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Summary  21 

Although F-actin has a large number of binding partners and regulators, the number of phenotypic 22 

states available to the actin cytoskeleton is unknown. Here, we quantified 74 features defining F-actin 23 

and cellular morphology in >25 million cells after treatment with a library of 114,400 structurally 24 

diverse compounds. After reducing the dimensionality of these data, only ~25 recurrent F-actin 25 

phenotypes emerged, each defined by distinct quantitative features that could be machine learned. 26 

We identified 2003 unknown compounds as inducers of actin-related phenotypes, including two that 27 

directly bind the focal adhesion protein talin. Moreover, we observed that compounds with distinct 28 

molecular mechanisms could induce equivalent phenotypes and that initially divergent cellular 29 

responses could converge over time. These findings suggest a conceptual parallel between the actin 30 

cytoskeleton and gene regulatory networks; where the theoretical plasticity of interactions is nearly 31 

infinite, yet phenotypes in vivo are constrained into a limited subset of practicable configurations. 32 

Keywords 33 

Actin cytoskeleton, F-actin organisation, talin, talin inhibitor, attractor state, plasticity, phenotypic 34 
analysis.   35 
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Introduction  36 

Our current knowledge of the actin cytoskeleton and its regulatory system – incorporating 6784 37 

proteins with actin-related functionality (> 1/3 of the annotated human proteome, based on 363 38 

distinct gene ontology labels; http://geneontology.org) – suggests no clear limits to the organisational 39 

plasticity of this complex system. Plasticity in actin organisation physically manifests in the numerous 40 

distinct forms and combinations of sub-cellular filamentous actin (F-actin) structure (stress fibres, 41 

lamellipodia, filopodia and invadopodia etc) (Burridge and Wittchen, 2013; Lehtimaki et al., 2017; 42 

Leijnse et al., 2015; Skau and Waterman, 2015). From a regulatory perspective, the multiplicity of 43 

direct actin-binding partners, distal regulatory proteins and impinging signalling pathways that 44 

collectively modulate actin organisation (Pollard, 2016) also suggest a high level of organisational 45 

diversity. Taken together, this information suggests the potential for virtually unlimited phenotypic 46 

plasticity in actin organisation at the cellular scale.  47 

Considering the possibility of such wide-ranging plasticity, the diversity of functional demands on the 48 

actin cytoskeleton highlight a significant challenge for the evolution and adaptation of this system. 49 

How are changes amongst the repertoire of actin-binding and actin-regulatory proteins 50 

accommodated without widespread disruption of the cytoskeleton and its numerous parallel 51 

functions? A potential clue is provided by the dynamics of a contrasting class of system: gene 52 

regulatory networks. Specifically, it has been observed that diverse patterns of genetic mutations 53 

(Huang et al., 2009) or mechanistically diverse chemical perturbations (Zhou et al., 2016) may be 54 

channelled into strongly convergent patterns of gene expression, suggesting the existence of high-55 

dimensional attractor states (Huang et al., 2005) within the landscape of potential gene regulatory 56 

network configurations. Thus, the virtually infinite theoretical plasticity of gene regulatory network 57 

states (implying evolutionary instability) is likely constrained into a much more limited subset of 58 

practicable configurations. Recent theoretical works now indicate the potential for attractor states to 59 

effectively constrain the plasticity of protein signalling and interaction networks (Huang et al., 2017).  60 

http://geneontology.org/
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Here, we have adopted a chemical biology approach to estimate the number of ways in which cells 61 

can (re)organize their F-actin cytoskeleton given a large spectrum of perturbations (Bryce et al., 2019). 62 

Cells with well-defined, quantifiable actin phenotypes were challenged with 114,400 structurally 63 

diverse compounds, previously demonstrated to affect a broad range of cell biological processes. In 64 

contrast to both the large number of compounds and large number of actin regulators, we observed 65 

a low number of emergent actin phenotypes, each with distinct quantitative features that can be 66 

machine-learned. Subsequent selective mechanistic analyses, coupled with temporal analyses of 67 

progressive perturbation effects, support the idea that the actin cytoskeleton contains phenotypic 68 

attractor states that would be conceptually analogous to those proposed for gene regulatory 69 

networks. Taken together, our findings provide an estimate of the degree of organisational plasticity 70 

available to the F-actin cytoskeleton, indicating this to be relatively constrained. We suggest that this 71 

constraint on plasticity may reflect an emergent process of canalization favouring evolutionarily 72 

competent phenotypes and functions within this pivotal biological system. 73 

Results 74 

Using diverse chemical perturbations to assess the degree of plasticity in F-actin organisation 75 

We challenged a total of 25,619,680 cells using the 114,400 compound WECC structural diversity 76 

library (Baell, 2013; Baell and Holloway, 2010), which was established to efficiently sample the 77 

chemical space of lead-like compounds with minimal structural similarity (< 85-90%). This approach 78 

allowed us to estimate the number of ways in which cells can (re)organize their F-actin cytoskeleton 79 

in response to chemical perturbation. This constituted 21 separate biological experiments including 80 

more than 320 individual experimental repeats (fifteen to twenty 384-well plates per experiment), 81 

each of which included 3 positive and 1 negative control, with these controls replicated 8-fold each 82 

per plate. Including both unknown (114,400) and replicated control treatments (>10,000), a total of 83 

124,767 experimental conditions were assessed. To read out phenotypic responses we employed 84 

quantitative imaging and statistical analyses, with an overview of this approach summarized in Figure 85 
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1A. As a cell model, SK-N-SH neuroblastoma cells were utilized due to their large, flat morphology and 86 

the relative homogeneity of their actin organisation phenotype, which makes drug-induced changes 87 

more clearly discernible.  88 

Quantifying F-actin organisation 89 

To observe actin phenotypes, F-actin (phalloidin) and nuclear (Hoechst) markers were assessed via 90 

automated spinning-disc confocal imaging (Figure 1B, upper panels). Visual inspection confirmed that 91 

compounds from the diversity library induced a variety of distinct actin organisation phenotypes 92 

(Figure 2A).  93 

Image segmentation (Figure 1B) and analysis extracted 75 quantitative features defining cell 94 

morphology, texture as well as properties of actin stress fibres and actin puncta. Measurements from 95 

wells with extreme cell numbers or duplicated values were excluded (<10 & >700 cells; 124,343 96 

conditions retained; ~200 cells average per condition), removing cytotoxic conditions or overgrown 97 

wells. Z-score normalisation of data was performed for each of 74 features (1 excluded due to low 98 

variance; features defined in Table S1) relative to all unknown compounds (Birmingham et al., 2009) 99 

grouped per experimental batch. This greatly improved data superimposition (Figure S1A, B) and 100 

revealed a conserved phenotypic signature across the 74 normalized features (Figure S1C, D) as well 101 

as tight alignment of individual feature value distributions across experimental batches (Figure S1E-102 

