
Kent Academic Repository
Full text document (pdf)

Copyright & reuse
Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all
content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions
for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research
The version in the Kent Academic Repository may differ from the final published version.
Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the
published version of record.

Enquiries
For any further enquiries regarding the licence status of this document, please contact:
researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down
information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Brookhouse, James (2018) Discovering Regression and Classification Rules with Monotonic
Constraints Using Ant Colony Optimization. Doctor of Philosophy (PhD) thesis, University
of Kent,.

DOI

Link to record in KAR

https://kar.kent.ac.uk/76774/

Document Version

UNSPECIFIED

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kent Academic Repository

https://core.ac.uk/display/228131487?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

DISCOVERING REGRESSION AND CLASSIFICATION
RULES WITH MONOTONIC CONSTRAINTS USING

ANT COLONY OPTIMIZATION

a thesis submitted to

The University of Kent

in the subject of computer science

for the degree

of phd.

By

James Brookhouse

December 2018

Copyright

This work is licensed under the Creative Commons Attribution-

NonCommercial-NoDerivatives 4.0 International License. A copy of this

licence can be found in Appendix A.

ii

Abstract

Data mining is a broad area that encompasses many different tasks from the su-

pervised classification and regression tasks to unsupervised association rule mining

and clustering. A first research thread in this thesis is the introduction of new Ant

Colony Optimization (ACO)-based algorithms that tackle the regression task in

data mining, exploring three different learning strategies: Iterative Rule Learning,

Pittsburgh and Michigan strategies.

The Iterative Rule Learning strategy constructs one rule at a time, where the

best rule created by the ant colony is added to the rule list at each iteration,

until a complete rule list is created. In the Michigan strategy, each ant constructs

a single rule and from this collection of rules a niching algorithm combines the

rules to create the final rule list. Finally, in the Pittsburgh strategy each ant

constructs an entire rule list at each iteration, with the best list constructed by an

ant in any iteration representing the final model. The most successful Pittsburgh-

based Ant-Miner-RegPB algorithm, among the three variants, has been shown to

be competitive against a well-known regression rule induction algorithm from the

literature.

The second research thread pursued involved incorporating existing domain

knowledge to guide the construction of models as it is rare to find new domains

that nothing is known about. One type of domain knowledge that occurs fre-

quently in real world data-sets is monotonic constraints which capture increasing

or decreasing trends within the data. In this thesis, monotonic constraints have

iii

been introduced into ACO-based rule induction algorithms for both classification

and regression tasks. The enforcement of monotonic constraints has been im-

plemented as a two step process. The first is a soft constraint preference in the

model construction phase. This is followed by a hard constraint post-processing

pruning suite to ensure the production of monotonic models. The new algorithms

presented here have been shown to maintain and improve their predictive power

when compared to non-monotonic rule induction algorithms.

iv

Acknowledgements

So many people have helped and encouraged me during my PhD and the writing

of this thesis and I would like to thank them all. I would like to individually thank

the following people. First, my fiancée Ayah for her support and encouragement

over the last few years since she showed up in the office and started to come to

lunch with us.

I would also like to thank my supervisors Fernando Otero and Alex Freitas

who have guided me through the last four years of research that I have undertaken

during my PhD and the writing of this thesis.

I must also thank my good friends at the University of Kent Medway campus:

Sam, Anna, Janine, Shannon and Mick (the friendly retired police officer) who

have listened to my rants, provided support, nuggets of wisdom and of course

constantly asking how the writing up is going. Finally, my parents who have

always supported me and pushed me to stretch myself and tolerated the lack of

a“proper” job.

v

Research is what I’m doing when I

don’t know what I’m doing.

WERNHER VON BRAUN

Contents

Copyright ii

Abstract iii

Acknowledgements v

Contents vii

List of Tables xiii

List of Figures xviii

List of Algorithms xx

List of Algorithms xxii

Nomenclature xxii

1 Introduction 1

1.1 Thesis Structure . 4

1.2 Publications . 5

2 Data Mining 8

2.1 Regression Task . 9

2.1.1 Linear Regression . 14

vii

2.1.2 Non-Linear Regression . 15

2.1.3 Regression and Model Trees 17

2.1.4 Regression Rules . 19

2.2 Classification Task . 19

2.2.1 Classification Trees . 20

2.2.2 Classification Rules . 21

2.3 Rule Learning Paradigms . 22

2.3.1 Iterative Rule Learning . 23

2.3.2 Michigan Rule Learning 25

2.3.3 Pittsburgh Rule Learning 26

2.3.4 Regression Rule Induction Algorithms 27

2.3.5 Classification Rule Algorithms 30

2.4 Decision Tree Induction . 33

2.4.1 Regression Tree Induction Algorithms 33

2.4.2 Classification Tree Induction Algorithms 35

2.5 Discussion of Model Representation for

Regression and Classification Tasks 37

3 Domain Knowledge and Monotonic Constraints 39

3.1 Monotonicity . 42

3.1.1 Non-Monotonicity Index 46

3.1.2 Enforcing Constraints in the Pre-Processing Stage 46

3.1.3 Enforcing Constraints in the Model Construction Stage . . 47

3.1.4 Enforcing Constraints in the Post-Processing Stage 50

4 Ant Colony Optimization 54

4.1 From Nature to Artificial Ants . 55

4.2 Artificial Ants . 57

4.3 Combinatorial ACO . 59

viii

4.4 Continuous ACO . 61

4.5 ACO in Data Mining . 64

4.5.1 Ant-Miner . 65

4.5.1.1 Construction Graph and Pheromone Matrix . . . 66

4.5.1.2 Rule Construction 67

4.5.1.3 Pheromone Deposition and Evaporation 68

4.5.2 Ant-Miner Extensions . 68

4.5.2.1 Ant-Miner+ . 69

4.5.2.2 cAnt-Miner . 69

4.5.2.3 cAnt-MinerPB . 70

4.5.3 Ant-MinerMA . 71

5 Ant Colony Optimization for Regression 76

5.1 Discovering Regression Rules . 77

5.2 Ant-Miner-Reg: An Iterative Rule Learning ACO Regression Al-

gorithm . 77

5.2.1 Rule Quality . 79

5.2.2 Construction Graph . 81

5.2.3 Pheromone Update . 83

5.2.4 Continuous Attribute Processing 84

5.2.4.1 SeCoReg Split Point Generation 84

Split Point Generation Walkthrough 85

5.2.4.2 Standard Deviation Split Point Generation 86

5.2.5 Rule Creation . 87

5.2.5.1 Heuristic Information 87

5.2.5.2 Rule Pruner . 88

5.3 Ant-Miner-RegM: A Michigan-based ACO Regression Algorithm . 88

5.3.1 Niching for the Michigan Approach 90

5.3.1.1 Michigan Niching Walkthrough 91

ix

5.4 Ant-Miner-RegPB: A Pittsburgh-Based ACO Algorithm 94

5.4.1 Extended ACO Construction Graph 96

6 Computational Results for ACO Regression 98

6.1 Experimental Setup . 98

6.2 Dynamic Discretisation Experiments 101

6.2.1 Discussion . 102

6.3 Learning Strategy Experiments 103

6.3.1 Discussion . 109

6.3.1.1 Comparison against M5’ Rules 111

7 Incorporating Monotonic Constraints 112

7.1 Soft Monotonic Constraint Enforcement 113

7.1.1 Soft Enforcement and Rule Quality 114

7.2 Hard Monotonic Constraint Enforcement 116

7.2.1 Naive Pruner . 116

7.2.2 Most Violations Pruner (MVP) 117

7.2.3 Best Fix Pruner (BFP) . 118

7.2.4 Monotonic Pruning Walk-through 119

7.3 Monotonic Constraint ACO Algorithms 121

7.3.1 Ant-Miner-RegMC . 123

7.3.2 Ant-Miner-RegPB+MC and cAnt-MinerPB+MC 123

7.3.3 Ant-Miner-RegPB+MCP and cAnt-MinerPB+MCP 125

7.4 Summary . 127

7.4.1 Proposed Monotonic Algorithm Variants 127

8 Computational Results for Problems with Monotonic

Constraints 129

8.1 Results for Regression with Monotonic Constraints 130

8.1.1 Ant-Miner-RegMC and Ant-Miner-RegPB+MC Results . . . 133

x

Discussion . 135

8.1.2 Results for Monotonic Algorithms with Proposed Pruning

Suite . 136

Discussion . 140

8.2 Results for Classification with Monotonic

Constraints . 141

8.2.1 Results of Monotonic Algorithms 142

Discussion: . 145

8.2.2 Results of cAnt-MinerPB+MCP Against Classical Rule Induc-

tion algorithms . 149

Discussion . 152

9 Towards an Archive-Based ACO for Regression 154

9.1 Archive-Based ACO - Ant-Miner-RegMA 155

9.1.1 Archive Structure and Initialisation 157

9.1.2 Sampling Procedures . 159

9.1.2.1 Categorical sampling 159

9.1.2.2 Continuous sampling 160

9.1.3 Rule Creation . 161

9.1.4 Restart Procedure . 162

9.2 Archive based Pheromone Model ACO Computational Results . . 162

9.2.1 Archive based Pheromone Model ACO Discussion 167

10 Conclusions and Future Work 170

10.1 ACO-Based Algorithms for Regression 170

10.1.1 Future Work . 173

10.1.1.1 Archive Pheromone model 173

10.2 Monotonic Constraints in ACO Algorithms 175

10.2.1 Soft Constraint Enforcement 175

xi

10.2.2 Hard Constraint Enforcement 176

10.2.3 Monotonic Constraint Experiments 177

10.2.4 Future Work . 178

Bibliography 180

A Copyright License 192

xii

List of Tables

2.1 Simple house rental data set . 10

2.2 A selection of existing regression algorithms classified by the type

of model representation that they use. A comprehensive review of

regression models can be found in Fahrmeir et al. (2013) 13

2.3 Modified house rental data-set for the classification task. The rental

price attribute has been discretised into low, medium and high. . 20

2.4 Prediction made by the classification tree found in Figure 2.3 on the

data-set from Table 2.3. The first column contains the predicted

value while the second contains the true value. 22

3.1 House rental data set with monotonic relationships. As the Floor

Area value increases, so does the Rental Value. 41

3.2 Previous works enforcing monotonicity constraints, categorised by

their enforcement stage. 45

5.1 Sample data-set for niching a list of rules. 92

5.2 Rule set to be niched using the data in Table 5.1 92

5.3 Final niched Rule List for the sample house rental data-set in Table

5.1. 93

6.1 Attribute makeup of the UCI Machine Learning Repository data

sets for the regression task used in the experiments (Lichman 2013). 99

6.2 Parameters used in the ACO-based algorithms. 100

xiii

6.3 RRMSE of the rule list produced by each of the algorithms on each

of the fifteen UCI Machine Learning repository data-sets. A bold

value signifies the smallest error produced by either algorithm. The

standard deviation is shown in brackets. 102

6.4 Wilcoxon Signed-Rank test (at the α = 0.05 level) on RRMSE, for

the results in Table 6.3. 103

6.5 RRMSE of the four algorithms being tested on the 15 UCI Machine

Learning Repository (Lichman 2013) regression data sets averaged

across all 10 cross-validation folds. The standard deviation is shown

in brackets. The ACO-based algorithms were ran 5 times (varying

the random seed) on each fold to reduce stochastic effects. The

best result on each data set is shown in bold. 105

6.6 Average ranks of the four regression algorithms tested, based on the

average RRMSE of the models produced. Statistically significant

results using the Holm post-hoc test for the significance level α =

0.05 are shown in bold. 106

6.7 Average number of rules in the final rule list of the four algorithms

being tested on the 15 regression data sets averaged across all 10

cross-validation folds. The standard deviation is shown between

brackets. The smallest rule list for each data-set is shown in bold. 107

6.8 Average ranks of the four regression algorithms tested based on

the average number of rules in the list of rules produced by each

algorithm. Statistical significant results using the Holm post-hoc

test for the significance level α = 0.05 are shown in bold. 108

8.1 Parameter settings used for Ant-Miner-RegMC derived algorithms. 130

xiv

8.2 Attribute make-up and constraint information of the eight mono-

tonic regression UCI data sets used in the experiments (Lichman

2013). In each data set a single attribute was constrained. The

attribute name, whether it is monotonically increasing (↑) or de-

creasing (↓) and the non-monotonicity index (NMI) of the attribute

is given. 132

8.3 RRMSE of the model produced by each algorithm in each of the

eight data sets. The bold value indicates the smallest error of the

four algorithms; the standard deviation is shown in square brackets. 134

8.4 Non-parametric Friedman test with Holm’s post-hoc test results

based on the average RRMSE of the four algorithms used in the

experiments. Statistically significant results at the α = 0.05 level

are shown in bold. 135

8.5 RRMSE averages for the six algorithms being tested. Data-sets

were chosen from the UCI Machine Learning Repository (Lichman

2013) as having attributes with low NMI values, allowing the en-

forcement of constraints. The best result (lowest RRMSE value)

achieved for each data-set is shown in bold. 137

8.6 Non-parametric Friedman test with Holm’s post-hoc test results

based on the average RRMSE of the six algorithms used in the

experiments. Statistically significant results at the α = 0.05 level

are shown in bold. 138

8.7 Average rule list size of the ACO-based rule learners with different

monotonic constraint pruners. The first two algorithms use a soft

constraint learning phase, while the last has no knowledge of mono-

tonicity during the learning stage. The results include the number

of rules before and after pruning along with the total number of

terms removed by the pruner. 139

xv

8.8 Monotonic classification data sets from the UCI Machine Learn-

ing repository (Lichman 2013) used in experiments, including at-

tributes and constraint information. In each data-set a single at-

tribute was constrained. The constraint information contains the

attribute’s name, direction of the constraint, either ↑ (increasing)

or ↓ (decreasing) and its corresponding NMI. 143

8.9 Accuracy of the five monotonic rule learners. OLM is an existing

monotonic learner, the other four algorithms are ACO-based algo-

rithms using a combination of soft constraints and hard constraints

at different stages of the learning process. The best result for each

data set is shown in bold. 144

8.10 Friedman statistical test with Holm’s post-hoc test results. Average

rank and p values of the monotonic algorithms tested. Results

that showed a statistically significant difference according to the

α = 0.05 level are shown in bold. 145

8.11 Average number of rules in the rule lists created by cAnt-MinerPB+MC

with the additional monotonic pruning suite and RULEM added

as post-processing steps to enforce constraints. The results include

the number of rules before and after post-processing along with the

number of terms removed or added. 146

8.12 Comparison of the model accuracy of the best monotonic rule learner

cAnt-MinerPB+MCP to traditional non-monotonic rule learners, in-

cluding the original cAnt-MinerPB. The best result for each data

set is shown in bold. 148

8.13 Average rank and p values of the best monotonic algorithm cAnt-

MinerPB+MCP and three non-monotonic rule learners according to

the non-parametric Friedman test. Holm’s post-hoc test was used

to check for significance at α = 0.05. 149

xvi

8.14 Comparison of the model accuracy of the best monotonic rule learner

cAnt-MinerPB+MCP to traditional non-monotonic rule learners that

have had the additional monotonic post-processing techniques added.

The best accuracy obtained for each data set is shown in bold. . . 151

8.15 Average ranks and p values of the best monotonic algorithm cAnt-

MinerPB+MCP and two non-monotonic rule learners with a mono-

tonic post-processing procedure applied. A Friedman test with

Holm’s post-hoc test was used to check for significance at α = 0.05

— significant results are shown in bold. 152

9.1 Number of instances and attribute makeup of the nineteen data-sets

used in the experiments . 163

9.2 Parameters: Ant-Miner-RegMA uses the first three parameters in

table, while remaining are used by both Ant-Miner-RegMA and Ant-

Miner-Reg. 164

9.3 Average RRMSE of the regression model produced by each algo-

rithm over five runs of tenfold cross-validation. The best result

(smallest RRMSE) for each data-set is shown in bold. 166

9.4 Wilcoxon Signed-Rank test (at the α = 0.05 significance level) on

RRMSE. Statistically significant differences are shown in bold. . . 167

9.5 Average run-time in seconds of the model produced by each algo-

rithm over five runs of tenfold cross-validation. The best result

(smallest time) for each data-set is shown in bold. 168

xvii

List of Figures

2.1 Regression and Model Trees. Both trees use the same decision

nodes and branches, but they have different types of leaf nodes. . 18

2.2 A Regression rule, containing logical tests in the antecedent and a

real valued prediction. 19

2.3 A simple classification tree that can be used to make predictions

on the house rental data set shown in Table 2.3 21

2.4 Example of a classification rule, where the predicted value is sam-

pled from a set of allowed values. 22

3.1 Taxonomy of constraints. Constraints can exist in soft and hard

variants. Uni-variate Ordinal Monotone constraints are the most

common found in the literature (Martens and Baesens 2010) . . . 42

4.1 Double branch experiment with ants. Initially the branches are

empty. Ants then explore the space using both branches, before

converging and forming pheromone trails along the shortest paths. 56

4.2 Example graph representing a Travelling Salesman Problem, where

each node in the graph is a city the salesman is required to visit.

Each edge has a cost associated which is the distance between cities.

The objective is to create a tour that minimises the distance trav-

elled by the salesman. 59

xviii

4.3 Solution archive present in ACOMV . The archive is made up of

three sections, one for each of the variable types; continuous, ordi-

nal, and categorical. Finally each solution is ranked by its quality

f(S) and is given a weight ω. 62

4.4 Structure of the archive found in Ant-MinerMA. The three solutions

(rules) in the archive show examples of the three different attribute

types: continuous, categorical, and ordinal attributes. 74

5.1 Example construction graph that can be used to construct rules,

including both categorical attribute (A1 and A2) and a continuous

attribute (A3). 82

5.2 Example SeCoReg Split Point Generation. 85

5.3 An illustration of a construction graph for the Pittsburgh-based

algorithm Ant-Miner-RegPB. Each edge contains a table of rule

depth and pheromone values to be used in the list construction. . 96

9.1 Example archive used in Ant-Miner-RegMA including the structure

of terms with of continuous and categorical attributes. 158

xix

List of Algorithms

2.1 Iterative Rule Learning high-level pseudo-code 23

2.2 Michigan-based rule induction high-level pseudo-code 25

2.3 High-level pseudo-code for a Pittsburgh-based rule induction algo-

rithm. 27

4.1 High-level ACO pseudo-code . 57

4.2 High-level pseudo-code for ACOMV. 62

4.3 High-level pseudo-code for Ant-Miner 67

4.4 High-level pseudo-code for the archive-based ACO algorithm Ant-

MinerMA. 72

5.1 High-level pseudo-code for Ant-Miner-Reg. 80

5.2 Michigan-based ACO high-level pseudo-code. 89

5.3 High-level Ant-Miner-RegM niching pseudo-code 91

5.4 Pittsburgh-based ACO Regression Algorithm high-level pseudo-code. 95

7.1 High-level pseudo-code for the Naive Pruner, where a term is re-

moved from the list until the NMI is zero. 117

7.2 High-level pseudo-code for the Most Violations Pruner. In each it-

eration the rule with the worst NMI has its last term removed. . . 118

7.3 High-level pseudo-code for the Best Fix Pruner. In each iteration

the rule that decreases the NMI by the largest amount will be pruned.119

xx

7.4 High-level pseudo-code for Ant-Miner-RegMC. Changes from the

base algorithm (which ignores monotonicity constraints) are high-

lighted in yellow. 122

7.5 High-level pseudo-code for Ant-Miner-RegPB+MC and cAnt-MinerPB+MC.

Changes from the base algorithm (which ignores monotonicity con-

straints) are highlighted in yellow. 124

7.6 High-level pseudo-code for Ant-Miner-RegPB+MCP and cAnt-MinerPB+MCP.

Changes from base algorithm (which ignores monotonicity constraints)

are highlighted in yellow. 126

9.1 High-level pseudo code of Ant-Miner-RegMA 156

xxi

Nomenclature

β — Coefficients for linear models

A — An attribute from the data-set

AE — Absolute Error

Coverage — Number of instances satisfied by a model

MAE — Mean Absolute Error

n — Number of instances in a data-set

NMI — Non Monotonicity Index

p — Predicted value of a target variable

Q — Quality

RMSE — Root Mean Square Error

RRMSE — Relative Root Mean Square Error

S — The entropy gain of an attribute

T — The set of training instances

t — True value of a target value

x — Predictor attributes for the regression task

y — Target attribute for the regression task

xxii

Chapter 1

Introduction

As computational resources have improved and increased, the amount of data

collected and stored about the world we live in has greatly increased. As Fraw-

ley, Piatetsky-Shapiro and Matheus (1992) state “Computers have promised us a

fountain of wisdom but delivered a flood of data”. Since this vast quantity of new

data cannot be manually processed, we have to turn towards automated methods

to condense and abstract knowledge from this raw data.

Data mining is the task of finding and extracting interesting relationships and

connections present in data using (semi-)automated techniques (Fayyad, Piatetsky-

Shapiro and Smith 1996). It comprises of many tasks, including the unsupervised

tasks of clustering and association rule mining, and the supervised tasks of clas-

sification and regression. This thesis will concentrate on the latter two tasks.

Both classification and regression tasks aim to build a model capable of making

predictions from a set of predictor attributes. The two tasks are differentiated by

the form their predictions take. In classification, the prediction is chosen from a

predetermined set of class labels. Classification problems include e.g. spam email

detection (Yu and Xu 2008) and the detection of breast cancer (Mangasarian,

Street and Wolberg 1995). In regression, the prediction is continuous and can

1

CHAPTER 1. INTRODUCTION 2

take the value of any real number. Example regression problems include predict-

ing the size of a forest fire based on meteorological data (Cortez and Morais 2007)

or the prediction of future stock prices (Liu and Yeh 2017).

There are a number of different approaches to create classification and re-

gression models —these include traditional greedy algorithms. In their attempt

to find the global optimum, greedy algorithms make the best choice at every

decision point. While this decision may be locally optimal, it may not lead to

the global optimum (Cormen et al. 2009). Meta-heuristic algorithms (Bonabeau

et al. 1999) take a different approach, as they optimise many decisions at the same

time, allowing the decisions to interact with each other as they pursue their goal

of finding the global optimum.

When constructing classification and regression models, the structure of the

model has to be decided upon. There are two broad categories of models: white-box

and black-box models. Black-box models have inner workings that are to complex

to be directly interpreted by users i.e., the decision making process is opaque. This

is in contrast to white-box models, where the decision process is transparent and

interpretable. Users can therefore interrogate the model to discover how and why

a particular output was generated given the inputs into the model. Well known

black box models include SVMs (Boser, Guyon and Vapnik 1992) and Neural

Networks (Schmidhuber 2015).

This thesis will focus on one particular type of white box model, which are

classification and regression rules. Rules have a very simple structure built from

two parts: a consequent, which defines the prediction made by a rule; and an

antecedent, which encapsulates the reasons why a rule makes a prediction through

a set of tests on attribute values. As each rule only makes a prediction when its

antecedent is satisfied, a number of rules can be grouped together to create a list of

rules, resulting in a complete model capable of making different predictions based

on the inputs provided. Rule lists are in general comprehensible and interpretable

CHAPTER 1. INTRODUCTION 3

models as a user can intuitively inspect the reasons why a rule list made a specific

prediction (Witten et al. 2016).

Ant Colony Optimization (ACO) (Dorigo 1992) is a nature inspired approach

from the wider field of swarm intelligence. The ACO meta-heuristic mimics the

behaviour of how ants (agents with a simple behaviour) work together to solve

complex tasks, which can be applied to solve optimisation problems. In the field of

data mining, and more specifically the classification task, ACO-based algorithms

have been developed to create a number of different classification models, including

lists of classification rules (Martens et al. 2007), and decision trees (Otero, Freitas

and Johnson 2012). Ant-Miner (Parpinelli, Lopes and Freitas 2002) is the best

known family of ACO-based algorithms. Classification has received the majority

of investigation and, to the best of my knowledge, no ACO-based algorithms have

been developed to tackle the regression problem. The success of Ant-Miner and

its derivatives (Parpinelli, Lopes and Freitas 2002; Martens et al. 2006b; Otero,

Freitas and Johnson 2008, 2009, 2013; Otero and Freitas 2013; Otero 2017) when

applied to the classification suggests that the ACO paradigm can also be successful

when applied to the regression task. The first major contribution of this thesis

is the proposal of new ACO algorithms for the regression task, specifically the

construction of lists of regression rules.

It is rare in data mining to find a problem where nothing is known before

automated techniques are applied. This existing knowledge may be the product

of previous data mining techniques or knowledge provided by domain experts

(Frawley, Piatetsky-Shapiro and Matheus 1992; Kubat, Holte and Matwin 1998).

If existing knowledge is ignored when finding new relationships, the risk is the

production of models that violate known domain relationships, resulting in models

that are confusing and nonsensical, which may ultimately lead to model rejection

by the user (Witten et al. 2016). The second major contribution of this thesis

is the incorporation of existing domain knowledge when algorithms (focusing on

CHAPTER 1. INTRODUCTION 4

ACO-based algorithms for the regression and ordinal classification tasks) create

models to extract new knowledge from the data.

One type of domain knowledge is monotonic constraints, which can be either

monotonically increasing or decreasing. In this thesis, monotonic constraints have

been implemented in two different ways. The first is soft monotonic constraints,

where a preference is shown for a model to be monotonic but, as this is only a

preference, they can be ignored if a model has a sufficiently high quality. The

second method implements hard monotonic constraints, where the enforcement

of monotonic relationships is rigid and no violations are tolerated in the models.

These two approaches have been combined into Ant-Miner-derived algorithms (in-

cluding the regression rule induction algorithms from the first contribution) for

both the classification and regression tasks. The soft constraints are enforced ini-

tially, this ensures that the search is not overly constrained, allowing a greater

exploration of the search space. The hard constraints are enforced later, once the

search space has been explored, to ensure the models produced are completely

monotonic. ACO algorithms are a good candidate for implementing soft con-

straints, as monotonicity is a global property of a model (a list of rules) and not

the property of a single rule, and the ability of ACO algorithms to allow interac-

tions between the different rules in a model allows the successful optimisation of

monotonic constraints.

1.1 Thesis Structure

The rest of this thesis will be structured as follows. First, background on the rel-

evant literature will be introduced in three chapters. In Chapter 2, the regression

and classification tasks in data mining will be introduced along with a number

of model representations, including rules and learning strategies to create lists of

rules. Chapter 3 will introduce the concept of prior domain knowledge and how

CHAPTER 1. INTRODUCTION 5

this can be encapsulated as monotonic constraints. The final background chapter

will introduce Ant Colony Optimization (ACO) before concentrating on existing

ACO-based algorithms that tackle classification problems.

Chapter 5 contains the first original contribution of this thesis, proposing new

ACO-based algorithms for the regression task, using different learning strategies

to produce lists of regression rules. The computational results of these algorithms

are presented in Chapter 6.

Next, monotonic rule lists are explored with the proposal of ACO-based al-

gorithms for both the regression and classification tasks that create monotonic

lists of rules, along with post-processing procedures that will rigidly enforce the

given constraints. This post-processing procedure can be applied to any exist-

ing data mining algorithm that produces a list of rules. Chapter 8 contains the

experimental analysis of the monotonic ACO algorithms introduced in Chapter 7.

Chapter 10 summarises the contributions presented earlier before drawing con-

clusions and suggestions for future directions that can be explored to build on the

work presented.

The last contribution from this thesis is in Chapter 9, which proposes a new

ACO algorithm that replaces the traditional combinatorial ACO construction

methodology with an ACO model construction technique aimed at optimising

both combinatorial and continuous problems. This allows the optimisation of rule

conditions involving continuous attributes by the pheromone model and dispenses

with the extra discretisation procedures required by combinatorial approaches.

1.2 Publications

A number of chapters in this thesis are based on my previous publications. These

publications are listed below along with a brief introduction and the chapters they

influenced.

CHAPTER 1. INTRODUCTION 6

• Brookhouse and Otero (2015), Discovering Regression Rules with Ant Colony

Optimization, In: Proceedings of the Genetic and Evolutionary Computa-

tion Conference Companion (GECCO’15 Companion) pp. 1005-1012 —

This paper introduced the original Ant-Miner-Reg algorithm with two dis-

cretisation strategies, comparing it to the original greedy Iterative Rule

Learning based algorithm SeCoReg. This paper is incorporated into Chap-

ters 5 and 6.

• Brookhouse and Otero (2016), Monotonicity in Ant Colony Classification

Algorithms, In: Proceedings of the 10th International Conference on Swarm

Intelligence (ANTS 2016) pp. 137-148 — Based on the implementation of

monotonic constraints to regression problems, the focus was expanded to in-

clude the classification task and incorporating constraints to the Pittsburgh

approach-based algorithm cAnt-MinerPB. This paper was incorporated into

Chapters 7 and 8.

• Brookhouse and Otero (2016), Using an Ant Colony Optimization Algorithm

for Monotonic Regression Rule Discovery, In: Proceedings of the Genetic

and Evolutionary Computation Conference (GECCO 2016) pp. 437-444 —

Ant-Miner-Reg was given the capability to discover monotonic rule lists with

the addition of soft constraints during the learning phase and a naive hard

constraint pruner. The paper was incorporated into Chapters 7 and 8.

• Brookhouse and Otero (2018), Post-Processing Methods to Enforce Mono-

tonic Constraints in Ant Colony Classification Algorithms, In: Proceedings

of the 2018 International Joint Conference on Neural Networks pp. 1-8

— The original cAnt-MinerPB+MC algorithm (Brookhouse and Otero 2016a)

used a simple backtrack pruner to enforce monotonic constraints. A pruning

suite was developed with three hard pruners to improve predictive accuracy,

CHAPTER 1. INTRODUCTION 7

reducing the negative impact on accuracy caused by hard constraint prun-

ing. Chapters 7 and 8 incorporate the algorithms and results published in

this paper.

• Helal, Brookhouse and Otero (2018), Archive-Based Pheromone Model for

Discovering Regression Rules with Ant Colony Optimization, In: Proceed-

ings of the 2018 IEEE Congress on Evolutionary Computation pp. 1-7—

Previously, we concentrated on traditional graph-based ACO algorithms,

which work well on combinatorial optimisation problems. However, ex-

tra discretisation steps are required for continuous attributes. Ant-Miner-

RegMA implements an archive pheromone model that attempts to address

continuous attributes and optimise rule conditions involving this type of at-

tribute within the pheromone model. The initial results are presented in

Appendix 9.

Chapter 2

Data Mining

Data mining is a research area focused on automating the search for useful patterns

in data (Fayyad, Piatetsky-Shapiro and Smith 1996). There are a number of

different tasks including: classification, regression, association rule mining, and

clustering. These task can be divided into two learning types, supervised learning

(e.g. classification and regression) and unsupervised learning (e.g. clustering and

association rule mining).

In a data-set, we often refer to instances and attributes. The instances rep-

resent entities (e.g. cars, patients, customers, etc), whilst attributes (also called

features) describe properties of the entities, e.g., a data-set of cars may have at-

tributes such as engine size, number of doors, or manufacturer.

In unsupervised learning the problems that are tackled involve unlabelled data-

sets and the algorithm is required to learn patterns with no explicit feedback on the

quality of the patterns learnt. One example of unsupervised learning is clustering,

where the aim is to create groups of similar of instances within the total data-set

based on a cluster cohesion metric such as the distance from the cluster centre

(Russell and Norvig 2016; Witten et al. 2016).

In the supervised learning task, the data-set is labelled, i.e., it has a known

target attribute. This is the attribute that we are trying to predict based on

8

CHAPTER 2. DATA MINING 9

the other (predictor) attributes present in the data-set. It is also common to

partition data-sets into training and testing data. The training data is a subset

of the complete data-set, where the value of the target attribute is known. This

set is used to learn relationships present in the data. Once a set of patterns has

been learnt, it can be tested on the second set. On the testing set we predict the

value of the target attribute and compare our predictions to the true value, which

is useful to assess the accuracy of our patterns.

Since in supervised learning the target attribute is known for a number of

training instances, the aim is to create a model from our labelled training data,

where the algorithm can use knowledge of its prediction and the true value of the

target to measure the quality of solutions it creates. The models produced can

then be used to make a prediction of the target attribute on unlabelled test data

(Russell and Norvig 2016). In this thesis, I will be concentrating on supervised

learning for both the regression and classification tasks.

In the rest of this chapter I will outline and describe the two main tasks

that will be tackled in my thesis. First, I will discuss the regression task, where

the aim is to predict a continuous value and the different model representations

that are commonly used. Then I will move to the classification task, where the

aim is to predict a categorical (nominal) value from a predetermined set of class

labels. Finally, I will discuss two different types of model representations and

corresponding algorithms that use these representations, namely rule and decision

tree induction algorithms.

2.1 Regression Task

The regression task involves the construction of models that produce real value

predictions for each instance they are given. The prediction of a desired target

value is made based on the values of predictor attributes (Fahrmeir et al. 2013).

CHAPTER 2. DATA MINING 10

Table 2.1: Simple house rental data set

Target Attribute Predictor Attributes
Rental Value Floor Area Location Garage

£300 45 3 No
£600 80 1 Yes
£250 33 3 No
£400 65 2 Yes
£350 54 2 Yes

The predictor attributes can be a combination of real, ordinal, and nominal

values. Real-valued attributes are continuous in nature and can take any numeric

value, e.g., the length of an object. Nominal attributes have a set of allowed values,

an example of a binary nominal attribute could be gender which can take the value

of male or female. Finally, we have ordinal attributes, which have qualities of both

real and nominal attributes. They still have a set of allowed categorical values

like nominal attributes. However, this set has a natural order, for example the set

(Small, Medium, Large) is an ordinal set of values.

Table 2.1 shows a simple data-set for house rentals. This data-set consists of a

continuous target (response) attribute, which in this case is the rental value of the

property, and three predictor (regressor) attributes. The first predictor attribute

is the floor area, a continuous (real) attribute that can take any numerical value.

The second attribute takes an ordinal value referring to the quality of the location,

where 1 is a good location, 2 average and 3 is poor. In this case, location quality

values have a natural order, which is the differential property between ordinal

and nominal attributes. For this reason, regression algorithms may treat the

two attribute types differently. Finally, the third attribute takes a nominal value

representing the presence/absence of a garage.

Considering the data set in Table 2.1, a regression model may predict that

CHAPTER 2. DATA MINING 11

a house with a floor area less than 50 in location 3 will have a rental value of

£275. Models have to be evaluated to assess how good they are, that is to say

the model’s quality. The better a model is, the closer it will get to predicting the

actual values found in the data set —this is referred to as the model’s quality. In

regression, the value predicted is rarely going to be exact, therefore a notion of

error is required. Common measures of prediction error in regression problems are

the mean absolute error and the root mean square error (Fahrmeir et al. 2013).

The mean absolute error is given by:

MAE =
∑n
i=1 |pi − ti|

n
(1)

where n is the number of instances and pi and ti are the predicted and true values

of the target variable respectively. The root mean square error is given by:

RMSE =
√∑n

i=1 (pi − ti)2

n
(2)

While the MAE is more intuitive due to being a simpler metric, the RMSE has

the advantage of penalising large errors. That is, RMSE uses the average of the

square of an error, so increasingly large errors in a prediction are heavily penalised

while a number of small errors in a prediction can receive a smaller penalty. On

the other hand, this makes the RMSE metric more sensitive to outliers or noisy

data than the MAE metric.

Typical regression problems include predicting house prices based on the size

of the living area, house location, number of bedrooms and bathrooms; predicting

the height of a child based upon the heights of their parents (Fahrmeir et al.

2013); boat aerodynamic performance based on hull shape and design; or CPU

performance based on architecture, clock speed and manufacturing techniques.

A number of different algorithms have been developed to construct regression

models. Table 2.2 lists a number of algorithms that will be discussed in this thesis

CHAPTER 2. DATA MINING 12

along with the model representation used by the algorithm. It should be noted

that Table 2.2 is not an exhaustive list of algorithms developed for the regression

task, but rather a flavour of the techniques available. For a discussion of other

regression algorithms please refer to Fahrmeir et al. (2013).

From the perspective of interpretability and comprehensibility, models are of-

ten categorised as either black-box or white-box models (Bibal and Frénay 2016).

A black-box model is one where the inputs and outputs of the model are known

however the internal workings of the model — that is to say how the model

reaches its prediction — are hidden from the user. White-box models, on the

other hand, allow users to see the inputs and outputs like black-box models but

also the decision process that has led to the output observed. Common white-

box models include regression rules and regression trees. However, even within

the broad group of white-box models, different models have varying degrees of

comprehensibility –that is how easy a model is to understand. One advantage of

regression rules is that it is simple to understand the decisions behind the model’s

predictions. They also only predict values from within the range of any training

data and will therefore remain well behaved — i.e., any value predicted must be

within the limits present in the training data set. Whereas linear and non-linear

models from classical multivariate statistics produce numeric equations, which

may be difficult to understand and can also predict values extrapolated beyond

the known training data (Montgomery, Peck and Vining 2012). Therefore they

are not guaranteed to be well behaved — i.e., values predicted outside the range

observed in the training data may quickly diverge from the true values, as no

notion of correctness was known for these areas when the model was constructed.

In addition, as the non-linearity of a model increases the risk of being less well

behaved outside the observed range of values.

C
H

A
PT

ER
2.

D
ATA

M
IN

IN
G

13

Table 2.2: A selection of existing regression algorithms classified by the type of model representation that they use. A
comprehensive review of regression models can be found in Fahrmeir et al. (2013)

Model Representation Algorithm Reference
Linear Models Simple Linear Regression Fahrmeir et al. (2013)
Non-Linear Models Support Vector Regression Wu et al. (2008)

Genetic Programming Augusto and Barbosa (2000); Uy et al. (2011)
Neural Networks Specht (1991)

Regression and Model Trees CART Breiman et al. (1984)
M5 Quinlan (1992)

Regression Rules SeCoReg Janssen and Fürnkranz (2010a)
M5’ Rules Holmes, Hall and Frank (1999)
PSOMiner Minnaert and Martens (2012)
GIBRG Liu and Cocea (2018)

CHAPTER 2. DATA MINING 14

It should be noted that it is possible to extract white box models like rules from

black box models like neural networks and support vector machines, as shown in

(Bologna and Hayashi 2018; Martens, Baesens and Van Gestel 2009). However,

this rule extraction process requires the a priori learning of a black box model

followed by the extraction procedure, which is usually a very time consuming

process. This approach is out of the scope of this work, instead this thesis focuses

on learning a white box model directly from the data.

2.1.1 Linear Regression

Linear regression attempts to find a function so that f(~xi) → yi for each i-th

instance, where ~xi are the predictor attribute values and yi is the target attribute

value for the i-th instance. A linear regression model is illustrated in Equation 3:

yi = β0 + β1xi1 + ...+ βjxij + ε (3)

where β0 is the intercept, βj are the linear coefficients for the predictor attributes,

j is the attribute number, xi1. . . xij are the predictor attribute values for the i-th

instance, yi is the target attribute; and finally, ε is the random error associated

with each measurement with an expected value of 0 and normal variance. While

this model looks restrictive, the predictor attributes themselves can be functions

chosen by the researcher to better fit the problem, e.g., x′ = 1
x
. This enables a

linear equation to fit non-linear data (Fahrmeir et al. 2013).

Simple linear regression computes the values of the intercept and the β1 . . .

