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ABSTRACT The radio frequency (RF) phase shifter with finite quantization bits in analog beamform-
ing (AB) structure forms quantization error (QE) and causes a performance loss of received signal to
interference plus noise ratio (SINR) at the receiver (called Bob). By using the law of large numbers in
probability theory, the closed-form expression of the SINR performance loss is derived to be inversely
proportional to the square of Sinc (or sin(x)/x) function. Here, a phase alignment method is applied in the
directional modulation transmitter with the AB structure. Also, the secrecy rate (SR) expression is derived
with the QE. From the numerical simulation results, we find that the SINR performance loss gradually
decreases as the number L of quantization bits increases. This loss is less than 0.3 dB when L is larger
than or equal to three. As L exceeds five, the SINR performance loss at Bob can be approximately trivial.
Similarly, the SR performance loss gradually reduces as L increases. In particular, the SR performance loss
is about 0.1 bits/s/Hz for L=3 at signal-to-noise ratio of 15 dB.

INDEX TERMS Directional modulation, quantization error, quantized phase shifter, analog beamforming.

I. INTRODUCTION
Directional modulation (DM), as one of the key tech-
nologies of wireless physical layer security, is attracting
ever-increasing research interests and activities from both
academia and industry world. Traditional technology for
directional modulation was proposed on the radio fre-
quency (RF) frontend [1]–[3]. In these articles, the authors
proposed an actively driven DM array of utilizing analog
RF phase shifters or antenna elements, which did not deal
with the flexibility of design process. Another way to imple-
ment the DM synthesis is based on the baseband signal pro-
cessing. In [4], the authors proposed to form an orthogonal
vector, which can be updated in the null space of channel
vector at the desired direction, to the transmitted baseband

The associate editor coordinating the review of this manuscript and
approving it for publication was Ke Guan.

signal as artificial noise (AN), thereby improving the secure
transmission. Compared to the design on the RF frontend,
this approach enables dynamic DM transmissions and makes
the design easier. Realizing directional modulation in prac-
tice is not a trivial task. One key point is how to use AN
against the overhearing of the potential eavesdroppers. In [5],
the authors thoroughly studied the secrecy performance of
three AN-aided secure transmission schemes and examined
the possibility and strategy of using the full-duplex receiver to
transmit AN in covert communications [6], [7]. Furthermore,
a practical DM scheme with random frequency diverse array
with the aid of AN is proposed to enhance physical layer
security for the wireless communications system [8].

In the presence of direction measurement error, the authors
in [9], [10] and [11] proposed three robust DM synthe-
sis methods for three different scenarios: single-desired
user, multi-user broadcasting and multi-user multi-input
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multi-output (MIMO) by fully exploiting the statistical
properties of direction measurement error. Reference [12]
proposed two secure schemes, Max-GRP plus NSP and
Max-SLNR plus Max-ANLNR, for multicast DM scenario to
improve the security. Inspired by the work in [13] and [14],
secure and precise wireless transmission (SPWT) proposed
in [15] combined AN projection, beamforming and ran-
dom subcarrier selection based on orthogonal frequency
division multiplexing (OFDM) to achieve SPWT of con-
fidential messages. In the researches mentioned above,
the DM synthesis on the baseband signal processing is
assumed perfect or imperfect channel state information (CSI).
In [16], the authors proposed three estimators of directions of
arrival (DOA) based on hybrid structure for finding direction,
thereby determining the position. This method makes DM
more practical.

In [9], [10], and [11], the authors proposed robust methods
for imperfect CSI in traditional DM systems, i.e, fully-digital
(FD) beamforming systems. Traditional fully-digital beam-
forming technique is of high cost and power consump-
tion due to each antenna element requiring one dedicated
RF chain. Hybrid analog/digital (HAD) beamforming
structure [17]–[19] with analog phase shifters and a reduced
number of RF chains was proposed to strike a good balance
between the system complexity and the beamforming pre-
cision. Compared to HAD and FD beamforming structures,
analog beamforming (AB) structure with digitally-controlled
phase shifters has attracted substantial research attentions
from both industry and academic communities, due to its
low circuit cost and high energy efficiency [20]–[23]. In gen-
eral, AB structure has only single RF chain linked to all
antennas. However, AB as described in [21], [23] is sub-
ject to additional constraints, for example, the digitally-
controlled phase shifters with finite-quantized phase values
and constant-envelope. Here, due to finite-quantized phase
values, there exists quantization error (QE), which will lead
to a performance loss such as signal to interference plus
noise ratio (SINR) and secrecy rate (SR). It is crucial to
derive and analyze the impact of QE on SINR and SR due
to the accuracy of quantization of phase shifter. To achieve
an allowable performance loss, what is the minimum number
of quantization bits compared with infinite-bit quantiza-
tion (no QE, NQE)? In what follows, we will address this
issue.