H). 103 

Estimating F-actin organization phenotype number  104 

Next, we estimated the number of distinct and recurrent phenotypic ‘clusters’ that exist within the 105 

complete chemical treatment dataset. To ensure the robustness of this estimation, we combined four 106 

complementary methods into a “quadrangulation” strategy (Figure 1C) that progressively narrowed 107 

the estimation range to a final approximation of phenotype number. Starting with the possibility that 108 

the number of phenotypes may range from two or three up to thousands, method 1 of our 109 
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quadrangulation strategy involved visual inspection of tens of thousands of images spanning the 110 

complete dataset, producing a human expert-guided range estimate for the number of phenotypes 111 

that were readily discernible (~15 to ~40). This range estimate was then complimented by method 2; 112 

iterative, sub-sampling-based multivariate statistical estimation of phenotypic cluster numbers using 113 

hierarchical clustering interpreted via two alternative cluster-detection indices (Dunn’s index or SD 114 

index) (Figure S2A). Outcomes based on both indices suggested phenotype cluster numbers ranging 115 

between ~17 and ~35, supporting the range estimate from visual inspection.  116 

The range estimated above was next used to initialise parameterization of dimension reduction and 117 

unsupervised clustering approaches for more precise estimations of phenotype number. As detailed 118 

below, these approaches were combined to underpin methods 3 and 4 of the quadrangulation 119 

strategy introduced above. Dimension reduction was first performed via t-distributed stochastic 120 

neighbour embedding (t-SNE) (Van der Maaten and Hinton, 2008) after principle components analysis 121 

(PCA) was used to reduce the computational complexity of the data. t-SNE enabled projection of high-122 

dimensional quantitative phenotype observations into a 2D space according to their local similarity 123 

(Figure 2B), with unsupervised cluster detection then applied via the OPTICS algorithm to objectively 124 

define distinct and recurrent organisational states of F-actin. This revealed an estimate of just 25 125 

distinct phenotypes (Figure 2B, phenotypes colour-coded). As schematised in Figure 1C, this result 126 

followed extensive exploration of t-SNE tuning parameter (i.e. ‘perplexity’) values whilst monitoring 127 

the trade-off between phenotype number (quadrangulation method 3) (Figure 2C, upper) and positive 128 

control ‘self-clustering’ (quadrangulation method 4) (i.e. representation of homogeneous positive 129 

control drug treatments as forming only one major phenotype each; Figure 2C, lower). To further 130 

validate this surprisingly low level of F-actin phenotype plasticity, we repeated our entire dimension 131 

reduction analysis using the uniform manifold approximation and projection (UMAP) algorithm 132 

(McInnes et al., 2018). This produced a recognisably similar projection of the dataset, with OPTICS 133 

cluster detection suggesting just 16 distinct phenotypes (Figure 2D, phenotypes colour-coded). Again, 134 

this final UMAP projection and phenotype number estimation followed extensive optimisation of the 135 
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UMAP tuning parameter (i.e. ‘nearest neighbour’) guided by the trade-off between phenotype 136 

number (quadrangulation method 3) (Figure 2E, upper) and positive control ‘self-clustering’ 137 

(quadrangulation method 4) (Figure 2E, lower). The lower phenotype number estimate from UMAP 138 

corresponds with recent comparisons of t-SNE and UMAP dimension reduction methods, wherein 139 

UMAP tended to identify fewer discernible clusters than t-SNE (Becht et al., 2018). This in part reflects 140 

the preservation by UMAP of medium- and long-distance spatial relationships and trajectory / lineage 141 

structures that are expected in datasets based on, for example, RNAseq analyses of cell differentiation. 142 

Such datasets comport with the progressive manifold assumption (Moon et al., 2018), whereas such 143 

progressive manifolds (i.e. trajectories) are not implied by our endpoint analysis of chemical 144 

perturbation effects. Hence, we do not here draw interpretations from the distances between 145 

phenotype clusters (in either t-SNE or UMAP projections), instead only assessing phenotype number. 146 

For this reason, and because t-SNE more accurately preserves local similarities in phenotype (Becht et 147 

al., 2018) (by not compromising local versus long-distance similarity relationships - thus more faithfully 148 

identifying co-clustered compounds that may have similar effects), we continued our analyses using 149 

the optimised data projection based on t-SNE dimension reduction.  150 

Pairs of images depicting selected cellular phenotypes (Figure 2F) confirm phenotypic homogeneity 151 

within each cluster. Individual observations that did not fall into a defined phenotype were excluded 152 

from further analysis (1,235 observations excluded; 123,108 observations retained; Figure S2B). To 153 

determine which of the 25 t-SNE-estimated phenotypes are spontaneous within the SK-N-SH cell 154 

population, i.e. naturally occurring, and which are bona fide drug-induced phenotypes, we assessed 155 

the frequency of DMSO negative control observations within each phenotype relative to the expected 156 

random rate (Figure S2C). This indicated 5 spontaneous and 20 chemically induced phenotypes (Figure 157 

S2D). For clarity, the 20 induced phenotypes are shown in Figure S2E.  158 

We next sought to characterize the major differences between defined phenotypic clusters. To this 159 

end, we first performed machine learning-based forward feature selection using all 74 Z-normalized 160 
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features, thereby delineating a subset of 15 features that optimally predict phenotype for each 161 

observation. The >98% accuracy of the resulting model supports the significance of the 15 feature-162 

subset. Comparison of phenotypes based on these key features reveals a recurring signature that 163 

characterizes similarities between most phenotypes while also highlighting specific features that 164 

differentiate each (Figure 2G).  165 

Visible similarities between cell images within phenotype clusters confirm the efficacy of our 166 

clustering strategy. Given that similar image data are clustered by our analysis approach, two key 167 

questions remain: 1) do distinct molecular mechanisms reproducibly generate distinctive F-actin 168 

phenotypes? And 2) do individual phenotypes reflect singular molecular mechanisms?  169 

Known perturbation mechanisms induce reproducible and distinguishable phenotypes 170 

To address question 1, we assessed in detail the clustering of three positive control compounds 171 

(jasplakinolide, latrunculin A, TR100) with mechanisms of action towards F-actin that are known and 172 

also distinct. Jasplakinolide binds to and stabilizes actin filaments (Bubb et al., 1994), thereby 173 

increasing F-actin within the cell relative to the DMSO control (Figure S3A, B). Latrunculin A binds actin 174 

monomers, thus inhibiting filament assembly (Spector et al., 1983) and reducing F-actin within the cell 175 

(Figure S3C). TR100 binds to tropomyosin isoform Tpm3.1 dimers and is incorporated into actin 176 

filaments, thereby accelerating filament depolymerization and reducing organization into stress fibres 177 

(Bonello et al., 2016; Janco et al., 2019; Stehn et al., 2013) (Figure S3D). The different mechanisms of 178 

these positive control compounds are known to induce F-actin organisation phenotypes that are 179 

reproducible, homogeneous and distinct. As such, we expected these conditions to not only self-180 

cluster, but also to cluster separately from each other.   181 

As predicted, each of the embedded positive control drugs overwhelmingly clusters within a single 182 

distinct phenotype (Figure 3A, shown individually in Figure S3F-I). Specifically, Jasplakinolide, 183 

Latrunculin and TR100 induce phenotypes in 91%, 96% and 66% of cases (Figure S3E), and of these 184 
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induced phenotypes, Jasplakinolide, Latrunculin A and TR100 recurrently fall into specific F-actin 185 

phenotypes 3, 4 and 5 in 89%, 95% and 87% of cases, respectively (Figure 3B). This highlights the 186 

experimental and analytical reproducibility achieved throughout this study, wherein more than 320 187 

individual experimental replicates (i.e. 384-well plates) were processed across 21 independent 188 

biological experiments. In contrast to the positive controls, DMSO is broadly distributed, as expected 189 

(Figure 3A; Figure S3F). Taken together, these results validate the robustness and sensitivity of the 190 

experimental and analytical methods applied herein, since each positive control compound 191 

overwhelmingly clustered within a single phenotype (as optimised via the ‘quadrangulation’ strategy, 192 

Figure 1C), and these phenotypes are clearly distinguishable. Moreover, comparison of key feature 193 

values between these control compounds and phenotype cluster 1 (Figure S3J, the main spontaneous 194 

phenotype; large grey cluster in Figure 2B) confirms the expected effects of these control compounds. 195 