βj coefficients by using a least squares regression method, where the aim is to

minimise the squared errors between the true target attribute values and the values

predicted by the linear model (Fahrmeir et al. 2013). Another linear regression

approximation algorithm is the Least Absolute Deviations (LAD). LAD attempts

CHAPTER 2. DATA MINING 15

to find the linear model that minimises the absolute error residuals, calculated as:

AE =
n∑
i=1
|yi − f(~xi)| (4)

where ~xi is the vector of input attribute values for the i-th instance, f(~xi) is

the proposed linear model and yi is the actual target value for the i-th instance

(Bloomfield and Steiger 1980).

2.1.2 Non-Linear Regression

The Support Vector Regression (SVR) algorithm is an extension of the original

Support Vector Machine (SVM) algorithm for classification (Wu et al. 2008; Vap-

nik 2013). SVMs model the training data-set in a high dimensional space. A

kernel function is used to map the data to a typically much higher dimensional

space, where finding a hyper-plane1 that separates the classes is typically easier

than in the original feature space. Then, the SVM algorithm finds the maximum

margin hyper-plane separating instances of different classes, i.e., a hyper-plane

that bisects the original space such that instances of the positive and negative

class are located on the opposite sides of that hyper-plane, and the plane has the

greatest margin between the classes (Wu et al. 2008; Vapnik 2013).

To extend this into regression problems the hyper-plane generated is required

to approximate the function represented in the training data. This is accomplished

by choosing an error measure that approaches zero as the difference between the

predicted value and actual value also approaches some ε specified by the user. The

problem then is simply to minimise the Lagrangian that contains information on

the residuals (Wu et al. 2008).

Genetic programming (GP) has also been used to generate symbolic regression

models (Augusto and Barbosa 2000; Uy et al. 2011). GP is an evolutionary
1A hyper-plane is a plane with one less dimension than the space it occupies.

CHAPTER 2. DATA MINING 16

technique that modifies a current solution population based on procedures inspired

from natural evolution (Koza 1994). In nature, evolution is driven by natural

selection and survival of the fittest, that is to say the best (fittest) individuals

in a population are the ones most likely to successfully reproduce, allowing their

genetic improvements to influence future generations. GP attempts to mimic

this process in the creation and evolution of solutions to computationally hard

problems. Hence, solutions are represented by individuals of the GP population

and the fitness function is given by the objective function to be optimised.

For symbolic regression, the models are internally represented as trees before

being flattened to create non-linear models. The two main procedures that allow

GP to create new solutions from current solutions are crossover and mutation.

Crossover requires the selection of two “parent” solutions from the population,

where the selection is based on fitness. Random positions in the solutions trees are

selected as crossover points, at which point the two sub-trees are swapped creating

two new solutions for the next generation. Mutation is the second commonly used

evolutionary procedure, where a current solution (again, selected based on fitness)

has a randomly selected sub-tree replaced by a new randomly generated sub-tree

(Augusto and Barbosa 2000; Uy et al. 2011). When some pre-specified stopping

criteria are met, the best (fittest) population member is chosen as the solution to

be returned.

Neural networks can also be used to create non-linear regression models. A

network is composed of a large number of simple processors (neurons) that are

interconnected with each other. Each neuron contains a function that modifies

its inputs to produce an output. These functions can be linear or non-linear,

allowing the construction of both types of models. Each neuron connection has

an associated weight to represent the strength of the connection. The weights are

adapted through the learning phase as the network attempts to approximate the

non-linear function that will map the predictor attributes to the target attribute

CHAPTER 2. DATA MINING 17

(Specht 1991).

2.1.3 Regression and Model Trees

Regression and Model Trees are tree-like structures that consist of connected

nodes (Barros et al. 2012). There are two main types of nodes. Internal nodes are

nodes that represent a decision point in a tree with a single input and at least two

outputs, and contain a logical test using the predictor attributes in a data-set.

The second node type are leaf nodes, these nodes are terminal nodes in a tree as

they have a single input and no outputs. These leaf nodes are also the nodes that

contain the predictions a tree can make.

Regression trees start at a root node, where a logical test is located. The

test is based on one of the predictor attributes. For each test outcome, there is

a branch that can be followed. The branches will lead to another internal node,

where another logical test using another predictor attribute is performed or to a

leaf node, representing a prediction. In order to classify an instance, that instance

is processed in a top down fashion starting with the root node until a leaf node is

encountered and a prediction made. The path followed by the instance from the

root node to a leaf node is determined by the outcome of the tests at each of the

internal nodes.

There are two types of trees for the regression task. Figure 2.1 contains ex-

amples of both types: Figure 2.1a shows a regression tree with internal nodes

representing different logical tests and leaf nodes representing single real-valued

predictions; the second tree variant is a model tree, shown in Figure 2.1b. Model

trees have a different leaf structure, where each leaf contains a linear model to

make different predictions depending on the values of the predictor attributes for

each data instance.

Regression trees produce comprehensible models (as long as a tree is not too

large), as trees provide an easy way to understand the decisions that were made to

CHAPTER 2. DATA MINING 18

att1

≥value1

~~

<value1

att2

=value2

}}

6=value2

!!

42

7 13

(a) Regression tree, with continuous predicted values on the leaf nodes

att1

≥value1

}}

<value1

""
att2

=value2

}}

6=value2

!!

β3 · att3 + β0

β3 · att3 + β0 β3 · att3 + β0

(b) Regression model tree with linear models on the leaf nodes.

Figure 2.1: Regression and Model Trees. Both trees use the same decision nodes
and branches, but they have different types of leaf nodes.

arrive at a prediction. This comprehensibility is diluted slightly when introducing

linear models into the leaf nodes of a tree, however they still maintain some

comprehensibility as the models are restricted to simple linear approximations.

The benefit of having linear models is the expansion of the variability of the

predictions a tree can make, as the linear models allow the tree to make small

adjustments to the final prediction.

CHAPTER 2. DATA MINING 19

IF att1 ≥ value1 AND att2 = value2 THEN 3.5

Figure 2.2: A Regression rule, containing logical tests in the antecedent and a real
valued prediction.

2.1.4 Regression Rules

A regression model can also be represented as a list of rules. Each regression rule

is composed by an antecedent, which corresponds to a list of logical statements

to be satisfied, and a consequent representing the value predicted. To classify an

instance, we can simply start from the first rule in a list and check if the antecedent

is satisfied; if so, return the prediction, otherwise move to the next rule in the list.

Figure 2.2 shows one possible format for regression rules, where the antecedent

takes the form of a sequence of (attribute, operator, value) tuples connected by a

logical AND statements.

In Figure 2.2 att1 and att2 are two predictor attributes. The value after the

THEN corresponds to the rule’s prediction (consequent of the rule). Regression

rules can create comprehensible models as users can quickly understand why a

prediction is made due to their simple logical nature, as long as the rules do not

have too many conditions and the list of rules is not too long.

2.2 Classification Task

The classification task is similar to the regression task, in the sense it uses a set of

predictor attributes. However, now the goal is to correctly classify instances from

a data-set into a list of classes that have been defined before hand.

Table 2.3 shows the data-set that was introduced in the previous section about

regression (Table 2.1), modified to a classification problem. While in Table 2.1

the rental value (target attribute) was a continuous attribute containing the price

in pounds, in Table 2.3 these values have been grouped and discretised into three

classes "Low" (Rental Value < 300), "Medium" (300 ≤ Rental Value < 400) and

CHAPTER 2. DATA MINING 20

Table 2.3: Modified house rental data-set for the classification task. The rental
price attribute has been discretised into low, medium and high.

Target Attribute Predictor Attributes
Rental Value Floor Area Location Garage

Medium 45 2 No
High 80 1 Yes
Low 33 3 No
High 65 2 Yes

Medium 54 2 Yes

"High" (400 ≤ Rental Value). The difference between the two tasks focuses on

the target attribute, in the classification task this attribute has a pre-defined set

of allowed values, while in the regression task it can be any continuous value.

We will concentrate on two specific types of classification models in this section:

classification trees and classification rules. These models share many features, as is

often the case that tree-based models are converted into rule-based ones (Quinlan

1993). However, this is usually a one way operation. In rules the antecedent of

each rule is specific to that rule, as while each logical test has two outcomes a single

rule is only concerned with one outcome and we cannot guarantee another rule

will cover the disregarded outcome. Rules also only predict based on the positive

satisfaction of the antecedent, while each internal node of a tree is associated with

two paths for the positive and negative outcomes of the test. When converting

trees to rules you can take the path from the root node to each leaf node and turn

the path into a rule.

2.2.1 Classification Trees

Classification (or decision) trees are tree-like structures, where each decision (in-

ternal) node represents a single logical condition on a particular attribute, each

CHAPTER 2. DATA MINING 21

Garage

No

zz

Y es

&&
FloorArea

>40

yy

≤40

$$

Prediction = High

Prediction = Medium Prediction = Low

Figure 2.3: A simple classification tree that can be used to make predictions on
the house rental data set shown in Table 2.3

branch represents a possible outcome of the test, and each leaf node makes a

single prediction from the set of allowed classes. Note that each instance will be

classified by exactly one leaf node (i.e., each instance follows exactly one path

from the root to a lead node). Figure 2.3 shows a decision tree that could be used

to make predictions on the data set shown in Table 2.3.

Table 2.4 shows how the tree in Figure 2.3 would classify the data-set. In

this case, the tree correctly made four correct predictions, however the right hand

branch of the first decision incorrectly predicted the fifth instance as “High” when

in fact the true value was “Medium”, giving this tree an accuracy of 80% (four

correct predictions from a total of five).

2.2.2 Classification Rules

Classification rules are similar to regression rules, following the same structure.

The antecedent consists of logical tests, which, if satisfied, will lead the rule to

make the prediction specified by the rule consequent. One possible rule represen-

tation can be seen in Figure 2.4, which is similar to the one for regression rules

shown in Figure 2.2.

If the rule shown in Figure 2.4 was applied to the sample classification data-set

CHAPTER 2. DATA MINING 22

Table 2.4: Prediction made by the classification tree found in Figure 2.3 on the
data-set from Table 2.3. The first column contains the predicted value while the
second contains the true value.

Target Attribute Predictor Attributes
Tree Prediction Rental Value Floor Area Location Garage

Medium Medium 45 2 No
High High 80 1 Yes
Low Low 33 3 No
High High 65 2 Yes
High Medium 54 2 Yes

IF F loorArea ≥ 40 AND Location = 2 THEN Medium

Figure 2.4: Example of a classification rule, where the predicted value is sampled
from a set of allowed values.

in Table 2.3, we find that the antecedent — the logical conditions — of the rule

is satisfied by instances 1, 4 and 5. It would then make the prediction that the

correct rental value would be “Medium”. When compared to the actual value found

in the data-set, we find that in two cases the rule was correct and in one case it

misclassified the instance, resulting in an accuracy of 66% on this data-set.

Multiple rules can then be combined together to create a rule list, allowing dif-

ferent predictions to be made depending on which rule of the list has its antecedent

satisfied first by the input instance.

2.3 Rule Learning Paradigms

In this section we will discuss three rule learning paradigms: Iterative Rule Learn-

ing (IRL), Michigan, and Pittsburgh. Both IRL (Mitchell 1997) and Michigan

CHAPTER 2. DATA MINING 23

Algorithm 2.1: Iterative Rule Learning high-level pseudo-code
Data: Instances
Result: RuleList

1 RuleList ←− ∅
2 while Stoping Criterion < Threshold do
3 Rule ←− LearnOneRule(Instances)
4 LocalSearch(Rule, Instances) // Optional
5 // Adds rule to list
6 RuleList ←− RuleList ∪ Rule
7 // Removes covered instances
8 Instances ←− Instances − Covered(Rule)
9 end

10 // Adds the default rule
11 RuleList ←− List ∪ RuleDefault
12 return RuleList

(Booker, Goldberg and Holland 1989) rule learning paradigms concentrate on op-

timising the construction of individual rules, reducing the task of creating a list

of rules into smaller problems of creating a single rule. The Pittsburgh paradigm,

on the other hand, considers the task of creating a complete list of rules as a

single problem, allowing the optimisation of rule interactions at the cost of a more

complex optimisation problem (Smith 1983).

2.3.1 Iterative Rule Learning

Iterative Rule Learning (IRL)—also known as sequential covering—is a rule learn-

ing paradigm that allows the construction of a list of rules. It creates a single rule

at a time, where each rule covers a subset of the training instances in a data-set.

Algorithm 2.1 presents the generic pseudo-code for an IRL algorithm.

The algorithm starts with an empty list of rules (line 1). Line 3 of Algorithm

2.1 contains the function LearnOneRule(Instances), which is responsible for

creating a single rule on the current set of instances. There are different strategies

for creating a single rule and this is usually the main point where IRL algorithms

CHAPTER 2. DATA MINING 24

differentiate. IRL algorithms can also differ in the evaluation function used to

guide the rule learning process (Minnaert et al. 2015). Regardless of the strategy

or rule evaluation function employed, the goal of this procedure is to create a good

(best) rule given the current set of training instances.

Once a rule is created, an optional local search step is usually implemented

to further refine the created rule. This involves making small changes to a rule’s

antecedent as long as the resulting antecedent improves the rule’s quality. The

rule is then added to the partial list of rules constructed so far and any instances

covered by the new rule are removed from the current set of instances (line 8).

The removal of covered instances encourages the algorithm to create rules that

cover different instances within the training data.

This process is repeated until the stopping criterion is met (line 3). This

criterion can take a number of different forms. It may be based on the quality

of the last rule constructed dropping below a set threshold. Another common

stopping criterion is the number of uncovered instances remaining in the training

set dropping below a set value.

Once the loop (lines 2-9) has ended, the default rule can be added to the rule

list. The default rule is normally a rule with an empty antecedent, such that

it will always make a prediction for every instance that is not covered by any

of the other rules in the list. This ensures that the rule list will always make a

prediction, as the default rule will always evaluate true for any instance. The

default rule’s prediction is set differently for classification and regression tasks. In

the former it is set as the most frequent class among the instances not covered

by any other rule, while in the regression task it is often set as the mean value of

these uncovered instances.

CHAPTER 2. DATA MINING 25

Algorithm 2.2: Michigan-based rule induction high-level pseudo-code
Data: Instances
Result: RuleList

1 RuleList ←− ∅
2 while Size(RuleList) < Max Rules do
3 Rule ←− LearnOneRule(Instances)
4 LocalSearch(Rule, Instances) // Optional
5 RuleList ←− RuleList ∪ Rule
6 end
7 // Perform Niching Operation to select rules for final list
8 RuleList ←− Niche(RuleList, Instances)
9 // Adds the default rule

10 RuleList ←− List ∪ RuleDefault
11 return RuleList

2.3.2 Michigan Rule Learning

In the Michigan paradigm, single rules are constructed in the same manner that

was previously discussed for IRL (Section 2.3.1). However, instead of removing

covered instances, multiple rules are created to compete for a place in the final

list of rules (Booker, Goldberg and Holland 1989; Booker 1982).

Algorithm 2.2 presents the pseudo-code for a Michigan-based rule learning

algorithm. The algorithm starts with an empty set of rules, and in each iteration

of the while loop (lines 2-6), it generates a single rule to add to this set. On line 3,

the same LearnOneRule(Instances) procedure from the earlier IRL pseudo-code

(Algorithm 2.1) is used to generate a single rule based on the current training

instances. The newly created rules are then added to the current set of rules.

At this point in the algorithm, there is not a list of rules representing a single

model, but in fact a collection of rules all learned from the same training set. As

their is no order to the rules, this is called a rule set. Once all the rules have

been generated based on a predetermined stopping criterion (line 2), a niching

step takes place.

The goal of the niching procedure (line 8) is to select the best rules from the

CHAPTER 2. DATA MINING 26

set it is given to construct a list of rules. This is usually achieved by forcing the

rules to compete for instances in the training set. First, the rule set is sorted by

rule quality to create a list of rules. Then the best rule can claim any uncovered

instances it covers, and at this point the instances covered by this rule are marked

as covered. This is repeated for all rules in the rule list. Once all rules have

claimed the instances that they can cover, rules that have covered at least one

instances are added to the final rule list, respecting the order that they appear in

the original (sorted by quality) list of rules. This new ordered list then has the

default rule added (line 10) (Booker, Goldberg and Holland 1989; Booker 1982;

Olmo, Romero and Ventura 2010).

2.3.3 Pittsburgh Rule Learning

The previous two rule induction paradigms concentrate on reducing the problem

of creating a list of rules into smaller problems of creating a single rule, relying

on a separate procedure to create a list. Pittsburgh-based rule induction algo-

rithms differ as they aim to create an entire rule list in one construction step.

Additionally, they concentrate on the quality of an entire rule list, often ignoring

the quality of individual rules (Smith 1983, 1980). This allows Pittsburgh-based

algorithms to optimise rule interactions during rule construction, which IRL and

Michigan-based algorithms cannot (Mitchell 1997; Freitas 2002). Rule interaction

occurs when the outcome of a rule affects the subsequent rules that can be created.

Algorithm 2.3 presents the pseudo-code for a generic Pittsburgh-based rule in-

duction algorithm. The algorithm starts with an empty list of rules and generates

an entire rule list in each iteration (lines 2-7). The LearnOneRule (Instances)

function present in the previous Algorithms 2.1 and 2.2 has been replaced by

a LearnRuleList(Instances) procedure (line 3 of Algorithm 2.3). Pittsburgh-

based algorithms are not interested in the quality of a single rule, therefore, quality

measures that evaluate an entire list are required. These new measures can then

CHAPTER 2. DATA MINING 27

Algorithm 2.3: High-level pseudo-code for a Pittsburgh-based rule in-
duction algorithm.
Data: Instances
Result: RuleList

1 RuleListbest ←− ∅
2 while Iterations < Max Iterations do
3 RuleList ←− LearnRuleList(Instances)
4 LocalSearch(RuleList, Instances) // Optional
5 if Quality(RuleList) > Quality(RuleListbest) then
6 RuleListbest ←− RuleList
7 end
8 end
9 return RuleListbst

be used to compare list qualities to find the best list (line 5).

2.3.4 Regression Rule Induction Algorithms

Regression rules are induced by many different algorithms. In this section I will in-

troduce a number of these algorithms. First, I will discuss the algorithm Separate-

and-conquer Regression (SeCoReg) (Janssen and Fürnkranz 2010a,b). SeCoReg

employs the commonly used sequential covering (IRL) strategy to construct a list

of rules, its high-level pseudo-code has been presented earlier in Algorithm 2.1.

In SeCoReg, the LearnOneRule(Instances) procedure is implemented by a

greedy search strategy to create regression rules. The strategy involves generating

a list of possible modifications to the current rule, where each modification is a

potential (attribute, operator, value) tuple. It then tentatively adds one modifi-

cation at a time to the current rule, searching for the modification that gives the

best quality of all the modifications. If the new rule generated by the addition of

a modification is better than the best-so-far rule, the new rule replaces the current

best rule. This process is repeated until there are no more modifications that can

be added. The consequent of a rule is obtained by calculating the mean value of

the target attributes among the training instances covered by that rule.

CHAPTER 2. DATA MINING 28

The rule quality is defined as the product of two measures (Janssen and

Fürnkranz 2010a,b), as follows. The first one is the Relative Root Mean Square

Error (RRMSE), given by:

LRRMSE = LRMSE√
1
n
Ldefault

(5)

where n is the total number of instances in the training set, LRMSE is the root

mean square error and LDefault is a normalising factor that will approximately

bound the RRMSE between 0 and 1. Both are defined as:

LRMSE =
√√√√ 1
n
·
n∑
i=1

(yi − ȳi)2 (6)

Ldefault =
n∑
i=1

(yi − y′)2 (7)

where yi is the value of the target attribute of the current instance i, ȳi is the

predicted target value of the current instance i, and finally, y′ is the mean target

value over all instances. RRSME attempts to normalise the RMSE between 0 and

1, however it is still possible to achieve values above 1 when the predicted values

are worse than predicting the mean value.

The second error measure is the relative coverage of a rule, which normalises

the absolute coverage of the rule between 0 and 1—a rule with a value of 1 covers

all the instances in the current training set. The relative coverage is given by:

relCov = 1
n
· coverage(Rule) (8)

where the coverage is the sum of all instances that satisfy a rule’s antecedent.

These two measures are combined to produce a single quality value Q for each

CHAPTER 2. DATA MINING 29

rule, given by:

Q = α · (1− LRRMSE) + (1− α) · relCov (9)

where α sets the weighting between RRSME and relative coverage. An α value of

1 will only take into account the RRSME and a value of 0 will consider just the

coverage.

A number of different algorithms also use the sequential covering strategy,

where each algorithm provides a different implementation for the LearnOneRule

(Instances) procedure. In this section I will be discussing two more sequential

covering algorithms that discover regression rules, namely M5’Rules (Holmes, Hall

and Frank 1999) and PSOminer (Minnaert and Martens 2012).

M5’Rules is a wrapper for the tree-based algorithm M5 (Quinlan 1992). M5’

Rules uses the sequential covering strategy to create a list of rules. It starts with

an empty rule list, and in each iteration, an entire regression tree is generated.

This tree is then flattened to produce a set of rules, where each path from the

tree’s root node to a leaf will become an individual rule. The best rule from

the set is added to the list of rules. The covered instances are then removed

from the training set and this process is repeated. As in M5, the prediction of

the rules created by M5’ Rules is made by a linear model, which compromise

the comprehensibility of the rules that are produced, as discussed previously in

Section 2.1.1.

PSOMiner is a Particle Swarm Optimisation (PSO)-based regression rule in-

duction algorithm (Minnaert and Martens 2012). PSOMiner uses a sequential

covering strategy to build a list of rules that covers the training instances, using

a PSO procedure to find high quality rules. In each covering iteration, the PSO

procedure generates a swarm of particles that move through the solution space,

where each position is a potential rule. Each particle repeatedly tests solutions

(candidate rules), where the direction followed by a particle in the solution space

CHAPTER 2. DATA MINING 30

is governed by the short term memory of the particle’s best solution and the best

solution generated by nearby particles. These effects cause particles to converge

to high quality regions in the solution space.

PSO algorithms traditionally operate on numeric attributes, however, PSOMiner

has the ability to deal with both numeric and categorical attributes by encoding

the attribute’s values to each particle in the following manner. All attributes are

encoded over a number of dimensions with the allowed value range of [0,1]. Nu-

meric attributes do not require split points like in M5’ Rules and SeCoReg, instead

they are mapped to two dimensions: the first dimension specifies the attribute’s

lower bound while the second encodes the upper bound of each attribute. To

allow unbounded attributes, for both lower and upper bounds independently, the

high and low values are reserved to signify the attribute is unbound. Categorical

attributes are encoded via dummy encoding, where a dimension is used for each

allowed value of the attribute in question. When determining which categorical

value to use, the categorical value associated with the dimension that has a value

closest to the maximum of 1. Null is set through an additional dimension, which

enables an attribute to be unused. PSOMiner is limited to generating a list of

rules which is constrained in size — in the experiments reported in (Minnaert and

Martens 2012), the rule lists were arbitrarily limited to 5 or 10 rules.

2.3.5 Classification Rule Algorithms

There are a number of algorithms that represent their learned model as classifi-

cation rules. In this section, I will discuss classical algorithms that are non-ACO-

based. ACO-based algorithms will be described in detail in section 4.5.

A classical classification rule induction algorithm is Quinlan’s C5.0 Rules

(Quinlan 1993, 1996)2. This algorithm first constructs an un-pruned classifica-

tion tree in the same manner as C5.0. The generated tree is then flattened into a
2C5.0 can be downloaded from https://www.rulequest.com/see5-info.html

CHAPTER 2. DATA MINING 31

rule list. A rule pruner is then applied to the rule list to generate the final model.

The delayed pruning (i.e., pruning the rules instead of the tree) allows for

different outcomes than pruning the original tree and then flattening the pruned

tree. When a tree is pruned, the decision to remove a node affects all subtrees

(branches) below it. As every branch has a partially shared logical test with the

other branches in the tree originating from the same node, any pruning has to

be considered with respect to all other affected sub-trees, reducing the number

of possible prunes and increasing the computational complexity of calculating the

effect of a prune.

However, with rule lists, each rule has its own set of logical conditions (an-

tecedent) and a modification of this set during pruning will not modify another

rule’s antecedent. This gives rule-based pruning strategies more options and in-

creased flexibility. As a result a rule set often cannot be converted back to a

classification tree, since branches may have been removed.

Another algorithm that generates a decision tree before extracting classifica-

tion rules is PART (Frank and Witten 1998). PART uses an IRL strategy to

produce a list of rules. First PART uses the C4.5 algorithm (Quinlan 1993) —a

previous version of C5.0— to generate a decision tree. Then a rule is extracted

from the tree based on the best leaf node and added to the partial list of rules. Any

covered examples in the training set are removed and the procedure is repeated

until a complete list of rules is generated.

Another classical rule induction algorithm is Cohen’s RIPPER (Cohen 1995).

RIPPER is based on an earlier algorithm IREP (Incremental Reduced Error Prun-

ing) (Fürnkranz and Widmer 1994). Unlike the previously discussed C5.0, RIP-

PER and by extension IREP do not generate an intermediate model but directly

create a list of rules.

RIPPER and IREP use the previously discussed IRL procedure to construct

a set of rules, where in each iteration a rule is grown to cover a subset of the

CHAPTER 2. DATA MINING 32

uncovered instances in the training data. This rule is then pruned and added to

the rule set. This process continues until the error on the last rule to be discovered

is above the algorithm’s stopping criterion, at which point the rule list is returned.

Rules are grown by repeatedly adding the (attribute,operator,value) tuple that

maximises FOIL’s information gain criterion (Quinlan 1990) until the rule covers

a set of instances that belong to a single class. This rule is then immediately

pruned, where the pruner maximises the rule quality function:

v(Rule, PrunePos, PruneNeg) = p+ (N − n)
P +N

(10)

where PrunePos and PruneNeg are the sets of instances coverd by the pruned

rule representing the positive and negative classes; P and N are the number of

instances in PrunePos and PruneNeg respectively. The pruner continues until no

improvement is found.

RIPPER contains a more complex pruning phase than IREP, allowing multi-

ple conditions to be removed from rules and modified stopping criteria, support

for numerical attributes, and also coping with missing attributes and multiple

classes, expanding the number of problems that could be tackled by the improved

algorithm.

Equation 10 will successfully prune a rule for a binary class problem. RIPPER

adds multi-class capabilities by grouping instances by class as C1, C2 . . . Ck (where

k is the number of classes in the data-set), and then ordering these groups by class

based on the frequency that each class appears in the data-set; C1 being the class

with the fewest number of instances and class Ck the one with the greatest number

of instances. RIPPER then uses the IREP learning processes to create a rule where

the positive class is set to C1 and all other classes become the negative class. This

is repeated until a single class remains, which is then used as the default rule

(Cohen 1995).

CHAPTER 2. DATA MINING 33

2.4 Decision Tree Induction

Decision trees use a divide-and-conquer approach to their construction. Starting

from the root node, child internal nodes are recursively created to partition the

training data into different sets. This divide-and-conquer strategy is analogous to

the IRL strategy commonly used in rule induction, in the sense that it reduces

the problem of creating a tree to smaller problems of selecting an attribute to

create an internal node to partition the data. Algorithms that generate decision

trees have been developed for both the regression and classification tasks and are

discussed in the following sections.

2.4.1 Regression Tree Induction Algorithms

A classical regression tree algorithm is Classification and Regression Trees (CART)

(Breiman et al. 1984). CART creates binary partition trees, where each node

contains a logical condition that evaluates to either a true or false value. If the

condition holds, the left branch is taken; otherwise, the right branch is taken upon

failure. CART is also able to use nominal and continuous attributes as targets

during tree construction, allowing the creation of classification or regression mod-

els, respectively. The trees are grown until no further improvement can be made.

When constructing regression trees, CART selects attributes for internal nodes

using either Least Squares or Least Absolute Deviation (LAD). LAD is the min-

imisation of the sum of absolute errors (Equation 4) in each of the branches. Once

a complete tree is produced it undergoes pruning based upon the cost complexity

measure:

Ra(T) = R(T) + a|T | (11)

where R(T) is the cost on the training sample, |T | is the total number of leaf

nodes, and a is the complexity bias (if a = 0 then larger trees take preference).

CHAPTER 2. DATA MINING 34

As a is increased, the trees will become smaller as the least helpful branches will

be pruned; a can be increased between 0 and the maximum value required to

prune all splits, and can be tuned by a user to limit or increase the size of the

produced pruned tree. Pruning produces a number of variations of the original

un-pruned tree. The tree that has the lowest cost is chosen as the optimal tree

(Wu et al. 2008).

The second regression tree algorithm, called M5, solves regression problems

by creating model trees. Model trees are regression trees, where the leaf nodes

contain a linear model that can be used to produce a prediction, instead of a

predicting a single value (Frank et al. 1998). Figure 2.1b shows an example of a

simple model tree.

Model trees are grown from the root node with attributes chosen using the

standard deviation split point generation method. This method attempts to max-

imise the expected reduction in the error of the target value in a subset of in-

stances. The expected error reduction is given by:

∆error = σ(T)−
∑
i

|Ti|
|T |
· σ(Ti) (12)

where T is the entire set of training instances, Ti is the i-th subset of instances

associated with the i-th branch coming out from a tree node and σ(T) is the

standard deviation of the target value of a (sub-)set. To find the optimal split

point p for a continuous attribute attc, the current covered instances are scanned

from beginning to end (the entire instance set is scanned if a continuous attribute

is the attribute selected to be added as the root of a tree). Each split point

generates two candidate instance sub-sets T : one subset containing instances that

satisfy the condition attc < p and another containing instances that satisfy the

condition attc ≥ p.

For nominal attributes, this methodology is modified so that the algorithm

evaluates all combinations of values that produce two non-empty sets of training

CHAPTER 2. DATA MINING 35

instances. The binary partition that gives the best predicted reduction in error is

chosen.

Once a tree is grown and each branch is terminated by a leaf node containing

a prediction, a pruning step is undertaken. The pruning step replaces internal

nodes with leaf nodes (linear models). Starting from a leaf node, the algorithm

moves up the tree to the next internal node. A linear model is then generated

and placed at the internal node. If the quality of the model tree is improved

the sub-tree is pruned, i.e., the linear model replaces the internal node and the

sub-tree. This process continues until the accuracy of a branch is not improved by

the linear model. The linear model produced by M5 is not a model that uses all

the available attributes, but is simplified to only use the attributes present in the

sub-tree that will potentially be pruned. In the example tree in Figure 2.1b, the

linear models on each of the branch nodes will have replaced a split on attribute

3.

The authors of M5 note that while typical regression trees cannot give pre-

dictions outside of the current data-set, model trees can be extrapolated with

possible undesired consequences if the model created is using training data that

does not represent the test data or a model is used to make predictions on an

area outside of the training data (Quinlan 1992). The addition of linear models

does reduce the comprehensibility of the entire model as users must interpret the

decisions made by the linear models in order to understand the predictions.

2.4.2 Classification Tree Induction Algorithms

C5.0 (see5), like its predecessors (C4.5 and ID3), is a well-known classification

algorithm that produces tree models (Quinlan 1993, 1996; Wu et al. 2008) 3. C5.0

uses the entropy of the class distribution (a concept from information theory) to

identify good splits for internal nodes by calculating the information gain ratio
3C5.0 can be downloaded from https://www.rulequest.com/see5-info.html

CHAPTER 2. DATA MINING 36

(Equation 16) of attributes in the training data. A leaf node is then created if a

branch only contains training instances belonging to a single class, or if all possible

splits result in the same distribution of the classes and therefore the information

gain is 0. When creating a leaf node, the most frequently observed class (majority

class) is chosen as the class predicted by that node.

The information gain and gain ratio are calculated as follows. First, the con-

cept of information, based on the entropy of the class distribution, is defined as:

Info(T) = −
c∑
i=1

freq(Ci, T)
|T |

× log2(freq(Ci, T)
|T |

) (13)

where T is the set of training instances at the current tree node, Ci is one of the

c target classes and freq(Ci, S) is the frequency of class i in the instance set T .

We can then define the entropy gain for a particular attribute S as:

Gain(T,A) = Info(T)−
n∑
j=1

|Tj|
|T |
× Info(Tj) (14)

where A is the attribute being tested, n is the number of outcomes (values) of the

logical test using attribute A and Tj is the subset of training instances that has

value j for attribute A. Simply, this calculates the information gain that would

be achieved if this attribute was used as an internal node (with the corresponding

logical test) based on the known class frequencies for each of the allowed values for

attribute A. The gain can then be combined with the attribute split information,

which is defined as:

SplitInfo(A) = −
n∑
j=1

|Tj|
|T |
× log2(|Tj|

|T |
) (15)

Split information is required as attributes with many values will naturally pro-

duce higher gains than those with fewer, and to mitigate this tendency, the split

information acts as a normalising factor across attributes. The gain and split

CHAPTER 2. DATA MINING 37

information are then combined to calculate the gain ratio as:

GainRatio(T,A) = Gain(T,A)
SplitInfo(A) (16)

The gain ratio can then be used to measure and rank all the attributes in the

data-set and the attribute with the highest gain ratio4 will be used to generate

a new internal node and split the set of instances at the current node. The

divide-and-conquer process is repeated for each generated instance sub-set until

the stopping criteria are met and leaf nodes are generated.

2.5 Discussion of Model Representation for

Regression and Classification Tasks

SVRs and symbolic GPs produce models that are much less comprehensive than

other algorithms that produce Decision Trees and Regression and Classification

Rules. The non-linear models produced by SVRs and GPs are algebraic expres-

sions, which contain terms for each predictor attribute. The user is required to

understand how these expressions will interact with each other as different test

input instances are presented to the algorithms for prediction.

On the other hand, both regression and classification rules and decision trees

have simple logical tests directly based on the original predictor attributes (with-

out applying non-linear transformations to those attributes), and when a conjunc-

tion of such tests are satisfied, this directly leads to a prediction. For trees, the

path from the root node can be easily followed, and when examining rule lists,

the antecedent of the satisfied rule can be inspected as a series of simple logical

tests.
4The attribute information gain must also be equal or higher than the average information

gain over all attributes, in order to prevent the choice of an attribute which has a high gain
ratio just because its split info is very small.

CHAPTER 2. DATA MINING 38

The four types of regression models discussed here have a number of advan-

tages and disadvantages. The non-linear models produced by SVRs produce very

good models with low prediction error rates, however their complexity decreases

their comprehensibility. Comprehensibility is important when models are pre-

sented to experts as they can easily verify the models against the existing domain

knowledge, creating trust in models and improving acceptance. M5 combines

the comprehensibility of decision trees with the expressiveness of linear models.

The linear models produced are simpler than conventional linear models due to

the restriction in available attributes, as the linear model is only allowed to use

attributes that have been previously pruned from a sub-tree.

Regression rules provide such a simple and comprehensible structure, combined

with the ability for rules to be pruned at the individual level. This is in contrast

to regression trees, where pruning affects multiple leaf nodes at the same time

reducing the number of predictions that a model can make. Given the advantages

and flexibility of regression rules, this is the model chosen for conducting the

research.

Chapter 3

Domain Knowledge and

Monotonic Constraints

Domain knowledge represents prior knowledge about the data at hand. It is

usually provided by “human” experts (domain experts) based on their knowledge

of the field. However, it could also be provided by previous machine learning

algorithms that have extracted knowledge from the data or an inspection of the

data-set. It is rare to find a domain that is untouched, where nothing is known a

priori.

Many have identified the importance of domain knowledge, including Witten

et al. (2016), who state: “Knowledge of the domain is absolutely essential for

success.”. Witten et al. (2016) classify domain knowledge into three kinds of re-

lationships: semantic, causal and functional. Semantic relationships are those

that encapsulate relationships, where if one attribute is included then another

must be as well and to include one without the other is nonsensical. Causal

relationships occur when one attribute causes a second, creating chains of con-

nected attributes. Finally, functional relationships are seen as the values of one

attribute determine the values of the second. Without knowledge of functional

relationships the construction of tautologies is possible, when these relationships

39

CHAPTER 3. DOMAIN KNOWLEDGE & MONOTONIC CONSTRAINTS 40

are re-discovered during an automatic learning phase.

Frawley, Piatetsky-Shapiro and Matheus (1992) state that discovering new

knowledge is computationally expensive. Domain context and additional knowl-

edge about the data is useful to guide a focused search, potentially reducing the

complexity of the task. However, they also acknowledge that adding domain

knowledge into a search can restrict the search by telling it what to look for and

where to look for it, leading to a restriction of the search space and the missing of

valuable discoveries. These concerns show that any domain knowledge given to an

algorithm has to be carefully constructed and considered, so that a search is not

overly constrained and can find valuable additional knowledge. The correctness of

domain knowledge is also important, as incorrect patterns will disrupt the ability

for machine learning algorithms to find good models.

As an example of the difficulty of using domain knowledge, when using machine

learning techniques to detect oil spills in satellite data, Kubat, Holte and Matwin

(1998) used domain experts to identify and manually construct features using

their domain knowledge. This was only partially successful as they acknowledged

that the features that the domain experts expected to be useful were not. They

hypothesised that if they had explicitly encapsulated the domain knowledge and

used this to guide the machine learning algorithms, this additional knowledge

would allow more useful features to be identified.

Semantic constraints provide a mechanism to incorporate existing domain

knowledge into the construction of new models. In this chapter, I will present

and discuss existing work in the literature relating to domain knowledge and,

more specifically, monotonicity.

One example of existing knowledge that could be incorporated into the con-

struction of models can be illustrated in house rental prices data. When you

consider house rent, the price can depend on many features, such as the location

CHAPTER 3. DOMAIN KNOWLEDGE & MONOTONIC CONSTRAINTS 41

Table 3.1: House rental data set with monotonic relationships. As the Floor Area
value increases, so does the Rental Value.

Target Attribute Predictor Attributes
Rental Value Floor Area Location

£300 45 2
£600 80 1
£250 33 3
£400 65 2
£450 70 1
£350 54 2

and floor area. Table 3.1 shows a simple hypothetical data-set. An obvious rela-

tionship in this data-set is that, as the floor area increases so does the rental price

for all possible pairs.

Another example of existing knowledge could be the decreasing fuel efficiency

of automotive engines as the number of cylinders increases, due to additional

friction losses attributed to the extra pistons. A model that does not conserve

these patterns would seem counter intuitive and may lead to model rejection by

domain experts. For example, Hoover and Perez (2000) state that the economic

field distrusts data mining as a technique to search for models due to the discovery

of accidental correlations. They say “Data mining is considered reprehensible

largely because the world is full of accidental correlations, so that what a search

turns up is thought to be more a reflection of what we want to find than what is

true about the world.” (Hoover and Perez 2000). Semantic constraints provide a

method for guiding searches by providing information on real correlations present

within the data.

There are many different possible monotonic constraints —Martens and Bae-

sens (2010) presented a taxonomy of such constraints. This taxonomy can be seen

CHAPTER 3. DOMAIN KNOWLEDGE & MONOTONIC CONSTRAINTS 42

Constraint

|| $$
Univariate

}} ""

Multivariate

Nominal Ordinal

|| $$
Monotone Non-monotone

{{ $$
Piecewise
Monotone

Non-piecewise
monotone

Figure 3.1: Taxonomy of constraints. Constraints can exist in soft and hard
variants. Uni-variate Ordinal Monotone constraints are the most common found
in the literature (Martens and Baesens 2010) .

in Figure 3.1, where the constraints featuring in the taxonomy can be implemented

in either hard or soft variants. Hard constraints are enforced rigidly, guaranteeing

compliance in the final model, while soft constraints bias a preference towards

compliance but will not enforce them if model quality would be badly affected.

So far, the literature has focused on implementing monotonic constraints when

tackling the classification task, since many real-world problems contain monotonic

properties such as house prices, customer credit ratings (Ben-David, Sterling and

Tran 2009). Monotonicity is found in many different fields, including house prices,

medicine, finance and law.

