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Abstract 

The adhesion class of G protein-coupled receptors (GPCRs) is the second largest family of GPCRs (33 

members in humans). Adhesion GPCRs (aGPCRs) are defined by a large extracellular N-terminal region that 

is linked to a C-terminal seven transmembrane (7TM) domain via a GPCR-Autoproteolysis INducing (GAIN) 

domain containing a GPCR proteolytic site (GPS). Most aGPCRs undergo autoproteolysis at the GPS motif, 

but the cleaved fragments stay closely associated, with the N-terminal fragment (NTF) bound to the 7TM of 

the C-terminal fragment (CTF). The NTFs of most aGPCRs contain domains known to be involved in cell-cell 

adhesion, while the CTFs are involved in classical G protein signaling, as well as other intracellular signaling. 

In this meeting report, we review the most recent findings on the biology, signaling mechanisms, and 

physiological functions of aGPCRs. 

Introduction 

The adhesion G protein-coupled receptor (aGPCR) workshop meetings began in 2002 as an effort to 

encourage informal discussion of findings concerning aGPCR research. Early research in the field focused on 

the roles of aGPCRs in immunology, neurobiology, and development; however, over the next decade, the 

biennial workshops gradually revealed increasingly diverse and complex roles for aGPCRs [Hamman and 

Petrenko 2016]. To this end, an international, open network of academic and nonacademic researchers 

collectively started the Adhesion GPCR Consortium (AGC) (http://www.adhesiongpcr.org) in 2012 to further 

foster collaborations in the field. One of the first tasks of the AGC was the introduction of a new nomenclature 

system in 2015, which has helped to harmonize the aGPCR class across diverse research fields and species 

[Hamman et al. 2015].  

Two major areas of interest in the field include: 1) the discovery and characterization of biological 

functions of aGPCRs and 2) the elucidation of signaling mechanisms of aGPCRs. Adhesion GPCRs are 

expressed in varied cell types, and the cell- and isoform-specific roles of aGPCRs are still not completely 

understood. Moreover, aGPCRs exhibit multiple signaling modes, mediated through either classical G protein-

signaling via their C-terminal fragment (CTF) (cis signaling) or through adhesion properties of their N-terminal 

fragment (NTF) (trans signaling). Novel modes of receptor signaling, however, have also recently emerged 

for some members of the aGPCR class. These critical areas of understanding have gained much traction 

since the first aGPCR workshop held over 15 years ago (see Langenhan and Schöneberg 2016). 

http://www.adhesiongpcr.org/
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The 9th International Adhesion GPCR Workshop 

The 9th International Adhesion GPCR Workshop was hosted by the Vollum Institute at Oregon Health & 

Science University and held at The Nines Hotel in Portland, Oregon, September 13-15, 2018. The workshop 

included 88 scientists from 11 countries and featured 40 oral presentations and 28 posters focused on aGPCR 

research in the areas of development, biological functions, signaling and activation, structure, and health and 

disease. 

aGPCRs in development 

Simone Prömel (Leipzig University). Prömel presented on the enigmatic trans function of Latrophilin in 

Caenorhabditis elegans (C. elegans) fertility. GPCRs classically mediate signals via intracellularly activating 

G proteins. Recently, it was found that aGPCRs have, in addition to this classical, 7TM-dependent (cis) 

function, a role completely independent of the C-terminal 7TM. 7TM-independent (trans) functions have now 

been shown for several aGPCRs (reviewed in Hamann et al. 2015). However, how this new trans function is 

realized and whether it involves signaling remain enigmatic. To investigate this unusual mode of action only 

mediated via the extracellular domain, Prömel and colleagues studied the adhesion GPCR Latrophilin in the 

model organism C. elegans. Latrophilins (ADGRL/LPHN/CL/CIRL) represent one of the evolutionary oldest 

subfamilies of aGPCRs and are present in vertebrates and invertebrates. They were first described as 

interaction partners for α-latrotoxin, a component of the Black Widow spider´s toxin [Krasnoperov et al. 1996].  