For instance, latrunculin A reduces actin filament length and intensity whilst increasing actin spot 196 

intensity and size (Figure S3J), as observable in Figure S3C. In contrast, TR100 substantially reduces 197 

cell area, whilst maintaining long peripheral actin fibres (Figure S3D, J).  198 

Defining the properties of key phenotypic clusters 199 

In total, 1.77% (2003) of unknown compounds were associated with induced phenotypes (Figure S3E), 200 

and these were distributed across all 20 induced phenotype clusters (Figure 3C), implying diverse 201 

effects and a wide variety of molecular mechanisms. We next focused on understanding the biological 202 

differences between key phenotypic clusters. Specifically, we compare phenotype cluster 4 203 

(Latrunculin-like phenotype), 5 (TR100-like phenotype) and 9 (the largest unknown induced cluster) 204 

wherein we identified significant numbers of co-clustered unknown compounds (cluster 4, 87 205 

compounds; cluster 5, 55 compounds; cluster 9, 1166 compounds) (Figure 3C, D). Cell image examples 206 

for unknown compounds from each of these phenotype clusters are depicted in Figure 2F. 207 

Differences between biological states (here induced by chemical perturbations) can be defined not 208 

only by observable changes in phenotypic features, but also by more complex (and less readily 209 
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discernible) changes in the statistical linkages between these features, which may reflect changes in 210 

biological dependencies. To explore such changes in inter-feature linkages, we assessed asymmetries 211 

in the mutual information shared between each possible pairing of the 15 machine learning-selected 212 

features, using an estimation of the uncertainty coefficient (Figure 3E). This revealed large differences 213 

in the number of inter-feature linkages (above a constant minimal threshold) detected in clusters 1 214 

and 9 (low connectivity) and clusters 4 and 5 (high connectivity). Comparisons of connectivity changes 215 

induced from cluster 1 to clusters 4, 5 and 9 showed that, despite having distinct patterns of 216 

phenotypic effect, clusters 4 and 5 reflected extensive and similar alterations in inter-feature 217 

connectivity. In contrast, despite a pronounced phenotype, cluster 9 reveals limited effects on inter-218 

feature connectivity.  219 

Do individual phenotypes reflect singular molecular mechanisms? 220 

An important implication of the small number of recurrent phenotypes detected in this study – relative 221 

to 114,400 diverse chemical perturbations – is that multiple underlying molecular mechanisms may 222 

result in the same phenotypic end-state. To this end, we performed secondary mechanistic analyses 223 

of selected unknown compounds drawn from clusters 4, 5 and 9. 224 

We first selected the unknown compounds producing latrunculin A-like phenotypes shown in Figure 225 

2F (cluster 04), and assessed their mechanistic activities based on two key assays. First, we monitored 226 

reductions in cellular F-actin levels using a G:F actin ratio assay (Figure 4A). Mimicking the effects of 227 

latrunculin A, unknown compounds L2 and L3 reduced F-actin levels. In contrast, and despite 228 

producing a quantitatively equivalent phenotypic end-state, unknown compound L1 had no effect on 229 

the G:F actin ratio. To further assess whether L2 and L3 precisely mimic the mechanisms by which 230 

Latrunculin impacts the G:F actin ratio, i.e. by inhibiting F-actin assembly, we performed an in vitro 231 

pyrene actin filament assembly assay to measure F-actin assembly rates (Figure 4B). Neither L2 nor L3 232 

directly inhibited F-actin assembly, indicating differences in their precise mechanism of action relative 233 
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to Latrunculin, again despite their phenotypic similarity. Thus, at least three different mechanisms 234 

(latrunculin A, L1, L2/L3) can induce the singular phenotypic end-state defined by cluster 4.  235 

We next selected two compounds from the TR100-like phenotypic cluster and used 236 

immunofluorescence imaging to determine if Tpm3.1 was removed from F-actin stress fibres. Relative 237 

to DMSO-treated control cells (Figure 4C), Tpm3.1 was removed from stress fibres by the compound 238 

designated Tr1 (Figure 4D), thus mimicking the effects of TR100. In contrast, the compound designated 239 

Tr2 induced a similar actin phenotype without displacing Tpm3.1 from actin filaments (Figure 4E). 240 

Thus, once again, equivalent actin phenotypes emerge as a result of distinct underlying mechanisms. 241 

Phenotype cluster 9 is the most populous of the induced phenotypes and does not correspond with 242 

any of the embedded control drugs (Figure 2B and 3B). Visual inspection (Figure 2F) shows that cluster 243 

9 cells are small and round, with thick stress fibres and intense actin puncta. They tend to be isolated 244 

rather than in close contact, resulting in low cell density. Interestingly, this phenotype corresponds 245 

closely with that induced by overexpression of the focal adhesion protein talin (Figure S4A-C). Talin is 246 

critical for integrin activation and mechanically links integrin cytoplasmic tails with F-actin (Klapholz 247 

and Brown, 2017; Yao et al., 2016), thereby influencing actin organisation.   248 

We hypothesized that compounds found in phenotype cluster 9 may influence talin. Four such 249 

compounds (structures in Figure 4F-I; phenotypes Figure S4D-G) were randomly selected for 250 

saturation transfer difference (STD) NMR to test for direct talin-binding (Figure 4F-I). Of these, two 251 

compounds (designated T1 and T2) bind talin directly and selectively, since they did not also bind 252 

another core adhesion component, vinculin (example in Figure S4H). Notably, this expands upon the 253 

single talin-binding compound previously identified (Yang et al., 2017). In contrast, compounds 254 

designated T3 and T4 did not bind talin despite inducing an indistinguishable phenotype, suggesting 255 

possible targeting of a related focal adhesion component. More broadly, these results again confirm 256 

the capacity for distinct molecular mechanisms to drive the emergence of singular phenotypic end-257 

states.  258 
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Temporal analyses reveal different phenotypic trajectories to the same end-state  259 

We next sought to test whether different compounds that yield the same phenotypic state after 24 260 

hours exposure undergo the same phenotypic changes with time or arrive at the 24-hour state via 261 

different trajectories. As the phenotypic equivalence of mechanistically distinct perturbations was 262 

observed in several instances, and because the limited phenotypic plasticity we observe constitutes a 263 

global property of the actin system, we focused on ‘systems-level’ mechanisms that may explain both 264 

observations in a coherent manner. Given this perspective, we considered whether the recurrent actin 265 

phenotypes we observe might represent particular stable equilibria, or ‘attractor states’, which reflect 266 

limited phenotypic options available to the actin cytoskeletal system. This hypothesis was based on 267 

two factors. First, such attractor states tend to arise in complex systems composed of extensive, highly 268 

inter-dependent networks – characteristics found not only in the context of gene regulation (Huang 269 

et al., 2005) but also in the actin regulatory network (Agarwal and Zaidel-Bar, 2018; Senju and 270 

Lappalainen, 2018; Steinbacher and Ebnet, 2018). Second, attractor states tend to constitute relatively 271 

infrequent points of stable equilibrium within state-space landscapes comprising much larger 272 

repertoires of unstable states. Thus, the low phenotypic diversity we have observed after 24 hours of 273 

compound exposure mirrors the theoretical view that stable attractors are low-frequency 274 

phenomena.  275 

Given this reasoning, we investigated whether observed actin phenotypes may actually demarcate 276 

stable systems-level attractor states. Specifically, we sought evidence of a third phenomenon 277 

predicted by attractor state theory, namely, that distinct transitional states may dynamically converge 278 

towards coincident end-states – as has been observed in the behaviour of gene regulatory networks 279 

over time (Huang et al., 2005). To test this possibility, we chose two compounds (T1 and T2) that 280 

generate equivalent talin-like phenotypes at 24 hours but are also structurally divergent (Figure 4F-281 