3.1 Monotonicity

Taking the first example of house prices, it is expected that as the total floor

area of a property increases the value of the property will also increase. This

CHAPTER 3. DOMAIN KNOWLEDGE & MONOTONIC CONSTRAINTS 43

is illustrated in the example data shown in Table 3.1, where the rental value is

always monotonically increasing with respect to the floor area. From the rental

price data set shown in Table 3.1, we could extract the rules:

IF floor area ≤ 65 THEN rental value = 325 ELSE

IF floor area ≥ 65 AND location = 1 THEN rental value = 525

where we can see that the rules have a monotonic relationship between floor area

and rental price with respect to each another, as no prediction can be made

where the floor area decreases and the price would increase. Incidentally, the

model is also monotonic w.r.t. location, as the second rule does not constrain

this attribute. However, this may allow the prediction of values that are non-

monotonic w.r.t. each other when considering all the values in the instances being

compared. While this example is of a regression problem where the prediction is

a real value, monotonic features can also exist in ordinal classification problems

where there is a natural order present to the classes for example the classes Small,

Medium, Large have an order.

Many data mining algorithms do not enforce monotonic constraints when

constructing models and still produce good models. However, if models violate

these constraints they may not be accepted by experts as valid —conforming to

monotonicity constraints improves model acceptance (Feelders and Pardoel 2003;

Duivesteijn and Feelders 2008).

Monotonicity can be defined formally in the following manner. Let X = X1 ×

X2 × · · · × Xi be the instance space of i attributes, Y be the target space, and

f : X → Y is the function that maps the attributes to the targets. It is also

assumed that both the instance space and the target space have an ordering. A

function can then be considered monotonic if one of the following two equations

hold:

∀~x, ~x′ ∈ X : ~x ≤ ~x′ =⇒ f(~x) ≤ f(~x′) (17)

CHAPTER 3. DOMAIN KNOWLEDGE & MONOTONIC CONSTRAINTS 44

∀~x, ~x′ ∈ X : ~x ≤ ~x′ =⇒ f(~x) ≥ f(~x′) (18)

where ~x and ~x′ are two attribute vectors (instances) in instance space, ~x =

(x1, x2, · · · , xi) where i is the number of attributes in the training set (Potharst,

Ben-David and van Wezel 2009). In other words, f(~x) is monotonic if and only

if all the pairs of instances ~x, ~x′ are monotonic with respect to each other. Two

equations are required to encapsulate monotonic relationships as a relationship

can be either monotonically increasing, where as ~x increases so must f(~x), or

monotonically decreasing relationships, where as ~x increases f(~x) decreases.

Monotonicity constraints can be enforced in a number of different stages in

the data mining process. Firstly, in the pre-processing stage where the training

data is manipulated so that it becomes monotonic in nature. Secondly, in the

model construction stage, where models are constructed in a monotonic fashion.

Finally, constraints could be enforced in a post-processing stage, which modifies

constructed models so that they are monotonic. Table 3.2 presents previous work,

identified in the literature review, categorized into these categories. To the best of

our knowledge in the literature algorithms that incorporate monotonic constraints

only enforce these constraints in a single phase.

Constraints can be implemented as hard or soft variants. Hard constraints are

enforced rigidly, so that the algorithm rejects any model or change to a model

that would cause a violation to occur. This method can cause the rejection of

good models due to small violations in their monotonicity. The second method,

enforcing soft constraints, aim to balance the monotonicity of a model against

other model quality measures —mainly predictive accuracy.

C
H

A
PT

ER
3.

D
O

M
A

IN
K

N
O

W
LED

G
E

&
M

O
N

O
T

O
N

IC
C

O
N

ST
R

A
IN

T
S
45

Table 3.2: Previous works enforcing monotonicity constraints, categorised by their enforcement stage.

Enforcement Stage Algorithm Names Reference
Pre-Processing Relabelling data to ensure monotonicity Daniels and Velikova (2006)
Model Construction MID (ID3 with Monotonic Constraints) Ben-David (1995)

Ordinal Learning Model Ben-David, Sterling and Tran (2009)
Mk-NN Duivesteijn and Feelders (2008)
Fused Monotonic Decision Trees Qian et al. (2015)
Ordinal Stochastic Dominance Learner Lievens, De Baets and Cao-Van (2008)
MID-RF González, Herrera and García (2015)
MC-SVM Chen and Li (2014)
ORNN(ELM) Fernández-Navarro, Riccardi and Carloni (2014)
AntMiner+ with Constraints Martens et al. (2006a)

Post-Processing Decision Trees with Monotonic pruning Feelders and Pardoel (2003)
Isotonic Classification Trees (ICT) Van De Kamp, Feelders and Barile (2009)
RULEM Verbeke, Martens and Baesens (2017)

CHAPTER 3. DOMAIN KNOWLEDGE & MONOTONIC CONSTRAINTS 46

3.1.1 Non-Monotonicity Index

Some models and domains have varying degrees of monotonic features, with some

domains being more monotonically noisy than others. One measure of the amount

of non-monotonicity is the Non-Monotonicity Index (NMI) (Ben-David 1995),

given by:

NMI =
∑k
i=1

∑k
j=1 mij

k2 − k
, (19)

where mij is 1 if the pair of i-th and j-th objects violate the monotonic constraint

and 0 otherwise and k is the number of objects. Ben-David (1995) used the NMI

to calculate the degree of violations in a decision tree, where each of the objects

were comprised of both a leaf node and the decisions made when traversing the

tree from the root note to the leaf node. However, this can be applied to other

models and even entire data-sets.

When applying it to a data-set, each instance becomes an object and each

pair of instances can be compared to look for a violation between an independent

(predictor) attribute and the dependent (target) attribute. A systematic search

of all the independent attributes can be performed to identify good constraint

candidates if domain experts cannot be relied upon or to verify the decisions

made by domain experts.

3.1.2 Enforcing Constraints in the Pre-Processing Stage

Implementing constraints as a pre-processing step involves manipulating the train-

ing data to remove any violation of monotonic constraints found within the train-

ing data. Duivesteijn and Feelders (2008) approached the problem with the objec-

tive to re-label the training data to ensure it was monotonic with as few changes

as possible. This is achieved by creating a Monotonic Violations Graph (MVG),

where they can compute the minimum number of relabels required to create a

CHAPTER 3. DOMAIN KNOWLEDGE & MONOTONIC CONSTRAINTS 47

monotonic training set. This can be achieved in time complexity O(k3) where k

is the number of instances. While this time is cubic, the authors note that in

practice it is generally quick as most points will not be connected in the MVG as

they will not be involved in any of the constraint violations. This will be true if

the violations are caused by random noise and not a systematic trend.

One disadvantage of using the pre-processing stage to enforce monotonic con-

straints is that there are no guarantees the resulting model produced by the

learning algorithm during the construction stage will be monotonic. Enforcing

constraints at later stages, including construction and post-processing, will guar-

antee that a model is monotonic. The advantage of using the pre-processing stage

to apply constraints is that any subsequent learning algorithm can be used to cre-

ate the final model with the aim that more monotonic models will be generated.

3.1.3 Enforcing Constraints in the Model Construction

Stage

Enforcement of constraints during model construction involves modifying the

learning process to be aware of monotonic constraints. Depending on the type of

constraint, this might mean suggesting a preference to more monotonic solutions,

in the case of soft constraints. On the other hand, we have to prevent violations be-

ing introduced by the learning algorithm, if hard constraints are being enforced.

Enforcing constraints during model construction allows both monotonicity and

model quality to be optimised together.

Soft constraints have been implemented in the model construction stage of

decision trees by Ben-David (1995), with the introduction of the decision tree al-

gorithm MID. The approach attempts to minimise the value of the non-monotonic

index of each decision tree produced. The index is the ratio between the number

of non-monotonic leaf node pairs and the maximum number of pairs that could

have been non-monotonic. First a non-monotonicity matrix m is constructed,

CHAPTER 3. DOMAIN KNOWLEDGE & MONOTONIC CONSTRAINTS 48

which has dimensions k (the number of leaf nodes in the tree). This matrix is

used to find the number of violations in the current tree, given by:

W =
k∑
i=1

k∑
j=1

mij

mij =

 1 if i, j is non-monotonic

0 otherwise

(20)

where i and j denote the current cell being referenced in the matrix m. W can

then be used to find a tree’s non-monotonicity index, given by:

Ia1...av = Wa1...av

k2
a1...av

− ka1...av

(21)

where a1...av are the attributes being constrained and ka1...av are the number of

leaf nodes that have an ancestor node that uses one of the constrained attributes

as a internal decision node. The Ia1...av index can be converted to an ambiguity

score A and then incorporated with a tree accuracy score T , given by:

Aa1...av =

 0 if Ia1..av = 0

−(log2(Ia1...av))−1 otherwise
(22)

Ta1...av = Ea1...av +RAa1...av (23)

where Ea1...av is the accuracy associated with the constrained tree, R is the impor-

tance (weight) given to the monotonicity of trees produced. It should be noted

that an entropy-based accuracy method was used in this example, which is a

logarithmic function, hence the ambiguity value is also made logarithmic. This

modification is performed to ensure that both measures used to calculate the total

T scale at the same rate without one dominating unduly. If the error measure E

CHAPTER 3. DOMAIN KNOWLEDGE & MONOTONIC CONSTRAINTS 49

is altered then care should be taken to modify A based on the new scale to en-

sure the algorithm remains well-behaved. It was found that this method of using a

combined measure produced fewer models that breached monotonicity constraints

while not significantly degrading the accuracy of the trees generated (Ben-David

1995).

Ben-David, Sterling and Tran (2009) also investigated the effects of mono-

tonicity constraints on ordinal classifiers, with the conjecture that adding mono-

tonicity constraints to learning algorithms will impair their predictive accuracy

against those that do not. Ordinal classifiers are classifiers that are aware that

there is an order to discrete categories, e.g., credit rating may have the categories

“poor”, “acceptable” and “good” which have an obvious order.

The results presented contain two unexpected results. First, the authors

found that ordinal classifiers did not significantly improve over non-ordinal clas-

sifiers. Secondly, the monotonicity algorithms Ordinal Learning Model (OLM)

(Ben-David, Sterling and Pao 1989) and Ordinal Stochastic Dominance Learner

(OSDL) (Cao-Van 2003; Lievens, De Baets and Cao-Van 2008) were not able to

significantly outperform a majority-based classifier, which trivially predicts the

most frequent class in the training set for all new instances in the test set. It is

theorised that these results were due to noisy data sets: the monotonic classifiers

enforced hard constraints, in the presence of noisy data a softer approach may

lead to better results (Ben-David, Sterling and Tran 2009).

Qian et al. (2015) have explored the possibility of fusing monotonic decision

trees to improve the predictive accuracy of the final model. This is achieved by

reducing the original data set to create data sub-sets that will naturally maintain

the original data-set’s monotonicity, as a monotonicity is preserved in sub-sets

of monotonic data. From these new reduced data sub-sets, monotonic trees can

be constructed. Each leaf node of a decision tree then contain probabilities of

the correctness of the prediction based on the reduced training set. When a

CHAPTER 3. DOMAIN KNOWLEDGE & MONOTONIC CONSTRAINTS 50

prediction is required, the probabilities at each leaf nodes are averaged with the

highest average being the class predicted by the model. The authors compared

the predictive accuracy of the fused monotonic trees (each constructed on a data

sub-set) to a single tree which had access to the entire data-set and found an

improved accuracy across all 10 of the tested data-sets.

González, Herrera and García (2015) introduced MID-RF, a random forest en-

semble algorithm that implements soft monotonic constraints. These constraints

aim to influence the monotonic nature of the ensemble produced, and at the same

time, to not require all trees produced to be completely monotonic. MID-RF uses

the previously discussed MID algorithm to create each tree in the ensemble, where

each MID tree is constructed using a random sample of the training data-set and

a random selection of attributes. The constructed trees are then ordered by NMI

score, with the top p trees —those with the lowest NMI score— retained as part

of the ensemble. The parameter p is used to increase or decrease the ensemble

size.

Chen and Li (2014) have implemented a monotonically-aware SVM for credit

checking, where the goal of the algorithm is to classify individuals as good or

bad credit risks. This is achieved by constructing constraints from the training

data-set and adding the constraints into the SVM model so that the hyper-planes

constructed will obey the given constraints. When testing against the original

SVM, MC-SVM produced models with statistically significant increases in pre-

dictive performance on the two credit check data-sets being tested, along with an

increase in the monotonicity of the results. However, as the number of constraints

identified and provided to the algorithm grew, so did the algorithm execution

time.

3.1.4 Enforcing Constraints in the Post-Processing Stage

Feelders and Pardoel (2003) have suggested that using non-monotonic criteria

CHAPTER 3. DOMAIN KNOWLEDGE & MONOTONIC CONSTRAINTS 51

in tree construction is not beneficial as splits later in the construction process

can transform a tree from a state of non-monotonicity to one that is. Therefore

pruning methods have been developed to perform the minimal number of changes

to make a tree monotonic in a post-processing phase (Feelders and Pardoel 2003).

The first method proposed is the Most Non-monotone Parent (MNP) method,

which aims to prune the node whose removal will remove the most number of

existing non-monotonic pairs of leaf nodes. This method has the disadvantage of

possibly creating new non-monotonic pairs. The second method proposed is the

best fix method, which prunes the node that gives the biggest reduction in non-

monotonicity —based on the NMI calculation found in Equation 19. The authors

have also combined these pruning methods with existing complexity-based pruning

methods and found that the monotonic trees produced no significant difference in

performance compared to trees produced without monotonic pruning. However,

it was observed that the trees produced by the algorithms that considered the

tree’s monotonicity were smaller, which aids the comprehensibility of the models.

Van De Kamp, Feelders and Barile (2009) introduced a new post-processing

technique, that, given any non-monotonic classification tree, can re-label the leaf

nodes of the tree and create a monotonic one. The Isotonic Classification Tree

(ICT) technique can therefore be applied as a post-processing step to any algo-

rithm that creates decision trees for the classification task. ICT evaluates each

leaf in the non-monotonic tree and identifies the non-monotonic pairs. At this

point, isotonic regression is used to find the re-labelling of leaf nodes that enforces

monotonicity constraints and produces the smallest increase in error on the train-

ing data-set. Once all pairs have been re-labelled, the tree is pruned by merging

any branch (sub-tree) that evaluates to a leaf node which will make the same

prediction. This procedure is repeated until the tree is found to be monotonic.

The ICT technique was tested on both noisy monotonic data-sets and data-sets

that had been re-labelled to ensure the monotonicity of the data. On the noisy

CHAPTER 3. DOMAIN KNOWLEDGE & MONOTONIC CONSTRAINTS 52

data-sets, it was shown that ICT trees performed better. On re-labelled data-sets,

there was no difference in predictive performance. However, a reduction in the

size of trees produced by ICT was found compared to standard decision trees,

providing simplified models.

Verbeke, Martens and Baesens (2017) introduced a new algorithm, called

RULEM, that tackles the monotonic problem in a different way. While still a

post-processing technique, RULEM adds additional rules to a rule list to force

monotonic behaviour. One advantage of RULEM is that any learning algorithm

that produces a model, which can be transformed into a list of rules, can be fixed

and made monotonic by the algorithm.

RULEM fixes rule lists by adding new rules to fix any non-monotonic areas

created by the rule list. RULEM first creates an n-dimensional matrix, where n

is the number of attributes in the solution space. Rules from the original rule list

are then added to this solution space, claiming the regions that they cover and

declaring the prediction they would make. Any non-monotonic regions can then

be identified by a decreasing or increasing prediction along the dimension of any

constrained attributes. Rules are then iteratively generated to fix the identified

non-monotonic regions with respect to the existing rules. Finally, these rules are

compacted to reduce the number of rules added. Compaction is needed as RULEM

creates a rule for each cell in the matrix. After all rules are created, these rules can

be replaced with ones that cover whole areas of the matrix. The new compacted

rules are then added to the top of the rule list to ensure they create a monotonic

rule list. The top is the only place that ensures a monotonic list, as in an ordered

list the first rule that covers an instance makes a prediction. Therefore, being at

the top of the list ensures the added rules will make a prediction before the rule

that would result in a violation.

One disadvantage of an additive post-processing technique such as RULEM

is the risk that the additional rules will over-fit the data and bloat the model.

CHAPTER 3. DOMAIN KNOWLEDGE & MONOTONIC CONSTRAINTS 53

Also, these rules are not created and added based on their predictive power or

any notion of correctness other than fixing a non-monotonic area in the current

model. These new rules may make poor predictions when used, which reduces the

overall predictive power of the model.

Chapter 4

Ant Colony Optimization

Ant Colony Optimization (ACO) is a stochastic meta-heuristic that has been used

to approximate solutions to many NP-hard optimisation problems. The ACO

meta-heuristic was first proposed by Marco Dorigo (1992) based on the foraging

behaviour used by ants to search for food sources and then communicate the

location of food to the whole colony. In nature, this is achieved via stigmergy and

the deposition and sensing of pheromone by the ants in the colony.

In this chapter, I will introduce the ACO meta-heuristic by first summarising

the original observations of ants in nature, followed by the generic ACO meta-

heuristic and a classical problem before finally introducing existing algorithms

that tackle the data mining classification task. As far as I am aware there are no

existing ACO-based algorithms that tackle the regression task in data mining.

The current chapter is structured as follows. First, I will present the initial

observations recorded using natural ant colonies, specifically work involving Ar-

gentinian ants. Next, in Section 4.2 the Ant Colony Optimization meta-heuristic

will be introduced followed by a discussion of combinatorial and continuous ACO

variants, in Section 4.3 and Section 4.4, respectively. Finally, in Section 4.5 exist-

ing ACO-based algorithms for data mining tasks will be introduced.

54

CHAPTER 4. ANT COLONY OPTIMIZATION 55

4.1 From Nature to Artificial Ants

In nature, ant colonies are able to complete complex tasks even though each indi-

vidual has limited capabilities —in essence an ant colony acts as a distributed

system. A number of experiments have been conducted that show that ant

colonies can accomplish their tasks and coordinate responses through the use of

stigmergy, that is, using the environment as an indirect communication medium

(Deneubourg, Pasteels and Verhaeghe 1983; Manderick and Moyson 1988; Dorigo

and Stutzle 2004). In ant colonies, this stigmergy is achieved with the deposition

of pheromone along the paths that ants walk on and subsequently the detection

of the deposited pheromone by other ants who are drawn towards it. Therefore,

areas with higher pheromone deposition are more attractive to ants than those

with lower amounts of pheromone (Dorigo and Stutzle 2004).

Goss et al. (1989) and Deneubourg et al. (1990) conducted several interesting

experiments on Argentinian ants, including a double bridge experiment —the

experimental setup can be seen in Figure 4.1. When given the option of two

branches with identical lengths, as seen in Figure 4.1a, ants will select a single

branch with equal probability to form a single trail between the nest and the food.

In Figure 4.1b, ants are given a different choice, the top branch is shorter than

the bottom branch. Initially ants will explore both branches, looking for the best

route from the nest to the food. Eventually a single dominant path will emerge,

with the shorter path more likely to be chosen. In fact, if the ratio between the

long branch to the short branch is greater than 2, that is to say if the long branch

is twice as long as the short one, the shorter branch is always chosen (Goss et al.

1989).

Goss et al. (1989) remarked that this occurs because it takes less time for

the ants to traverse back and forth along the shorter branch. This branch will

rapidly contain pheromone from the initial ants that traversed the path and the

ants returning from the food source. For the longer branch this does not occur

CHAPTER 4. ANT COLONY OPTIMIZATION 56

(a) Double branch experiments with two branches of equal length, repeated experiments
show the ants will randomly select either branch with an equal probability.

(b) Double branch experiment with branches of un-equal length, after initial exploration
the ants will repeatedly form a trail along the shortest path, ignoring the longer branch.

Figure 4.1: Double branch experiment with ants. Initially the branches are empty.
Ants then explore the space using both branches, before converging and forming
pheromone trails along the shortest paths.

until much later, as it takes the ants longer to complete a round trip from the

nest to the food. This allows the amount of pheromone on the shorter path to

build faster than the longer one, leading to subsequent ants preferring the shorter

route.

Deneubourg et al. (1990) proposed a stochastic model to describe the ant

colony behaviour that calculated the probability that an ant would chose either

the longer branch P (l) or the shorter branch P (s), if i ants have already crossed

the bridge depositing i amounts of pheromone. The probability that an ant will

chose the shorter path is given as:

P (s) = (k + si)n
(k + si)n + (k + li)n

(P (s) + P (l) = 1) (24)

CHAPTER 4. ANT COLONY OPTIMIZATION 57

Algorithm 4.1: High-level ACO pseudo-code
1 while Not Terminated do
2 ConstructSolutions()
3 LocalSearch() // Optional step
4 PheromoneUpdate()
5 end
6 return BestSolution

si+1 = si + δ, li+1 = li + (1− δ) (si + li = i) (25)

where k is a parameter that represents the attraction of an unmarked branch,

where a higher k requires more pheromone to be deposited before the pheromone

becomes the dominant factor in the decision made by an ant; δ is the stochastic

variable that takes a value of either 1 if ant i+1 takes the shorter path s or 0 if the

longer path l is taken —this has the effect of increasing the amount of pheromone

present on one of the branches; finally, n determines the degree of non-linearity in

the choices the ant makes, higher values of n will mean a branch with a modest

increase in pheromone compared to another will lead to a large increase in the

probability the branch will be taken.

4.2 Artificial Ants

Dorigo (1992) introduced the ACO meta-heuristic in his PhD thesis. The ACO

meta-heuristic models the foraging behaviour of ant colonies discussed in the pre-

vious section to solve other complex problems using simple agents. Algorithm 4.1

shows a high-level pseudo-code of the ACO meta-heuristic (Dorigo 1992; Dorigo,

Maniezzo and Colorni 1996; Dorigo and Stutzle 2004).

The algorithm works as follows. First each ant constructs a solution (line 2)

influenced by the pheromone deposited in the search space by previous ant iter-

ations. Then a local search operator is optionally applied (line 3). This often

CHAPTER 4. ANT COLONY OPTIMIZATION 58

takes the form of a simple hill climbing strategy, where small incremental changes

are made in an effort to increase the quality of the generated solutions. Next,

a pheromone update procedure is performed (line 4). There are normally two

phases during pheromone update. The first increases the amount of pheromone

belonging to good solutions, increasing the likelihood they will be selected in

subsequent iterations. The second phase is pheromone evaporation, where the

amount of pheromone on unused areas of the search space is reduced, mimick-

ing the evaporation of the chemical pheromones deposited by ants in nature.

Pheromone evaporation is important, as it allows the colony over time to forget

poor decisions made by previous iterations. These steps (lines 1-5,) are repeated

until stopping criteria are reached, this could be a maximum number of iterations

or the convergence of the pheromone trails to a single solution causing the colony

to stagnate.

A classical ACO problem is the travelling salesman problem (TSP). The TSP

is a problem where a salesman has a number of cities to be visited, which are all

interconnected. The salesman wishes to choose the shortest route that allows him

to visit all the cities only once. A very simple example TSP can be seen in Figure

4.2. Optimising the path taken by the salesman to visit each city has parallels to

the foraging behaviour of ants in nature, where they are trying to find the shortest

path from their nest to a food source.

The original ACO, Ant-System (Dorigo, Maniezzo and Colorni 1996), imple-

mented a pheromone graph and belongs to the combinatorial ACO approach,

which will be discussed in the next section. A second pheromone model is the

solution archive which belongs to the continuous ACO approach and will be dis-

cussed in Section 4.4.

CHAPTER 4. ANT COLONY OPTIMIZATION 59

City 1

2

6City 2
9

3 City 3

4

City 4
8

City 5

Figure 4.2: Example graph representing a Travelling Salesman Problem, where
each node in the graph is a city the salesman is required to visit. Each edge has
a cost associated which is the distance between cities. The objective is to create
a tour that minimises the distance travelled by the salesman.

4.3 Combinatorial ACO

In combinatorial ACO-based algorithms the search space is represented by a con-

struction graph with each node representing a component of the solution con-

nected by edges that ants can lay pheromone along. Figure 4.2 could be used to

represent the construction graph. A solution is therefore a combination of these

nodes and the path taken between them. If we consider the TSP, each city can

be represented as a node in the pheromone graph and each connection as an edge

that the artificial ants can follow.

Recall that an ACO algorithm is an iterative procedure, during the ‘Construc-

tion’ phase (line 2 in Algorithm 4.1) each ant in the colony generates a candidate

solution by traversing the construction graph. At each node, a decision is made by

an ant to choose the node that should be visited next. This choice is probabilistic,

CHAPTER 4. ANT COLONY OPTIMIZATION 60

where the probability of selection is proportional to the current pheromone level

on the edge or node and a problem specific heuristic information. Equation 26

shows the probability that an edge Eij is selected by an ant —this equation was

used by Dorigo (1992) in the original Ant System (Dorigo, Maniezzo and Colorni

1996; Dorigo and Stutzle 2004):

P (Eij) =
ταij · η

β
ij∑

l∈ allowed j τ
α
il · η

β
il

(26)

where τij is the pheromone level of the edge connecting nodes i and j; ηij is its

heuristic value1; α and β are constants that alter the importance of the pheromone

and heuristic; l is taken from the allowed set of nodes, where an allowed node is

simply one that has a valid connecting edge between itself and the node the ant

is currently at. In summary, the probability of an individual edge being selected

is the ratio of the product of the heuristic information and pheromone level of the

edge in question over the sum of all those products on all the branches an ant is

allowed to take.

Once solutions have been generated, an optional step can be performed where a

local search can be used to optimise the values chosen by the ants. For example, for

the TSP the 2-opt local search operator could be performed. The 2-opt procedure

identifies edges in a solution that cross each other it then rearranges the edges

so they do not cross. (Mavrovouniotis, Müller and Yang 2017; Stützle and Hoos

1999; Croes 1958).

The quality of the generated solutions is used to modify the pheromone values

of the construction graph’s edges or nodes. First, edges (or nodes) used in good

solutions have their pheromone level increased to increase the probability they are

selected in the next iteration —the increase in pheromone value is proportional

to the solution quality. All edges then undergo a process of evaporation, where
1Heuristic information is used to provide additional information about the quality of the edge

an ant could take e.g. for the TSP this could be information regarding the distance between
cities.

CHAPTER 4. ANT COLONY OPTIMIZATION 61

the amount of pheromone deposited on each edge is decreased. This means that

edges that did not have any additional pheromone deposited have their likelihood

of selection decreased in subsequent iterations. Pheromone evaporation allows

colonies to forget poor decisions they made in the past and explore new areas of

the problem domain. The pheromone gives the ant colony an implicit memory,

allowing future ants to improve their solutions based on the successes of those

before them (Dorigo and Stutzle 2004).

4.4 Continuous ACO

Liao et al. (2014) introduced an archive based ACO algorithm, called ACOMV.

This new algorithm can be applied to optimisation problems that contain mixed

variables, e.g., categorical, continuous and ordinal variables. Each variable rep-

resents a column of the solution archive, therefore a row represents the different

solutions in the archive. Archive-based ACO algorithms dispense with the clas-

sical construction graph and the combinatorial pheromone model found in the

majority of ACO algorithms and replace them with a solution archive. This can

be seen as a shift from sampling a discrete probability function in the form of the

construction graph to a continuous probability function in the form of a solution

archive which the ants now sample from (Socha and Dorigo 2008).

The solution archive stores a sorted list of the best solutions discovered by the

ants so far. An example archive is shown in Figure 4.3, which contains separate

sections for the different variable types along with the solution’s quality, f(S),

and a weighting, ω, based on the solution’s rank in the archive. The high-level

pseudo-code for ACOMV is shown in Algorithm 4.2.

The algorithm maintains a solution archive SA, which contains k solutions.

CHAPTER 4. ANT COLONY OPTIMIZATION 62

Continuous Ordinal Categorical
Variables Variables Variables︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷

S1 R1
1 R2

1 . . . Rr
1 O1

1 O2
1 . . . Oo

1 C1
1 C2

1 . . . Cc
1 f(S1) w1

S2 R1
2 R2

2 . . . Rr
2 O1

2 O2
2 . . . Oo

2 C1
2 C2

2 . . . Cc
2 f(S2) w2

S3 R1
3 R2

3 . . . Rr
3 O1

3 O2
3 . . . Oo

3 C1
3 C2

3 . . . Cc
3 f(S3) w3

..
.
..
.

..
..

..

..
..

..

..
..

..

..
.
..
.

..
.
..
.

Sk R1
k R2

k . . . Rr
k O1

k O2
k . . . Oo

k C1
k C2

k . . . Cc
k f(Sk) wk︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

ACO< ACOMV − o ACOMV − c

Figure 4.3: Solution archive present in ACOMV . The archive is made up of three
sections, one for each of the variable types; continuous, ordinal, and categorical.
Finally each solution is ranked by its quality f(S) and is given a weight ω.

Algorithm 4.2: High-level pseudo-code for ACOMV.
1 Initialise Decision Variables
2 // Create k random solutions for the archive
3 SA ←− InitialiseArchive()
4 while Termination Criteria Not Satisfied do
5 for 1 to M do
6 ConstructSolutionACO<
7 ConstructSolutionACOMV−o
8 ConstructSolutionACOMV−c
9 SA ←− SA ∪ Solution

10 end
11 // Sort and select the best k solutions for the archive
12 SA ←− Best(Sort(SA),k)
13 end

CHAPTER 4. ANT COLONY OPTIMIZATION 63

The solutions are sorted by quality from best to worst. Each solution Sj is asso-

ciated with a weight ωj, which is calculated using a Guassian function as follows:

ωj = 1
qk
√

2π
e

−(rank(j)−1)2

2q2k2 (27)

where q is a user defined parameter and rank(j) is a function that returns the rank

of solution j. The weight is used to bias the probability of a solution being selected

for sampling by subsequent solutions. Therefore, better solutions have a higher

probability of being selected during solution creation in subsequent iterations.

Solution construction involves three procedures (lines 6-8 of Algorithm 4.2), one

for each of the attribute types (continuous, ordinal and categorical).

Continuous attributes are processed by ACO< (Socha and Dorigo 2008) as

follows. First an ant probabilistically chooses a solution from the archive with the

probability of a solution j being chosen given by:

Pj = ωj∑k
l=1 ωl

(28)

where ωj is calculated using equation 27. When a solution has been selected,

each continuous attribute has a value assigned to it by sampling around the value

found in the selected solution using a normal probability density function. Where

the mean is set as the value of the selected solution and the standard deviation is

calculated as:

σ = ξ
k∑
l=1

|Ri
l −Ri

j|
k − 1 (29)

where Ri
j is the value found in the selected solution j; Ri

l are the values found

for attribute i in the other solutions in the archive; k is the number of solutions

in the archive and ξ is a scaling factor that modifies the convergence rate of the

colony, with higher values of ξ slowing convergence.

Ordinal attributes are selected in the same way as continuous attributes. A

CHAPTER 4. ANT COLONY OPTIMIZATION 64

mapping between ordinal values and indices is then created. This is because

ordinal attributes may not be numeric but could take another form that implies

order, e.g., “small”, “medium” and “large”. Once a value has been generated, it

is rounded to the nearest valid index.

For categorical variables, ACOMV operates differently to both ordinal and

continuous variables. For each categorical variable, an ant will select one of the

available values for that variable. The probability of choosing the l-th value from

a set of t allowed values is given as:

Pl = wl∑t
j=1 wj

(30)

where wl is the weight associated with the l-th value, calculated as:

wl =

ωjl

ui
l

+ q
η
, If(η > 0, uil > 0)

ωjl

ui
l
, If(η = 0, uil > 0)

q
η
, If(η > 0, uil = 0)

(31)

ωjl is calculated according to Equation 27, where jl is the index of the solution

with the highest quality that uses the value vil for the categorical variable i; uil is

the number of solutions that use the value vil for the categorical variable i in the

current solution archive; finally, η corresponds to the number of values from the

ti available values that are not used by any of the solutions in the archive.

4.5 ACO in Data Mining

Ant-based algorithms have been used in the unsupervised learning task of cluster-

ing, including concepts introduced by Deneubourg et al. (1992). These algorithms

reproduce the behaviour of some ant species that form heaps out of corpses to

create clusters. ACO has also been used in the semi-supervised learning task

CHAPTER 4. ANT COLONY OPTIMIZATION 65

—an example is the Ant-Labeler algorithm (Albinati et al. 2015), which used

cAnt-MinerPB (Otero, Freitas and Johnson 2013) to create rule lists and an addi-

tional self-training procedure to fully label a partially labelled data-set. However,

I will be concentrating on supervised learning in this section and the algorithms

introduced for this task.

There have been a number of implementations that use ACO-based algorithms

to address the classification task in data mining. To the best of my knowledge,

no ACO-based algorithms have been developed that attempt to create solutions

for the regression task. Therefore, the algorithms discussed here are restricted to

classification problems. These classification algorithms can be broken down into

two broad groups, the first being graph-based approaches starting with Ant-Miner

(Parpinelli, Lopes and Freitas 2002) in Section 4.5.1 and its many extensions in

Section 4.5.2.

The second approach to the classification task dispenses with the classical

graph-based model and instead uses a new archive approach, these archive algo-

rithms will be discussed in Section 4.5.3.

4.5.1 Ant-Miner

The first ACO classification algorithm, called Ant-Miner, was proposed by

Parpinelli, Lopes and Freitas (2002). Ant-Miner follows a sequential covering

strategy, where individual rules are created by an ACO procedure. The ants

in the Ant-Miner colony search for the best classification rule given the current

training data at each iteration of the sequential covering.

Ants traverse a construction graph selecting terms to create a rule in the

form IF term1 AND ... AND termn THEN class, where the IF-part represents

the antecedent and the THEN-part is the class prediction. Each ant starts with

an empty rule and iteratively selects terms to add to its partial rule based on

their values of the amount of pheromone τ and a problem-dependent heuristic

CHAPTER 4. ANT COLONY OPTIMIZATION 66

information η, similarly to Ant System (AS) (Dorigo, Maniezzo and Colorni 1996).

After a rule is created by the ACO procedure, the training instances covered

by the rule are removed. A new rule is then created using the ACO procedure.

This is repeated until the number of training instances is below a user defined

threshold. The high-level pseudo-code for Ant-Miner can be found in Algorithm

4.3. The sequential covering procedure starts on line 2 checking if there are still

too many uncovered instances. If this is the case, the construction graph and

pheromone matrix are initialised (line 3) and a rule created (line 7). A local

search procedure is then applied before the pheromone matrix is updated (line

9). If the rule created in this iteration is the best created so far then the global

best rule is updated. This procedure is repeated until the colony size is reached

or the colony stagnates (line 6). Stagnation occurs when ants repeatedly create

the same rule as they walk the construction graph, this is likely to occur when

the pheromone has converged to a single path.

4.5.1.1 Construction Graph and Pheromone Matrix

Ant-Miner creates a construction graph that represents the attributes present in

the data-set, each (attribute,operator,value) tuple becomes a node on the con-

struction graph and a potential destination for an ant. Each attribute is fully

connected such that a valid edge connects every attribute to all the others.

Once the construction graph has been created, pheromone is required to be

deposited onto the edges. The amount of pheromone deposited onto each edge is

equal to:

InitialPheromone = 1
NumberofEdges

(32)

each edge can be represented by a cell in a matrix where the two connected by

the edge are represented by a column and a row, so that the element mij contains

the pheromone value associated with the edge connecting nodes i and j.

CHAPTER 4. ANT COLONY OPTIMIZATION 67

Algorithm 4.3: High-level pseudo-code for Ant-Miner
Data: Instances
Result: RuleList

1 RuleList ←− ∅
2 while | Instances | > maximum_uncovered do
3 PheromoneInitialization()
4 Rulegb ←− null
5 n = 0
6 while n < colony_size AND !NotStagnation() do
7 Rule ←− CreateRule()
8 Prune(Rule)
9 UpdatePheromone(Rule)

10 if Quality(Rule) > Quality(Rulegb) then
11 Rulegb ←− Rule
12 end
13 end
14 Instances ←− Instances - Covered(Rulegb)
15 List ←− List ∪ Rulegb
16 end
17 RuleList ←− List ∪ RuleDefault
18 return RuleList

4.5.1.2 Rule Construction

In each iteration of the ACO procedure an ant creates a single classification rule.

The decision to add a term to the current rule is made stochastically, with those

terms with a larger amount of pheromone and heuristic information having a

higher probability of being chosen. Terms are repeatedly added to the rule until

one of two stopping criteria has been reached: either all valid terms have already

been added to the rule, or all remaining terms that could be added to the rule

would cause the rule to cover less than the required number of instances in the

training set. This number is a user defined parameter that can be optimised before

the algorithm is executed.

Once a rule has been created and the ant has stopped adding terms to the

rule, a local search operator is applied (line 3 of Algorithm 4.1). In Ant-Miner,

CHAPTER 4. ANT COLONY OPTIMIZATION 68

the pruner attempts to remove all irrelevant terms that were added to the rule due

to the stochastic nature of the ACO procedure. This is achieved by iteratively

removing each term from a rule and calculating the new pruned rule’s quality.

The change that gives the largest increase in quality is retained. This is repeated

until no term can be removed without decreasing the quality of the pruned rule.

4.5.1.3 Pheromone Deposition and Evaporation

Ant-Miner deposits pheromone like all other graph-based ACO algorithms. The

best rule in the current iteration is selected for pheromone update. Each term

in the best rule then has pheromone deposited onto the node that represents the

term. The amount of pheromone deposited is proportional to the quality of the

rule that the term is associated with.

Once the additional pheromone has been deposited, the pheromone matrix

is normalised by summing all the pheromone present in the matrix and dividing

every pheromone value by this sum. This normalisation process provides the

pheromone evaporation functionality, as additional pheromone has been added

to the matrix in the previous step. Therefore, the terms that were not updated

as part of the best rule will undergo a reduction in their normalised value, and

those present in the best rule will have their normalised pheromone level increased

(Parpinelli, Lopes and Freitas 2002).

4.5.2 Ant-Miner Extensions

Following on Ant-Miner’s success, many extensions have been proposed in the lit-

erature (Martens, Baesens and Fawcett 2011): they involve different rule pruning

mechanisms, pheromone update procedures, new rule quality measures and heuris-

tic information calculations. There are a number of Ant-Miner extensions relevant

to this work: AntMiner+ (Martens et al. 2007), cAnt-Miner (Otero, Freitas and

Johnson 2008), and cAnt-MinerPB (Otero, Freitas and Johnson 2013).

CHAPTER 4. ANT COLONY OPTIMIZATION 69

4.5.2.1 Ant-Miner+

AntMiner+ extends Ant-Miner in several aspects: (1) the complexity of the con-

struction graph is reduced, in terms of the number of edges connecting vertices,

by defining it as a direct acyclic graph (DAG); (2) it makes a distinction between

nominal attributes with categorical and ordered values, where the latter are han-

dled as ordinal attributes allowing the algorithm to create interval conditions; (3)

the class value to be predicted and weight parameters used to control the influence

of the pheromone and heuristic information are incorporated in the construction

graph as vertices.

AntMiner+ also uses theMAX −MIN pheromone model first used inMM-

AS by Stützle and Hoos (2000) as a modification of the original Ant System.

In MAX −MIN , limits are assigned to the pheromone values found in the

matrix, so that each node or edge has a minimum and maximum amount of

pheromone. This still allows the algorithm to prefer components associated with

higher pheromone values and forget bad choices, while preventing extreme phero-

mone values to either dominate or prevent the selection of components.