In this paper, we will mainly present analysis of the effect
of QE from finite-quantized phase shifters on the perfor-
mance of DM system using AB structure. Here, the trans-
mitter Alice is equipped with an AB structure, while the
desired receiver at Bob works in full-duplex model and helps
Alice by transmitting AN with FD beamforming structure
to degrade the performance of the illegitimate receiver at
Eve. The main contributions of this paper are summarized as
follows:

1) In AB structure, the RF phase shifter with finite quan-
tization bits will lead to degradation of the value

of the received SINR at Bob. By using the law of
large numbers in probability theory, the approximate
closed-form expression of SINR performance loss is
derived to be inversely proportional to the square of
sinc (i.e., sin(x)/x) function. Simulation results indi-
cate that the SINR performance loss is less than 0.3 dB
when the number L of quantization bits is no less than 3.
As the number of quantization bits is larger than 4,
the SINR performance loss at Bob can be completely
negligible. This will greatly simplify the analysis that
how many bits are sufficient such that the loss of SINR
can be omitted in the AB structure.

2) In the presence of QE, the expression of SR is also
derived and simplified. Simulation results indicate that
the SR performance loss is about 0.1 bits/s/Hz when
L = 3. More importantly, as the value of L increases,
the SR performance loss decreases gradually. Thus,
L = 3 is sufficient for RF phase quantizer in the AB
structure.

The remainder of this paper is organized as follows.
Section II describes the system model. In Section III,
the expression of SINR loss is derived by modeling quanti-
zation error as a uniform distribution, and at the same time
the corresponding SR expression is given in the presence
of QE. Simulation results are presented in Section IV. Finally,
we make our conclusions in Section V.
Notations: throughout the paper, matrices, vectors, and

scalars are denoted by letters of bold upper case, bold lower
case, and lower case, respectively. Signs (·)T , (·)∗, (·)H and |·|
denote transpose, conjugate, conjugate transpose and mod-
ulus respectively. Notation E{·} stands for the expectation
operation.

II. SYSTEM MODEL
Consider a DM network with a Gaussian wiretap channel
in Fig. 1, where Alice is equipped with Na antennas, Bob is
equipped with Nb antennas, and Eve is equipped with single
antenna. Alice intends to send its confidential message x to
Bob, without being wiretapped by Eve. The DM transmitter
at Alice adopts an AB structure. This means Alice can send
single confidential message stream to Bob by analog beam-
forming due to only one RF chain. In order to help Alice,
Bob operates in a FD mode. In other words, all antennas at
Bob are partitioned into two subsets. The first subset with
N t
b antennas transmits AN z, and the rest part with N r

b =

Nb − N t
b antennas receive the confidential messages from

Alice. For the case N r
b = 1, Bob only employ one single

antenna to receive the signal as Eve do, which can be achieved
by the selection combing scheme [24]. The multiple-input-
single-output (MISO)model in physical layer security system
usually can be regarded as a start point to examine the secure
transmission [7], [25]. In the future work, we will focus on
scenarios where the number of antennas at eavesdropper Eve
is larger than 1 and provide more detailed results relating
to it. Since Bob transmits AN while receiving the desired
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FIGURE 1. System model.