G). We mapped actin phenotypes induced by each of these compounds at 12 timepoints post-282 

treatment (1, 5, 15, 30, 45 minutes and 1, 2, 3, 4, 6, 20, 24 hours), enabling comparison of their 283 

phenotypic trajectories (Figure 4J).  284 
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Despite both binding to talin, these compounds induced phenotypes that diverged strongly after just 285 

a few minutes of treatment, remaining clearly distinct for several hours (Figure 4J; 4-hour cell images 286 

in Figure S5A, left), before converging after ~20 hours of treatment (Figure 4J; 24-hour cell images in 287 

Figure S5A, right) (outliers excluded as detailed in Figure S5B-D). These observations support the 288 

attractor state hypothesis as an emergent mechanism shaping and constraining phenotypic plasticity 289 

within the actin cytoskeletal system.  290 

Discussion 291 

In this study, we estimated the degree of cellular-scale phenotypic plasticity available to the F-actin 292 

cytoskeletal system by using a large, structurally diverse library of chemical perturbations to induce a 293 

high degree of variability in adaptive responses. This unbiased approach revealed a comparatively low 294 

number of (approximately 25) distinct F-actin phenotypes, strongly indicating that F-actin 295 

organizational plasticity is constrained to far less than the hundreds or thousands of phenotypes that 296 

might have been expected given the large number and diversity of chemical challenges applied 297 

(~115k), and the known complexity of the actin regulatory system.  298 

Our findings thus support the notion that actin phenotypes reflect a limited set of stable equilibria, or 299 

attractor states, in the organisation of the actin system. This is reminiscent of dynamic perturbation 300 

responses mapped in high-dimensional analyses of gene regulatory networks (Huang et al., 2009); 301 

(Zhou et al., 2016). Crucially, channelling of divergent gene expression profile trajectories towards 302 

equivalent end-states is increasingly attributed to the attractor state hypothesis (Huang et al., 2005), 303 

with support from Boolean (gene) regulatory network modelling and the broader ‘canalization’ 304 

concept embodied, for example, in Waddington’s theory of cellular differentiation (Huang, 2012; 305 

Waddington, 1942). Notably, these theories draw upon the emergence of a systems-scale ‘logic’ from 306 

the highly interconnected and interdependent characteristics of gene regulatory networks.  307 

Given the connectivity and interdependence of the actin regulatory network, we suggest that parallels 308 

may exist between the emergence of, and constraints on, plasticity in this molecular system. 309 
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Specifically, mutation-driven changes in actin regulation might be projected to have strongly 310 

deleterious consequences, due to the highly interconnected nature of this biological system and its 311 

pivotal involvement in so many essential functions. However, our results suggest that by channelling 312 

diverse perturbations into a narrow array of recurring attractor states, the actin system achieves an 313 

intrinsic buffering capacity that prioritises useful organisation of actin filaments, thereby reducing the 314 

impact of deleterious perturbations. Such a buffering capacity may facilitate evolutionary change and 315 

diversity at the molecular level while maintaining the integrity of a structural system involved in 316 

essentially all cell functions. 317 

 318 

Acknowledgements: 319 

We thank Dr Galina Schevzov (UNSW) and Dr Jeffrey Stear (UNSW) for helpful discussions, Mike 320 

Williams (UNSW) for assistance with data management, and Gary Thompson (Kent) for technical 321 

assistance with the NMR data collection. This work was supported by the Australian National Health 322 

and Medical Research Council (NHMRC) and from the Kids Cancer Project. B.T.G. and K.B.B are funded 323 

by BBSRC grant (BB/N007336/1) and Human Frontiers Science Program grant (RGP00001/2016). 324 

Author Contributions 325 

Conceptualisation: NSB, JRS, ECH, PWG and JGL. Chemical perturbations: TWF, GMA and NSB. Image 326 

analysis and data curation: NSB. Statistical analysis: JGL. Target validation: NSB, JGL, KB, ID, CL, BTG 327 

and SZ. Software: JGL, YA and LB. Supervision and Funding: NSB, KG, ECH and PWG. Writing – original 328 

draft: JGL and NSB. Writing – review and editing: All authors. 329 

Declaration of Interests 330 

PWG and ECH are Directors of TroBio Therapeutics, a company that is commercialising anti-331 

tropomyosin drugs for the treatment of cancer and their labs receive funding from TroBio 332 

Therapeutics to evaluate anti-tropomyosin drug candidates. 333 



15 
 

Figure Legends 334 

Figure 1. Overview of experimental and analytical strategy. A) Flow chart detailing major steps in the 335 

phenotypic analysis workflow from cell biology to imaging to statistical analyses. B) Raw images of 336 

Atto488-phalloidin and Hoechst 33342 staining (upper panels). Image analysis algorithms segment 337 

nuclei to seed single cell boundary detection (middle panels). Stress fibres and actin rich puncta are 338 

then segmented and measured per cell (bottom panels). Scale bar 50 µm. C) "Quadrangulation" 339 

Strategy for Phenotype Number Estimation. To objectively estimate the number of distinct 340 

phenotypes induced across the 114,400 compounds applied, we combined inferences from 4 distinct 341 

methods (see grey boxes). Method 1 involved visual inspection of raw image data, providing a range 342 

estimate for the number of visually discernible phenotypes. In method 2, hierarchical clustering was 343 

applied using two alternate criteria (the SD index and Dunn's index) to provide additional range 344 

estimates for phenotype number (Figure S2A). Both method 1 and 2 suggested that phenotype 345 

number lay in the range between ~15 and ~40. This range guided subsequent phenotype number 346 

estimation based on two alternate dimension reduction techniques (t-SNE [exploring the tuneable 347 

'perplexity' parameter-space] or UMAP [exploring the tuneable 'nearest neighbours' parameter-348 

space]) combined with cluster (i.e. phenotype) detection (OPTICS algorithm). Using this progressive 349 

exploration of the t-SNE and UMAP tuneable parameter-spaces, method 3 seeks the maximum 350 

phenotype number and/or the point where this estimate plateaus (Figure 2C (t-SNE), 2E (UMAP); 351 

upper). Method 3 tends to push phenotype number estimates higher (see dashed lines with hollow 352 

arrow heads). Conversely, method 4 sets an upper bound on the phenotype number estimate by 353 

monitoring "self-clustering" of positive controls (Jasplakinolide, Latrunculin A, TR100). These drugs are 354 

known to induce relatively homogeneous phenotypes, providing a ground-truth expectation that 355 

these treatments should predominantly “self-cluster” into a single phenotype. "Fragmentation" of any 356 

of these controls into multiple phenotypes (resulting in reduced self-clustering) therefore implies 357 

over-clustering/over-fitting, i.e. an excessive estimate of phenotype number (Figure 2C (t-SNE), 2E 358 

(UMAP); lower). Thus, method 4 tends to constrain phenotype number estimates (see dashed lines 359 
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with solid arrow heads). When combined, the trade-off between method 3 and 4 defines a final 360 

optimised phenotype number estimate (using either t-SNE or UMAP dimension reduction). 361 