4.5.2.2 cAnt-Miner

The original Ant-Miner requires the pre-processing of continuous attributes. Each

continuous attribute requires the generation of split points. Split points are used

to transform continuous attributes into categorical attributes, which can then be

represented as nodes on the construction graph. Discretisation methods attempt

to find good values that enable the continuous values of an attribute to be split,

or binned, into different groups. In classification, these groups are often formed

from the training data with knowledge of the class distribution, in a pre-processing

step. One drawback of this pre-processing approach is that we cannot know what

the good splits will be for the rules ants create. Split points that are good for the

whole training set may not be good for the subset of instances that a partial rule

CHAPTER 4. ANT COLONY OPTIMIZATION 70

has covered.

cAnt-Miner (where the initial "c" refers to continuous attributes) was intro-

duced to remove the requirement of a pre-processing step for continuous attributes

in Ant-Miner. Each continuous attribute is given a single node in the construction

graph. When a continuous node is selected by an ant, a dynamic discretisation

step is performed to generate split-points that are appropriate for the subset of

instances being operated on by the current partial rule. This allows the generation

of better splits for continuous attributes and showed a significant increase in the

predictive accuracy when tested against the original Ant-Miner (Otero, Freitas

and Johnson 2008).

4.5.2.3 cAnt-MinerPB

One potential drawback of using a sequential covering to create a list of rules is

that there is no guarantee that the best list of rules is created. Ant-Miner (and

the majority of its extensions) perform a greedy search for the list of best rules,

using an ACO procedure to search for the best rule given a set of examples, and

it is highly dependent on the order that rules are created. Therefore, they are

limited to creating the list of best rules, which does not necessarily corresponds

to the best list of rules.

cAnt-MinerPB is an ACO classification algorithm that employs, what the au-

thors refer to as, an improved sequential covering strategy to search for the best

list of classification rules (Otero, Freitas and Johnson 2013). While Ant-Miner

uses an ACO procedure to create individual rules in a one-at-a-time (sequential

covering) fashion, cAnt-MinerPB employs an ACO procedure that creates a com-

plete list of rules for each ant. Therefore, it can search and optimise the quality

of a complete list of rules instead of individual rules—i.e., it is not concerned

by the quality of the individual rules as long as the quality of the entire list of

rules is improving. This is analogous to the Pittsburgh approach for rule learning

CHAPTER 4. ANT COLONY OPTIMIZATION 71

discussed in Section 5.4, and in the name of the algorithm (cAnt-MinerPB) PB

stands for "Pittsburgh approach".

cAnt-MinerPB works by modifying the construction graph with the addition of

depth, each depth has a corresponding pheromone value. In this case, edges of the

graph have multiple depths and the depth corresponds to the position of a rule

in a rule list where the edge is used. Each ant constructs a complete rule list by

traversing each depth of the graph sequentially, constructing a single rule before

incrementing the depth. Critically, the quality of each rule is not used during the

pheromone update, it is the quality of the entire list that is used. Therefore, every

term in every rule used in the best rule list receives an increase to its pheromone

value. These rules may not be the best individual rule at each depth, but belong

to the best overall list of rules.

4.5.3 Ant-MinerMA

Ant-MinerMA (where MA stands for "Mixed Attribute") is an archive-based ACO

implementation introduced by Helal and Otero (2016). The motivation for intro-

ducing an archive into the ACO procedure, was to remove the use of dynamic-

discretisation procedures when using continuous attributes, by incorporating their

selection into the learning process. The high-level pseudo-code for Ant-MinerMA is

shown in Algorithm 4.4. Ant-MinerMA is based on the original ACOMV algorithm

(Liao et al. 2014) and implements an archive in place of the traditional construc-

tion graph and pheromone matrix that existed in Ant-Miner and all the previous

extensions discussed earlier. The choice of which attributes to select for a rule is

performed in the same way as ACOMV (line 9 of Algorithm 4.4), a description

of attribute selection can be found in Section 4.4. Ant-MinerMA implements the

iterative rule learning strategy outlined in Section 2.3.1 as the archive stores indi-

vidual rules and the best rule learnt in each iteration (lines 6-20) is added to the

partial RuleList that is under construction (line 21).

CHAPTER 4. ANT COLONY OPTIMIZATION 72

Algorithm 4.4: High-level pseudo-code for the archive-based ACO al-
gorithm Ant-MinerMA.
Data: Instances
Result: RuleList

1 RuleList ←− {}
2 Restarted ←− 0
3 Iteration ←− 0
4 while |Instances| > MaxUncovered do
5 A ←− GenerateRandomRules()
6 while Iteration < MaxIterations AND Restarted 6= 1 do
7 RuleSet ←− {}
8 while i < ColonySize do
9 Ri ←− Create New Rule

10 Ri ←− Prune(Ri)
11 RuleSet ←− RuleSet ∪ Ri

12 i ←− i + 1
13 end
14 A ←− UpdateArchive(RuleSet)
15 Iteration ←− Iteration + 1
16 if Stagnation() then
17 Restart(A)
18 Restarted ←− 1
19 end
20 end
21 RuleList ←− RuleList ∪ TopRule(A)
22 Instances ←− Instances - Covered(TopRule(A))
23 end
24 return RuleList

During the creation of each rule (lines 4-20), Ant-Miner-RegMA starts by cre-

ating a solution archive containing random rules (line 5). Then each ant in the

colony creates a rule using the sampling procedures discussed in Section 4.4 (line

9), this new rule is then pruned and added to the set of rules created during this

iteration (lines 10-12). Once each ant has created a rule, the archive is updated by

adding the set of rules produced during the iteration, sorting them by quality and

retaining the top m rules (line 14). This process is repeated until the maximum

number of iteration is performed or the algorithm restarts more than once (lines

CHAPTER 4. ANT COLONY OPTIMIZATION 73

6-20). The best rule created (the top rule in the archive) is then added to the

list of rules under construction (line 21) and any instances covered by this rule

removed from the training set (line 22) and the process is repeated until less than

the maximum number of instances allowed remain.

Figure 4.4 illustrates a solution archive for Ant-MinerMA containing a number

of rules, each rule represents an example of each allowed attribute type (categor-

ical, ordinal and continuous). Each attribute has a flag to represent weather that

attribute is activated in a rule or not, where an active attribute is one that is used

by the rule when deciding if it covers an instance or not.

Active attributes have an operator followed by one or more values. For con-

tinuous attributes, the allowed operators are Greater Than (>), Less Than or

Equal (≤) and In Range (InR), the later operator requires two values to create

an allowed range of values, e.g., V1 ≤ att < V2. Ordinal attributes also have two

operators namely Less Than Or Equal (≤) and Greater Than Or Equal (≥).

Finally, categorical attributes have a single allowed operator which is Equal To

(=) which matches a single value. In Figure 4.4, the column titled "f(S) contains

the quality of the rule and and "w" is the weight associated with the rule.

The substitution of the pheromone graph with a solution archive allows Ant-

Miner-RegMA to dispense with both a discretisation step that was required dur-

ing pre-processing for Ant-Miner and a dynamic-discretisation stage within cAnt-

Miner. In other words the removal of a separate discretisation step allows Ant-

Miner-RegMA to optimise continuous values during rule creation, unlike Ant-Miner

when values were determined before run time; and unlike cAnt-Miner where,

while values were generated at the point of use, the values were not stored in the

pheromone mode; and therefore could not be optimised by the ACO algorithm.

C
H

A
PT

ER
4.

A
N

T
C

O
LO

N
Y

O
PT

IM
IZAT

IO
N

74

Continuous attribute (Ar) Categorical attribute (Ac) Ordinal attribute (Ao)︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷
Flag Op Value1 Value2 Flag Op Value Flag Op Value f(S) w

S1 T > v1 - T = v1 F - - f(S1) w1

S2 T InR v3 v2 F - - T ≤ v1 f(S2) w2

S3 F - - - T = v4 T ≥ v3 f(S3) w3

..
.
..
.

..
..

..

..
..

..

..
..

..

..
.
..
.

..
.
..
.

Sk T ≤ v2 - F - - T ≤ v2 f(Sk) wk︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
Continuous attributes Categorical attributes Ordinal attributes

Figure 4.4: Structure of the archive found in Ant-MinerMA. The three solutions (rules) in the archive show examples of
the three different attribute types: continuous, categorical, and ordinal attributes.

CHAPTER 4. ANT COLONY OPTIMIZATION 75

Helal and Otero (2016) compared Ant-MinerMA to the existing traditional

graph-based ACO algorithm cAnt-Miner. Both algorithms implement the iter-

ative rule learning strategy discussed in Section 2.3.1. In computational exper-

iments with thirty data-sets, Ant-MinerMA showed improved accuracy on sev-

enteen data-sets. However, when comparing computational time, it was found

that Ant-MinerMA outperformed cAnt-Miner in twenty seven of the thirty data-

sets, showing a statistically significant reduction in computational time. This was

attributed to the removal of the dynamic discretisation step, which was compu-

tational expensive on large data-sets as the procedure needed to scan the entire

training set while generating the split points required for continuous attributes.

Chapter 5

Ant Colony Optimization for

Regression

This chapter will introduce the first contributions in this thesis, a collection of Ant

Colony Optimization-based algorithms for the regression task. These algorithms

are based on several approaches. The first algorithm follows an Iterative Rule

Learning (IRL) approach, where rules are sequentially learned and added to a list

of rules to create a complete model. Subsequently, other learning paradigms were

investigated: a Pittsburgh-inspired approach, which aims to construct a complete

list of rules in a single iteration of the ACO procedure, and a Michigan-based

algorithm, where a set of rules are constructed and then compete for inclusion

into the current iterations rule list.

The first algorithm, Ant-Miner-Reg is an IRL algorithm first published at the

2015 Genetic and Evolutionary Computation Conference (GECCO 2015) (Brook-

house and Otero 2015).

76

CHAPTER 5. ANT COLONY OPTIMIZATION FOR REGRESSION 77

5.1 Discovering Regression Rules

We focus on creating ordered lists of regression rules. Regression rules are similar

to classification rules; in fact, the antecedent used in regression rules has the same

structure that is found in Ant-Miner, an algorithm for discovering classification

rules. The differences are found in the prediction: where classification rules predict

a value from a predefined set of memorised values, regression rules are free to

predict any real value.

Regression rules contain a list of logical conditions that, if satisfied, predict

a dependent value in their consequent. The predicted value can be directly a

numeric value or, in a more complex case, a value computed by a linear model

(Holmes, Hall and Frank 1999). Similarly to classification rules, regression rules

can be represented in an IF-THEN form, where the IF is regarded as the an-

tecedent of the rule and contains logical conditions involving the predictor at-

tributes, while the THEN is regarded as the consequent of the rule and contains

the prediction. When combined as a list, regression rules provide a comprehensible

prediction model.

The prediction that each rule makes is created by calculating the mean value

of any instances that are covered by the rule in the training data-set during rule

creation. When rules are combined into an ordered list, the first rule in the list

that is satisfied by the test instance makes the prediction for the list.

5.2 Ant-Miner-Reg: An Iterative Rule Learn-

ing ACO Regression Algorithm

ACO-based algorithms using the Iterative Rule Learning (IRL) paradigm have

been previously introduced for the classification task in the Ant-Miner algorithm

CHAPTER 5. ANT COLONY OPTIMIZATION FOR REGRESSION 78

(Parpinelli, Lopes and Freitas 2002) and many of its extensions, as reviewed in Sec-

tions 4.5.1 and 4.5.2. In this section we will introduce Ant-Miner-Reg, a new IRL

ACO-based algorithm for the regression task. Ant-Miner-Reguses the same rule

construction methodology found in cAnt-Miner however, Ant-Miner-Regreplaces

the rule quality metric and dynamic discretisation procedures with ones that are

more appropriate for the regression task. Another difference is the absence of

heuristic information during rule construction, the motivation for this is discussed

later in Section 5.2.5.1.

Ant-Miner-Reg uses the iterative IRL approach to building a complete solution,

which in this case is a list of rules. The high-level pseudo-code for a generic IRL

procedure can be seen in Algorithm 2.1 (Section 2.3.1). Rule creation is done

in the function LearnOneRule(Instances) (line 3 of Algorithm 2.1). In Ant-

Miner-Reg, this procedure is replaced with an ACO-based rule learner. In each

iteration of the IRL procedure, LearnOneRule(Instances) tries to create the best

rule to cover a sub-set of the uncovered instances. It can therefore be considered

as an optimisation problem, which, in Ant-Miner-Reg is addressed by an ACO

procedure. By reducing the task from the creation of a complete rule list into the

creation of a single rule at each iteration, the complexity of the problem is reduced,

as the optimisation function in LearnOneRule(Instances) only has to find the

best single rule for the current uncovered instance set. As rules are created, the

uncovered instance-set is reduced, simplifying the optimisation problem with each

iteration.

Algorithm 5.1 shows the high-level pseudo-code for Ant-Miner-Reg, where the

IRL’s LearnOneRule(Instances) function is replaced with an ACO-based rule

learner (lines 3 - 18). In each iteration of the ACO procedure, each ant in the

colony creates a single rule by traversing the construction graph. A pruning

function is then used to generalise the newly constructed rule (line 9). The pruner

keeps removing the final term of a rule (considering the order in which the terms

CHAPTER 5. ANT COLONY OPTIMIZATION FOR REGRESSION 79

were added) until the quality of the rule does not increase, at which point it stops

and returns the pruned rule. If the rule created by an ant is the best-so-far in the

iteration, it is retained; otherwise it is discarded (lines 7-13).

After all the ants have each constructed a single rule, the pheromone matrix

is updated. Terms in the best rule in the iteration have their pheromone levels

increased and all other terms have their pheromone levels decreased via normal-

isation using the process introduced in Ant-Miner (Parpinelli, Lopes and Freitas

2002). After all iterations of the ACO algorithm have been performed, any in-

stances covered by the best rule produced are removed from the training set and

the new rule added to the partial rule list (lines 19 and 20). This continues until

the number of instances remaining uncovered is less than the allowed number.

Finally, a default rule is added and the list returned. The default rule is simply

a rule which has no antecedent, therefore, it will always be satisfied and always

make a prediction. When placed as the final rule in a list, it ensures that the rule

list will always make a prediction for any instance it is given. The prediction made

by the default rule is calculated as the mean of the values of the target variable

among the remaining uncovered instances in the training set.

5.2.1 Rule Quality

The rule quality in Ant-Miner-Reg is measured by the combination of two factors:

Relative Root Mean Squared Error (RRMSE) and relative coverage, as suggested

by Janssen et al. for use in their SeCoReg algorithm (Janssen and Fürnkranz

2010a). These two measures are combined to give a rule quality Q, given by:

Q = α · (1−RRMSE) + (1− α) · relCov (33)

where α sets the relative importance of RRMSE and relative coverage. An α

value of 1 will only take into account the prediction error and a value of 0 will

CHAPTER 5. ANT COLONY OPTIMIZATION FOR REGRESSION 80

Algorithm 5.1: High-level pseudo-code for Ant-Miner-Reg.
Data: Instances
Result: RuleList

1 RuleList ←− ∅
2 while | Instances | > maximum_uncovered do
3 PheromoneInitialization()
4 Rulegb ←− null
5 for n = 0 to ant_iterations do
6 Ruleib ←− null
7 for j = 0 to colony_size do
8 Rule ←− CreateRule()
9 Prune(Rule)

10 if Quality(Rule) > Quality(Ruleib) then
11 Ruleib ←− Rule
12 end
13 end
14 UpdatePheromone(Ruleib)
15 if Quality(Ruleib) > Quality(Rulegb) then
16 Rulegb ←− Ruleib
17 end
18 end
19 Instances ←− Instances - Covered(Rulegb)
20 List ←− List ∪ Rulegb
21 end
22 RuleList ←− List ∪ RuleDefault
23 return RuleList

only consider rule coverage.

RRMSE is defined as:

RRMSE = RMSE√
1
m
Default

(34)

where RMSE is the root mean square error and Default is a normalising factor

that will approximately bound the RRMSE between 0 and 1. Both are defined

CHAPTER 5. ANT COLONY OPTIMIZATION FOR REGRESSION 81

as:

RMSE =
√√√√ 1
m
·
m∑
i=1

(yi − ȳi)2 (35)

default =
m∑
i=1

(yi − y′)2 (36)

where m is the total number of instances in the data-set, y is the value of the

current instance, ȳ is the predicted value of the current instance and, finally, y′ is

the mean over all instances. RRSME attempts to normalise the RMSE between

0 and 1, however it is still possible to achieve values above 1 when the predicted

values are worse than predicting the mean.

The second rule quality measure is relative coverage, given by;

relCov = 1
m
· coverage(Rule) (37)

wherem is the number of instances in the data-set and the function coverage(Rule)

evaluates the number of instances covered by the rule. Relative coverage is a nor-

malisation of a rule’s coverage, where 1 means a rule covers all instances in a

data-set and 0 indicated it covers no instances.

At this point it is also worth mentioning how the quality of a rule list is

measured. List quality ignores relative coverage and instead uses RRMSE as its

only measure. A list makes predictions using all the rules that it currently contains

and the RRMSE between the prediction and the true value of each instance is

calculated.

5.2.2 Construction Graph

In order to create a rule, the search space is represented as a graph, where each

node corresponds to a tuple containing an attribute, operator and value. An

example of a construction graph is shown in Figure 5.1.

CHAPTER 5. ANT COLONY OPTIMIZATION FOR REGRESSION 82

A2 = V21

A1 = V11

A3

A1 = V12

A2 = V22

Figure 5.1: Example construction graph that can be used to construct rules,
including both categorical attribute (A1 and A2) and a continuous attribute (A3).

For nominal attributes, a node is created for each attribute value pair to rep-

resent the condition where the attribute has a specific value. In our construction

graph example, we can see that attributes A1 and A2 are nominal and each have

two allowed values (V11, V12) and (V21, V22), respectively.

The third attribute A3 in Figure 5.1 has no associated value and is repre-

sented by a single node. This attribute is a continuous attribute. The values

associated with this attribute are calculated at run-time using a dynamic discreti-

sation method —as discussed in Section 5.2.4. It is important to note that the

values generated and used in any created regression rules are not stored in the

construction graph and are recalculated each time a continuous attribute node

is selected. When nodes are selected in the same order, the same values will be

generated since the discretisation procedure is deterministic.

Each node is then connected with every other node associated with a different

attribute and an initial amount of pheromone is deposited on each edge during

CHAPTER 5. ANT COLONY OPTIMIZATION FOR REGRESSION 83

initialisation. In Ant-Miner-Reg this initial amount is simply 1
n
where n is the

number of edges in the construction graph. Therefore, all edges have the same

initial pheromone value.

5.2.3 Pheromone Update

At the end of each iteration of the colony, the pheromone associated with each

edge of the graph is updated. This is a two-stage process, where the pheromone

on the edges connecting terms (each term in a rule is represented by a node in the

construction graph) used in good rules is increased, while unused terms see their

edge’s pheromone value decreased (line 14 of Algorithm 5.1). Pheromone update

is performed in a similar way to cAnt-Miner (Otero, Freitas and Johnson 2008).

Pheromone increase is performed by taking the best rule that has been created

in an iteration and increasing the pheromone for each edge leading to a term

present in the best rule. The amount that the pheromone is increased by is

dependent on the quality of the rule. The pheromone increase for each edge is

given by:

τij(t+ 1) = τij(t) + τij(t) ·Q(t) (38)

where τij(t) is the current pheromone value for edgeij at iteration t and τij(t+1) is

the corresponding pheromone in the next iteration; Q(t) is the quality of the best

rule in iteration t. It can be seen that the increase in pheromone is proportional

to the current pheromone value and the quality of the rule which the edge’s term

belongs to.

After all edges have been updated, pheromone evaporation is performed. This

is achieved by normalising the amount of pheromone on the graph. While this

has the effect of decreasing the pheromone values of all edges, those that have

just received a pheromone increase will retain an increased amount of pheromone

CHAPTER 5. ANT COLONY OPTIMIZATION FOR REGRESSION 84

compared to the previous iteration. Normalisation is performed by summing all

the pheromone values on the edges originating from the same node and then

dividing each pheromone value by this sum. This is repeated for every node on

the construction graph.

5.2.4 Continuous Attribute Processing

Two different dynamic discretisation methods have been used for generating the

split points for continuous attributes. The first method is the same one found

in the SeCoReg algorithm and the second one is an adaptation of M5’s standard

deviation to the context of regression rules.

5.2.4.1 SeCoReg Split Point Generation

The SeCoReg method performs "supervised" clustering1 of (attribute, target) pairs

and produces n split points, where n is determined by the user. It achieves this

by creating clusters that minimise the mean absolute errors of the target values

in the following manner. First, it creates clusters containing a single pair (i.e.,

a cluster for each different attribute value) and the instances are then sorted by

attribute value. Next, the method searches either side of each cluster looking

for the merger that increases the error (where the error is defined as the mean

absolute error (MAE)) by the minimum amount. This process is repeated until

the number of clusters is reduced to n+ 1.

The generated clusters have an upper and lower bound for the attribute values

contained within. For each cluster, the mid point between its upper bound and

the next’s lower bound is calculated and these values are then returned as the

n split points for an attribute. The split points are then combined with the <

(less than) and ≥ (greater than or equal to) operators. Finally, each term is
1Supervised clustering is the grouping of (attribute, target) pairs based on the similarity of

their target values and not the similarity of the attribute values.

CHAPTER 5. ANT COLONY OPTIMIZATION FOR REGRESSION 85

Figure 5.2: Example SeCoReg Split Point Generation.

temporarily added to the rule being constructed and the quality measured. The

(operator, split point) pair that yields the highest quality —measured by equation

33— is chosen as the new term and added to the rule.

Split Point Generation Walkthrough

Figure 5.2 illustrates a fully worked example of split point generation using

the SeCoReg Split Point generation method. In this example, the user has (hy-

pothetically) asked for the generation of four split points. The algorithm needs

to therefore create 5 clusters from the 10 pairs it has been given.

Initially, each (attribute, target) pair is assigned its own individual cluster.

In Step 1 we can see that the smallest absolute error that can be achieved by

merging values is 0.5. In this case, two clusters with this minimum error can be

created. We therefore create the clusters (2,3) and (7,8) both with an absolute

error of 0.5. The values 3.5 an 1.5 in step one represent the predictions made by

the combined clusters.

We then compute the number of clusters that now remain, which is 8, so the

process continues. In Step 2, we can see that merging the cluster (1) into the

cluster (1,2,3) and (9) into the cluster (7,8) achieve the smallest increase in

the absolute error, with both clusters now having an error of 0.67.

Again, we calculate the number of remaining clusters as 6, which is still more

than our target of 5. The process is repeated again, creating a cluster of (4,5)

CHAPTER 5. ANT COLONY OPTIMIZATION FOR REGRESSION 86

with an absolute error of 0.75 in Step 3. Recalculating the number of clusters, we

find that we now have 5, allowing the generation of the 4 split points.

Split points are generated by finding the midpoint between the lower bound

of one cluster and the upper bound of the next. In this case we would have

the following 5 clusters with upper and lower bounds of: (1,3.5), (3.5,5.5),

(5.5,6.5), (6.5,9.5) and (9.5,10).

5.2.4.2 Standard Deviation Split Point Generation

The second split point generation method is based on the M5 regression tree

algorithm (Quinlan 1992). This method attempts to maximise the expected re-

duction in the error of the prediction of the target value in the current set of

training instances. The expected error reduction is given by:

∆error = σ(T)−
∑
i

|Ti|
|T |
· σ(Ti) (39)

where T is the entire current set of instances, while Ti is the i-th subset and σ is

the standard deviation of subset. To find the optimal split point p for a continuous

attribute attc, the current covered instances are scanned from beginning to end (in

particular the entire instance set is scanned in the case that a continuous attribute

is the first attribute selected to be added to the antecedent of a rule). Each split

point generates two candidate subsets Ti: one subset containing the instances that

satisfy the condition attc < p and another containing the instances that satisfy

the condition attc ≥ p. Once the optimal p has been identified, the operator that

is associated with the subset with the lowest standard error is the one used to

create the rule term.

Note that the split point p is not stored in the construction graph (nor used

to update pheromone values), since the split point generation is a deterministic

procedure—the same split point p will be generated if attc is selected using the

same set of instances (Otero, Freitas and Johnson 2008).

CHAPTER 5. ANT COLONY OPTIMIZATION FOR REGRESSION 87

5.2.5 Rule Creation

Each ant in the colony creates an individual rule at each iteration. The probability

that an ant selects a node (term) is proportional to the amount of pheromone

currently deposited on each edge. Therefore, edges that are used more often when

constructing good rules have a higher probability of being selected. First, an ant

starts at a ’virtual’ start node and probabilistically selects the next node to travel

to, then this node is added to the antecedent of the rule being constructed. The

ant then selects the next node to add to the rule based on the pheromone value on

the edges leading to the neighbouring nodes. Neighbouring nodes are those that

correspond to terms using attributes not present in the rule antecedent, since once

an attribute has been added to the rule, it cannot be revisited. If an ant selects

a node that represents a continuous attribute, a split point generation method is

executed —these methods are described in Section 5.2.4.

The ant will continue to add terms to the current rule until either the ant has

added all attributes to its rule antecedent or the rule under construction covers

less than the minimum number of instances (a user-defined parameter). Once

an ant has finished its traversal of the construction graph, the rule is pruned to

remove terms that are unnecessary.

5.2.5.1 Heuristic Information

Typically ACO-based algorithms use both pheromone and heuristic information

to guide the traversal of the construction graph. This heuristic information can

be static or dynamic. Static heuristic information is typically generated before

algorithm execution and remains constant for the entire ACO execution. Dynamic

heuristic information is generated as the ACO algorithm executes and is updated

as the ant traverses the graph providing up to date information.

It is generally assumed that heuristic information is beneficial to the generation

of good models, however experimental results comparing dynamic, static and no

CHAPTER 5. ANT COLONY OPTIMIZATION FOR REGRESSION 88

heuristic information have shown that heuristic information does not improve

performance and in fact static heuristic information can decrease model accuracy

(private communication, Otero 2015). One hypothesis for this unexpected result,

is that the colony quickly discovers this information and effectively encodes this

into the pheromone model. While the static heuristic information can mislead

the colony as it does not take into account term interaction. For these reasons

Ant-Miner-Reg and its derivatives do not utilise any heuristic information during

rule construction.

5.2.5.2 Rule Pruner

Ant-Miner-Reg will continue to add terms to a rule until there are no more terms

to add to a rule or the number of instances covered by a rule drops below a user

defined threshold. This leads to rules with many terms, which also specialise

on few instances, leading to over-fitting. Therefore, a rule pruner is required

to remove unnecessary terms and create more generic rules covering many more

instances. Ant-Miner-Reg uses a simple backtrack pruner to achieve this (Otero,

Freitas and Johnson 2009).

The backtrack pruner first calculates a rule’s quality using Equation 33. It

then removes the last term in the antecedent and calculates the modified quality.

If this produces a rule of increased quality the change is kept. The pruner then

repeats this process until no improvement in the rule’s quality is observed.

5.3 Ant-Miner-RegM: A Michigan-based ACO

Regression Algorithm

The Michigan-based ACO algorithm creates a population of rules in each iteration

from which it selects a subset of these rules to create a rule list in a niching

operation. The niching operation allows rules to compete for their inclusion in

CHAPTER 5. ANT COLONY OPTIMIZATION FOR REGRESSION 89

Algorithm 5.2: Michigan-based ACO high-level pseudo-code.
Data: Training Instances
Result: RuleListgb

1 RuleListgb ←− ∅
2 RuleListcb ←− ∅
3 PheromoneInitialization()
4 for i = 1 to ant_iterations do
5 RuleListi ←− ∅
6 for j = 1 to colony_size do
7 Rule ←− CreateRule()
8 Prune(Rule)
9 RuleListi ←− RuleListi ∪ Rule

10 end
11 UpdatePheromone(RuleListi)
12 RuleListcb ←− Niche(RuleListcb ∪ RuleListi)
13 if Quality(RuleListcb) > Quality(RuleListgb) then
14 RuleListgb ←− RuleListcb
15 end
16 end
17 return RuleListgb

the final rule list of the current iteration.

Algorithm 5.2 shows the high-level pseudo-code for the Michigan-based Ant-

Miner-RegM ACO algorithm. Lines 1 and 2 initiate the global best rule list

(RuleListgb) and the current best rule list (RuleListcb) with an empty list. Then in

each iteration, each ant in the colony constructs a single rule with the CreateRule()

procedure. This procedure is the same CreateRule() procedure found in the IRL

Ant-Miner-Reg algorithm; rule creation is described in Section 5.2.5. This cre-

ates a list of rules for this iteration (lines 6-10), and this list is stored in the list

RuleListi.

The generation of each rule is performed on the entire training data-set, previ-

ously generated rules do not lead to the removal of any instances during the rule

construction process. Therefore, each ant in every iteration is able to cover any of

the instances in the training data-set, setting apart the Michigan-based algorithm

CHAPTER 5. ANT COLONY OPTIMIZATION FOR REGRESSION 90

from the IRL algorithm.

Rules that have a quality above a pre-determined threshold (a user-defined

parameter) have the pheromone of their terms increased. Like Ant-Miner-Reg,

evaporation occurs via the normalisation of the pheromone values. The previous

best rules (stored in RuleListcb) and the rules produced by the current iteration are

combined and a niching operation is then performed on this list to produce a new

list of rules (line 12). If this new list is better than the global best (RuleListgb),

it becomes the new global best rule list (lines 13-15). While the ACO procedure

is still responsible for creating individual rules, it is the niching procedure that is

responsible for the creation and evaluation of the complete rule list.

5.3.1 Niching for the Michigan Approach

Once a list of rules has been produced at each iteration, a niching operation is

performed. This operation uses the rules from the current best rule list and the

rules produced in the current iteration. The niching operation is based on the

classification niching operation in GBAP (Olmo, Romero and Ventura 2010) an

Ant Programming algorithm that focuses on the construction of programs from an

allowed grammar and then allows these programs to compete against each other.

The rules are first sorted and then forced to compete for instances by claiming

them before other rules. Rules with a higher quality are given the opportunity to

cover instances first, and therefore claim them before lower quality rules.

Algorithm 5.3 presents the high-level pseudo-code for the niching operation

used in Ant-Miner-RegM. First, rules are ordered by their quality measured on

the full training data set (line 2), before iterating over all rules and instances in

the training data looking for an instance that the rule matches (line 6). If a match

is found, the instance is removed from the training data and the rule prediction is

updated to reflect the newly covered instance (lines 7-9). This is to say that after

all instances have been claimed by a rule in the list, the rule will cover a different

CHAPTER 5. ANT COLONY OPTIMIZATION FOR REGRESSION 91

Algorithm 5.3: High-level Ant-Miner-RegM niching pseudo-code
Data: RuleList, Instances
Result: RuleListbest

1 RuleListbest ←− null
2 Sort(RuleList)
3 for Rule in RuleList do
4 NumCovered ←− 0
5 for Instance in Instances do
6 if Covers(Rule, Instance) then
7 UpdatePrediction(Rule,Instance)
8 Instances = Instances - Instance
9 NumCovered++

10 end
11 end
12 if NumCovered > 0 then
13 RuleListbest ←− RuleListbest ∪ Rule
14 end
15 end
16 return RuleListbest

set of instances than before it had to compete for an instance. Therefore, the

prediction of a rule is updated so that it is now the mean of all the instances that

it now covers when used as part of a rule list and not independently as a single

rule.

After scanning the training data, if a rule is found to cover at least one instance

it is added to the new list of rules, which is then returned at the end of the niching

operation. Rules that do not cover a single instance are now discarded. These

discarded rules will include poor quality rules, e.g. over-fitting rules whose job was

performed better by a simpler (more generic) rule.

5.3.1.1 Michigan Niching Walkthrough

In this section an example of the niching algorithm will be shown using the set

of rules shown in Table 5.2 on the sample data given in Table 5.1, which is an

extended data-set of the housing data shown in Chapter 2.

CHAPTER 5. ANT COLONY OPTIMIZATION FOR REGRESSION 92

Table 5.1: Sample data-set for niching a list of rules.

Instance Target Attribute Predictor Attributes
Number Rental Value Floor Area Location Garage
1 £300 45 2 No
2 £600 80 1 Yes
3 £250 33 3 No
4 £400 65 2 Yes
5 £350 54 2 Yes
6 £550 120 2 No
7 £150 54 3 Yes
8 £200 54 3 No
9 £400 60 1 No

The first step of the niching algorithm requires the rules (Table 5.2) to be

sorted by their RRMSE. This results in the rule ordering of (3,1,6,5,2,4).

Next, the best rule (Rule 3) is allowed to claim as many instances as it can cover

from the data-set (Table 5.1), namely instances (3,7,8). These instances are

then removed from the data-set and Rule 3 is added to our partial rule list as the

top rule.

Now the second best rule is selected, Rule 1, it can still cover all the instances

Table 5.2: Rule set to be niched using the data in Table 5.1

Number Rule RRMSE Instances
1 Floor Area>55 THEN 487.5 0.627 4
2 Floor Area>55 AND Garage=Yes THEN 500 0.703 2
3 Location=3 THEN 200 0.287 3
4 Floor Area>45 THEN 378.5 1.0766 7
5 Location=2 THEN 400 0.657 4
6 Floor Area>55 THEN 487.5 0.627 4

CHAPTER 5. ANT COLONY OPTIMIZATION FOR REGRESSION 93

Table 5.3: Final niched Rule List for the sample house rental data-set in Table
5.1.

Number Rule Instances
3 Location=3 THEN 200 3
1 Floor Area>55 THEN 487.5 4
5 Location=2 THEN 325 2
- THEN 355.5 0

that it covered in the full training set, as there was no overlap between the in-

stances it covers and those covered by Rule 3. Therefore, it claims instances

(2,4,6,9) and is also added to the partial rule list under construction, and then

the covered instances in the training set are removed.

The next rule in the list (Rule 6) attempts to cover as many instances as it

can. However, Rule 6 is a duplicate of Rule 1. This means that there are no

available instances to cover. When a rule fails to cover a single instance it is

discarded, i.e., not included in the final rule list.

Next, Rule 5 is evaluated, which originally covered instances (1,4,5,6).

However Rule 1 has already covered instances 4 and 6. The rule claims instances

1 and 5 and recalculates its prediction based on the instances that it has covered.

The modified Rule 5 is then added to the list.

With the evaluation of Rule 5, all instances have been covered by a rule. Since

Rule 2 and Rule 4 are unable to cover any instances, they are discarded. Table

5.3 shows the final rule list that has been created by the niching algorithm and

the number of instances that each rule now covers.

Note that Table 5.3 contains an additional rule: { THEN 355.5} . This

is the default rule that will always make a prediction as the antecedent is empty,

and will therefore always be satisfied. In a typical rule induction algorithm, the

value of the prediction for the default rule is calculated based on all remaining

uncovered instances in the training set, after all the previous rules have claimed

CHAPTER 5. ANT COLONY OPTIMIZATION FOR REGRESSION 94

any instances they can. However, in this case there are no uncovered instances,

so we calculate the prediction based on the mean of all instances in the training

set. The final rule list (after niching) is considered the rule list for the current

iteration of Algorithm 5.2.

5.4 Ant-Miner-RegPB: A Pittsburgh-Based ACO

Algorithm

The Pittsburgh-based ACO regression algorithm (Ant-Miner-RegPB) uses a similar

strategy from cAnt-MinerPB (Otero, Freitas and Johnson 2013). Recall that (as

discussed in Section 5.4) the key differences between an IRL and a Pittsburgh-

based ACO algorithm is that the latter creates a complete rule list in a single

ACO iteration, rather than creating a single rule in each ACO iteration. This is

achieved by moving of the While loop (line 2 of Algorithm 5.1) that checks the

number of uncovered instances to inside the ACO model construction phase, and

the addition of depth to the pheromone matrix, where the depth corresponds to

the position of a rule in the rule list. This allows different term interactions (i.e.,

co-occurrence of terms) at different positions in the list, as an interaction that is

useful at the top of a list may not be as useful lower down.

The creation of a complete rule list in each iteration allows for the optimisation

of the interactions of both rules and terms when creating the best rule list for

a specific data set, where two rules constructed together may outperform two

rules constructed separately using a greedy approach. In a greedy sequential

covering approach, such as Ant-Miner-Reg, the first rule attempts to cover as

many instances as possible with no consideration to subsequent rules. The high-

level pseudo-code for Ant-Miner-RegPB is shown in Algorithm 5.4.

Lines 14 and 19 of Algorithm 5.4 show that the quality measure used in the

ACO optimisation procedure is not that of a single rule but of an entire rule

CHAPTER 5. ANT COLONY OPTIMIZATION FOR REGRESSION 95

Algorithm 5.4: Pittsburgh-based ACO Regression Algorithm high-level
pseudo-code.
Data: Instances
Result: RuleListgb

1 RuleListgb ←− null
2 PheromoneInitialization()
3 for i = 1 to ant_iterations do
4 RuleListib ←− null
5 for j = 1 to colony_size do
6 Instances ←− Training Instances
7 RuleList ←− null
8 while |Instances| > maximum_uncovered do
9 Rule ←− CreateRule()

10 Prune(Rule)
11 Instances ←− Instances − Covered(Rule)
12 RuleList ←− RuleList ∪ Rule
13 end
14 if Quality(RuleList) > Quality(RuleListib) then
15 RuleListib ←− RuleList
16 end
17 end
18 UpdatePheromone(RuleListib)
19 if Quality(RuleListib) > Quality(RuleListgb) then
20 RuleListgb ←− RuleListib
21 end
22 end
23 return RuleListgb

list, in contrast to the IRL-based Ant-Miner-Reg Algorithm 5.1. In Ant-Miner-

RegPB, we use RRMSE as a measure of list quality which we aim to minimise. It

should be mentioned that the procedure to create a single rule and the pruning

of each rule (lines 9 and 10 of Algorithm 5.4) are the same ones that are found in

Ant-Miner-Reg.

CHAPTER 5. ANT COLONY OPTIMIZATION FOR REGRESSION 96

Figure 5.3: An illustration of a construction graph for the Pittsburgh-based algo-
rithm Ant-Miner-RegPB. Each edge contains a table of rule depth and pheromone
values to be used in the list construction.

5.4.1 Extended ACO Construction Graph

Ant-Miner-RegPB still uses a construction graph, which the artificial ants traverse

when constructing their rules. The pheromone amount is then updated with the

best rule list created in each iteration —denoted RuleListib in Algorithm 5.4. The

overall structure is the same as in Ant-Miner-Reg. However, each edge on the

construction graph now contains the concept of depth, this depth can be seen in

Figure 5.3. Each node in the construction graph shown in Figure 5.3 represents a

term that could be added to a rule in the same way as in Figure 5.1, the differences

between the two construction graphs are to be found on the graph’s edges, where

a new concept of depth is found.

Each depth on the construction graph represents a rule position in a rule list.

CHAPTER 5. ANT COLONY OPTIMIZATION FOR REGRESSION 97

When an ant wants to create the first rule in the list, then the pheromone values it

uses comes from depth of one, while the n-th rule pheromone values are sampled

from depth n.

The concept of depth allows the colony to compartmentalise its knowledge of

the search space for each rule into separate levels, as terms that are good for rules

near the top of the list may not be good for rules lower down in the list.

If an ant creates a rule at a depth that has not been used by any previous ants

in any of the previous iterations, a new level is created and initial pheromone is

deposited onto each edge as described in Section 5.2.2.