Recently, Prömel and colleagues found that the Latrophilin homolog LAT-1 in C. elegans conveys a 

cis and a trans functions in two distinct biological settings [Prömel et al. 2012]. The cis mode controls spindle 

directionality and oriented cell division [Langenhan et al. 2009]. The signal underlying this function comprises 

a classical Gs protein cascade increasing intracellular levels of the second messenger cAMP upon receptor 

activation by a tethered agonist [Müller et al. 2015]. In contrast, the LAT-1 trans function is involved in fertility 

controlling the number of offspring [Prömel et al. 2012]. By using in vivo and in vitro approaches Prömel and 

colleagues assessed the physiological and mechanistic details of the trans mode in this context. A lat-1 null 

mutant strain helped to clarify the distinct processes LAT-1 regulates during fertility, and structure-function 

analyses using a transgenic complementation assay revealed that for both, the cis and the trans function, the 

same domain architecture of the extracellular LAT-1 N terminus is required. Prömel´s data point towards a 

scenario in which LAT-1 acts non-cell autonomously to fulfill its role in fertility. Epistasis assays with different 

candidate genes potentially interacting with lat-1 highlighted possible pathways involved in the LAT-1 trans 

function. 

The work by Prömel sheds lights on the diverse roles of Latrophilin mediated through different modes 

of action and further adds to the understanding of the previously poorly understood cis and trans functions of 

aGPCRs. 

Kevin Wright (Vollum Institute, Oregon Health & Science University). Wright presented on the role of 

ADGRC3 (CELSR3) in regulating commissural axon guidance through the binding of dystroglycan. During 

neural circuit development, instructive extracellular cues signal through cell surface receptors to direct the 

precise targeting of axons. Wright and colleagues have identified the transmembrane glycoprotein 

dystroglycan as a regulator of axon tract formation in the retina, brain, and spinal cord. Using genetic 

approaches, they show that dystroglycan functions non-cell autonomously as an extracellular scaffold by 

binding multiple Laminin G (LG) domain containing proteins through its extensive glycan chains. This allows 

dystroglycan to regulate axon tract development in multiple ways. First, dystroglycan maintains basement 

membranes as permissive growth substrates for extending axons. Second, dystroglycan binds the secreted 

axon guidance cue Slit to regulate its extracellular distribution in vivo. Finally, Wright and colleagues have 

recently identified an interaction between dystroglycan and the aGPCR ADGRC3. ADGRC3 is required for 

axon guidance in the forebrain, spinal commissural axons, and peripheral motor projections. In spinal 
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commissural axons, ADGRC3 functions within growth cones to direct anterior turning towards the brain after 

crossing the ventral midline. Commissural axons in dystroglycan or Adgrc3 mutants exhibit a randomization 

of post-crossing trajectory, with axons extending in both anterior and posterior directions. Using in vitro binding 

assays, the authors showed that dystroglycan directly binds the LG1 domain present in the extracellular 

portion of ADGRC3. To test the importance of this interaction during axon tract development, Wright and 

colleagues generated an ADGRC3 knock-in mutant (Adgrc3R1548Q) that disrupts its binding to dystroglycan. 

Adgrc3R1548Q mutants recapitulate the post-crossing randomization of commissural axons seen in 

Dystroglycan-/- and Adgrc3-/- mutants, demonstrating that this interaction is required in vivo. Wright concluded 

that these results provide a mechanistic link between dystroglycan and the aGPCR ADGRC3, thereby 

identifying a novel mechanism by which dystroglycan regulates neural circuit development. 

Caroline Formstone (Kings College London, University of Hertfordshire). Formstone presented on the 

role of the planar cell polarity protein ADGRC1 (CELSR1) in contact-mediated alignment of cell behavior. 