signal, there always exists self-interference at its own receive
signal. To describe the effect of residual self-interference we
employ the loop interference model of [26], which quantifies
the level of self-interference with a parameter ρ ∈ [0, 1],
with ρ = 0 denoting zero self-interference. In this paper,
we assume there exists the line-of-sight (LOS) path. The
transmit signal at Alice and AN at Bob can be respectively
written as

sa =
√
Pavax, (1)

and

sb =
√
Pbvbz, (2)

where Pa and Pb are the transmission powers of Alice and
Bob, respectively. Vector

va(α) =
1
√
Na

[
ejα̂1 , ejα̂2 , · · · , ejα̂Na

]T
(3)

denotes the transmit analog beamforming vector, which
forces the confidential message to the desired direction and
vb ∈ CNb×1 is the beamforming vector of transmitting
AN to interfere with Eve. An AB pattern is generated by a
digitally-controlled RF phase-shifter with L-bit phase quan-
tizer. This means that each antenna’s phase in (3) takes one
nearest value α̂n to the designed value αn from a set of 2L

quantized phases given by

α̂n ∈ 2 =

{
0, 2π (

1
2L

), 2π (
2
2L

), · · · , 2π (
2L − 1
2L

)
}
, (4)

which is actually an integer optimization problem. Therefore,
the beamforming vector in the AB system is defined with the
quantized phases αn and written as (3). Each element phase
is quantized to L bits. In (1), x is the confidential message of
satisfyingE

{
xHx

}
= 1.We assume that the AN z transmitted

by Bob obeys a Gaussian distribution with zero mean and
E
{
zH z

}
= 1.

Taking the path loss into consideration, the signal received
at Bob and Eve can be respectively written as

yb =
√
gabhHab(θd )sa +

√
ρhHbbsb + nb

=
√
gabPahHab(θd )vax +

√
ρPbhHbbvbz+ nb, (5)

and

ye =
√
gaehHae(θe)sa +

√
gbehHbesb + ne

=
√
gaePahHae(θe)vax +

√
gbePbhHbevbz+ ne, (6)

where gab = ε
dcab

and dab denote the loss coefficient and
distance between Alice and Bob respectively. c is the path
loss exponent and ε is the attenuation at reference distance d0.
Likewise, gae = ε

dcae
and dae denote the loss coefficient and

distance between Alice and Eve, respectively. gbe = ε
dcbe

and
dbe denote the loss coefficient and distance between Bob and
Eve, respectively. nb ∼ CN (0, σ 2

b ) and ne ∼ CN (0, σ 2
e )

represent complex additive white Gaussian noise (AWGN)
at Bob and Eve, respectively. hab ∈ CNa×1 denotes the
channel vector from Alice to Bob, hae ∈ CNa×1 and hbe ∈
CN t

b×1 denote the channel vectors fromAlice and Bob to Eve,
respectively. hbb ∈ CN t

b×1 represents the self-interference
channel vector at Bob. In the following, we assume that
σ 2
b = σ

2
e = σ

2.
In Fig. 1, the transmitter is deployed with an Na-element

linear antenna array. The normalized steering vector (NSV)
for the transmit antenna array is denoted by

h(θ ) =
[
ej2π9θ (1), · · · , ej2π9θ (n), · · · , ej2π9θ (Na)

]T
, (7)

and the phase function 9θ (n) is defined as

9θ (n),−
(n−(Na+1)/2)d cos θ

λ
, n=1, 2, · · · ,Na, (8)

where θ is the direction angle, n denotes the n-th antenna,
d is the distance of two adjacent antennas, and λ is
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the wavelength.Making use of the definition of NSV, we have
hab(θd ) = h(θd ) and hae(θe) = h(θe). The potential eaves-
droppers may be passive and never transmit signals, thus
means it is hard to obtain such location information. Con-
sidering a realistic scenario, the location of Eve may exist at
an annular region centered on the location of Bob, which is
similar to the annulus threat model mentioned in [27].

If the beamforming vector va is determined, the optimal vb
can be solved by using the Max-SRmethod [28] and utilizing
the GPI algorithm [29]. Suppose that the total duration of
each block consists of pilot symbol periods and data symbol
periods separately. During the pilot symbol periods, Alice and
Bob send pilots to enable the estimation of the main channel
and the self-interference channel. In the data symbol peri-
ods, Alice transmits confidential information to Bob, while
the full-duplex Bob sends artificial noise to aid the secure
transmission. According to the method mentioned in [30],
the optimal value of Pb can be obtained by maximizing the
probability of achieving reliable decoding as for Bob under
the predetermined secrecy requirement of the system.