When updating the pheromone values the best rule list generated in an iter-

ation is used and not the best single rule generated for each depth of the con-

struction graph. This ensures that the algorithm optimises the entire rule list and

not each rule individually, allowing for rule and term interactions to be optimised

by the algorithm. This is because an individual rule does not have to cover as

many instances as possible to improve its relative coverage and hence its overall

quality. Rules can leave an instance uncovered for a lower rule to cover and make

a more accurate prediction, improving the rule list quality and by extension its

own quality.

Chapter 6

Computational Results for ACO

Regression

In this chapter the computational results for ACO algorithms tackling the regres-

sion problem will be presented. The results have been divided into two sections.

The first section presents the results of the dynamic discretisation procedure used

by Ant-Miner-Reg, while the second section presents a comparison of the three

learning strategies to create a list of regression rules in ACO-based algorithms.

6.1 Experimental Setup

The Ant-Miner-Reg algorithms presented in this chapter have been compared

using the fifteen UCI Machine Learning Repository data-sets (Lichman 2013)

shown in Table 6.1 to evaluate the most effective strategy for the regression task.

All experiments used 10-fold cross-validation. Recall that cross-validation involves

dividing the data-set into ten partitions; a model is created using nine of these

partitions as training data, while holding the tenth partition as an unseen testing

set. This is repeated ten times using each of the partitions as a testing set. The

stochastic ACO algorithms are ran five times (varying the random seed) on each

98

CHAPTER 6. COMPUTATIONAL RESULTS FOR ACO REGRESSION 99

Table 6.1: Attribute makeup of the UCI Machine Learning Repository data sets
for the regression task used in the experiments (Lichman 2013).

Predictor Attributes
Data Set Instances Real Nominal Total
Air-foil 1502 5 0 5
CCPP 9568 0 5 5
Concrete 1029 0 8 8
CPU 209 1 8 9
Efficiency 767 0 8 8
Elevators 9516 0 6 6
Flare 1065 10 1 11
Housing 452 1 13 14
Istanbul Stock 535 0 7 7
MPG 392 3 5 8
R_WPBC 193 0 32 32
Red Wine 1599 0 12 12
Skill Craft 3337 0 19 19
Stock 949 0 9 9
Yacht 308 0 7 7

cross-validation fold, for a total of fifty runs on each data-set. Multiple runs are

performed with varying random seeds to ensure that any variability in algorithm

performance due to the probabilistic nature of an algorithm is reduced. While

10-fold cross-validation is used to ensure that any benefit (or penalty) due to

variability in partition makeup between training and testing data is minimised.

Table 6.2 contains the user-defined parameters of the ACO-based algorithms

(Ant-Miner-Reg, Ant-Miner-RegM and Ant-Miner-RegPB), including the addi-

tional parameter required by the Michigan-based algorithms for the pheromone

update threshold. The values for these parameters have not been optimised.

CHAPTER 6. COMPUTATIONAL RESULTS FOR ACO REGRESSION 100

Table 6.2: Parameters used in the ACO-based algorithms.

Parameter Value
Minimum Covered Rule 10
Minimum Uncovered 10
Iterations 500
Colony Size 10
Quality Weighting (α) 0.59
Ant-Miner-RegM

Pheromone Update Threshold 0.5

The values for the first four parameters mentioned are based on the parameters

used in the original cAnt-Miner (Otero, Freitas and Johnson 2009) and Ant-Miner

(Parpinelli, Lopes and Freitas 2002). Whilst the values for the last two parameters

are based on other algorithms as mentioned later.

The parameters Minimum Covered Rule and Minimum Uncovered represent

stopping criteria for rule construction and rule list construction respectively, set-

ting the minimum number of instances a rule must cover and the maximum un-

covered examples in the current training set before list construction can end.

Iterations and Colony Size manage the ACO procedure, setting the size of the

colony (which is the number of solutions produced in each iteration) along with

the maximum number of iterations. The last parameter for all ACO algorithms

is the Quality Weighting, which sets the balance between RRMSE and relative

coverage. The value used here is the same as the one used in SeCoReg (Janssen

and Fürnkranz 2010b). Finally, there is an additional parameter for the Michigan-

based ACO algorithm Ant-Miner-RegM, namely Pheromone Update Threshold,

which sets the quality threshold for a rule to be used during the pheromone update

procedure. The value used is the same as the one used in GBAP (Olmo, Romero

and Ventura 2010).

CHAPTER 6. COMPUTATIONAL RESULTS FOR ACO REGRESSION 101

For the regression task, the Relative Root Mean Squared Error (RRMSE) is

used to compare the predictive performance of different algorithms. It is calculated

by first applying the constructed model to the data-set and the RRMSE between

the prediction ȳi and the true value yi is calculated as:

RRMSE =

√
1
m
·∑m

i=1(yi − ȳi)2√
1
m

∑m
i=1(yi − y′)2

(40)

where y′ is the mean value of the target attribute in the data-set and m is the

number of instances in the data set. This produces a normalised value, where

0 represents no error and 1 is the error produced if the mean is predicted for

all instances. Therefore, the closer the value to 0, the better the algorithm’s

performance

6.2 Dynamic Discretisation Experiments

Ant-Miner-Reg requires a dynamic dicretisation procedure to create good split

points when coping with continuous attributes. Two strategies for dynamic dis-

cretisation have been implemented. The first is the method used by M5 (Quinlan

1992), which aims to partition the data in such a way that it maximises the

expected reduction in error by minimising the standard deviation of the target

variable in the two sub-sets. The second split point generation method uses a

group merging process that attempts to merge groups of instances that result in

the minimum increase in group error in relation to the target value.

Table 6.3 shows the RRMSE of the two Ant-Miner-Reg variants. Ant-Miner-

Reg+ERSP uses the error reduction split point generation, while Ant-Miner-Reg+

GMSP uses the group merging split point procedure. Each algorithm was tested

on the fifteen data-sets shown in Table 6.1 using the experimental setup outlined

in Section 6.1.

CHAPTER 6. COMPUTATIONAL RESULTS FOR ACO REGRESSION 102

Table 6.3: RRMSE of the rule list produced by each of the algorithms on each of
the fifteen UCI Machine Learning repository data-sets. A bold value signifies the
smallest error produced by either algorithm. The standard deviation is shown in
brackets.

Data set Ant-Miner-Reg+ERSP Ant-Miner-Reg+GMSP
Air-foil 0.5512 [0.0138] 0.7869 [0.0109]
CCPP 0.3484 [0.0007] 0.3592 [0.0005]
Concrete 0.4182 [0.0046] 0.4987 [0.0106]
CPU 0.5624 [0.0450] 0.4469 [0.0289]

Efficiency 0.2038 [0.0006] 0.2044 [0.0028]
Elevators 0.6345 [0.0221] 0.7587 [0.0563]
Flare 1.0017 [0.0012] 1.0027 [0.0007]
Housing 0.5547 [0.0354] 0.4873 [0.0090]

Istanbul 0.8563 [0.0246] 0.9287 [0.0175]
R_WPBC 1.13477 [0.0494] 1.3265 [0.0375]
MPG 0.5432 [0.0149] 0.5322 [0.0083]

Red wine 0.9048 [0.0216] 0.9161 [0.0114]
Skill Craft 0.8219 [0.0209] 0.8324 [0.0267]
Stock 0.2457 [0.0106] 0.2540 [0.0081]
Yacht 0.5273 [0.0015] 0.3576 [0.0050]

From Table 6.3 we can see that the error reduction split point procedure per-

formed better in eleven of the fifteen data-sets when compared to the group merg-

ing procedure. Statistical testing was performed and the results of the Wilcoxon

Signed-Rank test can be seen in Table 6.4.

6.2.1 Discussion

The GMSP procedure provided the algorithm with a number of potential split

point options; allowing a number of different rules to be evaluated compared to

CHAPTER 6. COMPUTATIONAL RESULTS FOR ACO REGRESSION 103

Table 6.4: Wilcoxon Signed-Rank test (at the α = 0.05 level) on RRMSE, for the
results in Table 6.3.

W+ W- Z p
RRMSE 38 82 -1.2495 0.2113

the ERSP procedure, which produces a single split point. However, this did not

make the GMSP procedure more successful at identifying the best split point. This

may be due to the ACO procedure generating many candidate rules containing

continuous attributes during each iteration of the IRL strategy, causing the split

point procedures to be executed many times. GMSP generates many split points

during each execution of the discretisation procedure compared to ERSP, however

does not give the algorithm an advantage, we can hypothesise that ERSP produces

a single split point of generally higher quality.

The comparison of the two discretisation procedures shows that the error re-

duction split point procedure was the most successful, outperforming the group

merging procedure found in SeCoReg (Janssen and Fürnkranz 2010b,a) in eleven

of the fifteen data-sets. While this change was not significant (p value of 0.2113),

it is deemed successful enough and show enough promise to be used as the default

split point generation procedure in future Ant-Miner-Reg-derived algorithms.

6.3 Learning Strategy Experiments

Three different learning strategies for Ant-Miner-Reg were investigated. This

produced three algorithms different ACO-based algorithms:

(1) Ant-Miner-Reg, the original ACO algorithm for the regression task that uses

the IRL strategy;

(2) Ant-Miner-RegM, an ACO algorithm that uses the Michigan learning strategy;

CHAPTER 6. COMPUTATIONAL RESULTS FOR ACO REGRESSION 104

(3) Ant-Miner-RegPB, which uses the Pittsburgh-based strategy.

C
H

A
PT

ER
6.

C
O

M
PU

TAT
IO

N
A

L
R

ESU
LT

S
FO

R
A

C
O

R
EG

R
ESSIO

N
105

Table 6.5: RRMSE of the four algorithms being tested on the 15 UCI Machine Learning Repository (Lichman 2013)
regression data sets averaged across all 10 cross-validation folds. The standard deviation is shown in brackets. The
ACO-based algorithms were ran 5 times (varying the random seed) on each fold to reduce stochastic effects. The best
result on each data set is shown in bold.

Data Set Ant-Miner-Reg Ant-Miner-RegM Ant-Miner-RegPB M5’ Rules
Air-foil 0.9438 [0.0065] 0.9453 [0.0095] 0.6147 [0.0241] 0.4797 [0.0358]

CCPP 0.2275 [0.0109] 0.2746 [0.0136] 0.2385 [0.0090] 0.2375 [0.0136]
Concrete 0.9285 [0.0568] 0.9151 [0.0579] 0.4887 [0.0377] 0.3850 [0.1024]

CPU 0.6779 [0.2447] 1.2514 [0.3384] 0.3694 [0.1302] 0.1707 [0.1438]

Efficiency 0.1839 [0.0290] 0.1940 [0.0474] 0.0721 [0.0087] 0.1036 [0.0067]
Elevators 0.6213 [0.0337] 0.6271 [0.0351] 0.5410 [0.0136] 0.6014 [0.0134]
Flare 0.9974 [0.0135] 1.0105 [0.0151] 0.9603 [0.1105] 1.0086 [0.0257]
Housing 0.9569 [0.0160] 0.9418 [0.0315] 0.3744 [0.1291] 0.4396 [0.1154]
Istanbul Stocks 0.6958 [0.0490] 0.7377 [0.0464] 0.6354 [0.0767] 0.4811 [0.0564]

MPG 0.4120 [0.0822] 0.4203 [0.0606] 0.2713 [0.0578] 0.3723 [0.0455]
R_WPBC 1.0452 [0.0738] 1.0559 [0.0849] 1.0348 [0.1588] 1.0555 [0.2687]
Red Wine 0.9519 [0.0174] 0.9576 [0.0121] 0.7800 [0.0436] 0.8068 [0.0354]
Skill Craft 0.7943 [0.0221] 0.9028 [0.0376] 0.7408 [0.0395] 0.7628 [0.0897]
Stock 0.5526 [0.1562] 0.5706 [0.1229] 0.1069 [0.0150] 0.1441 [0.0676]
Yacht 1.0241 [0.0316] 1.0339 [0.0145] 0.0694 [0.1344] 0.0833 [0.0264]

CHAPTER 6. COMPUTATIONAL RESULTS FOR ACO REGRESSION 106

Table 6.6: Average ranks of the four regression algorithms tested, based on the
average RRMSE of the models produced. Statistically significant results using
the Holm post-hoc test for the significance level α = 0.05 are shown in bold.

Algorithm Average Rank p Holm
Ant-Miner-RegPB 1.4000 - -
M5’ Rules 1.8667 0.3222 0.05
Ant-Miner-Reg 2.8667 1.8628 × 10−3 0.025

Ant-Miner-RegM 3.8667 1.6715 × 10−7 0.0167

These three algorithms were compared to the classical M5’ Rules regression

algorithm, which also produces lists of rules, on the fifteen UCI Machine Learning

repository regression data-sets (shown in Table 6.1) using the experimental setup

discussed in Section 6.1.

The average RRMSE for each model produced by the four regression algo-

rithms is shown in Table 6.5, where the value of the algorithm that achieved the

smallest average error on each data set is shown in bold. The value found in the

square brackets is the standard deviation of the RRMSE across all executions on

each data-set.

When comparing the three ACO-based regression algorithms, Ant-Miner-RegPB

outperformed the other two algorithms in fourteen of the fifteen data sets. When

we compare the best performing ACO algorithm Ant-Miner-RegPB against M5’

Rules we find that Ant-Miner-RegPB wins in ten data sets and looses to M5’ Rules

in the other five. The IRL-based Ant-Miner-Reg wins in only one data-set.

Table 6.6 shows the results of the Friedman statistical test (Friedman 1937)

of the four algorithms tested. This includes the average rank and the p-value for

each algorithm. Statistical significance was tested at the 0.05 level using the Holm

post-hoc test, which compares the best algorithm (Ant-Miner-RegPB) against each

of the other three algorithms.

C
H

A
PT

ER
6.

C
O

M
PU

TAT
IO

N
A

L
R

ESU
LT

S
FO

R
A

C
O

R
EG

R
ESSIO

N
107

Table 6.7: Average number of rules in the final rule list of the four algorithms being tested on the 15 regression data sets
averaged across all 10 cross-validation folds. The standard deviation is shown between brackets. The smallest rule list
for each data-set is shown in bold.

Data Set Ant-Miner-Reg Ant-Miner-RegM Ant-Miner-RegPB M5’ Rules
Air-foil 13 [0.6207] 6 [0.5771] 28 [2.2165] 22 [1.8754]
CCPP 130 [25.1768] 4 [0.5406] 126 [15.1274] 14 [1.2856]
Concrete 4.9 [0.7783] 4 [0.7827] 18 [2.7486] 10 [0.5687]
CPU 6.4 [0.5253] 8 [1.1824] 12 [1.4514] 5.4 [0.2318]

Efficiency 7.3 [0.5869] 5 [1.1911] 10 [0.8401] 18 [1.4864]
Elevators 9.3 [0.7010] 6 [0.7690] 14 [1.8211] 6 [0.4686]

Flare 3.2 [0.5345] 6 [2.0259] 11 [1.1037] 3 [0.6874]

Housing 3 [0.1414] 5 [1.2149] 19 [1.9821] 7 [0.8694]
Istanbul Stocks 6 [1.4213] 6 [0.8571] 11 [1.7291] 2.5 [1.5694]

MPG 4.5 [0.5436] 8 [1.3739] 13 [1.5546] 6 [1.1965]
R_WPBC 4.3 [0.6263] 7 [1.1578] 11 [1.2103] 3 [0.7854]

Red Wine 10 [2.3296] 8 [0.9649] 33 [3.8322] 4 [2.6574]

Skill Craft 9.4 [1.1761] 8 [1.2289] 32 [3.7541] 7 [4.6451]

Stock 5.4 [0.8609] 6 [1.0882] 15 [2.2348] 8 [1.5728]
Yacht 7.4 [0.8514] 6 [0.6465] 14 [1.6309] 6.2 [1.0348]

CHAPTER 6. COMPUTATIONAL RESULTS FOR ACO REGRESSION 108

Table 6.8: Average ranks of the four regression algorithms tested based on the
average number of rules in the list of rules produced by each algorithm. Statistical
significant results using the Holm post-hoc test for the significance level α = 0.05
are shown in bold.

Algorithm Average Rank p Holm
Ant-Miner-RegM 1.9333 - -
M5’ Rules 1.9667 0.9436 0.05
Ant-Miner-Reg 2.2333 0.8245 0.025
Ant-Miner-RegPB 3.8667 4.1098 × 10−5 0.0167

It can be seen that Ant-Miner-RegPB achieves the lowest average rank and statis-

tically outperforms the other two ACO based algorithms. However, the difference

in mean ranks between Ant-Miner-RegPB and M5’ Rules is not statistically sig-

nificant.

The number of rules produced in the list of rules was also investigated —the

average number of rules for each algorithm is found in Table 6.7, with the smallest

average number of rules shown in bold. It was found that Ant-Miner-RegPB

produced the largest number of rules in thirteen of the data-sets. Ant-Miner-

RegM produced the smallest list of rules in six of the data-sets, best result (in

terms of minimising rule list size) for all the ACO-based algorithms. Ant-Miner-

Reg produced the smallest list in three of the data-sets. M5’ Rules produced

the smallest average rule list size in the largest number of data-sets, with seven

data-sets.

A Friedman statistical test was performed on the results for rule list size, this

can be seen in Table 6.8. It can be seen that the algorithm with the best av-

erage rank was Ant-Miner-RegM. Using the Holm post-hoc test to compare the

average rank of Ant-Miner-RegM against the average rank of the other three algo-

rithms, the only significant result was against Ant-Miner-RegPB, which produced

the largest rule lists on average.

CHAPTER 6. COMPUTATIONAL RESULTS FOR ACO REGRESSION 109

6.3.1 Discussion

First we will discuss the three different ACO-based approaches and then discuss

the performance of the best approach against the classical regression rule learner

M5’ Rules.

The results show that, when the goal is to minimise the RRMSE (as a measure

of predictive performance), the most effective search strategy is the Pittsburgh-

based algorithm: Ant-Miner-RegPB statistically outperforms the other two ACO-

based algorithms in the regression task. In addition, the Michigan-based ap-

proach showed no improvements when compared to the original Ant-Miner-Reg,

this was surprising as both Michigan and Pittsburgh-style approaches have been

shown to be competitive for data-mining applications using Learning Classifier

System (LCS) algorithms (Bacardit and Butz 2007). We hypothesis that while

the Michigan-based constructs the rules together and then performs a niching op-

eration allowing for a limited form of rule interaction, the multiple rules being

used for pheromone update spread too much new pheromone over the graph pre-

venting the ants from converging on a solution during rule construction. This is

due to many more terms having their pheromone increased, which will spread out

the pheromone, preventing the convergence towards a single path.

Another hypothesis as to why Ant-Miner-RegM performed poorly could be

the repeated construction by the colony of rules that cover the same region, any

repeated rules are ignored and the work performed by the ant that discovered the

discarded rule is wasted and the effort not used to explore other regions of the

search space to produce rules that cover different instances.

Ant-Miner-RegPB allows ants to consider term and rule interactions while

traversing the pheromone graph. This is achieved by modifying the pheromone

model by adding a concept of depth, separating out the pheromone being de-

posited by each rule, unlike the multiple rule update mechanism found in the

Michigan-based ACO algorithm. This difference allows each depth of the pheromone

CHAPTER 6. COMPUTATIONAL RESULTS FOR ACO REGRESSION 110

graph, with each depth corresponding to an individual rule. We hypothesis that

this allows the colony to successfully converge on a single (optimal or near op-

timal) path through the graph. In the IRL approach the algorithm’s aim is to

create a list of best rules as at each stage the IRL procedure generates the best

rule it can based on the set of instances that are currently uncovered. By con-

trast, the Pittsburgh-based algorithm’s objective is to create the best list of rules.

In the classification task it was also found that using the Pittsburgh-based algo-

rithm produced more accurate models than the IRL strategy (Otero, Freitas and

Johnson 2013).

When comparing the size of the regression models produced by the ACO al-

gorithms, Ant-Miner-RegPB produces the largest lists of rules on average. An

increase in the size of the rules is to be expected as the objective during construc-

tion has changed. In the IRL strategy, the objective is to produce the best rule at

each stage, with no regard to subsequent rules. As rule coverage contributes to a

rule’s quality, each rule will attempt to cover as many instances as possible, which

tends to produce fewer rules in the list. Similarly in the Michigan-based strategy,

the niching algorithm gives the best quality rules the chance to cover as many of

the instances as possible, reducing the size of the list as subsequent good quality

rules are unable to claim any instances. However, in the Pittsburgh-based strat-

egy, the model’s quality is determined by the best list of rules, with less pressure

on the rules to cover as many instances as possible. This allows the generation of

more specialist rules (with smaller coverage) to provide better predictions. This

increase in model size was also found when comparing the Pittsburgh-based strat-

egy to the IRL-strategy in the classification task (Otero, Freitas and Johnson

2013). While the the size of a model is important, with smaller models being

better, the predictive accuracy of a model is often more important.

CHAPTER 6. COMPUTATIONAL RESULTS FOR ACO REGRESSION 111

6.3.1.1 Comparison against M5’ Rules

When comparing the best ACO-based rule learner against a classical regression

rule learning approach, we find that Ant-Miner-RegPB is very competitive against

the well-known algorithm M5’ Rules, achieving a lower RRMSE in ten data-sets

out of the fifteen (Table 6.1). Additionally, the models produced by Ant-Miner-

RegPB will be generally more comprehensible than those of M5’ Rules Freitas

(2014). This is due to the rule predictions made by Ant-Miner-RegPB being easily

understandable, as they are made by a single value (the average value of the target

variable over all the covered instances in the training data). M5’ Rules uses linear

models that, while decreasing the RRMSE, add complexity to the rule’s conse-

quent, allowing them to predict different values fo different instances satisfying the

rule’s antecedent. Users therefore tend to have more difficulty in understanding

the final prediction, since predictions are not only determined by rule antecedent,

but also the linear model. Finally, linear models allow the prediction of values

outside the known domain of an attribute, which may produce unexpected results.

M5’ Rules produces rule lists similar in size to the original Ant-Miner-Reg

algorithm, while also being the second best performing algorithm in terms of

RRMSE. The addition of linear models to a rule’s prediction gives individual rules

greater power as they are not restricted to predicting a single mean value for all

instances satisfying the rule’s antecedent; like Ant-Miner-Reg and its derivatives.

This allows a single rule to perform the function of a number of simpler single-

valued rules at the cost of comprehensibility.

In summary, three new ACO-based regression rule algorithms have been intro-

duced and compared to each other and to a well established classical regression rule

algorithm. The Pittsburgh-based Ant-Miner-RegPB has achieved the best average

rank of all four algorithms producing the best models (in terms of RRMSE) in ten

of the fifteen data-sets and statistically outperforming the other two ACO-based

algorithms.

Chapter 7

Incorporating Monotonic

Constraints

Monotonic constraints encapsulate existing domain knowledge as either increasing

or decreasing correlations between predictor attributes and the target attribute.

This encapsulated domain knowledge can then be used during the learning phase

to influence the model that is being created, ensuring that it does not contradict

the existing knowledge.

The enforcement of monotonic constraints in this thesis is performed in two

different ways. First, a use of soft monotonic constraints in the learning (rule

construction) phase, where the quality of a rule incorporates a notion of how

monotonic the rule is. The quality is used to influence the amount of pheromone on

the construction graph, which in turn influences ants in future iterations, guiding

them towards monotonic regions of the search space but not overly constricting

the search.

The second enforcement of constraints is done in a post-processing phase in the

form of hard constraint pruners. These pruners are used to ensure that the final

rule list produced by the algorithm conforms to the constraints imposed upon it.

The result of these pruners do not influence the learning phase of the algorithm,

112

CHAPTER 7. INCORPORATING MONOTONIC CONSTRAINTS 113

since they are applied after all rules have been created. Additionally, they operate

on a complete model (list of rules), instead of individual rules, as monotonicity is

a global property of the model, not a property of individual rules.

This chapter is based on a number of published papers, with the algorithms

Ant-Miner-RegMC and cAnt-MinerPB+MC along with the soft constraint implemen-

tation being published in GECCO 2016 (Brookhouse and Otero 2016b) for the

former regression algorithm and ANTS 2016 (Brookhouse and Otero 2016a) for

the latter classification algorithm. The hard pruning suite was first introduced at

WCCI 2018 in a special IJCNN session on “Ordinal and Monotonic Classification”

along with the algorithm cAnt-MinerPB+MCP (Brookhouse and Otero 2018).

7.1 Soft Monotonic Constraint Enforcement

In both data mining tasks investigated in this thesis, namely regression and classi-

fication rule discovery, soft constraints can be incorporated into the learning phase

when rules are constructed.

Previously in Chapter 5, the algorithms Ant-Miner-Reg and Ant-Miner-RegPB

were introduced to create regression rules. These algorithms, along with cAnt-

MinerPB, are modified in this chapter to incorporate soft constraints. The soft

constraint algorithms work as follow. Each ant starts with an empty list of rules

and iteratively adds a new rule to this list. In order to create a rule, an ant

adds one term at a time to the rule antecedent by choosing terms to be added to

the current partial rule based on the amount of pheromone (τ) and a problem-

dependent heuristic information (η). Once a rule is created, it undergoes a pruning

procedure. Pruning aims at removing irrelevant terms that might be added to a

rule due to the stochastic nature of the construction process: it starts by removing

the last term that was added to the rule and the removal process is repeated until

the rule quality decreases when the last term is removed or the rule has only one

CHAPTER 7. INCORPORATING MONOTONIC CONSTRAINTS 114

term left. Finally, the created rule is added to current list of rules and the training

examples covered by the rule are removed.

At the end of an iteration, when all ants have created a solution —for Ant-

Miner-Reg this is a single rule and for Ant-Miner-RegPB each ant creates a list of

rules— the best solution (determined by an error-based quality function) is used

to update pheromone values, providing a positive feedback on the terms present

in the solution. The higher the pheromone value of a term, the more likely it will

be chosen to create subsequent solutions. This iterative process is repeated until

a maximum number of iterations is reached or until the search stagnates.

Recall that the rule construction phase of Ant-Miner-Reg contained a quality

function. When incorporating soft constraints, this quality function is modified to

include a monotonic correctness measure along with the original quality measure

used. This revised quality function is also used in the soft rule pruner, to show

a preference for monotonic solutions without absolutely requiring it. The quality

function is given by equations 41 and 42. The soft monotonic constraint pruner

that uses a modified quality function to prune the rules during the construction

phase will be discussed in detail in Section 7.1.1.

By softly enforcing monotonic constraints within the ACO procedure in the

rule creation stage, optimisation of monotonicity should reduce the need to rely on

the more aggressive and potentially more damaging hard pruners later on. At the

same time, soft constraints allow the algorithm to explore non-monotonic regions

of the search space that might lead to higher predictive power, and may also allow

the discovery of new monotonic regions with good predictive power.

7.1.1 Soft Enforcement and Rule Quality

With the addition of monotonic constraints, a new notion of rule quality that

incorporates both predictive accuracy and monotonic compliance is required. This

is achieved through the addition of a measure of non-monotonicity and combined

CHAPTER 7. INCORPORATING MONOTONIC CONSTRAINTS 115

with a weighted measure as follows.

Given a list of rules, the non-monotonicity index (NMI) is defined as:

NMI =
∑k
i=1

∑k
j=1 mij

k2 − k
, (41)

where mij is 1 if the pair of rules rulei and rulej violate the constraint and

0 otherwise; k is the number of rules in the model. The NMI of a model is

constrained between zero and one: representing the ratio of monotonicity violating

pairs over the total possible number of prediction pairs present in the model being

tested —the lower a NMI is, the better a model is considered. The NMI is then

incorporated into the quality metric by:

QMod = (1− ω) ·Quality + ω · (1−NMI) , (42)

where QMod is the modified quality of a model (rule list) and ω is an adjustable

weighting that sets the importance of monotonicity and the original non-monotonic

quality measure to the overall rule list quality. Note that Equation 42 can be used

to calculate the quality of either a single rule or a complete list of rules. When

used to calculate the quality of the i-th rule the NMI calculated in Equation 41

is replaced by Equation 43.

Soft enforcement is also present in the rule pruner. This local search operator

allows violations of the monotonic constraints if the consequent’s improvement in

accuracy is large enough. The pruner operates on an individual rule and itera-

tively removes the last term until no improvement in the rule quality is observed.

Applying soft enforcement during model creation allows the search to be guided

towards monotonic models while still allowing exploration of the entire search

space by the colony.

As monotonicity is a global property of the model and a rule in isolation can

not violate itself, the rule being pruned is temporarily added to the current partial

CHAPTER 7. INCORPORATING MONOTONIC CONSTRAINTS 116

list of rules. Its non-monotonicity index (NMI) can then be used as a metric to

assess the rule’s monotonicity, calculated using a slightly modified NMI metric

given by:

NMI =
∑k
j=1 mij

k − 1 , (43)

where Rulei is the current rule being tested; mij is 1 if Rulej causes a violation

with Rulei and 0 otherwise, and k is the number of rules in the list. When testing

an individual rule, there are k−1 possible interactions instead of the larger k2−k

interactions found when calculating the NMI of a complete list of rules.

7.2 Hard Monotonic Constraint Enforcement

Monotonicity is a global property of a model and in rule models, at least two rules

are required to create a violation. Therefore, pruners that operate on a complete

rule list are preferential to those operating on individual rules, since the latter

can only modify a single rule to fix the violations present in the model (Feelders

2000). Initially, a simple monotonic backtrack pruner, now referred to as the

Naive Pruner (NP) was used to strictly enforce monotonic constraints by fixing

any violations that were not removed by the soft constraint enforcement. The

Naive Pruner can be very destructive if the violating rule occurs towards the top

of a rule list. This is because the bottom section of the list is discarded due to

the backtracking nature of the pruner, as it will keep removing the last rules and

terms until it encounters the monotonic violation and creates a monotonic rule

list.

7.2.1 Naive Pruner

The hard monotonic Naive Pruner enforces the monotonic constraints rigidly as it

does not allow any violations to exist within the rule list. It operates on a list of

CHAPTER 7. INCORPORATING MONOTONIC CONSTRAINTS 117

Algorithm 7.1: High-level pseudo-code for the Naive Pruner, where a
term is removed from the list until the NMI is zero.
Data: non−monotonic list
Result: monotonic list

1 while NMI(list) > 0 do
2 PruneLastTerm(list)
3 if LastRuleLength(list) = 0 then
4 RemoveLastRule(list)
5 end
6 end
7 return list

rules as follows: (1) the NMI of a list is first calculated (Equation 41); (2) if it is

non-zero, the last term of the final rule is removed or, if the rule contains only one

term, the rule is removed; (3) the NMI is then recalculated for the modified list

of rules. This is repeated until the NMI of the rule list is zero, this will always be

achieved as (if necessary) eventually a single rule will be present in the rule list and

two rules are required for a violation to occur. Finally, the default rule is added

to the end of the list if it has been removed and the new monotonic rule list is

returned. The high-level pseudo-code for the Naive Pruner is shown in Algorithm

7.1. The pruner is known as the Naive Pruner as it is a very simple pruner that,

unlike the pruners introduced later, does not use any monotonic information when

deciding how the rule list should be pruned.

7.2.2 Most Violations Pruner (MVP)

The Most Violations Pruner (MVP) prunes the worst rule in terms of NMI in the

list of rules. The rationale is that by pruning the worst rules first, the list of rules

can be made monotonic with fewer changes. It works as follows: (1) the NMI of

each rule is calculated (Equation 43); (2) the rule with the highest NMI has its

last term removed or the complete rule is removed if it has only one term; (3)

the NMI of each rule is then recalculated and the procedure continues until the

CHAPTER 7. INCORPORATING MONOTONIC CONSTRAINTS 118

Algorithm 7.2: High-level pseudo-code for the Most Violations Pruner.
In each iteration the rule with the worst NMI has its last term removed.
Data: non−monotonic list
Result: monotonic list

1 while NMI(list) > 0 do
2 ruleworst ←− {}
3 for n←− 1to list_size do
4 if NMI(rulen) ≥ NMI(ruleworst) then
5 ruleworst ←− rulen;
6 end
7 end
8 PruneFinalTerm(ruleworst)
9 if RuleLength(ruleworst) == 0 then

10 RemoveRule(list, ruleworst)
11 end
12 end
13 return list

model’s NMI is zero. In the case of a draw, e.g., a single pair of rules violating

each other, the rule appearing lower in the list is preferentially pruned. This

decision is made as rules towards the top of the list were generated based on a

larger training set and therefore likely to be more accurate than those towards the

end, which are classifying fewer remaining instances. The high-level pseudo-code

for the MVP pruner is shown in Algorithm 7.2.

7.2.3 Best Fix Pruner (BFP)

The third global pruner, called Best Fix Pruner (BFP), attempts to fix the rule

that would give the greatest reduction in the model’s NMI. Note that the rule

that gives the greatest reduction is not necessarily the rule with the highest NMI.

The high-level pseudo-code for the best fix pruner is shown in Algorithm 7.3.

Each non-monotonic rule in the complete model is pruned backwards from the

last term until a change in the model’s NMI is detected. The pruned rule that led

to the largest decrease in NMI is kept and the remaining rules are restored to their

CHAPTER 7. INCORPORATING MONOTONIC CONSTRAINTS 119

Algorithm 7.3: High-level pseudo-code for the Best Fix Pruner. In each
iteration the rule that decreases the NMI by the largest amount will be
pruned.
Data: non−monotonic list
Result: monotonic list

1 while NMI(list) > 0 do
2 rulebi ←− {}
3 best_improvement←− 0
4 for n←− 1to list_size do
5 rulen ←− list[n]
6 ruleprune ←− PruneRule(rulen)
7 improvement←− NMI(list) − NMI(listprune)
8 if improvement ≥ best_improvement then
9 rulebi ←− rulen

10 best_improvement←− improvement

11 end
12 end
13 rulebi ←− PruneRule(rulebi)
14 end
15 return list

original state. This process is repeated until the list becomes monotonic. For the

same reasons explained in the MVP approach, draws are solved by pruning the

rule lower in the list.

7.2.4 Monotonic Pruning Walk-through

In this section we will use a classification example1 to demonstrate how the differ-

ent pruners would create different rule lists, showing how the wrong pruner could

easily disrupt the predictive power of a model.

The introduction of soft monotonic constraints during the learning phase of

an ACO algorithm should produce a rule list that is mostly monotonic when

compared to a rule list generated by a monotonically unaware algorithm. This

should reduce the need for additional aggressive pruning as a post processing step.
1pruning a regression list would be similar with only the rules’ consequents differing

CHAPTER 7. INCORPORATING MONOTONIC CONSTRAINTS 120

However, as the soft constraints do not guarantee a monotonic list hard constraint

pruners are still required.

An initial approach to generate a monotonic list is to prune the non-monotonic

list until it becomes monotonic. This is the approach represented by the Naive

Pruner. Given its naive nature, this pruning can be quite destructive. Two new

pruners have been created with the aim to reduce the potential destructive effects

of pruning. Consider the following example using a car efficiency data set, with a

constraint that more powerful cars will have a lower fuel efficiency. An execution

of cAnt-MinerPB could possibly produce the list of rules below:

1) IF Power ≥ 250 THEN High

2) IF Cylinders = 6 AND Power ≤ 200 THEN Low

3) IF Doors = 2 THEN Medium

4) IF Power ≤ 200 THEN High

5) IF <empty> THEN Medium

We can see that there is a monotonic violation between rules 1 and 2, as a car

with a lower power can have a worse fuel efficiency (rule 2) than one with more

power (rule 1). To ensure monotonicity, the Naive Pruner would keep removing the

last term in the rule list, checking the monotonicity of the list at each step. When

the pruner removes the term ‘Power ≤ 200’ it produces the following monotonic

rule list in the process (the default rule being automatically re-added to ensure

full coverage):

1) IF Power ≥ 250 THEN High

2) IF Cylinders = 6 THEN Low

3) IF <empty> THEN Medium

The more sophisticated monotonic pruners MVP and BFP would identify that

a single violation exists between the first and second rules, at which point they

CHAPTER 7. INCORPORATING MONOTONIC CONSTRAINTS 121

would begin removing the terms at the end of the lowest ranked rule until the

violation is fixed. Whenever multiple rules have the same NMI as is the case with

MVP; or would provide the same reduction in NMI as with BFP, the lowest rule

in the list will be chosen. This is because rules higher in a rule list are likely to

make more accurate predictions than rules lower in the list, therefore, pruning

lower rules will reduce any damage caused by the pruners. Both pruners would

then produce the following monotonic rule list:

1) IF Power ≥ 250 THEN High

2) IF Cylinders = 6 THEN Low

3) IF Doors = 2 THEN Medium

4) IF Power ≤ 200 THEN High

5) IF <empty> THEN Medium

As can be seen this is a far less destructive change than the Naive Pruner as

the change created by the new pruners is significantly smaller. This should lead to

smaller change in the rule list’s predictive accuracy compared to the large changes

caused by the Naive Pruner.

The three pruners are computationally inexpensive in comparison to the main

ACO optimisation procedure so a viable approach to rule list pruning is to use all

three hard pruners and select the rule list that has the highest predictive accuracy

on the training set after the pruning phase. At this point we can focus only on

accuracy since all rule lists at this stage are guaranteed to be monotonic.

7.3 Monotonic Constraint ACO Algorithms

In this section five new monotonically aware ACO-inspired algorithms will be in-

troduced, combining the proposed soft and hard monotonicity constraint enforce-

ment for both classification and regression tasks. All five algorithms incorporate

soft monotonic constraints during the learning phase and then implement a hard

CHAPTER 7. INCORPORATING MONOTONIC CONSTRAINTS 122

Algorithm 7.4: High-level pseudo-code for Ant-Miner-RegMC. Changes
from the base algorithm (which ignores monotonicity constraints) are
highlighted in yellow.
Data: Training instances
Result: List of Rules

1 List ←− ∅
2 while | Instances | > maximum_uncovered do
3 PheromoneInitialization()
4 Rulegb ←− null
5 for n = 0 to ant_iterations do
6 Ruleib ←− null
7 for j = 0 to colony_size do
8 Rule ←− CreateRule()
9 Prune(Rule)

10 if ModifiedQuality(Rule) > ModifiedQuality(Ruleib) then
11 Ruleib ←− Rule
12 end
13 end
14 UpdatePheromone(Ruleib)
15 if ModifiedQuality(Ruleib) > ModifiedQuality(Rulegb) then
16 Rulegb ←− Ruleib
17 end
18 end
19 Instances ←− Instances - Covered(Rulegb)
20 List ←− List ∪ Rulegb
21 end
22 List ←− List ∪ RuleDefault
23 NaiveMonotonicPruner(List)
24 return List

monotonic post-processing phase. The first three algorithms (Ant-Miner-RegMC

Ant-Miner-RegPB+MC and cAnt-MinerPB+MC) use the simple Naive Pruner during

this post-processing phase. The other two algorithms, Ant-Miner-RegPB+MCP and

cAnt-MinerPB+MCP, have an expanded pruning suite to strictly enforce constraints.

CHAPTER 7. INCORPORATING MONOTONIC CONSTRAINTS 123

7.3.1 Ant-Miner-RegMC

The first proposed algorithm is Ant-Miner-RegMC. It is an extension of the IRL-

based ACO algorithm Ant-Miner-Reg (Section 5.2). The high-level pseudo-code

for Ant-Miner-RegMC is shown in Algorithm 7.4, where the high-lighted lines

show the changes made to the algorithm to enforce the monotonic constraints, in

comparison to the original Ant-Miner-Reg algorithm.

Lines 9 and 10 of Algorithm 7.4 contain the modified rule quality function.