Planar cell polarity (PCP) proteins facilitate multiple aspects of tissue and organ development. PCP is key to 

cellular processes in embryonic development because its primary role is to align cell structures, cell shapes, 

and cell rearrangements along particular body axes. Indeed, disruption of PCP protein function in mammals 

leads to severe birth defects.  

PCP was originally discovered in Drosophila and this model system has elegantly identified a number 

of core molecular components. ADGRC1 is an essential player (Flamingo is the Drosophila homologue) 

employed as a local communicator of global cell polarity information: its extracellular cadherin repeats 

generate molecular bridges between one cell and its neighbors. ADGRC1 forms a molecular partnership at 

the cell surface with another GPCR, Frizzled, as well as with the 4-pass transmembrane protein, Vangl 

(Strabismus). Frizzled and Vangl differentially enrich to opposing cell interfaces along the axis of planar 

polarity to generate molecular asymmetries that act as an internal compass, distinguishing, for example, 

toward the head or toward the tail in the developing mouse embryo. The asymmetric protein complexes 

connect downstream to cytoskeletal dynamics. 

Formstone’s recent studies have utilized the mouse embryonic skin (epidermis) as a model to 

understand how ADGRC1 orchestrates organ morphogenesis. PCP in this model can be visualized by the 

directional down-growth of developing hair follicles in back skin, which are oriented along the head-to-tail axis. 

Their investigations [Panousopoulou et al. 2016, Oozeer et al. 2017] have revealed multiple novel facets of 

ADGRC1 function that are believed to be critical for understanding how complex organs in mammals are 

established and maintained during embryogenesis:  

1. ADGRC1 functions in 3-dimensional tissue morphogenesis in mammals (e.g., determines radial-superficial 

to basal-tissue architecture as well as planar). 

2. The molecular partnership between ADGRC1 and Frizzled, which is an ancient one through evolution, 

appears to be less stringent in mammals than in flies, suggesting that ADGRC1 plays important roles in 

mammalian organ formation via cellular processes that are independent of other core PCP proteins.  

3. ADGRC1 exists as distinct molecular weight protein isoforms with differential functions in local (one cell to 

its immediate neighbors) versus global (pervasive across a large field of cells) communication of PCP.  

4. Our current model for the role of ADGRC1 in the local communication of planar cell division orientation in 

mouse skin highlights potential functional conservation with that of another aGPCR, ADGRL1 (LPHN1), in 

early C. elegans embryos.  

Further study is now necessary to fully understand the role of ADGRC1 in severe birth defects and to 

aid the design of successful strategies for the repair and regeneration of tissues and organs once diseased or 

damaged. 

Biological functions of aGPCRs 
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Felix Engel (Friederich-Alexander-Universität Erlangen-Nürnberg). Engel presented on the role of 

ADGRG6 (GPR126) as a mechano-responsive gene. ADGRG6 is required for proper heart [Patra et al. 2013], 

ear [Geng et al. 2013], skeletal [Kuo et al. 2013], and myelin [Monk et al. 2011] development. Yet, the complete 

roles of ADGRG6 as well as up- and downstream signaling pathways are poorly understood [Patra et al. 2014]. 

A detailed expression pattern on a cellular level might provide novel insight into possible functions of ADGRG6.  

As most available expression data are based on RT-PCR of tissue samples [Hamann et al 2015], 

Engel and colleagues generated a “knock out first” allele mouse line utilizing the EUCOMM targeting construct, 

Adgrg6tm1a(EUCOMM)Hmgu, which expresses the LacZ gene under the control of the Adgrg6 promoter. The 

insertion of the cassette results in truncation after exon 6 of Adgrg6 resulting in viable heterozygous offspring. 

LacZ activity could readily be detected, confirming, for example, Adgrg6 expression in the heart and sciatic 

nerve. A detailed analysis could not confirm all RT-PCR-based expression patterns but did reveal new cell-

types that express Adgrg6. Collectively, their data suggested that ADGRG6 is mainly expressed in mechano-

sensitive cell-types. 