Significantly, both UMAP (~16 phenotypes) and t-SNE (~25 phenotypes) suggest the emergence of a 362 

surprisingly low number of distinct phenotypes. 363 

  364 

Figure 2. Assessing the diversity of F-actin organisation phenotypes using unbiased chemical 365 

perturbations. A) Example images of the diverse F-actin organisation phenotypes induced by chemical 366 

perturbations. Scale bar 50 µm. B) Scatter plot of observations (123,108 observations, n = 22 367 

independent experiments) distributed according to t-SNE dimension reduction (t-SNE tuneable 368 

parameter ‘perplexity’ = 60) with 25 distinct phenotype clusters (colour-coded) defined by 369 

unsupervised clustering via the OPTICS algorithm. C) To select the optimal t-SNE projection, 17 370 

perplexity values were tested with 11 random seeding-replicates per value (187 total t-SNE 371 

projections) as part of the ‘quadrangulation strategy’ (described in Figure 1C) for t-SNE projection 372 

optimisation.  Monitoring of changes in detected phenotype number (Y-axis, upper panel) and positive 373 

control ‘self-clustering’ (Y-axis, lower panel; Jasplakinolide, aqua; Latrunculin, yellow; TR100, pink) 374 

identified the optimal perplexity value (60, as used in B; dashed vertical line; X-axes). Smoothed means 375 

(thin solid lines), 95% confidence intervals of smoothed means (pale envelopes) and median values 376 

(dashed lines) are shown. D) Scatter plot of observations distributed according to UMAP dimension 377 

reduction (UMAP tuneable parameter ‘nearest neighbour’ = 21) with 16 distinct phenotype clusters 378 

(colour-coded) defined by unsupervised clustering via the OPTICS algorithm. E) To select the optimal 379 

UMAP projection, 14 nearest neighbour values were tested with 11 random seeding-replicates per 380 

value (154 total UMAP projections) as part of the ‘quadrangulation strategy’ (described in Figure 1C) 381 

for UMAP projection optimisation. Monitoring of changes in predicted phenotype number (upper 382 

panel, Y-axis) and positive control ‘self-clustering’ (lower panel, Y-axis; Jasplakinolide, green; 383 

Latrunculin, red; TR100, orange) allowed identification of the optimal nearest neighbour value (21, as 384 
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used in D; dashed vertical line; X-axes). Smoothed means (thin solid lines), 95% confidence intervals 385 

of smoothed means (pale envelopes) and median values (dashed lines) are shown. F) Example screen 386 

images of phenotypes induced by two unknown compounds from each selected cluster. Scale bar 50 387 

µm. G) Parallel coordinates plot depicting similarities and differences between all 25 phenotype 388 

clusters (colour-coded as in D) across 15 key feature values. Key features determined by forward 389 

feature selection based on random forest machine learning. 390 

 391 

Figure 3. Distinct clustering of compounds confirms robustness and sensitivity of the phenotypic 392 

analyses and allows comparative analyses of feature values and inter-feature relationships to highlight 393 

specific differences between major phenotypes. A) 2D t-SNE plot showing 123,108 observations (n = 394 

22 independent experiments) highlighting the distribution of the 4 control compounds: DMSO (pink); 395 

Jasplakinolide (yellow); Latrunculin A (red); TR100 (green). B) Sunburst plot showing how control or 396 

unknown compounds map to drug-induced cluster phenotypes. C) Sunburst plot showing the number 397 

of unknown compounds in induced phenotype clusters. D) Enlarged views of clusters 4, 5 and 9 with 398 

co-clustered unknown compounds denoted as black dots and the number of unknown compounds 399 

listed. E) Upper row; for each of 4 major phenotypic clusters (1, 4, 5, 9), networks depict the wiring of 400 

information theoretic dependencies between pairs of key features based on calculation of uncertainty 401 

coefficients. Arrows indicate the direction of an inferred dependency, based on the mutual 402 

information between each feature pairing, corrected for asymmetries in the entropy of each feature. 403 

The relative strength of dependencies is coded by line thickness and colour (yellow, weak; red, strong). 404 

Lower row; networks depict plasticity in uncertainty coefficient dependencies between each feature 405 

pair based on comparison of phenotypic clusters 4, 5 or 9 to cluster 1 (the main non-responsive 406 

phenotype). This highlights relationships that are ‘gained’ (present in phenotype 4, 5 or 9 but not in 407 

1; purple), versus relationships that are ‘lost’ (present in phenotype 1 but not in 4, 5 or 9; cyan).  408 

 409 
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Figure 4. Compounds producing co-clustered phenotypes can have distinct mechanisms of action. A) 410 

Western blot of a representative G:F actin assay (3 indepedent experiments) probed with total actin 411 

antibody. Changes in actin composition between G-actin (G) and F-actin (F) for 3 compounds identified 412 

from the Latrunculin-like cluster 4 as well as the positive control Latrunculin A and vehicle control 413 

DMSO are shown. B) Representative line graph (3 independent experiments) of pyrene actin filament 414 

assembly in response to Latrunculin-like compounds L2 and L3, compared with the positive control 415 

Latrunculin and vehicle control DMSO. C-E) Representative widefield fluorescent images of SK-N-SH 416 

cells immunostained with the γ9d antibody that detects Tpm3.1.  Cells were treated with DMSO (C), 417 

or two compounds from cluster 5 that had differential effects on Tpm3.1 incorporation into stress 418 

fibres (D,E), scale bars C-E 20 µm. (F-I). Talin binding assay. Representative NMR spectra of compounds 419 

T1-T4 (blue lines) and STD-NMR spectra (red lines) of compounds T1-T4 in the presence of full length 420 

talin. Chemical structures of compounds T1 (PubChem CID 42913180), T2 (PubChem CID 850363), T3 421 

(PubChem CID 3351420) and T4 (PubChem CID 1211816) are shown inset. J) Comparison of time-422 

resolved phenotypic trajectories in t-SNE-space for cells treated with T1 (10 µM, duplicate wells; small 423 

yellow to large red dots indicative of treatment time from 1 minute to 24 hours) vs T2 (10 µM, 424 

duplicate wells; small cyan to large dark blue dots indicative of treatment time from 1 minute to 24 425 

hours). Bezier-fitted lines (T1 – dark red; T2 – purple; arrows indicate the direction of time) highlight 426 

the equivalence of initial phenotypes (adjacent to negative controls – grey dots). Trajectories rapidly 427 

diverge in phenotypic space during the initial hours of treatment before converging again at 20 and 428 

24 hours. K) Convergent phenotypic responses; a schematic summary of evidence for an evolutionary 429 

buffering capacity in actin phenotype control in the face of diverse chemical challenges. By challenging 430 

the actin cytoskeleton to respond to an overwhelming diversity of chemical perturbations (‘High 431 

Perturbation Diversity; drug ‘perturbation diversity’ hierarchy illustrative only), we have revealed how 432 

such diverse challenges are channelled into a limited number of organisational phenotypes (‘Low 433 

Phenotypic Diversity’; calculated ‘phenotypic diversity’ hierarchy shown, see also Figure S6). This 434 

implies that numerous molecular mechanisms of action may translate into singular phenotypic 435 
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outcomes, a suggestion confirmed by comparisons of the mechanisms-of-action within several pairs 436 

of chemical compounds drawn equivalent phenotypic clusters (‘Distinct mechanisms with same 437 

phenotype’). This convergence of mechanistic diversity into phenotypic similarity suggests that 438 

recurrent actin phenotypes may constitute attractor states within the broader actin phenotypic 439 

landscape. This attractor state hypothesis is supported by the final convergence of initially divergent 440 

phenotypic trajectories, as detailed in Figure 4J.   441 
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STAR Methods 552 