III. DERIVATION OF SINR AND SR PERFORMANCE
LOSS EXPRESSIONS
In this paper, we focus on the impact of quantization error of
the phase shifter on SINR and SR performance, which will
cause phase mismatch between the NSV h and the AB vector
even with ideal measurement of direction. This will degrade
the receive performance at Bob, including the receive SINR
loss and SR reduction. The small QE in the phase shifter may
severely degrade the performance of the DM system. The
desired direction angle from Alice and Bob is denoted by θd .
In practice, the angle θd is not a certain value, but will be off-
set around a value that can be estimated by the high-resolution
and low-complexity ROOT-MUSIC method [16]. θd can be
modeled as θd = θ̂d +1θd , where θ̂d is the estimated angle
from Alice to Bob, and 1θd represents the estimation error.
1θd is randomly distributed in a range of [−1θmax, 1θmax]
such that the value of θd is randomly chosen. Let us denote
αn by the designed or ideal AB phase of antenna n at Alice.
Considering the effect of QE, we establish the model of QE
as follows

α̂n = αn +1αn, n ∈ 1, 2, · · · ,Na, (9)

where α̂n ∈ 2 is the quantized value of αn after αn passes
through the corresponding phase quantizer. In the above
model, the quantization error 1αn is approximated as a uni-
form distribution and its probability density function (PDF)
is given by

p(1αn) =


1

21αmax
, 1αn ∈ [−1αmax, 1αmax] ,

0, otherwise,
(10)

with

1αmax =
π

2L
, (11)

where L is the number of quantization bits.

A. DERIVATION OF SINR LOSS DUE TO
FINITE-BIT QUANTIZATION
Given the predesigned AB vector va(α), we have

va (̂α) =
1
√
Na

[
eĵα1 , eĵα2 , · · · , eĵαNa

]T
=

1
√
Na

[
ej(α1+1α1), ej(α2+1α2), · · · , ej(αNa+1αNa )

]T
.

(12)

Substituting the above in (1), the RF transmit signal at Alice
can be rewritten as

sa (̂α) =
√
Pava (̂α)x. (13)

In this case, the corresponding received signals at Bob and
Eve can be respectively written as

yb(̂α)=
√
gabhHab(θd )sa (̂α)+

√
ρhHbbsb + nb

=
√
gabPahHab(θd )va (̂α)x +

√
ρPbhHbbvbz+ nb, (14)

and

ye(̂α)=
√
gaehHae(θe)sa (̂α)+

√
gbehHbesb + ne

=
√
gaePahHae(θe)va (̂α)x +

√
gbePbhHbevbz+ ne. (15)

Assuming that the ideal desired directional angle θd is avail-
able, we have

αn = 2π9θd (n), α̂n = 2π9θd (n)+1αn. (16)

Substituting the above two equations in (14) and (15) yields

hHab(θd )va (̂α) =
[
e−jα1 , e−jα2 , · · · , e−jαNa

]
×

1
√
Na

[
ej(α1+1α1), ej(α2+1α2),

· · · , ej(αNa+1αNa )
]T

=
1
√
Na

Na∑
n=1

ej1αn , (17)

and

hHae(θe)va (̂α) =
[
e−jαae,1 , e−jαae,2 , · · · , e−jαae,Na

]
×

1
√
Na

[
ej(α1+1α1), ej(α2+1α2),

· · · , ej(αNa+1αNa )
]T

=
1
√
Na

Na∑
n=1

ej(αn−αae,n+1αn), (18)

respectively. In (18), αn is determined by (16), αae,n can be
expressed similarly as (16) with known θe, αae,n = 2π9θe (n).
In (17), ej1αi (i = 1, 2, · · · ,Na) can be viewed as indepen-

dently identical distributed (iid) random variables, in accor-
dance with the law of large numbers in probability theory.
The mean of samples is approximately equal to the mean of
the distribution [31]. As Na tends to medium-scale and large-
scale, we have

1
Na

Na∑
n=1

ej1αn ≈ E(ej1αn ), (19)
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where

E(ej1αn ) =
∫ 1αmax

−1αmax

ej1αnp(1αn) d1αn

=
sin(1αmax)
1αmax

= sinc(
π

2L
) (20)

with

sinc(x) =
sin(x)
x

. (21)