This function now combines three measures. While the original Ant-Miner-Reg

rule quality measure uses RRMSE and relative coverage, these have been aug-

mented with NMI and now form a single weighted quality measure given by:

QMod = α ·RRMSE + β · relativecoverage+ ω · (1−NMI) , (44)

where the importance of each measure can be adjusted. Line 9 has a rule pruner

that uses the modified monotonic quality measure when making term removal

decisions. The final modification is the addition of the Naive Pruner on line 23.

This simple backtrack pruner will iteratively remove the last term in the rule list

until the model is completely monotonic.

7.3.2 Ant-Miner-RegPB+MC and cAnt-MinerPB+MC

For both classification and regression rule discovery, the introduction of a Pittsburgh-

based approach has been shown to increase the quality of the rule lists produced

by allowing the global optimisation of the complete list. As monotonicity is a

global property of a model, a Pittsburgh approach will be able to better opti-

mise the monotonic constraints during the soft constraint learning phase. Two

Pittsburgh-based algorithms have been created: Ant-Miner-RegPB+MC for regres-

sion rule discovery and cAnt-MinerPB+MC for the classification task. The high-

level pseudo-code for both Pittsburgh-based monotonic ACO algorithms is shown

CHAPTER 7. INCORPORATING MONOTONIC CONSTRAINTS 124

Algorithm 7.5: High-level pseudo-code for Ant-Miner-RegPB+MC and
cAnt-MinerPB+MC. Changes from the base algorithm (which ignores
monotonicity constraints) are highlighted in yellow.
Data: training instances
Result: list of rules

1 RuleListgb ←− null
2 PheromoneInitialization()
3 for i = 1 to ant_iterations do
4 RuleListlb ←− null
5 for j = 1 to colony_size do
6 Instances ←− Training Instances
7 RuleList ←− null
8 while |Instances| > maximum_uncovered do
9 Rule ←− CreateRule()

10 Prune(Rule)
11 Instances ←− Instances − Covered(Rule)
12 RuleList ←− RuleList ∪ Rule
13 end
14 if ModifiedQuality(RuleList) > ModifiedQuality(RuleListib) then
15 RuleListib ←− RuleList
16 end
17 end
18 UpdatePheromone(RuleListib)
19 if ModifiedQuality(RuleListib) > ModifiedQuality(RuleListgb) then
20 RuleListgb ←− RuleListib
21 end
22 end
23 NaiveMonotonicPruner(RuleListgb)
24 return RuleListgb

in Algorithm 7.5.

In order to incorporate monotonic constraints, the Pittsburgh-based approach

has been changed as follows. On lines 14 and 19 there are modified rule list

quality functions, which combine the original list quality measure with the NMI

measure. For the regression rule discovery algorithm Ant-Miner-RegPB+MC, this

modified list quality measure has two components: the RRMSE of the list and

the NMI of the rule list, which are then combined to give a single value using a

CHAPTER 7. INCORPORATING MONOTONIC CONSTRAINTS 125

weighted sum where the weights of the two measures can be tuned by the user.

For the classification task, cAnt-MinerPB+MC also uses two measures: a pessimistic

accuracy measure based on the C4.5’s error estimation (Quinlan 1993) and the

NMI measure, which again is consolidated into a single value with a weighted sum

that can be tuned by the user to give a greater preference to either accuracy or

monotonicity.

Like the previously discussed Ant-Miner-RegMC, the two Pittsburgh-based al-

gorithms have a soft monotonic pruner (line 10) that uses the modified quality

function; and hard enforcement of constraints is achieved via the Naive Pruner in

a post-processing phase (line 23).

7.3.3 Ant-Miner-RegPB+MCP and cAnt-MinerPB+MCP

The algorithms introduced previously in this chapter use a simple naive pruner to

strictly enforce monotonic constraints. As discussed in section 7.2, depending on

the location of the violation this simple back track pruner can make significant

changes to the rule list with no regard to the list’s quality. To counteract the effect

of large changes during hard constraint pruning, two new pruners were proposed,

Most Violations Pruner (MVP) and Best Fix Pruner (BFP). Instead of selecting

a single pruning technique to use, the three list pruners work in conjunction to

increase the accuracy of the model returned by cAnt-MinerPB+MC and Ant-Miner-

RegPB+MC: all three pruners are applied in turn to the constructed list of rules

and the pruner that achieves the highest accuracy on the training set is used

for the final prune. The algorithms with the new pruning suite are called Ant-

Miner-RegPB+MCP and cAnt-MinerPB+MCP for the regression and classification

tasks, respectively. Algorithm 7.6 contains the high-level pseudo-code for the two

algorithms with the monotonic changes highlighted in yellow.

The soft constraint enforcement from the previous Pittsburgh-based ACO al-

gorithms are carried over to the new algorithms, as can be seen by lines 10, 14 and

CHAPTER 7. INCORPORATING MONOTONIC CONSTRAINTS 126

Algorithm 7.6: High-level pseudo-code for Ant-Miner-RegPB+MCP and
cAnt-MinerPB+MCP. Changes from base algorithm (which ignores mono-
tonicity constraints) are highlighted in yellow.
Data: training instances
Result: list of rules

1 RuleListgb ←− null
2 PheromoneInitialization()
3 for i = 1 to ant_iterations do
4 RuleListlb ←− null
5 for j = 1 to colony_size do
6 Instances ←− Training Instances
7 RuleList ←− null
8 while |Instances| > maximum_uncovered do
9 Rule ←− CreateRule()

10 Prune(Rule)
11 Instances ←− Instances − Covered(Rule)
12 RuleList ←− RuleList ∪ Rule
13 end
14 if ModifiedQuality(RuleList) > ModifiedQuality(RuleListib) then
15 RuleListib ←− RuleList
16 end
17 end
18 UpdatePheromone(RuleListib)
19 if ModifiedQuality(RuleListib) > ModifiedQuality(RuleListgb) then
20 RuleListgb ←− RuleListib
21 end
22 end
23 BestList ←− null
24 BestListQuality ←− 0
25 for MonotonicPruner in MonotonicPruningSuite do
26 PrunedRuleList ←− MonotonicPruner(RuleListgb)
27 if Quality(PrunedRuleList) > BestListQuality then
28 BestListQuality ←− Quality(PrunedRuleList)
29 BestList ←− PrunedRuleList
30 end
31 end
32 return BestRuleList

CHAPTER 7. INCORPORATING MONOTONIC CONSTRAINTS 127

19 of Algorithm 7.6, which contain the soft constraint pruner and the modified

rule list quality function. The key changes in the algorithm can be seen on lines

23-31, with the implementation of the pruning suite.

First, the best rule list and best rule list quality variables are initialised (lines

23 and 24). The algorithm then iterates through the pruners in the pruning suite

(line 25), pruning the best list that was created during the learning phase (line

26). If the pruned list is better on the training data than all the pruners tested so

far, the pruned list is kept and the best list quality updated (lines 27-30). Once

all of the pruners have been tested and the best pruned list obtained, the best

list (the list with the highest accuracy on the training data) is returned by the

algorithm.

7.4 Summary

Enforcing monotonic constraints at two different phases of the algorithm allows the

production of better models, which still fully enforce the monotonic constraints. If

a single constraint phase was proposed instead of a two-phase soft/hard constraint

approach, either the ACO would be deprived of useful information of the domain

it is operating in with the removal of soft constraints or it would face an overly

constrained search space that could limit its search exploration to monotonic

regions of the search space.

7.4.1 Proposed Monotonic Algorithm Variants

In this chapter, five new algorithms have been proposed which all incorporate both

soft constraints during model construction and a hard constraint post-processing

step. Three algorithms tackle the regression task, the first is the IRL algorithm

Ant-Miner-RegMC that uses the Naive Pruner to strictly enforce constraints. Next,

CHAPTER 7. INCORPORATING MONOTONIC CONSTRAINTS 128

Ant-Miner-RegPB+MC used the same Naive Pruner but changed the learning strat-

egy from IRL to a Pittsburgh-based strategy. Finally for the regression task a

pruning suite was added to create the algorithm Ant-Miner-RegPB+MCP, which

applies three rule pruners and selects the pruner producing the rule list with the

highest accuracy on the training list.

The final two algorithms proposed in this chapter are classification algorithms.

cAnt-MinerPB+MC and cAnt-MinerPB+MCP both use the Pittsburgh learning strat-

egy and differ in the hard constraint pruning strategies. The former uses the Naive

Pruner while cAnt-MinerPB+MCP uses the pruning suite.

Chapter 8

Computational Results for

Problems with Monotonic

Constraints

In this chapter I will present the results for the proposed ACO-based monotonic

algorithms in both regression (Ant-Miner-RegMC, Ant-Miner-RegPB+MC and Ant-

Miner-RegPB+MCP) and classification (cAnt-MinerPB+MC and cAnt-MinerPB+MCP)

tasks. The results have been divided into two sections. The first will present

the results obtained for the regression task, looking at both the ACO learning

paradigm and the effect of the additional monotonic pruning suite presented in

Chapter 7. The second section will present the results for the classification task,

starting with the cAnt-MinerPB+MC algorithm and then cAnt-MinerPB+MCP, where

the latter incorporates the monotonic pruning suite.

The results presented in this chapter have previously been published in a

number of papers. For the regression task, these papers include (Brookhouse

and Otero 2016b), and for the classification task they include (Brookhouse and

Otero 2016a) for cAnt-MinerPB+MC and (Brookhouse and Otero 2018) for cAnt-

MinerPB+MCP.

129

CHAPTER 8. RESULTS FOR MONOTONIC CONSTRAINTS 130

Table 8.1: Parameter settings used for Ant-Miner-RegMC derived algorithms.

Parameter Value
Iterations 500
Colony Size 10
Minimum Covered Rule 10
Minimum Uncovered Rule List 0.1
Error Weighting (α) 0.4
Coverage Weighting (β) 0.3
Constraint Weighting (γ) 0.3

8.1 Results for Regression with Monotonic Con-

straints

In this section I will present the results for monotonic constraints in the regres-

sion task. The results will be divided into two subsections. The first (Section

8.1.1) presenting results obtained in the first set of experiments, combining soft

constraints during the learning phase and a naive pruner that uses backtrack-

ing to ensure all constraints are enforced rigidly. The second (Section 8.1.2) will

present the results obtained when the pruning suite was added to both ACO-based

algorithms and traditional regression algorithms.

Table 8.1 shows the parameter settings used in all Ant-Miner-RegMC derived

algorithms: colony size, number of iterations, minimum coverage parameters, error

weighting, and coverage weighting were derived from those used by Ant-Miner-

Reg and cAnt-MinerPB, so may not be the optimal settings on the test data-sets

used here. Table 8.2 lists the data-sets selected from the UCI Machine Learning

repository (Lichman 2013). The table gives information on the size of the data

set and the number of continuous and nominal attributes. The constrained at-

tribute is also shown along with the constraint direction, where it can be either

CHAPTER 8. RESULTS FOR MONOTONIC CONSTRAINTS 131

monotonically increasing or decreasing. The constrained attributes were chosen

by calculating the NMI of all the attributes in a data-set. Attributes with an NMI

of less than 0.1 were considered for constraint selection, the NMI for the selected

attribute is also shown in Table 8.2. Once a list of low NMI attributes was cre-

ated for each data-set, a constraint could be selected. Any potential attributes

were checked to make sure they were consistent with common sense before being

verified as a constraint. A single constraint was chosen rather than multiple con-

straints to minimise the risk of enforcing pattens that do not exist in the data

and are actually the result of random noise during the testing of the proposed

algorithms, future work would entail additional constraints once the robustness of

the algorithms has been demonstrated on single constraints.

As in Chapter 6, ten-fold cross-validation is performed and the predictive

accuracy (on the test set) from each of the ten folds is averaged. ACO-based

algorithms are executed five times on each fold and again the average is taken.

Five executions are performed with different random seeds due to the stochastic

nature of ACO-based algorithms, since the multiple runs will mitigate against

random increases and decreases in performance of the algorithm. Combining both

cross validation folds and repeat executions means that the ACO-based algorithms

will be executed fifty times on each data-set.

C
H

A
PT

ER
8.

R
ESU

LT
S

FO
R

M
O

N
O

T
O

N
IC

C
O

N
ST

R
A

IN
T

S
132

Table 8.2: Attribute make-up and constraint information of the eight monotonic regression UCI data sets used in the
experiments (Lichman 2013). In each data set a single attribute was constrained. The attribute name, whether it is
monotonically increasing (↑) or decreasing (↓) and the non-monotonicity index (NMI) of the attribute is given.

Attributes Constraint
Name Instances Nominal Continuous Constrained Attribute Direction NMI
CCPP 9568 0 5 V ↓ 0.080
CPU 209 1 8 MMax ↑ 0.074
Elevators 9516 0 6 ClimbRate ↑ 0.080
Flare 1065 10 1 LargestSpot ↑ 0.065
Housing 452 1 13 LSTAT ↓ 0.087
MPG 392 3 5 Horsepower ↓ 0.084
Red Wine 1599 0 12 Alcohol ↑ 0.090
Yacht 308 0 7 Froude ↑ 0.035

CHAPTER 8. RESULTS FOR MONOTONIC CONSTRAINTS 133

8.1.1 Ant-Miner-RegMC and Ant-Miner-RegPB+MC Results

Initially, a combination of soft constraints during the learning phase and a hard

pruner was used to satisfy the imposed monotonic constraints in the models con-

structed. Table 8.3 contains the computational results of these experiments. The

algorithms being tested include the IRL-based algorithm Ant-Miner-RegMC and

the Pittsburgh-based algorithm Ant-Miner-RegPB+MC. These two algorithms in-

corporate monotonic soft constraints in the learning phase and the simple back-

track naive pruner in a post-processing step to rigidly enforce the monotonic con-

straints. SeCoReg+MC is a modified greedy IRL learner that uses soft constraint

information in the rule construction phase along with the naive pruner like the

two previous ACO-based algorithms.

M5’ Rules is also included as a comparison to a classical rule induction algo-

rithm to show that the new algorithms are competitive and the introduction of

constraints is not detrimental to the predictive accuracy of the models produced.

It should be noted that the models created by M5’ Rules are not guaranteed to

be monotonic.

Table 8.4 shows that Ant-Miner-RegPB+MC achieves the best average rank

of all the algorithms, statistically outperforming both SeCoReg+MC and Ant-

Miner-RegMC in the data-sets that were used. For each data-set each algorithm

was assigned a rank from 1 to 4 with the best algorithm on that particular data-

set having a rank of 1 and the worst a rank of 4. These ranks were then averaged

over all the test data-sets.

C
H

A
PT

ER
8.

R
ESU

LT
S

FO
R

M
O

N
O

T
O

N
IC

C
O

N
ST

R
A

IN
T

S
134

Table 8.3: RRMSE of the model produced by each algorithm in each of the eight data sets. The bold value indicates the
smallest error of the four algorithms; the standard deviation is shown in square brackets.

Data Set Ant-Miner-RegMC Ant-Miner-RegPB+MC SeCoReg+MC M5’ Rules
CCPP 0.1715 [0.0126] 0.1956 [0.0152] 0.2853 [0.0150] 0.2375 [0.0136]
CPU 0.3564 [0.2269] 0.2451 [0.0451] 0.4194 [0.2074] 0.1707 [0.1438]

Elevators 0.8574 [0.1421] 0.4468 [0.0287] 1.0017 [0.0020] 0.6014 [0.0134]
Flare 0.9480 [0.0283] 0.9221 [0.0512] 1.0099 [0.0144] 1.0086 [0.0257]
Housing 0.5088 [0.2732] 0.3986 [0.0157] 0.8936 [0.2282] 0.4396 [0.1154]
MPG 0.4639 [0.1724] 0.2544 [0.0897] 0.6203 [0.0588] 0.3723 [0.0455]
Red Wine 1.0745 [0.5425] 0.7759 [0.0651] 1.0099 [0.0160] 0.8068 [0.0354]
Yacht 0.1811 [0.0385] 0.0767 [0.0985] 0.4597 [0.1168] 0.0833 [0.0264]

CHAPTER 8. RESULTS FOR MONOTONIC CONSTRAINTS 135

Table 8.4: Non-parametric Friedman test with Holm’s post-hoc test results based
on the average RRMSE of the four algorithms used in the experiments. Statisti-
cally significant results at the α = 0.05 level are shown in bold.

Algorithm Avg. Rank p-value Holm
Ant-Miner-RegPB+MC 1.25 – –
M5’ Rules 2.125 0.1752 0.05
Ant-Miner-RegMC 2.75 0.0201 0.025

SeCoReg+MC 3.875 4.7697 × 10−5 0.0166

Discussion

Ant-Miner-RegMC and Ant-Miner-RegPB+MC have been shown to produce mod-

els that preserve the monotonic constraints imposed upon them. The results also

show that this can be achieved without negatively impacting the predictive accu-

racy of the produced models; since Ant-Miner-RegPB+MC achieved the best average

rank of all algorithms, including the classical rule induction algorithm M5’ Rules.

While there is no statistically significant difference between the two algorithms

(Table 8.4), Ant-Miner-RegPB+MC outperforms M5’ Rules in seven of the eight

data sets. In addition, as shown in Table 8.4, Ant-Miner-RegPB+MC has been

shown to be significantly better than the greedy search algorithm SeCoReg+MC,

which has been modified to preserve the same constraints as Ant-Miner-Reg+MC.

The results in Table 8.4 also show that the Pittsburgh-based approach Ant-

Miner-RegPB+MC statistically outperformed the IRL learner Ant-Miner-RegMC.

This increased predictive performance shows that the ability to optimise inter-

rule interactions produces more accurate models. The additional process of en-

forcing monotonicity also benefits from the optimisation of these interactions, as

monotonicity is a global property of the model and not the property of a single

rule.

The algorithms whose results were presented in this section all use a naive hard

monotonic pruner to ensure that any models produced are monotonic. However,

CHAPTER 8. RESULTS FOR MONOTONIC CONSTRAINTS 136

this simple pruner has the potential to drastically alter the list when ensuring

constraints are satisfied. In the next section additional pruning strategies have

been added to the algorithms to create a pruning suite to enforce the constraints

with the minimum number of changes to the models discovered during the learning

phase.

8.1.2 Results for Monotonic Algorithms with Proposed

Pruning Suite

The proposed pruning suite consists of the three pruners outlined in Section 7.2,

where each pruner is applied in a post-processing stage to the rule list produced

in the learning phase. This creates three pruned rule lists, which are evaluated on

the training data, and the best list is selected as the final model by the algorithm.

The pruning suite has been applied to three different algorithms. Two ACO-

based algorithms: Ant-Miner-RegPB+MCP, which contains the soft constraint learn-

ing phase; and Ant-Miner-RegPB, which is the conventional monotonically un-

aware regression ACO-based algorithm. Additionally, the pruning suite has been

applied to M5’Rules to produce monotonic models that can be compared to the

proposed ACO-based approaches.

C
H

A
PT

ER
8.

R
ESU

LT
S

FO
R

M
O

N
O

T
O

N
IC

C
O

N
ST

R
A

IN
T

S
137

Table 8.5: RRMSE averages for the six algorithms being tested. Data-sets were chosen from the UCI Machine Learning
Repository (Lichman 2013) as having attributes with low NMI values, allowing the enforcement of constraints. The best
result (lowest RRMSE value) achieved for each data-set is shown in bold.

Data Set Ant-Miner-
RegPB+MC

Ant-Miner-
RegPB+MCP

Ant-Miner-
RegPB +
Pruners

Ant-Miner-
RegPB

M5’ Rules +
Pruners

M5’ Rules

CCPP 0.1715 [0.013] 0.1715 [0.013] 0.2953 [0.054] 0.2385 [0.009] 0.3768 [0.028] 0.2375 [0.014]
CPU 0.2451 [0.045] 0.1957 [0.068] 0.4149 [0.095] 0.3694 [0.130] 0.1658 [0.097] 0.1707 [0.144]
Elevators 0.4468 [0.029] 0.4545 [0.049] 0.4568 [0.035] 0.5410 [0.014] 0.5941 [0.867] 0.6014 [0.013]
Flare 0.9221 [0.051] 0.9221 [0.051] 1.0095 [0.067] 0.9603 [0.111] 1.0086 [0.026] 1.0086 [0.026]
Housing 0.3986 [0.016] 0.3324 [0.057] 0.4218 [0.824] 0.3744 [0.129] 0.4768 [0.034] 0.4396 [0.115]
MPG 0.2544 [0.090] 0.2432 [0.058] 0.2706 [0.104] 0.2713 [0.058] 0.3657 [0.040] 0.3723 [0.046]
Red Wine 0.7759 [0.065] 0.7267 [0.078] 0.7792 [0.057] 0.7800 [0.044] 0.8157 [0.029] 0.8068 [0.035]
Yacht 0.0757 [0.099] 0.0757 [0.099] 0.0954 [0.048] 0.0694 [0.134] 0.1547 [0.069] 0.0833 [0.026]

CHAPTER 8. RESULTS FOR MONOTONIC CONSTRAINTS 138

Table 8.6: Non-parametric Friedman test with Holm’s post-hoc test results based
on the average RRMSE of the six algorithms used in the experiments. Statistically
significant results at the α = 0.05 level are shown in bold.

Algorithm Avg. Rank p-value Holm
Ant-Miner-RegPB+MCP 1.6875 – –
Ant-Miner-RegPB+MC 2.1875 0.5929 0.05
Ant-Miner-RegPB 3.375 0.0712 0.025
Ant-Miner-RegPB + Pruners 4.375 0.0041 0.0166

M5’ Rules 4.6875 3.2834 × 10−3 0.0125

M5’ Rules + Pruners 4.9375 5.1200 × 10−4 0.01

Table 8.5 shows the average RRMSE of the six algorithms tested. Three

of the algorithms (Ant-Miner-RegPB+MCP, Ant-Miner-RegPB+ Pruners, and M5’

+ Pruners) use the new pruning suite. The non-monotonic Ant-Miner-RegPB

and M5’ Rules algorithms have been included to allow a comparison between

monotonic and non-monotonic variants of the same algorithm.

The Friedman statistical test and the Holm post-hoc test were performed, and

the results of these statistical tests along with the average rank of each algorithm

can be seen in Table 8.6. It shows that the algorithm with the best average rank

was Ant-Miner-RegPB+MCP, which produced the lowest average RRMSE in six of

the eight data-sets. The additional pruning suite managed to match or improve

the RRMSE of Ant-Miner-RegPB+MC, in seven of the eight data-sets.

To assess the changes performed by the pruners on the complete rule lists, a

comparison of the rule list lengths was performed, before and after the pruners

were applied. The results of this comparison can be found in Table 8.7. The table

includes the average number of rules present in the list before the post-processing

pruners are applied and the number present after the pruning. It also shows the

average number of terms removed by the pruners to ensure the resultant list is

completely monotonic.

C
H

A
PT

ER
8.

R
ESU

LT
S

FO
R

M
O

N
O

T
O

N
IC

C
O

N
ST

R
A

IN
T

S
139

Table 8.7: Average rule list size of the ACO-based rule learners with different monotonic constraint pruners. The first
two algorithms use a soft constraint learning phase, while the last has no knowledge of monotonicity during the learning
stage. The results include the number of rules before and after pruning along with the total number of terms removed
by the pruner.

Data Set Ant-Miner-RegPB+MC Ant-Miner-RegPB+MCP Ant-Miner-RegPB+ Pruners
Before After -Terms Before After -Terms Before After -Terms

CCPP 110 108 4 110 108 4 126 115 35
CPU 13 9 11 13 12 2.4 12 8 10
Elevators 18 16 9 18 18 3 14 11 8
Flare 10 10 1.2 10 10 1.2 11 9 7
Housing 25.3 20 16 25.3 24 3 19 13 19
MPG 15 14 4 15 15 1.1 13 12.5 0.75
Red Wine 31 28 8.6 31 31 1.2 33 32 3
Yacht 15.5 15 1.5 15.5 15 1.5 14 13 1.5

CHAPTER 8. RESULTS FOR MONOTONIC CONSTRAINTS 140

Discussion

The results show that, for both Ant-Miner-RegPB and M5’ Rules, the addition

of the pruning suite hurts the performance of the algorithms, resulting in a worse

average rank than the original non-monotonic algorithms, as shown in Table 8.6.

This was not observed in the performance of Ant-Miner-RegPB+MC, where the

additional pruning suite performed better on average, as can be seen by comparing

the average rank of Ant-Miner-RegPB+MCP (1.69) against the average rank of Ant-

Miner-RegPB+MC (2.19).

The statistical test results in Table 8.6 shows that the combination of soft con-

straints during the learning phase of an algorithm coupled with the post-processing

pruning suite statistically outperforms the base ACO algorithm Ant-Miner-RegPB

with the monotonic pruning suite. This shows that combining both soft and

hard constraint approaches is better than just enforcing hard constraints for these

regression data-sets. The statistical test also finds no difference in predictive per-

formance between non-monotonic and monotonic ACO-based algorithms, showing

that enforcing monotonic constraints did not negatively affect performance, contra

to previous work in the literature that has suggested that monotonic constraints

may affect the accuracy of models produced by machine learning algorithms (Ben-

David, Sterling and Tran 2009).

Finally, Table 8.7 shows the effects of the hard monotonic pruners. It can be

seen in general that the use of the pruning suite results in a small change to the

rule list size, with a reduced number of rules and terms being removed, compared

to using the single naive pruner. The more "intelligent" pruners introduced in

the pruning suite are able to ensure a monotonic rule list, while performing fewer

changes to the rule list created during the learning phase. When the pruning

suite is applied to the non-monotonic Ant-Miner-Reg we see an increase in the

number of rules and terms removed. This is expected as the rule lists generated

by Ant-Miner-Reg were not optimised for their monotonic features, but purely

CHAPTER 8. RESULTS FOR MONOTONIC CONSTRAINTS 141

for accuracy. This shows that the soft constraint learning phase present in Ant-

Miner-RegPB+MC and Ant-Miner-RegPB+MCP positively affects the monotonicity

of the rule list produced and therefore requires less pruning.

8.2 Results for Classification with Monotonic

Constraints

The classification results have also been divided into two sections. First I will com-

pare the monotonic algorithms and then compare the best monotonic algorithm to

traditional non-monotonic rule learners. As I am concentrating on rule induction

and the comprehensible models that they produce, I will only be considering the

performance of our proposed algorithms against other rule induction algorithms.

This allows a fair comparison, removing any biases that may be present due to

model representation.

In all experiments, cAnt-Miner variations were configured with a colony size

of 5 ants, 500 iterations, minimum cases covered by an individual rule of 10,

uncovered instance ratio of 0.1, and constraint weighting (ω) of 0.5 (only used by

cAnt-MinerPB+MC and its derivatives). The values for the colony size, minimum

coverage and number of iterations were taken from those used by the original

cAnt-Miner(Otero, Freitas and Johnson 2008).

The eight chosen algorithms were tested on thirteen data sets taken from the

UCI Machine Learning Repository (Lichman 2013). Table 8.8 presents the details

of the chosen data sets, including a summary of the constraints used. All predictor

attributes had their NMI calculated to discover good monotonic relationships—

the NMI results guided the choice of constrained attribute reported in Table 8.8.

Classification data-sets were chosen at random from the UCI Machine Learning

repository with the only requirement for a data set is an appropriate target at-

tribute. An acceptable target is one that is ordinal in nature e.g. a credit score

CHAPTER 8. RESULTS FOR MONOTONIC CONSTRAINTS 142

target attribute with values low, medium, and high. Like the previously pre-

sented results for regression, ten-fold cross validation was used for each algorithm

tested, along with the stochastic ACO-based algorithms being run five times (vary-

ing the random initialisation seed) on each fold, with the average of all the folds

and runs (i.e. the average over fifty results) being reported in the results tables.

8.2.1 Results of Monotonic Algorithms

To test the effectiveness of both additive and subtractive monotonic post-processing

methods, four algorithms have been proposed: the first two use cAnt-MinerPB as

the base, one of them using the monotonic pruners, and the other using RULEM

as post-processing steps. The other two algorithms use cAnt-MinerPB+MC as the

base, which incorporates the soft constraints into the model construction, and then

uses either the monotonic pruners or RULEM to enforce the constraints rigidly.

These four algorithms have also been compared against the monotonic rule

learner OLM (Ben-David, Sterling and Tran 2009). Table 8.9 shows the predic-

tive accuracy of all the algorithms on the thirteen data sets, with the standard

deviation shown in brackets. The highest accuracy achieved on each data set is

shown in bold.

In summary, the algorithms that incorporate soft constraints, cAnt-MinerPB+MCP

and cAnt-MinerPB+MC+RULEM, achieve the best result of all the algorithms in

seven and three of the thirteen data-sets, respectively; cAnt-MinerPB+Pruners

achieves the best result in two data-sets; cAnt-MinerPB+RULEM and OLM achieve

the best result in one apiece.

C
H

A
PT

ER
8.

R
ESU

LT
S

FO
R

M
O

N
O

T
O

N
IC

C
O

N
ST

R
A

IN
T

S
143

Table 8.8: Monotonic classification data sets from the UCI Machine Learning repository (Lichman 2013) used in ex-
periments, including attributes and constraint information. In each data-set a single attribute was constrained. The
constraint information contains the attribute’s name, direction of the constraint, either ↑ (increasing) or ↓ (decreasing)
and its corresponding NMI.

Attributes Constraint
Name Size Nominal Continuous Attribute Direction NMI
Abalone 4176 1 7 Shell Weight ↑ 0.8062
Australian Credit 689 9 6 A8 ↓ 0.9925
Bank Marketing 4520 9 7 Loan ↓ 0.9859
Cancer 698 0 10 USize ↑ 0.0059
Car 1727 6 0 Safety ↑ 0.0460
Credit Screen 689 9 6 A4 ↑ 0.9444
German Credit 689 9 6 Credit History ↓ 0.9189
Haberman 305 0 3 PosNode ↑ 0.0861
MPG 397 0 7 Horsepower ↓ 0.0566
Pima 767 0 8 PGC ↑ 0.0947
User Knowledge 402 0 5 PEG ↑ 0.9764
Wine 177 0 13 Flavanoids ↓ 0.964
Wine Quality 1598 0 11 Alcohol ↑ 0.8373

C
H

A
PT

ER
8.

R
ESU

LT
S

FO
R

M
O

N
O

T
O

N
IC

C
O

N
ST

R
A

IN
T

S
144

Table 8.9: Accuracy of the five monotonic rule learners. OLM is an existing monotonic learner, the other four algorithms
are ACO-based algorithms using a combination of soft constraints and hard constraints at different stages of the learning
process. The best result for each data set is shown in bold.

Data set OLM cAnt-MinerPB+
Pruners

cAnt-MinerPB+
RULEM

cAnt-
MinerPB+MCP

cAnt-
MinerPB+MC+

RULEM
Abalone 0.1609 [0.0164] 0.2500 [0.0152] 0.1354 [0.0065] 0.2583 [0.0083] 0.1294 [0.0056]
Australian Credit 0.6449 [0.0646] 0.8501 [0.0562] 0.8345 [0.0097] 0.8554 [0.0402] 0.8554 [0.0402]

Bank Marketing 0.8828 [0.0482] 0.7954 [0.0242] 0.8717 [0.0097] 0.8949 [0.0131] 0.8746 [0.0343]
Cancer 0.8355 [0.0149] 0.9465 [0.0214] 0.7241 [0.0158] 0.9574 [0.0166] 0.7743 [0.0354]
Car 0.9055 [0.0187] 0.8452 [0.0274] 0.7958 [0.0096] 0.8964 [0.0149] 0.8179 [0.0356]
Credit Screen 0.5681 [0.0654] 0.8546 [0.0546] 0.8645 [0.0564] 0.8612 [0.0385] 0.8356 [0.2565]
German Credit 0.6700 [0.0153] 0.7465 [0.0674] 0.7000 [0.6874] 0.7416 [0.0369] 0.6946 [0.0645]
Haberman 0.6993 [0.0781] 0.7405 [0.0791] 0.7097 [0.6741] 0.7417 [0.0917] 0.7419 [0.0654]

MPG 0.7663 [0.0367] 0.7641 [0.0641] 0.7555 [0.0664] 0.9256 [0.0274] 0.7587 [0.0124]
Pima 0.7161 [0.0589] 0.7456 [0.0665] 0.6623 [0.0695] 0.7494 [0.0707] 0.7013 [0.0963]
User Knowledge 0.4839 [0.0398] 0.9242 [0.0157] 0.8987 [0.0678] 0.9271 [0.0355] 0.9346 [0.0646]

Wine 0.3202 [0.0201] 0.9875 [0.0264] 0.8889 [0.0345] 0.9605 [0.0377] 0.5555 [0.0564]
Wine Quality 0.2808 [0.0276] 0.5412 [0.0447] 0.3183 [0.0248] 0.5743 [0.0391] 0.3178 [0.0641]

CHAPTER 8. RESULTS FOR MONOTONIC CONSTRAINTS 145

Table 8.10: Friedman statistical test with Holm’s post-hoc test results. Average
rank and p values of the monotonic algorithms tested. Results that showed a
statistically significant difference according to the α = 0.05 level are shown in
bold.

Algorithm Avg. Rank p Holm
cAnt-MinerPB+MCP 1.4910 - -
cAnt-MinerPB+Pruners 2.5385 0.0940 0.05
cAnt-MinerPB+MC+RULEM 3.2692 4.3336 × 10−3 0.025

OLM 3.7692 2.5318 × 10−4 0.0167

cAnt-MinerPB+RULEM 3.9231 9.3412 × 10−5 0.0125

Table 8.10 shows the results of a Friedman statistical test with Holm’s post-hoc

test performed on the accuracy results presented in Table 8.9, where we can see

that cAnt-MinerPB+MCP achieves the lowest (best) average rank and significantly

outperforms the monotonic learner OLM and both ACO variants that use the

RULEM post-processing method.

The last set of results in this section concerns the effect of different post-

processing procedures to the size of the rule lists produced by cAnt-MinerPB+MC.

Table 8.11 shows the average number of rules in the rules list before and after

post-processing along with the number of terms removed by the pruning suite, or

added by RULEM.

Discussion:

Our results show that algorithms that used subtractive pruners performed

better than the ones using RULEM, which is an additive approach. RULEM adds

additional rules to a rule list, which could lead to over-fitting of the data — if the

rules added by RULEM are good rules and therefore increase predictive accuracy,

it would be reasonable to expect the learning algorithms to discover them. These

additionally created rules that are added to the top of a list reduce the effectiveness

CHAPTER 8. RESULTS FOR MONOTONIC CONSTRAINTS 146

Table 8.11: Average number of rules in the rule lists created by cAnt-MinerPB+MC
with the additional monotonic pruning suite and RULEM added as post-
processing steps to enforce constraints. The results include the number of rules
before and after post-processing along with the number of terms removed or added.

Data Set cAnt-MinerPB+MCP cAnt-MinerPB+MC + RULEM
Before After −Terms Before After +Terms

Abalone 25.0 22.0 6.0 25.0 48.0 33.5
Australian Credit 6.5 6.5 0.0 6.5 6.5 0.0
Bank Marketing 12.0 11.5 1.5 12.0 13.0 2.0
Cancer 6.0 5.5 3.0 6.0 7.2 4.0
Car 26.2 24.0 7.0 26.2 34.5 13.0
Credit Screen 10.0 9.0 2.5 10.0 16.2 19.4
German Credit 7.5 7.2 1.2 7.5 12.0 8.2
Haberman 8.0 7.0 2.0 8.0 18.4 12.0
MPG 9.2 8.5 3.0 9.2 18.0 24.5
Pima 5.2 4.8 0.5 5.2 9.1 5.0
User Knowledge 8.0 6.5 4.0 8.0 9.5 2.0
Wine 5.0 4.8 1.0 5.0 16.5 12.0
Wine Quality 12.5 11.0 4.0 12.5 22.0 17.0

of the previously generated rules, as rules at the top of the list will preferentially

make predictions over those lower in the list. Subtractive pruners, instead, can

only generalise a rule (by removing terms from it), allowing it to cover more

instances. While overly generalised rule’s will hurt a models predictive accuracy,

the monotonic pruners here aim to minimise changes to the model.

Previous experiments involving RULEM have been focused on algorithms that

employ the sequential covering technique, which generally ignores rule interactions

when constructing a model. In fact, this is one of the reasons RULEM’s authors fo-

cused on post-processing, as monotonicity is a global property (Verbeke, Martens

and Baesens 2017). However, cAnt-MinerPB and its derivatives generate an entire

CHAPTER 8. RESULTS FOR MONOTONIC CONSTRAINTS 147

rule list in each iteration of the algorithm. This allows for rule interactions to be

optimised and, therefore, the additional rules generated by RULEM may disrupt

these rule interactions present in the models, negatively affecting the accuracy.

Due to the global optimisation of models by cAnt-MinerPB, a logical step

is to introduce monotonic constraints to the learning phase. The decision to

implement a soft constraint regime at this stage is to nudge (bias) ants towards

good monotonic solutions while not restricting the search space they operate in.

Our experiments show that incorporating those constraints into the learning phase

minimises the changes required in a potentially destructive post-processing step

to fix the model. Embedding constraints into the learning phase allows the ant

colony to optimise the rule list based on all the requirements that a user wishes and

not to enforce new requirements, or at least minimise the additional requirements,

after the model has been optimised.

C
H

A
PT

ER
8.

R
ESU

LT
S

FO
R

M
O

N
O

T
O

N
IC

C
O

N
ST

R
A

IN
T

S
148

Table 8.12: Comparison of the model accuracy of the best monotonic rule learner cAnt-MinerPB+MCP to traditional
non-monotonic rule learners, including the original cAnt-MinerPB. The best result for each data set is shown in bold.

Data set cAnt-MinerPB+MCP JRip C5.0 Rules cAnt-MinerPB

Abalone 0.2583 [0.0083] 0.1906 [0.0284] 0.2303 [0.0310] 0.2562 [0.0215]
Australian Credit 0.8554 [0.0402] 0.8507 [0.0315] 0.8639 [0.0363] 0.8580 [0.0501]
Bank Marketing 0.8949 [0.0131] 0.8936 [0.0146] 0.8919 [0.0125] 0.8938 [0.014]
Cancer 0.9574 [0.0166] 0.9542 [0.0256] 0.9527 [0.0223] 0.9566 [0.0181]
Car 0.8964 [0.0149] 0.8646 [0.0134] 0.9543 [0.0137] 0.8929 [0.0151]
Credit Screen 0.8612 [0.0385] 0.8936 [0.0485] 0.8612 [0.0393] 0.8493 [0.0479]
German Credit 0.7416 [0.0369] 0.7350 [0.0468] 0.7120 [0.0444] 0.7490 [0.0509]

Haberman 0.7417 [0.0917] 0.7222 [0.0387] 0.7288 [0.0764] 0.7405 [0.0791]
MPG 0.9256 [0.0274] 0.9095 [0.0856] 0.9247 [0.0353] 0.9200 [0.0293]
Pima 0.7494 [0.0707] 0.7513 [0.0715] 0.7377 [0.0698] 0.7493 [0.0564]
User Knowledge 0.9271 [0.0355] 0.9280 [0.0269] 0.9281 [0.0473] 0.9254 [0.0486]
Wine 0.9605 [0.0377] 0.9494 [0.0156] 0.9436 [0.0594] 0.9444 [0.0586]
Wine Quality 0.5743 [0.0391] 0.5860 [0.0212] 0.6128 [0.0543] 0.5523 [0.0477]

CHAPTER 8. RESULTS FOR MONOTONIC CONSTRAINTS 149

Table 8.13: Average rank and p values of the best monotonic algorithm cAnt-
MinerPB+MCP and three non-monotonic rule learners according to the non-
parametric Friedman test. Holm’s post-hoc test was used to check for significance
at α = 0.05.