Contact for reagent and resource sharing 553 

Further information and requests for resources and reagents should be directed to and will be 554 

fulfilled by the Lead Contact, Dr John Lock (john.lock@unsw.edu.au) or else by Prof. Peter Gunning 555 

(p.gunning@unsw.edu.au). This study did not generate any unique reagents. There are restrictions 556 

to the availability of compound identifiers for commercial reasons. 557 

Experimental model  558 

Human, female, SK-N-SH neuroblastoma cells (Biedler et al., 1973) were cultured in Dulbecco’s 559 

Modified Eagle Medium (DMEM) plus 10% fetal bovine serum (Invitrogen) in a humidified 560 

environment at 37 °C with 5 % CO2. Cells were confirmed to be Mycoplasma free with tests performed 561 

using the PCR Mycoplasma Test kit (AppliChem GmbH) as per manufacturer’s instructions. Cells were 562 

transfected with pmNeonGreen-talin (a gift from Nathan Shaner and Jiwu Wang) (Shaner et al., 2013) 563 

using Lipofectamine LTX (Invitrogen).  564 

Method details 565 

Unbiased chemical perturbations 566 

Unbiased chemical perturbations were conducted using the 114,400 compound WECC diversity library 567 

(Baell, 2013; Baell and Holloway, 2010). SK-N-SH cells were seeded at a density of 1800 cells/well into 568 

384-well ViewPlates (Perkin Elmer) using a Multidrop 384 (Thermo) liquid dispenser and incubated at 569 

37°C for 18 h. Library compounds and negative (vehicle only; DMSO) and phenotype-specific positive 570 

controls (8 µM TR100, 40 nM Jasplakinolide, 250 nM Latrunculin A) were dispensed to assay plates 571 

(100 nL; each control replicated 8 times per plate) using a Janus liquid handling robot (Perkin Elmer) 572 

equipped with a 384-well pintool in a cell::explorer automated workstation (Perkin Elmer). A total of 573 

124,767 experimental conditions were assayed over n = 22 independent experiments. Each library 574 

compound was applied as a chemical perturbation at a single fixed concentration of 10 µM. Following 575 

24 h drug exposure cells were fixed by addition of 16% paraformaldehyde (PFA) (ProSciTech) for 30 576 

mailto:john.lock@unsw.edu.au
mailto:p.gunning@unsw.edu.au


23 
 

min at room temperature using a Multidrop Combi liquid dispenser (Thermo Scientific). Cells were 577 

washed twice with PBS using a Biotek Elx405 plate washer  578 

Cell Labelling, Imaging and Image Analysis 579 

Cells were permeabilised and stained concurrently with a solution of phalloidin 488-atto (1:1000, Atto-580 

Tec GmbH), Hoechst 33342 (1:10000, ThermoFisher) and Triton X-100 (0.1%, Sigma) in PBS in the dark 581 

for 1 h. Stain solution was dispensed using a Janus liquid handling robot. Cells were then washed twice 582 

with PBS prior to imaging. Images were acquired on an Opera LX high-content imaging system 583 

equipped with spinning disk confocal optics, using a 20X air objective (numerical aperture 0.45). A 584 

total of 8 fields of view were acquired for each well using two excitation sources, a 200mW 488nm 585 

solid state laser (320ms exposure) and a Xenon UV lamp (40ms exposure). Each image was captured 586 

with a 12-bit high QE CCD camera and no pixel binning was applied to the images. Image data was 587 

then uploaded to both the Columbus data storage and analysis server (Perkin Elmer) or departmental 588 

servers for analysis via the Columbus or Workspace programs respectively (details provided in 589 

methods sections quantification and statistical analysis: image analysis).  590 

G-actin:F-Actin assay 591 

Each of 3 independent experiments was performed as follows: 1.5 x 106 cells were plated on 10 cm 592 

dishes and incubated overnight. After treatment with DMSO or 25 µM of compound for 24 h, the cells 593 

were harvested and processed using the G-actin/F-actin In Vivo Assay Biochem Kit (Cytoskeleton) as 594 

per the manufacturer’s protocol. The positive control of 5 µM Latrunculin A was incubated with cells 595 

for 1 h before sample processing. The G-actin and F-actin fractions were run on 10% SDS-PAGE gels 596 

and transferred for Western blotting onto a PVDF membrane using the Trans-Blot Turbo (Bio-Rad) 597 

transfer system. Actin was detected using the C4 total actin antibody and the blot developed with 598 

Luminata Crescendo Western HRP substrate (Merck) and imaged on a ChemiDoc MP imaging system 599 

(Bio-Rad).  600 
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Tpm3.1 localisation 601 

Each of 3 independent experiments was performed as follows: 2 x 105 cells were plated onto a 602 

coverslip in a 6 well plate and incubated at 37°C for 18 h.  The cells were then treated with 10 µM of 603 

compound for 24 h. The cells were fixed with 4% paraformaldehyde and permeabilized with ice cold 604 

methanol, then blocked with 2% FBS for 1 h.  Tpm3.1 was detected using the γ9d antibody (Schevzov 605 

et al., 2011) and a Alexa488-labelled secondary antibody.  Widefield fluorescent images were taken 606 

on a Zeiss Axioskop40 using a Plan Apochromat 63X 1.4 Oil DIC lens with a Axiocam 506 mono 607 

camera and ZEN 2.5 (blue edition) software (Zeiss).  608 

Expression and purification of full length talin1 609 

E. coli BL21(DE3) were transformed with a pet21a plasmid containing full-length mouse Talin1 (FL-610 

mTalin1) with a non-cleavable C-terminal His-tag. A single colony was used to inoculate a 5 ml 611 

overnight LB+ampicillin (100 µg/ml) culture that was then added to 500 ml LB+ampicillin and grown 612 

at 37⁰C to a density (OD600) of 0.4. Protein expression was induced by addition of 200 µM IPTG, at 37⁰C 613 

for 3 h. Harvested cells were resuspended in 50 mM Tris pH 7.5, 500 mM NaCl, 10 mM imidazole, 5mM 614 

phenylmethylsulfonyl fluoride (PMSF) and lysed by sonication. Clarified cell lysate was bound to 1 ml 615 

Ni-NTA resin using a batch method. FL-mTalin1 was eluted from the Ni-NTA resin in 2 ml of 50 mM 616 

Tris pH 7.5, 500 mM NaCl, 150 mM imidazole, 5 mM PMSF. The purified talin was dialysed into 10 mM 617 

Phosphate pH 7.4, 75 mM NaCl, 2 mM DTT.  618 

Saturation Transfer Difference Nuclear Magnetic Resonance (STD-NMR) 619 

All NMR experiments were carried out at 25⁰C, in 10 mM sodium phosphate pH 7.4, 75 mM NaCl, 2 620 

mM DTT, 5% (v/v) D2O using a Bruker AVANCE III 600 MHz spectrometer equipped with CryoProbe. 621 

600 µl FL-mTalin1 was prepared at a concentration of 1.5 µM, in 5 mm NMR sample tubes. TA Drug 622 

compounds (50 mM Stocks in DMSO) were added to FL-mTalin1 at a final concentration of 1.5 mM, 3 623 

% DMSO was added to FL-mTalin1 for the control sample. A 1D reference spectrum was collected of 624 

all compounds at a concentration of 1.5 mM. All spectra were processed using Topspin.  625 
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STD-NMR spectra were acquired with 32k data points and 700 scans. The protein was irradiated at -1 626 

ppm (on-resonance) and -30 ppm (off-resonance) with a train of Gaussian shaped pulses (50 ms). The 627 

saturation time used in the STD experiments was 2 s. STD-NMR experiments were optimized on ligand-628 

only samples to ensure that the irradiation at the selected frequency for on-resonance scan did not 629 

affect the ligand. The protein resonances were suppressed with a 30 ms spin-lock pulse. The final 630 

saturation difference spectra were obtained by subtraction of the on-resonance spectra from the off-631 

resonance spectra. 632 

Pyrene assay 633 

Each of 3 independent experiments was performed as follows: Pyrene actin was purchased from 634 