Combining (19) and (20), one obtains

1
Na

Na∑
n=1

ej1αn ≈ sinc(
π

2L
). (22)

Now, we derive the expression of SINR at Bob under the
QE and NQE conditions, respectively. The former has NQE
while the latter has QE. From the definition of SINR and (14),
we have

SINRNQEb =
gabPa|hHab(θd )va(α)|

2

ρPb|hHbbvb|
2 + σ 2

, (23)

SINRQEb =
gabPa|hHab(θd )va (̂α)|

2

ρPb|hHbbvb|
2 + σ 2

=
Eα̂
[
gabPa|hHab(θd )va (̂α)|

2
]

ρPb|hHbbvb|
2 + σ 2

=
gabPaNasinc2( π2L )

ρPb|hHbbvb|
2 + σ 2

. (24)

According to (23) and (24), let us define the SINR perfor-
mance loss γ as the ratio of SINRNQEb to SINRQEb at Bob as

γ =
SINRNQEb

SINRQEb

=
1

sinc2( π2L )
. (25)

Observing the above expression and considering L is a posi-
tive integer, it is clear that increasing the value of L, i.e. the
number of quantization bits, will reduce the SINR perfor-
mance loss. In other words, the receive SINR performance
will be improved gradually.

B. EXPRESSION OF SR WITH FINITE-BIT QUANTIZATION
In terms of (5) and (6), the achievable rates at Bob and Eve
are as follows

Rb = log2

(
1+

gabPa|hHabva|
2

ρPb|hHbbvb|
2 + σ 2

)
, (26)

and

Re = log2

(
1+

gaePa|hHaeva|
2

gbePb|hHbevb|
2 + σ 2

)
, (27)

respectively, which yield the following achievable SR

Rs = max {0,Rb − Re}

= max

{
0, log2

(
MT + gabPaT |hHabva|

2

MT + gaePaM |hHaeva|2

)}
, (28)

where

M = ρPb|hHbbvb|
2
+ σ 2,

T = gbePb|hHbevb|
2
+ σ 2. (29)

In the absence of QE, the corresponding SR is given by

RNQEs = max
{
0,RNQEb − RNQEe

}
= max

{
0, log2

(
MT + gabPaT |hHab(θd )va(α)|

2

MT + gaePaM |hHae(θe)va(α)|2

)}
.

(30)

In terms of (18), we define

bn , n−
Na + 1

2
, (31)

q , −
d
λ
(cos θd − cos θe), (32)

SNa (x) ,
sin(Naπx)
sin(πx)

. (33)

Then, we rewrite (18) and define

ρ(bn,1αn) , hHae(θe)va (̂α)

=
1
√
Na

Na∑
n=1

ej(αn−αae,n+1αn)

=
1
√
Na

Na∑
n=1

ej(2πqbn+1αn). (34)

The mean of |hHae(θe)va (̂α)|
2, or |ρ(bn,1αn)|2 is derived as

Eα̂[|hHae(θe)va (̂α)|
2]

= E1αn [ρ
∗(bn,1αn)ρ(bn,1αn)]

=
1
Na

E1αn,1αn′
{ Na∑
n=1

Na∑
n′=1

e−j(2πqbn+1αn)ej(2πqbn′+1αn′ )
}

=
1
Na

E1αn
{ Na∑
n=1

e−j(2πqbn+1αn)ej(2πqbn+1αn)
}
+

1
Na

·E1αn,1αn′
{ Na∑
n=1,n 6=n′

Na∑
n′=1

e−j(2πqbn+1αn)ej(2πqbn′+1αn′ )
}

=
Na
Na
+

1
Na

{∫ 1αmax

−1αmax

ej1αnp(1αn) d1αn

∫ 1αmax

−1αmax

ej1αn′

· p(1αn′ ) d1αn′
}{ Na∑

n=1,n6=n′

Na∑
n′=1

e−j2πqbnej2πqbn′
}

= 1+
1
Na

sinc2(
π

2L
)
(
S2Na (q)− Na

)
, (35)
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and the corresponding SR is given by

