sanderling Calidris alba Insectivore 28.7 0.001 

 Common tern Sterna hirundo Piscivore 21.1 0.003 

 Magnificent frigatebird Fregata magnificens Piscivore 21.1 0.005 

 Brown pelican Pelecanus occidentalis Piscivore 15.8 0.023 

 Whimbrel Numenius phaeopus Insectivore 15.8 0.026 

Sparse urban Roadside hawk Rupornis magnirostris Carnivore 18.9 0.015 

Dense urban House wren Troglodytes aedon Insectivore 19.3 0.045 

 Pale-breasted thrush Turdus leucomelas Omnivore 15.4 0.046 
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FIGURE LEGENDS 766 

FIGURE 1. Boxplots showing percentage cover of the eight landcover variables across five 767 

landcover types: unmanaged greenspace (UGR), managed greenspace (MGR), urban 768 

bluespace (UBL), sparse urban (SUR) and dense urban (DUR) in Georgetown, Guyana. 769 

Thick black horizontal lines in the boxes indicate median values, unfilled circles are moderate 770 

outliers, and stars show extreme outliers. Significant differences (indicated by blue lines) 771 

were apparent in the percentage ground cover in eight of the 10 landcover variables occurring 772 

across the six landcover types. 773 

 774 

FIGURE 2. Comparison of the total number of detections for the ten most common bird 775 

species recorded in the six different landcover types in Georgetown, Guyana. Species such as 776 

the greater kiskadee, ruddy ground dove and blue-gray tanager were common in all 777 

landcovers apart from coastal bluespace.  778 

 779 

FIGURE 3. (A) Non-metric multidimensional scaling (NMDS) ordination of bird species 780 

community composition, based on 98 species of birds from 114 point count locations across 781 

six landcover types in Georgetown, Guyana. (B) As in A, but bird images show the two 782 

species with the highest indicator values (IndVal) within each landcover type (NB: only one 783 

species was an indicator of sparse urban), positioned on their centroid within the ordination. 784 

The direction of black lines indicates the strongest associations between labeled landcover 785 

variables and landcover types. (C) As in A, but with the coastal bluespace point count 786 

location data removed from the analysis (95 point count locations in total). Apart from the 787 

coastal bluespace community, all the bird communities from each landcover showed 788 

substantial levels of overlap on the NMDS ordination. However, pairwise comparison 789 
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analysis revealed significant differences between these bird communities.  Each landcover 790 

had at least one indicator species.  791 

 792 

FIGURE 4. Composition of the avian dietary guilds represented in the bird communities of 793 

six landcover type in Georgetown, Guyana, estimated from sample means. Insectivores were 794 

the most common dietary guild in all landcovers.  795 
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