Hypermol (Bielefeld, Germany) and diluted to a 1 mg/mL (24 μM) stock solution. Before use, 635 

spontaneously formed actin aggregates were removed by ultracentrifugation for 1 h at 40,000 rpm 636 

and 4 ℃. 50 μl samples for the pyrene assay consisted of: 30 μl H2O, 10 μl MgCl2 (10 mM), 5 μl F-actin 637 

Buffer (100 mM Imidazole-Cl pH 7.4, 10 mM ATP, Hypermol, Germany), as well as 5 μl DMSO 638 

(containing the indicated concentrations of the respective compound). 10 μl pyrene actin (24 µM) 639 

were rapidly added to start polymerization. Pyrene fluorescence was monitored every 20 s over 1 h in 640 

a 96-well fluorescence plate reader (Tecan) with 360 nm excitation and emission at 400 nm in 641 

duplicate. 642 

Compounds 643 

Individual compounds for secondary analyses were sourced through Molport (Latvia). Stock solutions 644 

of 50 mM in DMSO were aliquoted for single use and stored at -20°C. TR100 (GVKBio, India), 645 

Jasplakinolide (Cayman Chemical) and Latrunculin A (Adipogen Life Sciences). 646 

Quantification and statistical analysis 647 

Image analysis  648 

Cell morphometry and textural properties were measured using a custom workflow in Columbus 649 

(Perkin Elmer). Image analysis was developed and carried out within CSIRO’s Workspace software 650 
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platform (Cleary et al., 2015). Workspace is a cross-platform framework for constructing workflows in 651 

a graphic drag-drop editor for a range of applications, including image analysis. Workspace’s flexible 652 

architecture allows users to connect their own specialized plug-ins to the framework. Our custom 653 

cellular analysis workflow combined operations such as nucleus detection, cell detection and filament 654 

detection from Image Analysis plug-in developed by CSIRO’s Quantitative Imaging. In addition to the 655 

filament detection previously described (Vindin et al., 2014) the updated algorithm finds and 656 

quantifies punctate (“dot-like”) structures within each cell, using a dot detector. The punctate 657 

structures are detected relative to the background intensity. The dots, or regions of peak intensity, 658 

are detected for a range of dot diameters. The peaks are thresholded on basis of relative (i.e. above 659 

background) and absolute intensity. Parameters were initially optimized, then kept constant across all 660 

chemical perturbations, in order to achieve measurements that correlated closely with actin 661 

organisation. This was confirmed by eye using an overlay of software output with the original image.  662 

Data and Code Availability Statement 663 

The dataset and code generated during this study are available at Data Dryad, 664 

https://doi.org/10.5061/dryad.1cg2dq2  665 

Software and general data visualization 666 

Data derived from image quantification were statistically analysed and visualized using Knime 667 

(Berthold et al., 2008) with R (Team, 2014) integration. Data were primarily visualized using the R 668 

packages “ggplot2” (Wickham, 2009) and “plotly” (Inc., 2015). Sunburst plots were generated using 669 

the D3.js implementation in Knime. Workflow schematics were generated using Lucidchart (Lucid 670 

Software Inc.). 671 

Data import and initial filtering  672 

Quantitative data derived from 328 individual 384-well plates were first filtered to remove missing 673 

values (124,767 observations retained). Data were further filtered to remove conditions with less than 674 

https://doi.org/10.5061/dryad.1cg2dq2
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10 or more than 700 cell measurements as well as duplicated values, leaving 124,343 conditions 675 

characterized by 75 measured features.  676 

Normalization  677 

Z-score normalization of data was performed per measured feature (1 feature removed due to low 678 

variance) using robust statistics (median and median absolute deviation; MAD) (Malo et al., 2006) 679 

describing the entire population of unknown drugs grouped per experimental date (25 dates). The 680 

unknown drug Treatment population was a more effective reference for normalization than the DMSO 681 

negative control because the Treatment population was orders of magnitude larger and because the 682 

majority of these drugs induced no phenotype (~90%) (Birmingham et al., 2009). Normalization using 683 

the Treatment population therefore achieved the best superimposition of data, enabling detection of 684 

distinct phenotypes as opposed to inter-experimental variation.  685 

Cluster Number Estimation  686 

The number of data clusters (potential phenotypes) was estimated using the R package “NbClust” 687 

(Charrad et al., 2014) based on Manhattan distances as a proximity measure and using Ward’s 688 

agglomerative hierarchical clustering method (Ward, 1963) to minimize total within-cluster-distances, 689 

including a correction criterion where dissimilarities (distances) are squared before iteration updating 690 

(Murtagh and Legendre, 2014). Two alternative indices were used to finally estimate the number of 691 

clusters: Dunn’s validity index, based on optimizing the distance between clusters versus the diameter 692 

of clusters (Dunn, 1974) and; the SD validity index, based on optimizing the total separation of clusters 693 

versus the average scattering of clusters (Halkidi et al., 2000). This procedure was performed using a 694 

random sampling of approximately 10% of the dataset (12,000 observations) including all 74 Z-695 

normalized quantitative features, and was repeated 20 times. The mean estimates (~24 clusters, 696 

Dunn’s index; ~28 clusters, SD index) were used to guide parameterization of subsequent dimension 697 

reduction and unsupervised clustering steps. 698 
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t-SNE Dimension Reduction 699 

To limit data set complexity whilst retaining maximal information, principal components analysis (PCA) 700 

was performed prior to t-distributed stochastic neighbour embedding (t-SNE)-based dimension 701 

reduction. PCA was performed using all 74 Z-normalized quantitative features and parameterized to 702 

retain no less than 98% of total data set variance, resulting in the generation of 26 orthogonal principal 703 

components. t-SNE-based dimension reduction to 2 dimensions was then performed via the 704 

accelerated Barnes-Hut implementation (van der Maaten, 2014) using the R package “Rtsne” (Krijthe, 705 

2015). As described in Figure 1C and Figure 2C, a quadrangulation strategy was used to guide 706 

optimisation of the main t-SNE tuning parameter, perplexity, leading to a final selected value of 60. As 707 

part of the quadrangulation strategy, 17 perplexity parameters values were tested, with 11 random 708 

seeding states replicated at each perplexity value, resulting in 187 distinct t-SNE projections. 709 

Performed directly within R, this process was accelerated through use of the ‘Rtsne.multicore’ package 710 

available from  https://github.com/DmitryUlyanov/Multicore-TSNE (Ulyanov, 2016). 711 

UMAP Dimension Reduction 712 

To limit data set complexity whilst retaining maximal information, principal components analysis (PCA) 713 

was performed prior uniform manifold approximation and projection (UMAP)-based dimension 714 

reduction (McInnes et al., 2018). As with t-SNE, PCA was first performed using all 74 Z-normalized 715 

quantitative features and parameterized to retain no less than 98% of total data set variance, resulting 716 

in the generation of 26 orthogonal principal components. UMAP-based dimension reduction to 2 717 

dimensions was then performed directly in R via the ‘umap’ package. As described in Figure 1C and 718 