Algorithm Avg. Rank p Holm
cAnt-MinerPB+MCP 1.8077 - -
C5.0 Rules 2.6538 0.0947 0.05
cAnt-MinerPB 2.6923 0.0806 0.025
JRip 2.8462 0.0403 0.0167

8.2.2 Results of cAnt-MinerPB+MCP Against Classical Rule

Induction algorithms

The best monotonic algorithm from the previous experiments, cAnt-MinerPB+MCP,

was also compared to three traditional non-monotonic algorithms, namely JRip

(Cohen 1995), Quinlan’s C5.0 Rules1, and the original ACO-based algorithm cAnt-

MinerPB(Otero, Freitas and Johnson 2013), to show weather any loss of predictive

accuracy has occurred or not due to the addition of monotonic constraints. The

results of these experiments are shown in Table 8.12, with the statistical analy-

sis shown in Table 8.13. Table 8.12 shows that cAnt-MinerPB+MCP as the best

performing algorithm achieving the best accuracy of all the four algorithms in

six data-sets with C5.0 Rules second, achieving the best results in four data-sets.

While JRip and cAnt-MinerPB achieving the best results in two and one data-sets

respectively.

To summarise, while no statistical significance was observed in Table 8.13,

cAnt-MinerPB+MCP achieved the lowest (best) average rank and managed to out-

perform the other algorithms in six of the thirteen data-sets. The results also

show that cAnt-MinerPB+MCP has not suffered a drop in predictive accuracy com-

pared to the original algorithm cAnt-MinerPB with the inclusion of additional
1https://www.rulequest.com/see5-unix.html

https://www.rulequest.com/see5-unix.html

CHAPTER 8. RESULTS FOR MONOTONIC CONSTRAINTS 150

constraints into the learning process, in fact it has achieved a substantially better

average rank than the original base algorithm.

The proposed post-processing pruning suite (Section 7.2) and RULEM (Ver-

beke, Martens and Baesens 2017) can be added to any learning algorithm that

produces a list of rules to create a monotonic rule list. Table 8.14 presents the

results of adding a monotonic post-processing stage to the classical rule induc-

tion algorithms JRip and C5.0 to compare them to the best monotonic algorithm

presented earlier, cAnt-MinerPB+MCP.

A Friedman statistical test with Holm’s post-hoc test was performed on the

results of the non-monotonic learners that have had a post-processing constraint

procedure added, the results are shown in Table 8.15. cAnt-MinerPB+MCP was

found to be statistically better than the traditional algorithms using either the

subtractive pruning suite proposed earlier in Section 7.2 or the existing additive

procedure RULEM.

C
H

A
PT

ER
8.

R
ESU

LT
S

FO
R

M
O

N
O

T
O

N
IC

C
O

N
ST

R
A

IN
T

S
151

Table 8.14: Comparison of the model accuracy of the best monotonic rule learner cAnt-MinerPB+MCP to traditional non-
monotonic rule learners that have had the additional monotonic post-processing techniques added. The best accuracy
obtained for each data set is shown in bold.

Data set cAnt-
MinerPB+MCP

JRip + Pruners JRip + RULEM C5.0 Rules +
Pruners

C5.0 Rules +
RULEM

Abalone 0.2583 [0.0083] 0.2137 [0.0346] 0.1934 [0.0352] 0.2403 [0.0416] 0.2315 [0.0469]
Australian Credit 0.8554 [0.0402] 0.8237 [0.0475] 0.7924 [0.0352] 0.8234 [0.0345] 0.6945 [0.0156]
Bank Marketing 0.8949 [0.0131] 0.8675 [0.0354] 0.8742 [0.0157] 0.8454 [0.0468] 0.8735 [0.0234]
Cancer 0.9574 [0.0166] 0.9423 [0.0130] 0.9124 [0.0271] 0.9004 [0.0231] 0.9312 [0.0496]
Car 0.8964 [0.0149] 0.8327 [0.0534] 0.8421 [0.0374] 0.9224 [0.0453] 0.8837 [0.0341]
Credit Screen 0.8612 [0.0385] 0.9017 [0.0558] 0.8537 [0.0370] 0.8357 [0.0359] 0.8218 [0.0289]
German Credit 0.7416 [0.0369] 0.7010 [0.0654] 0.6953 [0.0561] 0.6745 [0.0444] 0.6950 [0.0552]
Haberman 0.7417 [0.0917] 0.7157 [0.0481] 0.7057 [0.0351] 0.7036 [0.0638] 0.7041 [0.0472]
MPG 0.9256 [0.0274] 0.8865 [0.0537] 0.7952 [0.0675] 0.9035 [0.0468] 0.8465 [0.0341]
Pima 0.7494 [0.0707] 0.7245 [0.0367] 0.6542 [0.2337] 0.7337 [0.0187] 0.6782 [0.1237]
User Knowledge 0.9271 [0.0355] 0.8935 [0.0541] 0.8935 [0.0541] 0.9057 [0.0357] 0.8947 [0.0156]
Wine 0.9605 [0.0377] 0.9524 [0.0145] 0.9341 [0.0194] 0.9436 [0.0594] 0.9567 [0.0357]
Wine Quality 0.5743 [0.0391] 0.5314 [0.0359] 0.4913 [0.0474] 0.6021 [0.0451] 0.5567 [0.0481]

CHAPTER 8. RESULTS FOR MONOTONIC CONSTRAINTS 152

Table 8.15: Average ranks and p values of the best monotonic algorithm cAnt-
MinerPB+MCP and two non-monotonic rule learners with a monotonic post-
processing procedure applied. A Friedman test with Holm’s post-hoc test was
used to check for significance at α = 0.05 — significant results are shown in bold.

Algorithm Avg. Rank p Holm
cAnt-MinerPB+MCP 1.4615 - -
JRip + Pruners 2.9615 0.0156 0.05

C5.0 Rules + Pruners 3.0769 0.0092 0.025

C5.0 Rules + RULEM 3.4615 0.0013 0.0167

JRip + RULEM 4.0385 3.2505 × 10−5 0.0125

Discussion

The results show that cAnt-MinerPB+MCP achieved a higher average rank than

cAnt-MinerPB. This is particular interesting as Ben-David, Sterling and Tran

(2009) have previously suggested that enforcing monotonic constraints may harm

predictive accuracy. However, we hypothesise that if constraints are correctly

identified, this additional knowledge should allow the construction of more accu-

rate and generalised models, helping algorithms ignore some of the noise present

in real world data sets.

When Ben-David, Sterling and Tran (2009) investigated monotonic constraints,

they focused on the post-processing of models, removing any non-monotonic fea-

tures after a model has been created. The results presented in Table 8.14 show

that limiting enforcement to a post-processing stage may indeed harm the perfor-

mance of the resultant model and a more holistic approach should be embraced.

The combination of hard and soft constraints allows a broader exploration

of the search space. This may lead to the discovery of good monotonic regions

that could be missed if algorithms were prohibited from exploring non-monotonic

regions of the search space, as they attempt to find monotonic solutions. The soft

constraints bias the ant colony to explore monotonic regions more thoroughly,

CHAPTER 8. RESULTS FOR MONOTONIC CONSTRAINTS 153

however as it is a soft suggestion, the colony is also able to explore non-monotonic

regions that produce accurate models. The hard constraints as a post-processing

step ensure the final model does not violate the constraints that were imposed on

it, which guarantees the creation of monotonic models.

In this context, ACO is a good meta-heuristic to incorporate both soft and hard

constraints. The pheromone matrix represents the memory of the colony acting

as a guide to good solutions for its individual ants. However, each ant is still

able to take different paths and construct individual solutions, since pheromone

values bias the selection of terms while maintaining the stochastic nature of the

selection. The soft constraints implemented during the learning phase, modify the

pheromone levels throughout the matrix, naturally suggesting good monotonic

solutions. Once the colony has obtained its best solution, the hard constraint

pruners can make (ideally) small changes to the rule list to ensure it is completely

monotonic.

Chapter 9

Towards an Archive-Based ACO

for Regression

.

An initial investigation into using an archive-based approach for learning re-

gression rules has been performed with the preliminary results obtained shown

in Section 9.2. This approach replaces the traditional graph-pheromone model

with an archive-pheromone model (Discussed in Section 4.4), which is then sam-

pled during rule creation and updated with the good rules constructed in each

iteration.

The work in this section was a collaboration with Ayah Helal, who has pre-

viously used the archive-pheromone model to tackle the classification task (Helal

and Otero 2016). The base mechanism of this algorithm was combined with

the regression-specific functionality found in Ant-Miner-Reg, creating Ant-Miner-

RegMA. Ant-Miner-RegMA was first introduced in WCCI 2018 (Helal, Brookhouse

and Otero 2018).

154

CHAPTER 9. TOWARDS AN ARCHIVE-BASED ACO FOR REGRESSION155

9.1 Archive-Based ACO - Ant-Miner-RegMA

The previous proposed Ant-Miner-Reg algorithms use the traditional graph-based

Ant Colony Optimization approach to creating rules using an internal pheromone

graph model. This model works well when dealing with categorical attributes,

which are naturally represented by nodes in the graph. However, when presented

with continuous attributes an extra step is required, either a pre-processing step

or a dynamic discretization step. The previously presented ACO-based algorithms

for regression, in Chapter 5, use the latter graph-based combinatorial approach.

Ant-Miner-RegMA uses the IRL strategy to generate a list of rules by splitting the

task of creating a list into many smaller tasks of creating a single rule.

Liao et al. (2014) introduced the Ant Colony Optimization for Mixed-Variable

(ACOMV) algorithm, which was designed for mixed variable optimisation prob-

lems. ACOMV uses an archive-based pheromone model and a number of sam-

pling procedures to create solutions, allowing the algorithm to directly work with

categorical, ordinal and continuous (real-valued) attributes. The archive-based

pheromone model is implemented as a solution archive (A), which contains the k

previously generated best solutions. The solution archive is used to derive a prob-

ability distribution to sample from, biasing the search towards good solutions.

A colony of m ants start generating candidate solutions. During the solution

construction, each ant uses a probabilistic method to sample new values from

the solution archive. The sampling mechanism is chosen based on the type of

attribute. In Ant-Miner-RegMA two types are attributes are used, categorical

attributes and continuous attributes. Ordinal attributes are treated in the same

way as categorical attributes where the order is not taken into account. This

decision was made to ensure feature parity with Ant-Miner-Reg and allow a fair

comparison between graph-based and archive-based approaches. After each ant

in a colony has created a solution, the m new solutions (where m is the size of

the colony) are added to the archive. The archive is then sorted, with the best k

CHAPTER 9. TOWARDS AN ARCHIVE-BASED ACO FOR REGRESSION156

Algorithm 9.1: High-level pseudo code of Ant-Miner-RegMA
Data: Instances
Result: RuleList

1 RuleList ← {}
2 while |Instances| <MaxUncovered do
3 A ← Generate k Random Rules
4 t← 0; i← 0; Restarted ← True
5 while t < MaxIterations and not Restarted do
6 At ← {}
7 while i < m do
8 Ri ← Create New Rule
9 Ri ← Prune(Ri)

10 Ri ← Set Consequent(Ri)
11 i← i+ 1
12 At ← At ∪ Ri

13 end
14 A ← UpdateArchive(At, k)
15 t← t+ 1
16 if stagnation() then
17 Restart(A)
18 Restarted ← True
19 end
20 if stagnation() and Restarted then
21 Break
22 end
23 end
24 Rbest ← BestRule(A)
25 RuleList ← RuleList ∪ Rbest

26 Instances ← Instances − covered(Rbest)
27 end
28 return RuleList

solutions retained for the next iteration.

Ant-Miner-RegMA uses the pheromone model and search procedures found in

ACOMV to create regression rules by sampling terms. The high level pseudo-code

of Ant-Miner-RegMA is shown in Algorithm 9.1. Ant-Miner-RegMA starts with an

empty list of rules (line 1). During each iteration (lines 2 - 27), a single rule is

created. The initial archive is populated with k randomly generated rules (line

CHAPTER 9. TOWARDS AN ARCHIVE-BASED ACO FOR REGRESSION157

3). The ants then generate m new rules (lines 7-13), where m is the size of the

ant colony (line 6). These new rules are then added to the archive (line 14), and

all k + m rules are sorted. The worst m rules are removed, leaving the k best

rules found so far in the archive, which also returns the archive to its original size.

This rule creation procedure is repeated until the maximum number of iterations

has been reached or stagnation occurs. Stagnation is the failure of the algorithm

to find better rules for a number of iterations. The first time stagnation occurs,

a restart procedure is applied; if stagnation is detected a second time, the rule

creation procedure is halted and the best rule discovered so far, which is also the

rule at the top of the archive, is added to the partial rule list.

9.1.1 Archive Structure and Initialisation

Figure 9.1 shows an example archive used in Ant-Miner-RegMA, where each rule is

represented by a row in the archive and each term is represented by three elements:

a flag to signify if the term is currently in use, the operator used by the term and

the comparison value selected for that term. The archive shown in Figure 9.1

contains examples of both continuous attributes and categorical attributes and

the allowed operators for each attribute.

The archive contains k rules that are sorted by descending quality (Q), so that

Q(R1) ≥ Q(R2) ≥ . . . ≥ Q(Rk). Each rule (solution) j is associated with a weight

ωj that is related to its rank in the archive, where the best rule is assigned rank

1 and the worst rule is assigned rank k. A Gaussian function is used to calculate

ωj, which is given by:

ωj = 1
qk
√

2π
e

−(rank(j)−1)2

2q2k2 (45)

where q controls the influence of the top-ranked rules on the construction of a new

rule. When a new rule is created, the algorithm probabilistically samples values

CHAPTER 9. TOWARDS AN ARCHIVE-BASED ACO FOR REGRESSION158

Figure 9.1: Example archive used in Ant-Miner-RegMA including the structure of
terms with of continuous and categorical attributes.

from a single rule for each attribute based on the weights of the rules and if the

rule in the archive has the attribute activated. Rules with higher weights are more

likely to be selected for sampling.

Initially k random rules are used to populate the archive. Initialisation begins

with randomly enabling each term in the vector of allowed terms. These enabled

terms are then initialised based on their types.

If the term is continuous, then an unbiased random probability is used to

set the operator from the set {≤, >}. The value of the continuous term is a

random value uniformly generated from the range found in the training data for

that attribute. For categorical terms, there is a single allowed operator, “=”,

which is added, and the value is set randomly to one of the allowed values for that

attribute.

Rules are then pruned to disable irrelevant terms that might be enabled by

the stochastic nature of the initialisation procedure. If the number of instances

covered by a rule is greater or equal to a user-defined minimum limit, the rule is

added to the archive, if it does not a new rule is generated instead. Finally, rules

are sorted according to their quality and assigned a ranking and weight.

CHAPTER 9. TOWARDS AN ARCHIVE-BASED ACO FOR REGRESSION159

9.1.2 Sampling Procedures

There are two types of sampling procedures used in Ant-Miner-RegMA to select

values for rule terms: categorical and continuous sampling.

9.1.2.1 Categorical sampling

The categorical sampling is implemented using the same approach as ACOMV.

Given a categorical attribute i that has ti possible values, an ant chooses prob-

abilistically a value vil of the available {vi1, . . . , viti} values. The probability of

selecting a value vil is given by:

pil = αl
ti∑
j=1

αj

(46)

where αl is the weight associated to each value of the categorical attribute, calcu-

lated as:

αl =

ωjl

ui
l

+ q
η

, if(η > 0, uil > 0)
ωjl

ui
l

, if(η = 0, uil > 0)
q
η

, if(η > 0, uil = 0)

(47)

where ωjl is the weight of the best rule that uses the value vil for attribute i

in the archive, uil is the number of rules that use the value vil for attribute i in

the archive (uil = 0 corresponds to the special case where vil is not used by the

rules in the archive), η is the number of values from ti that are not used in the

archive (η = 0 corresponds to the special case where all values are used), and q is

the same parameter used in Equation (45). The categorical sampling procedure

allows an ant to consider two components when sampling a new value. The first

component biases the sampling towards values that are used in high-quality rules,

but do not occur very frequently in the archive. The second component biases the

CHAPTER 9. TOWARDS AN ARCHIVE-BASED ACO FOR REGRESSION160

sampling towards unexplored values in that attribute, preventing the algorithm

from ignoring unexplored regions of the search space.

9.1.2.2 Continuous sampling

Continuous sampling implements the same approach found in ACOR (Socha and

Dorigo 2008), which is also used in ACOMV. First, an ant probabilistically chooses

a rule from the archive, before the sampling procedure. A rule is selected each time

a continuous attribute is sampled from the archive. The probability of choosing

rule j is given by:

pj = ωj
k∑
l=1

ωl

(48)

where ωj is the weight associated with the j-th rule in the archive, calculated

according to Equation (45). Let Ri denote a new solution sampled by ant i

around the chosen rule Rj for continuous attribute a, the Gaussian probability

density function (PDF) is given by:

Ri,a ∼ N(Rj,a, σj,a) (49)

σj,a = ξ
k∑

l=1,j 6=l

|Rl,a −Rj,a|
K − 1 (50)

where Rj,a is the value of the attribute a in the selected rule j of the archive, σj,a
is the average distance between the value of the attribute a in the rule j and the

value of a in all the other rules in the archive, given by Equation 50, where k is

the number of rules in the archive and ξ is a user-defined value representing the

convergence speed of the algorithm. Higher values of ξ will increase the standard

deviation of the Gaussian distribution, leading to increased variability in the values

selected, therefore allowing a greater exploration of the search space. While lower

CHAPTER 9. TOWARDS AN ARCHIVE-BASED ACO FOR REGRESSION161

values of ξ will result in the sampling of values closer to the current value, leading

to a more thorough search of the current local area.

9.1.3 Rule Creation

Rule creation starts by probabilistically choosing if a term should be included in

the current rule’s antecedent or not. The decision is handled by the categorical

sampling procedure which chooses between the {TRUE, FALSE} values. If the term

is enabled (TRUE value), the operator is set according to the attribute type. If the

attribute is categorical, it is set to “=”. If it is continuous, the categorical sampling

procedures selects an operator from the set {≤, >}, with the only difference being

only the subset of rules that have this term enabled are considered in Equation

(47).

The value of the new rule’s term is then sampled. If the term is continuous,

we use the continuous sampling procedure only considering the subset of rules

that have this term enabled and use the same operator which was selected earlier

for the new term. If the attribute is categorical, we use the categorical sampling

procedure, again only considering the subset of rules that have this term enabled.

After a term is created, it is added to the partial rule, and then the rule is

applied to the training data. If the number of instances covered by the rule after

the addition of the new term is less than the minimum covered instances (a user-

defined parameter), the term is disabled. This is done to ensure that rules retain

some generality and do not become over specified. This process is repeated until

all terms are evaluated. The rule’s consequent is then generated by calculating

the mean of the target variable in the instances in the training data-set that are

covered by the rule, in the same way as Ant-Miner-Reg.

The last step is the application of a local search procedure. The local search

procedure is inspired by the threshold-aware pruner found in (Otero, Freitas and

CHAPTER 9. TOWARDS AN ARCHIVE-BASED ACO FOR REGRESSION162

Johnson 2009). Firstly, the quality of the rule is calculated according to Equa-

tion (33). Then, the last term added to the rule is disabled and the quality

re-calculated. If the quality of the (pruned) rule decreases, the term is re-enabled

and the procedure stops. This pruner continues until a decrease in quality is

observed.

9.1.4 Restart Procedure

If the algorithm stagnates a restart procedure is performed. Stagnation occurs

when the algorithm fails to find a better rule for a number of iterations. The

exact number of iterations can be tuned by the user and set before run time.

The restart procedure involves removing all but the best rule generated so far

from the archive and replacing the removed rules with randomly generated rules

in the same way as during archive initialisation as described in Section 9.1.1.

This leaves an archive containing the best rule and k − 1 random rules. The

algorithm then proceeds as normal. The restart procedure is applied a maximum

of once. If the archive stagnates for a second time the rule creation procedure

stops and returns the best rule created so far.

9.2 Archive based Pheromone Model ACO Com-

putational Results

We compared our proposed algorithm Ant-Miner-RegMA against Ant-Miner-Reg.

Ant-Miner-Reg was chosen to enable a fair comparison of pheromone models as

both algorithms use the same IRL strategy to construct a list of rules and the

same rule consequent generation methods. This ensures that any difference in

performance can be attributed to the change in pheromone model.

The experiments were conducted using nineteen regression data-sets publicly

available from the UCI Machine Learning Repository (Lichman 2013). Details of

CHAPTER 9. TOWARDS AN ARCHIVE-BASED ACO FOR REGRESSION163

Table 9.1: Number of instances and attribute makeup of the nineteen data-sets
used in the experiments

Attributes
Name Instances Categorical Continuous
WPBC_r 194 0 33
CPU 209 1 8
Yacht 308 0 7
MPG 410 2 5
Housing 452 1 13
Forest Fire 517 2 11
Istanbul 536 0 8
Efficiency 768 0 9
Stock 950 0 10
Concrete 1030 0 9
Flare 1066 10 1
Airfoil 1503 0 6
Red Wine 1599 0 12
Skill Craft 3338 0 20
Elevator 9517 0 7
CCPP 9568 0 5
Bike Share 17379 0 13
Energy Data 19735 0 25
Pm 25 41757 1 12

CHAPTER 9. TOWARDS AN ARCHIVE-BASED ACO FOR REGRESSION164

Table 9.2: Parameters: Ant-Miner-RegMA uses the first three parameters in table,
while remaining are used by both Ant-Miner-RegMA and Ant-Miner-Reg.

Archive Parameters Value
q 0.025495
ξ 0.6795
R 90

General Parameters Value
Minimum Covered Instances 10
Max Uncovered Instances 10
Max Iterations 1500
Number of Ants 60
Stagnation Test (Number of Iterations) 10
α 0.59

the data-sets chosen are shown in Table 9.1, including the number of instances, the

number of categorical attributes and the number of continuous attributes present

in each data-set.

Table 9.2 contains the experimental parameters used for both Ant-Miner-

RegMA and Ant-Miner-Reg. Ant-Miner-RegMA uses the first three parameters in

Table 9.2 for the archive and the associated sampling procedures. The remaining

parameters are used by both algorithms.

For each of the data-sets, 10-fold cross validation was performed with each

algorithm being executed five time (varying the random initialisation seed) on

each fold, for a total of fifty runs of each algorithms per data-set. The average

RRMSE (Relative Root Mean Squared Error) was then calculated and presented

in Table 9.3. Repeated runs and 10-fold cross validation was performed due to

the stochastic nature of ACO algorithms, which causes variability in their perfor-

mance. Performing many runs and averaging the results mitigates against these

CHAPTER 9. TOWARDS AN ARCHIVE-BASED ACO FOR REGRESSION165

differences.

As shown in Table 9.3, Ant-Miner-RegMA shows an improvement in RRMSE

compared to Ant-Miner-Reg, outperforming Ant-Miner-Reg in sixteen of the nine-

teen data-sets. Most notably, Ant-Miner-RegMA improved the RRMSE by 80% in

the Yacht data-set: Ant-Miner-Reg’s RRMSE is 1.0120, while Ant-Miner-RegMA’s

RRMSE is 0.2091. Based on our results, it is clear that the introduction of

archive-based pheromone model in Ant-Miner-RegMA resulted in an improvement

in the model creation. Ant-Miner-Reg uses the M5 algorithm’s dynamic dis-

cretisation procedure when creating terms for continuous attributes, while Ant-

Miner-RegMA’s archive-based pheromone model is responsible for generating and

improving the values chosen for the continuous attributes terms.

For statistical significance testing of the difference in RRMSE, we usedWilcoxon

signed-rank test. The Wilcoxon signed-rank test is a non-parametric statistical

test that makes no assumption that the samples are normally distributed. How-

ever it can only be used in a single comparison of a pair of algorithms for statistical

significance. Unlike the Friedman statistical test used earlier in Chapter 6, the

Wilcoxon signed-rank test takes into account the magnitude of the differences and

not just the number of wins and losses for each algorithm (Wilcoxon 1945). The

result of the statistical testing is shown in Table 9.4 which shows that Ant-Miner-

RegMA significantly outperforms Ant-Miner-Reg at the usual significance level of

α = 0.05.

In terms of computational time, Ant-Miner-RegMA did not improve the run-

time in comparison with Ant-Miner-Reg, as seen in Table 9.5. This is different

than what was observed in classification problems, where the introduction of an

archive-based pheromone model did significantly improve the run-time by elimi-

nating the need for a discretisation procedure. Looking at the data-sets where Ant-

Miner-RegMA’s run-time was significantly higher — Bike Share (17379 instances),

Energy Data (19735 instances) and Pm 25 (41757 instances) — we noticed that

CHAPTER 9. TOWARDS AN ARCHIVE-BASED ACO FOR REGRESSION166

Table 9.3: Average RRMSE of the regression model produced by each algorithm
over five runs of tenfold cross-validation. The best result (smallest RRMSE) for
each data-set is shown in bold.

Dataset Ant-Miner-RegMA Ant-Miner-Reg
WPBC_r 1.0356 [0.0674] 1.0224 [0.1074]

CPU 0.5038 [0.1734] 0.8233 [0.2347]
Yacht 0.2091 [0.0256] 1.0120 [0.0448]
MPG 0.5374 [0.0967] 0.6419 [0.0377]
Housing 0.5986 [0.0056] 0.9782 [0.0125]
Forest Fire 1.5326 [0.3682] 1.0334 [0.2481]

Istanbul 0.7948 [0.0360] 0.8341 [0.0687]
Efficiency 0.2348 [0.0358] 0.4288 [0.0987]
Stock 0.3258 [0.1357] 0.7434 [0.1562]
Concrete 0.7239 [0.0381] 0.9636 [0.1267]
Flare 0.9956 [0.0297] 0.9987 [0.0831]
Airfoil 0.8165 [0.0057] 0.9715 [0.0119]
Red Wine 0.9898 [0.0674] 0.9757 [0.0520]
Skill Craft 0.8536 [0.0312] 0.8912 [0.0100]
Elevator 0.7585 [0.0214] 0.7882 [0.0952]
CCPP 0.3557 [0.0189] 0.4769 [0.0317]
Bike Share 0.6412 [0.1010] 0.9941 [0.0968]
Energy Data 0.9775 [0.2354] 0.9971 [0.1586]
Pm 25 0.9389 [0.3324] 0.9982 [0.2896]

CHAPTER 9. TOWARDS AN ARCHIVE-BASED ACO FOR REGRESSION167

Table 9.4: Wilcoxon Signed-Rank test (at the α = 0.05 significance level) on
RRMSE. Statistically significant differences are shown in bold.

Size W+ W- Z p
RRMSE 18 23 167 -2.8974 0.00374

Ant-Miner-Reg produces very generalised rules with a RRMSE closer to the mean

of the entire data-set (0.9941, 0.9971, and 0.9982 respectively), while Ant-Miner-

RegMA produces more specific rules for those data-set with an improved RRMSE

(0.6412, 0.9775, and 0.9389 respectively).

9.2.1 Archive based Pheromone Model ACO Discussion

We hypothesise that when the data-set is more complex, Ant-Miner-Reg strug-

gles to find good split points and produces very simple, over-generalised rules

that cover large sections of the search space. This can be seen in the RRMSE

of models produced for large datasets, identifying a potential limitation of using

M5’s dynamic discretisation procedure to create regression rules. The dynamic

discretisation procedures in classification and regression Ant-Miner algorithms

operate differently. In regression, the dynamic discretisation procedure aims to

find the optimal split point for a continuous attribute in the set of uncovered

instances, without considering how other attributes will alter the final prediction

the rule. This limits the interaction between the creation of condition and the

rule’s final consequent, which is unknown during rule creation. In classification,

the dynamic discretisation procedure aims to find the optimal split point for an

attribute in the set of uncovered instances taking into account the association

between the attribute and a known target class, which improves the rule’s predic-

tion. The archive-based approach overcomes this difficulty as the values chosen

for continuous attributes are optimised in conjunction with all attributes and not

CHAPTER 9. TOWARDS AN ARCHIVE-BASED ACO FOR REGRESSION168

Table 9.5: Average run-time in seconds of the model produced by each algorithm
over five runs of tenfold cross-validation. The best result (smallest time) for each
data-set is shown in bold.

Data-Set Ant-Miner-RegMA Ant-Miner-Reg
WPBC_r 0.51 0.25

CPU 0.23 0.46
Yacht 0.20 0.31
MPG 0.26 0.24

Housing 0.43 0.26

Forest Fire 0.99 0.42

Istanbul 0.39 0.38

Efficiency 0.70 0.39

Stock 0.85 0.40

Concrete 1.29 0.44

Flare 0.84 0.25

Air-foil 0.92 0.57

Red Wine 0.94 0.61

Skill Craft 10.12 0.93

Elevator 4.65 2.28

CCPP 2.29 12.22
Bike Share 223.52 2.13

Energy Data 582.38 4.62

Pm 25 615.24 6.81

CHAPTER 9. TOWARDS AN ARCHIVE-BASED ACO FOR REGRESSION169

in isolation.

Although Ant-Miner-RegMA did not improve the run-time when compared to

Ant-Miner-Reg, the improvement in RRMSE shows great promise for regression

problems. This confirms the hypothesis that the archive-based pheromone model

improves the values chosen for the continuous attributes of rule conditions in

regression problems producing better rules with overall lower RRMSE. Table 9.4

shows that Ant-Miner-RegMA achieved a statistically significant improvement with

a value of p = 0.00374 with respect to Ant-Miner-Reg, using the Wilcoxon signed-

rank test (at the α = 0.05 level) on RRMSE.

Chapter 10

Conclusions and Future Work

The conclusions for this thesis have been split into two main sections. First, I will

discuss the introduction of new ACO-based algorithms that tackle the regression

problem and future directions this work could take. The second section will dis-

cuss the addition of monotonic constraints to ACO-based algorithms for both the

classification and regression tasks.

10.1 ACO-Based Algorithms for Regression

A summary of the contributions to ACO algorithms applied to regression is pre-

sented in this section. The new ACO-based algorithms for regression rule induc-

tion proposed in this thesis, namely Ant-Miner-Reg, Ant-Miner-RegM and Ant-

Miner-RegPB, use a graph-based combinatorial approach to model construction,

where the problem is represented as a construction graph. Individual ants traverse

this graph selecting nodes to create solutions, guided by pheromone deposited on

the graph’s edges.

This thesis also explored the use of different learning strategies to create regres-

sion rules. The motivation is to explore different learning strategies to investigate

whether increased rule interaction outweighed the increase in task complexity

170

CHAPTER 10. CONCLUSIONS AND FUTURE WORK 171

found in more advanced learning strategies or not.

The first ACO-based algorithm proposed to construct regression rule lists was

Ant-Miner-Reg. Ant-Miner-Reg uses an IRL approach to construct rule lists by

breaking down the optimisation problem to smaller problems of constructing a

single rule at a time. This algorithm was implemented with two different dynamic

discretisation procedures: (1) an error reduction procedure and (2) a group merg-

ing procedure that attempts to cluster instances based on the target value. It

was found that the error reduction procedure performed better in eleven out of

the fifteen data-sets tested, showing that creating many different good potential

split points as was done by the second procedure does not out weigh the benefit

of finding a single best split point.

The IRL strategy only allows limited rule interactions, as each rule is created

in isolation on the current uncovered training set. However, in the literature there

are two other learning strategies, namely Michigan and Pittsburgh. Both deal with

the problem of rule interaction in a different way. In a Michigan-based algorithm, a

single rule is represented as a population member which in the case of ACO-based

algorithms corresponds to an individual ant, limited rule interactions are allowed

as the individual rules compete for conclusion into the final rule list in a niching

operation. While a Pittsburgh approaches define a evolve-able unit as a complete

list of rules, where the task for each ant would be to create this complete list of

rules. Ant-Miner-RegM was developed as a Michigan-based algorithm, where the

ant colony creates a colony of rules which then undergo a niching procedure to

produce an ordered rule list. Ant-Miner-RegPB is a Pittsburgh-based approach

that tasks individual ants to create an entire rule list with the addition of depth

concept to the construction graph.

The three Ant-Miner-Reg variants were compared to each other, where it

was found that the Pittsburgh strategy statistically outperformed both IRL and

CHAPTER 10. CONCLUSIONS AND FUTURE WORK 172

Michigan-based algorithms. The algorithms were also compared against the well-

known regression rule induction algorithm M5’ Rules, where Ant-Miner-RegPB

achieved the best average rank of all the algorithms tested. When comparing the

size of the rule lists created by the algorithms, it becomes clear that the addi-

tional performance obtained by Ant-Miner-RegPB has increased the size of the

models, this increased size may be explained by the different objectives of IRL

and Pittsburgh-based algorithms. Where as an IRL algorithm aim to find the best

rule that covers as many instances as possible, a Pittsburgh-based algorithm aim

to find the best rule list and has less pressure to create single rules that cover the

largest number of instances. These results show that a trade-off has to be made

between decreasing the error of the models and their size.

While both IRL and Michigan learning strategies allow the optimisation of

term interactions, they do not allow rule interactions to be optimised when rules

are created. Although the Michigan strategy does allow limited rule interactions to

be optimised during the niching procedure, it is only the Pittsburgh strategy that

allows both term and rule interactions to be optimised together. The Pittsburgh

strategy tackles the problem directly optimising the rule list in one step rather

than optimising the creation of the best rule for each sub-problem (subset of the

data). This is important as the best possible rule at each position in terms of rule

coverage and error is not necessarily the correct rule in that position for the best

rule list.

The comparison of the three different learning strategies using the same base

ACO construction procedure is important as it allows a direct comparison of the

strategies in the setting of ACO-based algorithms for the regression task, where in

terms of predictive quality, the Pittsburgh strategy is the strongest. The proposed

family of Ant-Miner-Reg algorithms are important, as to the best of my knowledge,

they are the first regression rule induction algorithms that use an ACO procedure

to create their rules.

CHAPTER 10. CONCLUSIONS AND FUTURE WORK 173

10.1.1 Future Work

None of the ACO-based algorithms presented in this thesis make use of any heuris-

tic information that can be generated from the training data-set when traversing

the pheromone graph. Using heuristic information may allow the algorithms to

find better rules and/or allow the algorithms to converge quicker towards good

areas fo the search space, resulting in a faster execution time.

Currently the pruning procedures for all algorithms operate on a single rule

and comprise of a simple backtrack pruner, where the last term in a rule is removed

while an increase in quality is observed. Smarter pruning mechanisms could be

developed that operate on entire rule lists, pruning terms from rules that reduce

the error of the entire rule list. This will allow pruners to globally optimise the rule

lists created with respect to rule interactions rather than the goal of optimising

the current rule.

Furthermore, the predictions made by Ant-Miner-Reg and its derivatives cor-

respond to a single value for all the instances that satisfy a rule’s antecedent.

An alternative is to modify the rule’s consequent to that of a linear model, in a

similar way to M5’ Rules. This would allow each rule to be more powerful and

predict different values for each covered instance. While this would decrease the

interpretability of the rules,it could be balanced against the expected increase in

predictive quality.

10.1.1.1 Archive Pheromone model

In Chapter 9, Ant-Miner-RegMA was introduced as a new regression rule induction

algorithm, where the traditional construction graph and corresponding pheromone

matrix were replaced by a solution archive. The incorporation of a solution archive

allows Ant-Miner-RegMA to remove the need for a separate dynamic discretisation

procedure, as continuous attributes are now optimised within the solution archive

along with nominal attributes.

CHAPTER 10. CONCLUSIONS AND FUTURE WORK 174

Ant-Miner-RegMA was compared to Ant-Miner-Reg to allow a fair comparison

of the two pheromone models, as the same IRL learning strategy was used to

construct a rule list. The results of this comparison show that Ant-Miner-RegMA

achieves a smaller RRMSE in 84% of the data-sets tested, showing a statistically

significant improvement in performance. In the classification task, it has been

shown by Helal and Otero (2016) that the introduction of a solution archive signif-

icantly speeds up the execution time of the algorithm. When applied to regression

rule induction, this speed up was not observed. It is hypothesised that this is due

to the differences in dynamic discretisation procedures used in classification and

regression tasks.

The replacement of the dynamic discretisation procedure is believed to be

fundamental to the increase in performance between the two pheromone models.

Unlike the classification task, where the target values are known, the dynamic

discretisation procedures for regression problems do not know what predictions

will be made by the rule, as these are not generated until the rule is completed. As

a consequence, the discretisation procedure is not optimising continuous attribute

split points to the value predicted since it does not have enough knowledge to

which attributes are going to be selected in the future that may alter the target

value. The introduction of a solution archive allows the incorporation and optimi-

sation of continuous attributes directly into the rule construction process, i.e. the

values chosen for continuous attributes can be optimised along with the selection

of other attributes and the generation of the rule’s prediction.

It should be noted that Ant-Miner-RegMA uses the IRL learning strategy to

construct ordered rule lists, in a one-rule-at-a-time fashion. However, experi-

ments with learning strategies with algorithms that use the traditional graph-

based pheromone model show an improvement to the accuracy of models when

using the Pittsburgh-based learning strategy. Therefore, one potential extension

to Ant-Miner-RegMA is a transition to the Pittsburgh learning strategy to evaluate

CHAPTER 10. CONCLUSIONS AND FUTURE WORK 175

whether an improvement in performance will be found compared to the original

IRL algorithm and the graph-based algorithm Ant-Miner-RegPB or not.

10.2 Monotonic Constraints in ACO Algorithms

Another major contribution of this thesis is the incorporation of monotonic con-

straints into ACO algorithms. Constraints have been implemented in two different

stages of the learning process. Firstly, soft constraints have been added during

model construction, where the quality function was modified to include a notion

of non-monotonicity. This modified quality was used during pheromone update,

allowing a preference for the creation of monotonic solutions. These soft con-

straints do not prevent the creation of non-monotonic rule lists, therefore, hard

constraint enforcement is required. This was achieved by adding hard constraint

pruners as a post-processing procedure that would guarantee the production of

monotonic models.

10.2.1 Soft Constraint Enforcement

The adoption of soft constraints during model construction ensures that the ACO

procedure can fully explore the search space when constructing rule lists. Dur-

ing soft constraint enforcement, a preference is shown for monotonic solutions.

However, the algorithm is not constrained to the current monotonic regions and

it can explore non-monotonic regions if they help produce high quality models.

The exploration of non-monotonic regions may also result in finding new fully

monotonic areas corresponding to monotonic solutions with a higher quality than

the ones produced in the current best monotonic area of the search space.

These soft constraints are implemented by modifying the quality measure of the

algorithms that penalises non-monotonic rule pairs present in the rule list. This

modified quality is then used when pheromone levels are updating, influencing

CHAPTER 10. CONCLUSIONS AND FUTURE WORK 176

term selection in subsequent iterations. The proposed quality measure uses the

notion of NMI adapted to the context of regression (classification) rules, inspired

by the work of Ben-David (1995) in decision trees. The NMI of a list of rules

can be calculated by comparing each pair of rules in the list and checking for a

violation, the number of violations are then summed and divided by the total

number of rule pairs giving a violation index for the list of rules.

10.2.2 Hard Constraint Enforcement

Hard constraints were initially implemented as a naive backtrack pruner. When

given a non-monotonic rule list, this naive pruner repeatedly removes the final

term from the rule list until the entire rule list becomes monotonic. This will

always be possible as when all but one rule remains the list will be monotonic

as a rule cannot violate itself. This pruner is potentially very destructive if the

violating pair is near the top of the rule list. To counter this, a pruning suite

was proposed that three different pruners was proposed: (1) the original Naive

Pruner; (2) the Most Violations Pruner (MVP), which prunes the rule that has

the highest NMI; and (3) the Best Fix Pruner (BFP), which prunes the rule that

will result in the biggest reduction in a list’s NMI.