RQEs

= max
{
0,RQEb − R

QE
e

}
= max

{
0, log2

(
MT + gabPaT |hHab(θd )va (̂α)|

2

MT + gaePaM |hHae(θe)va (̂α)|2

)}

= max

{
0, log2

(Eα̂
[
MT + gabPaT |hHab(θd )va (̂α)|

2
]

Eα̂
[
MT + gaePaM |hHae(θe)va (̂α)|2

])}

= max

{
0, log2

( MT + gabPaTNasinc2( π2L )

MT + gaePaMEα̂
[
|hHae(θe)va (̂α)|2

])}
= max

{
0,

log2

( MT + gabPaTNasinc2( π2L )

MT + gaePaM (1− sinc2( π2L )+
sinc2( π

2L
)S2Na (q)

Na
)

)}
.

(36)

IV. SIMULATION AND DISCUSSION
In this section, we mainly focus on the evaluation of impact
of the number of antennas and quantization bits of phase
shifters on performance losses including bit error rate (BER),
SINR and SR in an AB structure. In the simulation, system
parameters are chosen as follows: quadrature phase shift key-
ing (QPSK) modulation, the total transmission power Pa =
Pb = 70 dBm, the spacing between two adjacent antennas
d = λ/2, ρ = 0.5, the distance between Alice and Bob, Alice
and Eve, Bob and Eve dab = dae = dbe = 500 m, the path
loss exponent c = 2, the desired direction θd = θab = 60◦,
and the eavesdropping direction θe = θae = 120◦. The
direction angle from Bob to Eve is θbe = 45◦. Alice is
equipped with Na antennas, Bob is equipped with N t

b = 16
antennas to transmit AN and N r

b = 1 to receive confidential
signals from Alice.

Fig. 2 demonstrates the performance curves of BER versus
direction angle at Bobwith SNR = 10 dB andNa = 16. Here,
the ideal condition implies NQE with solid line, i.e., infinite
bits for quantization, and the QE case is denoted by dotted
line. L stands for the number of quantization bits. From
this figure, it can be seen that the BER can achieve a good
performance in the desired direction while it becomes worse
rapidly as we move to the undesired direction. This is partly
because the AN transmitted from Bob can interfere with the
confidential signal received at Eve severely along the unde-
sired directions. Compared with the performance with NQE,
the BER performance with QE is much worse, especially for
L ≤ 2. As L reaches up to 3, the BER performance difference
between QE and NQE is trivial. This means that it is feasible
in practice to use finite-quantized phase shifters with L = 3.
Fig. 3 plots the curves of SINR performance loss ver-

sus number L of quantization bits ranging from 1 to 8 for
four different numbers of antennas at Alice Na: 4, 16, 64,
and 256, where SNR is equal to 15 dB. Here, the derived
expression of SINR performance loss in (25) is used as a
performance reference. From this figure, it is seen that the

FIGURE 2. Curves of BER versus direction angle under the ideal condition
(with NQE) and finite-quantization condition (with QE) for different
numbers (L) of quantization bits.

FIGURE 3. SINR performance loss at Bob versus number L of quantization
bits for different Na.

performance loss of simulated SINR decreases as the quanti-
zation bits increases. This is mainly because that the range of
phase error due to quantization (11) will become smaller as
the number L of quantization bits increases, so that QE will
become smaller. This will result in a smaller loss of SINR at
Bob. A small number of quantization bits of the phase shifter
(e.g., L = 1 or 2) will cause a large QE, resulting in a large
SINR loss up to 4 dB. The SINR performance loss will be
less than 0.3 dB when the number of quantization bits is more
than or equal to 3. When the number of quantization bits is 4,
the SINR loss at Bob is less than 0.1 dB even if the number
of antennas at Alice is small (e.g., Na = 3). This also means
the fact that even with a small number of antennas at Alice,
the derived expression in (25) coincides with the simulated
SINR performance loss. In other words, the derived expres-
sion in (25) can be used to evaluate the SINR performance
loss for almost all cases including small-scale, medium-scale,
and large-scale. More importantly, we can conclude that three
quantization bits are sufficient for the quantized phase shifters
in the AB system.

Since we have the approximate derived simple expression
for SINR performance loss, Fig. 4 illustrates the curves of the
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FIGURE 4. SINR performance loss at Bob versus Na for different numbers
of quantization bits (L).