Figure 2E, a quadrangulation strategy was used to guide optimisation of the main UMAP tuning 719 

parameter, nearest neighbour, leading to a final selected value of 21. As part of the quadrangulation 720 

strategy, 14 nearest neighbour parameter values were tested, with 11 random seeding states 721 

replicated at each nearest neighbour value, resulting in 154 distinct UMAP projections. 722 

https://github.com/DmitryUlyanov/Multicore-TSNE
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OPTICS Observation Clustering 723 

To define robust and recurrent phenotypes based on observation clustering within 2D t-SNE or UMAP 724 

spaces, the rapid OPTICS (ordering points to identify the clustering structure) (Ankerst et al., 1999) 725 

unsupervised clustering algorithm was employed via the R package “dbscan” (Hahsler and 726 

Peiekenbrock, 2017). For clustering in the optimised t-SNE space, epsilon (0.3), minimum number of 727 

points (18) and cluster threshold (i.e. eps_cl; 0.3) values were selected based results of the 728 

quadrangulation strategy (Figure 1C) for t-SNE analysis. 25 observation clusters (phenotypes) were 729 

thus defined, with 1,235 non-clustered observations excluded, leaving 123,108 observations retained. 730 

This exclusionary approach to non-clustered observations was utilized so as to focus on robust and 731 

recurring phenotypes, rather than potentially unique (or noise-induced) perturbation-effects. For 732 

clustering in the optimised UMAP space, epsilon (0.15), minimum number of points (18) and cluster 733 

threshold (i.e. eps_cl; 0.15) values were selected based results of the quadrangulation strategy (Figure 734 

1C) for UMAP analysis. 735 

Supervised Feature Selection 736 

To identify a limited set of (15) features that are maximally informative about differences between 737 

phenotypes, we applied Forward Feature Selection in combination with Random Forest machine 738 

learning-based prediction of phenotype (cluster) membership for 123,108 observations defined by all 739 

74 Z-score normalized features. Using Knime, the Random Forest model was optimized by iterating 740 

over randomly partitioned data (20% for learning in presence of phenotype membership data; 80% 741 

for phenotype prediction in absence of phenotype membership data), using the information gain ratio 742 

as a splitting criterion. Model predictions were optimized with respect to maximal overall accuracy, 743 

which reached 98.2%, meaning the underlying model is informative. 744 

Inter-feature relationship network mapping 745 

Data summarising phenotypic clusters 1, 4, 5 and 9 across each of the 15 key (feature-selected) Z-746 

normalized quantitative features was first selected. To ensure an equitable final comparison of inter-747 
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feature relationship ‘strengths’ (i.e. uncertainy coefficient values), 1100 observations were randomly 748 

sampled from each phenotypic cluster (as constrained by the smallest of these clusters (9), which 749 

contains 1166 observations). The R package ‘mpmi’ was then used to calculate entropy values for each 750 

quantitative feature and mutual information values between each pair of features. Mutual 751 

information values for each feature pair were then independently normalized to the entropy value of 752 

each feature pair-member, thus providing sensitivity to asymmetry in ‘information overlap’ as a 753 

proportion of information captured within each feature. This constitutes an estimate of the 754 

uncertainty coefficient in each ‘direction’ of inter-feature relationships. Uncertainty coefficient values 755 

greater than 0.2 (thresholded to limit network connections and enable visual interpretation) were 756 

plotted as directed edges in a circular 15 node (15 key features) network layout using the R package 757 

‘igraph’. Colour-coding and line thickness were defined by uncertainty coefficient values. Comparison 758 

of networks using the igraph function ‘difference’ revealed how networks are re-wired in phenotypic 759 

clusters 4, 5 and 9 when compared to cluster 1 (the main non-responsive, spontaneous phenotype 760 

cluster).  761 

Time-series analysis of phenotypic trajectories 762 

Data for time-series analysis of phenotypic trajectories was generated by parallel treatment of cells 763 

with either negative control (DMSO), or 10 µM of compounds T1 or T2. Cells were treated for periods 764 

of 1 min, 5 min, 15 min, 30 min, 45 min, 1 h, 2 h, 3 h, 4 h, 6 h, 20 h or 24 h. Cells were fixed, 765 

permeabilised and labelled, imaged and quantified as described for the main chemical perturbation 766 

analyses. Statistical analyses mirrored the main chemical perturbation analyses, beginning with 767 

exclusion of conditions capturing < 10 > 700 cells, Z-normalisation relative to DMSO controls, and 768 

principle components analysis producing 26 orthogonal principle components as input for t-SNE 769 

dimension reduction using a perplexity value of 50, as previously. Data were then filtered based on 770 

comparison of loess regression (span = 1) in the presence and absence of putative outliers. 771 

Independent dynamic phenotypic trajectories for compounds T1 and T2 were then estimated by fitting 772 

a Bezier curve to all remaining values ordered by time. Data were plotted using R.  773 
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Hierarchical clustering of phenotypes and features 774 

A heatmap summarising hierarchical clustering of all 25 phenotypic clusters and all 74 Z-normalized 775 

quantitative features was generated using the ‘heatmap.2’ function from the ‘gplots’ package in R. 776 

Agglomerative clustering proceeded via complete linkage as described for the default ‘hclust’ function. 777 











 

KEY RESOURCES TABLE 

REAGENT or RESOURCE SOURCE IDENTIFIER 
Antibodies 
C4 Total actin  Millipore Cat# MAB1501, 

RRID:AB_2223041 
γ9d Tpm3.1 Millipore Cat# MAB2256, 

RRID:AB_10806918 
Chemicals, Peptides, and Recombinant Proteins 
TR100 GVK Bio, India Made to order 
Latrunculin A Adipogen Life 

Sciences 
Cat# AG-CN2-0027-
C500 

Latrunculin B Adipogen Life 
Sciences 

Cat# AG-CN2-0031-
M001 

Jasplakinolide Cayman Chemical Cat#11705 
Hoechst 33342 ThermoFisher 

Scientific 
Cat#62249 

Pyrene actin Hypermol Cat#8112-04 
Critical Commercial Assays 
G-actin/F-actin In Vivo Assay Biochem Kit Cytoskeleton Cat# BK037 
Experimental Models: Cell Lines 
Human Female: SK-N-SH neuroblastoma cells ATCC Cat# HTB-11, 

RRID:CVCL_0531 
Recombinant DNA 
pmNeonGreen-talin Shaner et al., 2013   
Software and Algorithms 
Columbus Perkin Elmer  
Workspace CSIRO  
Knime https://www.knime.co

m/ 
 

R https://www.r-
project.org/ 

 

R-package ggplot2 https://ggplot2.tidyvers
e.org/ 

 

R-package plotly https://plot.ly/r/  
R-package NbClust https://cran.r-

project.org/web/packa
ges/NbClust/index.htm
l 

 

R-package Rtsne https://cran.r-
project.org/web/packa
ges/Rtsne/index.html 

 

R-package dbscan https://cran.r-
project.org/web/packa
ges/dbscan/index.html 

 

R-package mpmi https://CRAN.R-
project.org/package=
mpmi 

 

R-package igraph http://igraph.org/r/  



 

R-package gplots https://cran.r-
project.org/web/packa
ges/gplots/index.html 

 

R-package Rtsne.multicore https://github.com/Dmi
tryUlyanov/Multicore-
TSNE 

 

R-package UMAP https://cran.r-
project.org/web/packa
ges/umap/index.html 

 

Lucidchart https://www.lucidchart.
com/ 

 

Deposited Data   
DataDryad – Bryce_et_al_Quantitative_Data doi:10.5061/dryad.1cg

2dq2 
 

 

 

 

 

 

 

 

 