This pruning suite can then be applied in a post-processing phase to the model

constructed in previous phases. Each of the pruners is applied to the rule list

individually and the pruned list that achieves the highest quality on the training

data is retained. As this pruning suite operates as a post-processing operation, it

can be applied to any algorithm that produces a list of regression (classification)

rules, or any model that can be converted into a list of rules. This enables any

rule induction algorithm to become a monotonic rule induction algorithm.

CHAPTER 10. CONCLUSIONS AND FUTURE WORK 177

10.2.3 Monotonic Constraint Experiments

Both soft and hard constraint enforcement has been combined into ACO-based

algorithms that construct rule lists for both regression (Ant-Miner-RegMC, Ant-

Miner-RegPB+MC and Ant-Miner-RegPB+MCP) and classification (cAnt-MinerPB+MC

and cAnt-MinerPB+MCP) tasks.

On the regression task, Ant-Miner-RegPB+MCP was shown to the be the best

performing algorithm, significantly outperforming the base algorithm with a prun-

ing suite as a post-processing step (Ant-Miner-RegPB + Pruners). This shows

that the combination of soft and hard constraints are able to work together to im-

prove the quality of the rule lists produced, with the soft constraints creating rule

lists that require less pruning than rule lists created by Ant-Miner-RegPB. The

algorithms proposed in this thesis were also compared against the well-known

classical rule induction algorithm M5’ Rules with and without the pruning suite

as a post processing step. Ant-Miner-RegPB+MCP statistically outperformed both

monotonic and non-monotonic variants.

For the classification task, a comparison between the additive post-processing

monotonic technique used by RULEM and the subtractive techniques employed by

the proposed pruning suite could be compared. Both post-processing techniques

were applied to the base cAnt-MinerPB+MC algorithm, where it was shown that the

pruning suite statistically outperformed the algorithms using RULEM. These two

post-processing techniques were applied to the existing algorithms JRip and C5.0

Rules, and compared to cAnt-MinerPB+MCP. The results of these experiments

showed that applying a post-processing hard constraint procedure may harm the

accuracy of the models produced, as has been suggested previously by Ben-David,

Sterling and Tran (2009), since JRip and C5.0 predictive accuracy decreases.

The results obtained for both the classification and regression tasks show that

a two step soft-hard constraint approach is more successful than applying a single

hard constraint post-processing step. While post-processing procedures can be

CHAPTER 10. CONCLUSIONS AND FUTURE WORK 178

applied to any algorithm that produces a compatible model, they can suffer from

a reduction in performance. Many algorithms can be modified to alter the quality

used during model construction, although ACO-based algorithms lend themselves

to this approach as they allow the soft constraints to be continually reinforced over

many iterations, slowly refining the models produced while performing a global

search.

10.2.4 Future Work

Currently, only monotonic features that increase (or decrease) across the entire

attribute domain are considered as constraint candidates. However, many other

constraint types exist (as presented in Figure 3.1), which could be implemented

and enforced using the proposed two-step methodology. One candidate constraint

type to investigate would be piece-wise monotonic constraints, where an attribute

may change between monotonically increasing to monotonically decreasing (or

vice versa), allowing the modelling of more complex relationships. Another pos-

sible constraint type that could be of interest is a preference, where a monotonic

constraint is only enforced when another attribute has a particular value.

Another direction of future work could involve the introduction of multi-

objective methods during the model creation phase. Currently, in both regres-

sion and classification tasks, the soft constraints have been implemented during

the learning phase using a weighted formula that balances the monotonicity of a

model against its quality. This balance can be modified by the user before ex-

ecution, however the optimum value for each data-set is unknown. This tuning

parameter could be removed by the implementation of a multi-objective optimisa-

tion procedure where the ant colony creates a non-dominated Pareto front (Coello

et al. 2007) of solutions based on the quality and monotonicity of a rule list. After

the front has been generated, the pruning suite presented earlier can be applied

to each rule list. This removes one of the objectives as all the rule lists will be

CHAPTER 10. CONCLUSIONS AND FUTURE WORK 179

monotonic, at which point they can be ranked by quality on the training set and

the best model presented to the user.

Another area of future work would include the incorporation of constraints into

the archive-based ACO algorithm Ant-Miner-RegMA, introduced in Appendix 9.

The archive-based ACO algorithm was shown to increase performance compared

to the traditional combinatorial graph-based algorithm when using the IRL learn-

ing strategy. It can therefore be expected to produce better monotonic rule lists

and it is a future research direction worth investigating.

Also, the investigation into the effects of using noisier constraints where the

input data has more violations between a constrained attribute and the target

attribute. This work has concentrated on selecting the attribute with the least

amount of noise and the effect of noise on algorithmic performance requires further

investigation. We would expect that the two phase approach outlined in Chapter

7 would be more robust than a post-processing only technique.

Finally, the new algorithms presented here concentrate on a single constraint

relationship. However, in reality there are often many monotonic relationships.

These relationships may interact with each other and will decrease the available

search space. The introduction of multiple constraints on algorithmic performance

would be an interesting direction for further work.

Bibliography

Albinati, J., Oliveira, S. E., Otero, F. E. and Pappa, G. L. (2015). An ant colony-

based semi-supervised approach for learning classification rules. Swarm Intelli-

gence, 9(4), pp. 315–341.

Augusto, D. and Barbosa, H. (2000). Symbolic regression via genetic program-

ming. In Proceedings of the Sixth Brazilian Symposium on Neural Networks,

IEEE, pp. 173–178.

Bacardit, J. and Butz, M. V. (2007). Data mining in learning classifier systems:

Comparing xcs with gassist. In Learning Classifier Systems, Berlin, Heidelberg:

Springer Berlin Heidelberg, pp. 282–290.

Barros, R. C., Basgalupp, M. P., De Carvalho, A. C. and Freitas, A. A. (2012).

A survey of evolutionary algorithms for decision-tree induction. IEEE Transac-

tions on Systems, Man, and Cybernetics, Part C (Applications and Reviews),

42(3), pp. 291–312.

Ben-David, A. (1995). Monotonicity maintenance in information-theoretic ma-

chine learning algorithms. Machine Learning, 19, pp. 29–43.

Ben-David, A., Sterling, L. and Pao, Y.-H. (1989). Learning and classification of

monotonic ordinal concepts. Computational Intelligence, 5(1), pp. 45–49.

Ben-David, A., Sterling, L. and Tran, T. (2009). Adding monotonicity to learning

180

BIBLIOGRAPHY 181

algorithms may impair their accuracy. Expert Systems with Applications, 36,

pp. 6627–6634.

Bibal, A. and Frénay, B. (2016). Interpretability of machine learning models and

representations: an introduction. In 24th European Symposium on Artificial

Neural Networks, Computational Intelligence and Machine Learning, pp. 77–

82.

Bloomfield, P. and Steiger, W. (1980). Least absolute deviations curve-fitting.

SIAM Journal on scientific and statistical computing, 1(2), pp. 290–301.

Bologna, G. and Hayashi, Y. (2018). A comparison study on rule extraction from

neural network ensembles, boosted shallow trees, and SVMs. Applied Compu-

tational Intelligence and Soft Computing, 2018, pp. 1–20.

Bonabeau, E. et al. (1999). Swarm intelligence: from natural to artificial systems.

1, Oxford University Press.

Booker, L. B. (1982). Intelligent behavior as an adaptation to the task environ-

ment. PhD Thesis, Dept Electic. Eng. Comput. Sci., University of Michigan.

Booker, L. B., Goldberg, D. E. and Holland, J. H. (1989). Classifier systems and

genetic algorithms. Artificial intelligence, 40(1-3), pp. 235–282.

Boser, B. E., Guyon, I. M. and Vapnik, V. N. (1992). A training algorithm for

optimal margin classifiers. In Proceedings of the fifth annual workshop on Com-

putational learning theory, ACM, pp. 144–152.

Breiman, L., Friedman, J., Stone, C. and Olshen, R. (1984). Classification and

Regression Trees. The Wadsworth and Brooks-Cole statistics-probability series,

Taylor & Francis.

BIBLIOGRAPHY 182

Brookhouse, J. and Otero, F. E. (2018). Post-processing methods to enforce mono-

tonic constraints in ant colony classification algorithms. In 2018 International

Joint Conference on Neural Networks, pp. 1–8.

Brookhouse, J. and Otero, F. E. B. (2015). Discovering regression rules with

ant colony optimization. In Proceedings of the Companion Publication of the

2015 on Genetic and Evolutionary Computation Conference (GECCO 2015),

pp. 1005–1012.

Brookhouse, J. and Otero, F. E. B. (2016a). Monotonicity in ant colony clas-

sification algorithms. In 10th International Conference on Swarm Intelligence

(ANTS 2016), Springer, pp. 137–148.

Brookhouse, J. and Otero, F. E. B. (2016b). Using an ant colony optimization

algorithm for monotonic regression rule discovery. In Genetic and Evolutionary

Computation Conference (GECCO 2016), ACM Press, pp. 437–444.

Cao-Van, K. (2003). Supervised ranking: from semantics to algorithms. PhD The-

sis, Ghent University.

Chen, C.-C. and Li, S.-T. (2014). Credit rating with a monotonicity-constrained

support vector machine model. Expert Systems with Applications, 41(16), pp.

7235–7247.

Coello, C. A. C., Lamont, G. B., Van Veldhuizen, D. A. et al. (2007). Evolutionary

algorithms for solving multi-objective problems, vol. 5. Springer.

Cohen, W. W. (1995). Fast effective rule induction. In Twelfth International Con-

ference on Machine Learning, Morgan Kaufmann, pp. 115–123.

Cormen, T. H., Leiserson, C. E., Rivest, R. L. and Stein, C. (2009). Introduction

to algorithms. MIT press.

BIBLIOGRAPHY 183

Cortez, P. and Morais, A. d. J. R. (2007). A data mining approach to predict

forest fires using meteorological data. In Proceedings of the 13th EPIA 2007,

Associação Portuguesa para a Inteligência Artificial (APPIA), pp. 512–523.

Croes, G. A. (1958). A method for solving traveling-salesman problems. Opera-

tions research, 6(6), pp. 791–812.

Daniels, H. and Velikova, M. (2006). Derivation of montone decision models from

noisy data. IEEE Transactions on Systems, Man, and Cybernetics, 36(5), pp.

705–710.

Deneubourg, J. et al. (1992). The dynamics of collective sorting: Robot-like ants

and ant-like robots. In From Animals to Animats: Proceedings of the First

International Conference on Simulation of Adaptive Behavior, pp. 353–363.

Deneubourg, J.-L., Pasteels, J. M. and Verhaeghe, J.-C. (1983). Probabilistic

behaviour in ants: a strategy of errors? Journal of Theoretical biology, 105(2),

pp. 259–271.

Deneubourg, J.-L., Aron, S., Goss, S. and Pasteels, J. M. (1990). The self-

organizing exploratory pattern of the argentine ant. Journal of insect behavior,

3(2), pp. 159–168.

Dorigo, M. (1992). Optimization, learning and natural algorithms. PhD Thesis,

Politecnico di Milano.

Dorigo, M., Maniezzo, V. and Colorni, A. (1996). Ant system: optimization by a

colony of cooperating agents. IEEE Transactions on Systems, Man, and Cyber-

netics, Part B (Cybernetics), 26(1), pp. 29–41.

Dorigo, M. and Stutzle, T. (2004). Ant Colony Optimization. A Bradford Book.

BIBLIOGRAPHY 184

Duivesteijn, W. and Feelders, A. (2008). Nearest neighbour classification with

monotonicity constraints. In Machine Learning and Knowledge Discovery in

Databases, vol. 5211 5211, Springer, pp. 301–316.

Fahrmeir, L., Kneib, T., Lang, S. and Marx, B. (2013). Regression: Models, Meth-

ods and Applications. Springer.

Fayyad, U., Piatetsky-Shapiro, G. and Smith, P. (1996). From data mining to

knowledge discovery: an overview. In U. Fayyad, G. Piatetsky-Shapiro, P. Smith

and R. Uthurusamy, eds., Advances in Knowledge Discovery & Data Mining,

MIT Press, pp. 1–34.

Feelders, A. (2000). Prior knowledge in economic applications of data mining. In

Principles of Data Mining and Knowledge Discovery, Lecture Notes in Computer

Science, vol. 1910, Springer, pp. 395–400.

Feelders, A. and Pardoel, M. (2003). Pruning for monotone classification trees. In

Advances in intelligent data analysis V, Springer, pp. 1–12.

Fernández-Navarro, F., Riccardi, A. and Carloni, S. (2014). Ordinal neural net-

works without iterative tuning. IEEE Transactions on Neural Networks and

Learning Systems, 25(11), pp. 2075–2085.

Frank, E. and Witten, I. H. (1998). Generating accurate rule sets without global

optimization. In J. Shavlik, ed., Fifteenth International Conference on Machine

Learning, Morgan Kaufmann, pp. 144–151.

Frank, E., Wang, Y., Inglis, S., Holmes, G. and Witten, I. H. (1998). Using model

trees for classification. Machine learning, 32(1), pp. 63–76.

Frawley, W. J., Piatetsky-Shapiro, G. and Matheus, C. J. (1992). Knowledge

discovery in databases: An overview. AI magazine, 13(3), pp. 57–57.

BIBLIOGRAPHY 185

Freitas, A. (2002). Data Mining and Knowledge Discovery with Evolutionary Al-

gorithms. Springer.

Freitas, A. (2014). Comprehensible classification models: a position paper. ACM

SIGKDD Explorations Newsletter, 15(1), pp. 1–10.

Friedman, M. (1937). The use of ranks to avoid the assumption of normality im-

plicit in the analysis of variance. Journal of the american statistical association,

32(200), pp. 675–701.

Fürnkranz, J. and Widmer, G. (1994). Incremental reduced error pruning. In

Machine Learning Proceedings 1994, Elsevier, pp. 70–77.

González, S., Herrera, F. and García, S. (2015). Monotonic random forest with

an ensemble pruning mechanism based on the degree of monotonicity. New

Generation Computing, 33(4), pp. 367–388.

Goss, S., Aron, S., Deneubourg, J.-L. and Pasteels, J. M. (1989). Self-organized

shortcuts in the argentine ant. Naturwissenschaften, 76(12), pp. 579–581.

Helal, A., Brookhouse, J. and Otero, F. E. (2018). Archive-based pheromone

model for discovering regression rules with ant colony optimization. In 2018

IEEE Congress on Evolutionary Computation, pp. 1–7.

Helal, A. and Otero, F. E. (2016). A mixed-attribute approach in ant-miner clas-

sification rule discovery algorithm. In Genetic and Evolutionary Computation

Conference (GECCO 2016), ACM Press, pp. 13–20.

Holmes, G., Hall, M. and Frank, E. (1999). Generating rule sets from model

trees. In Proceedings 12th Australian Joint Conference on Artificial Intelligence,

Springer, pp. 1–12.

Hoover, K. and Perez, S. (2000). Three attitudes towards data mining. Journal of

Economic Methodology, 7(2), pp. 195–210.

BIBLIOGRAPHY 186

Janssen, F. and Fürnkranz, J. (2010a). Seperate-and-conquer regression. In Pro-

ceedings of the German Workshop on Lernen, pp. 81–89.

Janssen, F. and Fürnkranz, J. (2010b). Seperate-and-conquer regression. Tech.

Rep. TUD-KE-2010-01, Knowledge Engineering Group, Technische Universitat

Darmstadt.

Koza, J. R. (1994). Genetic programming as a means for programming computers

by natural selection. Statistics and computing, 4(2), pp. 87–112.

Kubat, M., Holte, R. C. and Matwin, S. (1998). Machine learning for the detection

of oil spills in satellite radar images. Machine learning, 30(2-3), pp. 195–215.

Liao, T., Socha, K., Montes de Oca, M., Stutzle, T. and Dorigo, M. (2014). Ant

colony optimization for mixed-variable optimization problems. IEEE Transac-

tions on Evolutionary Computation, 18(4), pp. 503–518.

Lichman, M. (2013). UCI machine learning repository. http://archive.ics.

uci.edu/ml, University of California, Irvine, School of Information and Com-

puter Sciences.

Lievens, S., De Baets, B. and Cao-Van, K. (2008). A probabilistic framework for

the design of instance-based supervised ranking algorithms in an ordinal setting.

Annals of Operations Research, 163(1), pp. 115–142.

Liu, H. and Cocea, M. (2018). Induction of classification rules by gini-index based

rule generation. Information Sciences, 436, pp. 227–246.

Liu, Y.-C. and Yeh, I.-C. (2017). Using mixture design and neural networks to

build stock selection decision support systems. Neural Computing and Applica-

tions, 28(3), pp. 521–535.

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

BIBLIOGRAPHY 187

Manderick, B. and Moyson, F. (1988). The collective behavior of ants: An example

of self-organization in massive parallelism. Proceedings of the AAAI Spring

Symposium on Parallel Models of Intelligence, Stanford University, CA.

Mangasarian, O. L., Street, W. N. and Wolberg, W. H. (1995). Breast cancer

diagnosis and prognosis via linear programming. Operations Research, 43(4),

pp. 570–577.

Martens, D. and Baesens, B. (2010). Building acceptable classification models. In

Data Mining, Springer, pp. 53–74.

Martens, D., Baesens, B. and Fawcett, T. (2011). Editorial survey: swarm intel-

ligence for data mining. Machine Learning, 82(1), pp. 1–42.

Martens, D., Baesens, B. and Van Gestel, T. (2009). Decompositional rule extrac-

tion from support vector machines by active learning. IEEE Transactions on

Knowledge and Data Engineering, 21(2), pp. 178–191.

Martens, D. et al. (2006a). Ant-based approach to the knowledge fusion problem.

In Ant Colony Optimization and Swarm Intelligence, Springer, pp. 84–95.

Martens, D., De Backer, M., Haesen, R., Baesens, B. and Holvoet, T. (2006b).

Ants constructing rule-based classifiers. In Swarm intelligence in data mining,

Springer, pp. 21–43.

Martens, D. et al. (2007). Classification with ant colony optimiztion. IEEE Trans-

actions on Evolutionary Computation, 11(5), pp. 651–665.

Mavrovouniotis, M., Müller, F. M. and Yang, S. (2017). Ant colony optimization

with local search for dynamic traveling salesman problems. IEEE transactions

on cybernetics, 47(7), pp. 1743–1756.

BIBLIOGRAPHY 188

Minnaert, B. and Martens, D. (2012). Towards a particle swarm optimization-

based regression rule miner. In Data Mining Workshops (ICDMW), 2012 IEEE

12th International Conference on, pp. 961–963.

Minnaert, B., Martens, D., De Backer, M. and Baesens, B. (2015). To tune or not

to tune: rule evaluation for metaheuristic-based sequential covering algorithms.

Data mining and knowledge discovery, 29(1), pp. 237–272.

Mitchell, T. (1997). Machine Learning. McGraw-Hill Science.

Montgomery, D. C., Peck, E. A. and Vining, G. G. (2012). Introduction to linear

regression analysis, vol. 821. John Wiley & Sons.

Olmo, J. L., Romero, J. R. and Ventura, S. (2010). A grammar based ant pro-

gramming algorithm for mining classification rules. In IEEE Congress on Evo-

lutionary Computation, pp. 1–8.

Otero, F. and Freitas, A. (2013). Improving the interpretability of classification

rules discovered by an ant colony algorithm. In 2013 Genetic and Evolutionary

Computation Conference (GECCO 13), pp. 73–80.

Otero, F., Freitas, A. and Johnson, C. (2008). cant-miner: An ant colony classifica-

tion algorithm to cope with continuous attributes. In Ant Colony Optimization

and Swarm Intelligence (Proc. ANTS 2008), pp. 48–59.

Otero, F., Freitas, A. and Johnson, C. (2009). Handling continuous attributes in

ant colony classification algorithms. In Proceedings of the 2009 IEEE Symposium

on Computational Intelligence in Data Mining (CIDM 2009), IEEE, pp. 225–

231.

Otero, F., Freitas, A. and Johnson, C. (2012). Inducing decision trees with an ant

colony optimization algorithm. Applied Soft Computing, 12, pp. 3615–3626.

BIBLIOGRAPHY 189

Otero, F., Freitas, A. and Johnson, C. (2013). A new sequential covering strategy

for inducing classification rules with ant colony algorithms. IEEE Transactions

on Evolutionary Computation, 17(1), pp. 64–76.

Otero, F. E. (2017). Myra: a java ant colony optimization framework for classifi-

cation algorithms. In Proceedings of the Genetic and Evolutionary Computation

Conference Companion, ACM, pp. 1247–1254.

Parpinelli, R., Lopes, H. and Freitas, A. (2002). Data mining with an ant colony

optimization algorithm. IEEE Transactions on Evolutionary Computation, 6(4),

pp. 321–332.

Potharst, R., Ben-David, A. and van Wezel, M. (2009). Two algorithms for gen-

erating structured and unstructured monotone ordinal data sets. Engineering

Applications of Artificial Intelligence, 22(4), pp. 491–496.

Qian, Y., Xu, H., Liang, J., Liu, B. and Wang, J. (2015). Fusing monotonic

decision trees. Knowledge and Data Engineering, IEEE Transactions on, 27(10),

pp. 2717–2728.

Quinlan, J. (1992). Learning with continuous classes. In Proceedings 5th Australian

Joint Conference on Artificial Intelligence, World Scientific, pp. 343–348.

Quinlan, J. R. (1990). Learning logical definitions from relations. Machine learn-

ing, 5(3), pp. 239–266.

Quinlan, J. R. (1993). C4.5: Programs for Machine Learning. San Francisco, CA,

USA: Morgan Kaufmann Publishers Inc.

Quinlan, J. R. (1996). Improved use of continuous attributes in c4. 5. Journal of

artificial intelligence research, 4, pp. 77–90.

Russell, S. J. and Norvig, P. (2016). Artificial intelligence: a modern approach.

Malaysia; Pearson Education Limited,.

BIBLIOGRAPHY 190

Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural

networks, 61, pp. 85–117.

Smith, S. F. (1980). A learning system based on genetic adaptive algorithms. PhD

Thesis, Dept. Comput. Sci., University of Pittsburgh.

Smith, S. F. (1983). Flexible learning of problem solving heuristics through adap-

tive search. In Proceedings of the Eighth International Joint Conference on Ar-

tificial Intelligence - Volume 1, IJCAI’83, pp. 422–425.

Socha, K. and Dorigo, M. (2008). Ant colony optimization for continuous domains.

European Journal of Operational Research, 185(3), pp. 1155 – 1173.

Specht, D. (1991). A general regression neural network. Neural Networks, IEEE

Transactions on, 2(6), pp. 568–576.

Stützle, T. and Hoos, H. (1999). The max-min ant system and local search for

combinatorial optimization problems. InMeta-heuristics, Springer, pp. 313–329.

Stützle, T. and Hoos, H. H. (2000). Max–min ant system. Future generation com-

puter systems, 16(8), pp. 889–914.

Uy, N., Hoai, N., O’Neil, M., McKay, R. and Galván-López, E. (2011).

Semantically-based crossover in genetic programming: application to real-

valued symbolic regression. Genetic Programming and Evolvable Machines,

12(2), pp. 91–119.

Van De Kamp, R., Feelders, A. and Barile, N. (2009). Isotonic classification trees.

In International Symposium on Intelligent Data Analysis, Springer, pp. 405–

416.

Vapnik, V. (2013). The nature of statistical learning theory. Springer science &

business media.

BIBLIOGRAPHY 191

Verbeke, W., Martens, D. and Baesens, B. (2017). Rulem: A novel heuristic

rule learning approach for ordinal classification with monotonicity constraints.

Applied Soft Computing, 60, pp. 858–873.

Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometrics bul-

letin, 1(6), pp. 80–83.

Witten, I. H., Frank, E., Hall, M. A. and Pal, C. J. (2016). Data Mining: Practical

machine learning tools and techniques 4th Ed. Morgan Kaufmann.

Wu, X. et al. (2008). Top 10 algorithms in data mining. Knowledge Information

Systems, 14, pp. 1–37.

Yu, B. and Xu, Z.-b. (2008). A comparative study for content-based dynamic

spam classification using four machine learning algorithms. Knowledge-Based

Systems, 21(4), pp. 355–362.

Appendix A

Copyright License

Attribution-NonCommercial-NoDerivatives 4.0 International

===

Creative Commons Corporation ("Creative Commons") is not a law firm and

does not provide legal services or legal advice. Distribution of

Creative Commons public licenses does not create a lawyer-client or

other relationship. Creative Commons makes its licenses and related

information available on an "as-is" basis. Creative Commons gives no

warranties regarding its licenses, any material licensed under their

terms and conditions, or any related information. Creative Commons

disclaims all liability for damages resulting from their use to the

fullest extent possible.

Using Creative Commons Public Licenses

Creative Commons public licenses provide a standard set of terms and

conditions that creators and other rights holders may use to share

192

APPENDIX A. COPYRIGHT LICENSE 193

original works of authorship and other material subject to copyright

and certain other rights specified in the public license below. The

following considerations are for informational purposes only, are not

exhaustive, and do not form part of our licenses.

Considerations for licensors: Our public licenses are

intended for use by those authorized to give the public

permission to use material in ways otherwise restricted by

copyright and certain other rights. Our licenses are

irrevocable. Licensors should read and understand the terms

and conditions of the license they choose before applying it.

Licensors should also secure all rights necessary before

applying our licenses so that the public can reuse the

material as expected. Licensors should clearly mark any

material not subject to the license. This includes other CC-

licensed material, or material used under an exception or

limitation to copyright. More considerations for licensors:

wiki.creativecommons.org/Considerations_for_licensors

Considerations for the public: By using one of our public

licenses, a licensor grants the public permission to use the

licensed material under specified terms and conditions. If

the licensor’s permission is not necessary for any reason--for

example, because of any applicable exception or limitation to

copyright--then that use is not regulated by the license. Our

licenses grant only permissions under copyright and certain

other rights that a licensor has authority to grant. Use of

the licensed material may still be restricted for other

APPENDIX A. COPYRIGHT LICENSE 194

reasons, including because others have copyright or other

rights in the material. A licensor may make special requests,

such as asking that all changes be marked or described.

Although not required by our licenses, you are encouraged to

respect those requests where reasonable. More_considerations

for the public:

wiki.creativecommons.org/Considerations_for_licensees

===

Creative Commons Attribution-NonCommercial-NoDerivatives 4.0

International Public License

By exercising the Licensed Rights (defined below), You accept and agree

to be bound by the terms and conditions of this Creative Commons

Attribution-NonCommercial-NoDerivatives 4.0 International Public

License ("Public License"). To the extent this Public License may be

interpreted as a contract, You are granted the Licensed Rights in

consideration of Your acceptance of these terms and conditions, and the

Licensor grants You such rights in consideration of benefits the

Licensor receives from making the Licensed Material available under

these terms and conditions.

Section 1 -- Definitions.

a. Adapted Material means material subject to Copyright and Similar

Rights that is derived from or based upon the Licensed Material

APPENDIX A. COPYRIGHT LICENSE 195

and in which the Licensed Material is translated, altered,

arranged, transformed, or otherwise modified in a manner requiring

permission under the Copyright and Similar Rights held by the

Licensor. For purposes of this Public License, where the Licensed

Material is a musical work, performance, or sound recording,

Adapted Material is always produced where the Licensed Material is

synched in timed relation with a moving image.

b. Copyright and Similar Rights means copyright and/or similar rights

closely related to copyright including, without limitation,

performance, broadcast, sound recording, and Sui Generis Database

Rights, without regard to how the rights are labeled or

categorized. For purposes of this Public License, the rights

specified in Section 2(b)(1)-(2) are not Copyright and Similar

Rights.

c. Effective Technological Measures means those measures that, in the

absence of proper authority, may not be circumvented under laws

fulfilling obligations under Article 11 of the WIPO Copyright

Treaty adopted on December 20, 1996, and/or similar international

agreements.

d. Exceptions and Limitations means fair use, fair dealing, and/or

any other exception or limitation to Copyright and Similar Rights

that applies to Your use of the Licensed Material.

e. Licensed Material means the artistic or literary work, database,

or other material to which the Licensor applied this Public

APPENDIX A. COPYRIGHT LICENSE 196

License.

f. Licensed Rights means the rights granted to You subject to the

terms and conditions of this Public License, which are limited to

all Copyright and Similar Rights that apply to Your use of the

Licensed Material and that the Licensor has authority to license.

g. Licensor means the individual(s) or entity(ies) granting rights

under this Public License.

h. NonCommercial means not primarily intended for or directed towards

commercial advantage or monetary compensation. For purposes of

this Public License, the exchange of the Licensed Material for

other material subject to Copyright and Similar Rights by digital

file-sharing or similar means is NonCommercial provided there is

no payment of monetary compensation in connection with the

exchange.

i. Share means to provide material to the public by any means or

process that requires permission under the Licensed Rights, such

as reproduction, public display, public performance, distribution,

dissemination, communication, or importation, and to make material

available to the public including in ways that members of the

public may access the material from a place and at a time

individually chosen by them.

j. Sui Generis Database Rights means rights other than copyright

resulting from Directive 96/9/EC of the European Parliament and of

APPENDIX A. COPYRIGHT LICENSE 197

the Council of 11 March 1996 on the legal protection of databases,

as amended and/or succeeded, as well as other essentially

equivalent rights anywhere in the world.

k. You means the individual or entity exercising the Licensed Rights

under this Public License. Your has a corresponding meaning.

Section 2 -- Scope.

a. License grant.

1. Subject to the terms and conditions of this Public License,

the Licensor hereby grants You a worldwide, royalty-free,

non-sublicensable, non-exclusive, irrevocable license to

exercise the Licensed Rights in the Licensed Material to:

a. reproduce and Share the Licensed Material, in whole or

in part, for NonCommercial purposes only; and

b. produce and reproduce, but not Share, Adapted Material

for NonCommercial purposes only.

2. Exceptions and Limitations. For the avoidance of doubt, where

Exceptions and Limitations apply to Your use, this Public

License does not apply, and You do not need to comply with

its terms and conditions.

APPENDIX A. COPYRIGHT LICENSE 198

3. Term. The term of this Public License is specified in Section

6(a).

4. Media and formats; technical modifications allowed. The

Licensor authorizes You to exercise the Licensed Rights in

all media and formats whether now known or hereafter created,

and to make technical modifications necessary to do so. The

Licensor waives and/or agrees not to assert any right or

authority to forbid You from making technical modifications

necessary to exercise the Licensed Rights, including

technical modifications necessary to circumvent Effective

Technological Measures. For purposes of this Public License,

simply making modifications authorized by this Section 2(a)

(4) never produces Adapted Material.

5. Downstream recipients.

a. Offer from the Licensor -- Licensed Material. Every

recipient of the Licensed Material automatically

receives an offer from the Licensor to exercise the

Licensed Rights under the terms and conditions of this

Public License.

b. No downstream restrictions. You may not offer or impose

any additional or different terms or conditions on, or

apply any Effective Technological Measures to, the

Licensed Material if doing so restricts exercise of the

Licensed Rights by any recipient of the Licensed

APPENDIX A. COPYRIGHT LICENSE 199

Material.

6. No endorsement. Nothing in this Public License constitutes or

may be construed as permission to assert or imply that You

are, or that Your use of the Licensed Material is, connected

with, or sponsored, endorsed, or granted official status by,

the Licensor or others designated to receive attribution as

provided in Section 3(a)(1)(A)(i).

b. Other rights.

1. Moral rights, such as the right of integrity, are not

licensed under this Public License, nor are publicity,

privacy, and/or other similar personality rights; however, to

the extent possible, the Licensor waives and/or agrees not to

assert any such rights held by the Licensor to the limited

extent necessary to allow You to exercise the Licensed

Rights, but not otherwise.

2. Patent and trademark rights are not licensed under this

Public License.

3. To the extent possible, the Licensor waives any right to

collect royalties from You for the exercise of the Licensed

Rights, whether directly or through a collecting society

under any voluntary or waivable statutory or compulsory

licensing scheme. In all other cases the Licensor expressly

reserves any right to collect such royalties, including when

APPENDIX A. COPYRIGHT LICENSE 200

the Licensed Material is used other than for NonCommercial

purposes.

Section 3 -- License Conditions.

Your exercise of the Licensed Rights is expressly made subject to the

following conditions.

a. Attribution.

1. If You Share the Licensed Material, You must:

a. retain the following if it is supplied by the Licensor

with the Licensed Material:

i. identification of the creator(s) of the Licensed

Material and any others designated to receive

attribution, in any reasonable manner requested by

the Licensor (including by pseudonym if

designated);

ii. a copyright notice;

iii. a notice that refers to this Public License;

iv. a notice that refers to the disclaimer of

warranties;

APPENDIX A. COPYRIGHT LICENSE 201

v. a URI or hyperlink to the Licensed Material to the

extent reasonably practicable;

b. indicate if You modified the Licensed Material and

retain an indication of any previous modifications; and

c. indicate the Licensed Material is licensed under this

Public License, and include the text of, or the URI or

hyperlink to, this Public License.

For the avoidance of doubt, You do not have permission under

this Public License to Share Adapted Material.

2. You may satisfy the conditions in Section 3(a)(1) in any

reasonable manner based on the medium, means, and context in

which You Share the Licensed Material. For example, it may be

reasonable to satisfy the conditions by providing a URI or

hyperlink to a resource that includes the required

information.

3. If requested by the Licensor, You must remove any of the

information required by Section 3(a)(1)(A) to the extent

reasonably practicable.

Section 4 -- Sui Generis Database Rights.

APPENDIX A. COPYRIGHT LICENSE 202

Where the Licensed Rights include Sui Generis Database Rights that

apply to Your use of the Licensed Material:

a. for the avoidance of doubt, Section 2(a)(1) grants You the right

to extract, reuse, reproduce, and Share all or a substantial

portion of the contents of the database for NonCommercial purposes

only and provided You do not Share Adapted Material;

b. if You include all or a substantial portion of the database

contents in a database in which You have Sui Generis Database

Rights, then the database in which You have Sui Generis Database

Rights (but not its individual contents) is Adapted Material; and

c. You must comply with the conditions in Section 3(a) if You Share

all or a substantial portion of the contents of the database.

For the avoidance of doubt, this Section 4 supplements and does not

replace Your obligations under this Public License where the Licensed

Rights include other Copyright and Similar Rights.

Section 5 -- Disclaimer of Warranties and Limitation of Liability.

a. UNLESS OTHERWISE SEPARATELY UNDERTAKEN BY THE LICENSOR, TO THE

EXTENT POSSIBLE, THE LICENSOR OFFERS THE LICENSED MATERIAL AS-IS

AND AS-AVAILABLE, AND MAKES NO REPRESENTATIONS OR WARRANTIES OF

ANY KIND CONCERNING THE LICENSED MATERIAL, WHETHER EXPRESS,

IMPLIED, STATUTORY, OR OTHER. THIS INCLUDES, WITHOUT LIMITATION,

APPENDIX A. COPYRIGHT LICENSE 203

WARRANTIES OF TITLE, MERCHANTABILITY, FITNESS FOR A PARTICULAR

PURPOSE, NON-INFRINGEMENT, ABSENCE OF LATENT OR OTHER DEFECTS,

ACCURACY, OR THE PRESENCE OR ABSENCE OF ERRORS, WHETHER OR NOT

KNOWN OR DISCOVERABLE. WHERE DISCLAIMERS OF WARRANTIES ARE NOT

ALLOWED IN FULL OR IN PART, THIS DISCLAIMER MAY NOT APPLY TO YOU.

b. TO THE EXTENT POSSIBLE, IN NO EVENT WILL THE LICENSOR BE LIABLE

TO YOU ON ANY LEGAL THEORY (INCLUDING, WITHOUT LIMITATION,

NEGLIGENCE) OR OTHERWISE FOR ANY DIRECT, SPECIAL, INDIRECT,

INCIDENTAL, CONSEQUENTIAL, PUNITIVE, EXEMPLARY, OR OTHER LOSSES,

COSTS, EXPENSES, OR DAMAGES ARISING OUT OF THIS PUBLIC LICENSE OR

USE OF THE LICENSED MATERIAL, EVEN IF THE LICENSOR HAS BEEN

ADVISED OF THE POSSIBILITY OF SUCH LOSSES, COSTS, EXPENSES, OR

DAMAGES. WHERE A LIMITATION OF LIABILITY IS NOT ALLOWED IN FULL OR

IN PART, THIS LIMITATION MAY NOT APPLY TO YOU.

c. The disclaimer of warranties and limitation of liability provided

above shall be interpreted in a manner that, to the extent

possible, most closely approximates an absolute disclaimer and

waiver of all liability.

Section 6 -- Term and Termination.

a. This Public License applies for the term of the Copyright and

Similar Rights licensed here. However, if You fail to comply with

this Public License, then Your rights under this Public License

terminate automatically.

APPENDIX A. COPYRIGHT LICENSE 204

b. Where Your right to use the Licensed Material has terminated under

Section 6(a), it reinstates:

1. automatically as of the date the violation is cured, provided

it is cured within 30 days of Your discovery of the

violation; or

2. upon express reinstatement by the Licensor.

For the avoidance of doubt, this Section 6(b) does not affect any

right the Licensor may have to seek remedies for Your violations

of this Public License.

c. For the avoidance of doubt, the Licensor may also offer the

Licensed Material under separate terms or conditions or stop

distributing the Licensed Material at any time; however, doing so

will not terminate this Public License.

d. Sections 1, 5, 6, 7, and 8 survive termination of this Public

License.

Section 7 -- Other Terms and Conditions.

a. The Licensor shall not be bound by any additional or different

terms or conditions communicated by You unless expressly agreed.

APPENDIX A. COPYRIGHT LICENSE 205

b. Any arrangements, understandings, or agreements regarding the

Licensed Material not stated herein are separate from and

independent of the terms and conditions of this Public License.

Section 8 -- Interpretation.

a. For the avoidance of doubt, this Public License does not, and

shall not be interpreted to, reduce, limit, restrict, or impose

conditions on any use of the Licensed Material that could lawfully

be made without permission under this Public License.

b. To the extent possible, if any provision of this Public License is

deemed unenforceable, it shall be automatically reformed to the

minimum extent necessary to make it enforceable. If the provision

cannot be reformed, it shall be severed from this Public License

without affecting the enforceability of the remaining terms and

conditions.

c. No term or condition of this Public License will be waived and no

failure to comply consented to unless expressly agreed to by the

Licensor.

d. Nothing in this Public License constitutes or may be interpreted

as a limitation upon, or waiver of, any privileges and immunities

that apply to the Licensor or You, including from the legal

processes of any jurisdiction or authority.

APPENDIX A. COPYRIGHT LICENSE 206

===

Creative Commons is not a party to its public licenses.

Notwithstanding, Creative Commons may elect to apply one of its public

licenses to material it publishes and in those instances will be

considered the "Licensor." Except for the limited purpose of indicating

that material is shared under a Creative Commons public license or as

otherwise permitted by the Creative Commons policies published at

creativecommons.org/policies, Creative Commons does not authorize the

use of the trademark "Creative Commons" or any other trademark or logo

of Creative Commons without its prior written consent including,

without limitation, in connection with any unauthorized modifications

to any of its public licenses or any other arrangements,

understandings, or agreements concerning use of licensed material. For

the avoidance of doubt, this paragraph does not form part of the public

licenses.

Creative Commons may be contacted at creativecommons.org.