FIGURE 5. Secrecy rate versus number L of quantization bits for different
transmit SNR in two cases NQE and QE with Na = 16.

SINR performance loss versus the number Na of antennas at
Alice for three different numbers of quantization bits: 3, 4,
and 5, where the SNR is set to be 15 dB. From this figure,
it is seen that the simulated value of SINR loss gradually
tends to the derived value in (25) as the number of antennas at
Alice increases. Even in the case of small number of antennas
at Alice, the SINR loss difference between simulated and
derived is still only about 0.125 dB, which is substantially
small. This further verifies the validity of the derived expres-
sion in (25).

Fig. 5 shows the curves of SR versus number of quantiza-
tion bits ranging from 1 to 8 for three typical SNRs: 0 dB,
15 dB, and 30 dB, where Na = 16. The solid lines represent
the SR in the absence of QE, and the dotted lines represent
the approximate derived value of SR in the presence of QE
in (36) for different SNR. From this figure, it is clearly seen
that there is a certain loss on SR for the small number of
quantization bits, i.e., L = 1 or 2. Observing this figure,
a 3-quantization-bit phase shifters at Alice will lead to a SR
performance loss less than 0.1 bits/s/Hz.

Fig. 6 shows the curves of SR versus number of quantiza-
tion bits for four different numbers of antennas at Alice Na:
4, 16, 64, and 256 with three typical SNRs: 0 dB, 15 dB,

FIGURE 6. Secrecy rate versus number L of quantization bits for different
Na and different transmit SNR in two cases NQE and QE.

and 30 dB. The solid lines represent the SR in the absence
of QE, and the dotted lines represent the approximate derived
value of SR in the presence of QE in (36) for different Na.
It can be seen from the figure that three-quantization-bit
achieves a SR performance loss of less than 0.1 bits/s/Hz
regardless of the number of transmit antennas at Alice. The
range of the quantized phases in (4) is determined by the
number of quantization bits L. The larger the quantization
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bits L, the more the selectable phases of the quantized phases
are in (4). When L is sufficiently small (e.g., L = 1, 2),
the number of selectable value corresponding to the quantized
phases in (4) is small. This means that the error between the
quantized phase corresponding to each antenna in the analog
beamforming vector and the ideal designed phase is large.
In this case, RQEs is much smaller than RNQEs , which can be
seen in Fig. 5 and Fig. 6. When L approaches infinity, we can
see RQEs precisely matches RNQEs , which can be examined
in (36).

In summary, there exists QE in the AB structure due to
finite-quantized phase shifters, which will result in a substan-
tial performance loss. In general, from the above simulation
results and derived SINR performance loss expression as
shown in (25), we find an important fact that 3, 4, and 5 are
sufficient for the number of quantization bits on RF phase
shifter such that a performance loss due to QE can be
neglected. The derived simple expression in (25) can be
approximately used to assess the SINR performance loss at
Bob. Additionally, this expression also holds for even small
number of transmit antennas at Alice although it is derived
under the condition that the number of antennas at Alice tends
to large-scale. This expression can be directly applied in the
HAD structure to evaluate the SINR loss.

V. CONCLUSION
In this paper, we have made an investigation of the impact of
QE caused by finite-quantized phase shifters of AB structure
on performance in DM systems. In the presence of QE,
the expression of SINR performance loss has been derived
to be inversely proportional to the square of sinc function
by making use of the law of large numbers in probability
theory. From analysis and simulation, we have found that
our proposed expression is approximately close to the corre-
sponding simulated result even when the number of antennas
at Alice is small-scale. The SINR performance loss is lower
than 0.3 dB when the number of quantization bits is larger
than or equal to 3. As for SR, we can obtain the same result.
In other words, when the number of quantization bits is
larger than or equal to 3, the SR difference between NQE
and QE is less than 0.1 bits/s/Hz. Additionally, the BER
performance is also shown to be intimately related to the
number of quantization bits. A large L means a good BER
performance along the desired direction. Otherwise, a small
L means a poor BER performance along the desired direction.
Considering the derived SINR performance loss holds for
small-scale number of antennas at Alice in AB structure, it is
sensible to extend it to a HAD beamforming structure with
finite-quantized phase shifters in diverse scenarios for future
wireless communications.
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