Uwe Wolfrum and Deva Krupakar Kusuluri (Johannes Gutenberg University of Mainz). Two talks were 

presented from the Wolfrum Lab that covered: (1) affinity proteomics to identify aGPCR functional modules 

and (2) the role of ADGRV1 (VLGR1) in focal adhesion complexes. In the first talk, Uwe Wolfrum presented 

on affinity proteomics approaches. For this, they applied tandem affinity purifications (SF-TAP) in HEK293 

and RPE1 cells [Gloeckner et al. 2009] expressing systematically tagged sets of different aGPCRs, including 

ADGRL2 (LPHN2), ADGRE5 (CD97), ADGRA1 (GPR123), ADGRA2 (GPR124), ADGRA3 (GPR125), 

ADGRB1-3 (BAI1-3) and ADGRV1 (VLGR1). Subsequent mass spectrometry identified the protein and 

peptide compositions of the recovered protein complexes related to the aGPCRs. For the analysis of the 

acquired proteomic data, the hits were functionally grouped based on their Gene Ontology terms and related 

to functional cell modules. Selective complementary in vitro and in situ experimental analyses support the 

following annotations:  

1) The analyses confirmed previously described functions of some aGPCRs at synaptic contacts, but 

also provided remarkable evidence related to functional roles of aGPCR in intracellular membrane 

networks.  

2) The presented data suggested a direct role of aGPCRs in transcriptional regulation and novel non-

canonical signaling modules for aGPCRs.  

3) The data also revealed the association of aGPCRs with gene products related to neuronal diseases.  

In the second talk, Deva Krupakar Kusuluri, a PhD student in the Wolfrum lab, presented on ADGRV1 

as a part of focal adhesion complexes, cell migration, and mechanotransduction. ADGRV1 is by far the largest 

aGPCR. It is almost ubiquitously expressed in the body [McMillan et al. 2002]. Mutations in ADGRV1 cause 

Usher syndrome (USH), the most common form of hereditary deaf-blindness and can be related to epilepsy. 

In affected neurons, sensory hair cells, and photoreceptor cells, ADGRV1 has been mapped at adhesion 

complexes and synapses associated with membrane adhesions [Reiners et al. 2005, McGee et al. 2006]. To 

decipher components of the functional and cellular modules related to ADGRV1, they performed affinity 

proteomics followed by bioinformatics to reveal numerous putative interacting molecules associated with focal 

adhesion. The presented study provided several lines of evidence that ADGRV1 is a vital component of focal 

adhesions in diverse cell types sensing mechanical stress. These findings further support the notion that 

defects in ADGRV1 cause dysregulation of adhesion complexes contributing to the pathophysiology of USH 

and epilepsy. 

Cheng-Chih Hsiao (University of Amsterdam). Hsiao, a postdoctoral fellow working with Jörg Hamann and 

collaborating with Hsi-Hsien Lin (Chang Gung University), discussed the expression, structure, function, and 

signaling characteristics of ADGRG3 (GPR97) in granulocytes. The members of the subfamily E of adhesion 
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GPCRs ADGRE1-4 (EMR1-4) and ADGRE5 (CD97) are known for their expression in hematopoietic cells 

[Hamman et al. 2016, Lin et al. 2017]. More recently, a cluster within subfamily G comprising ADGRG1 

(GPR56), ADGRG3 (GPR97), and ADGRG5 (GPR114) was found to be also expressed in immune cells, and 

specific presence of ADGRG1 was demonstrated in human cytotoxic lymphocytes, where it inhibits immediate 

effector functions [Peng et al. 2011, Chang et al. 2016].  

Granulocytes execute highly effective responses against microorganisms. RNA sequencing and mass 

spectrometry revealed abundant transcription and translation of ADGRG3 in granulocyte precursor cells and 

terminally differentiated neutrophilic, eosinophilic, and basophilic granulocytes. Using a newly generated 

monoclonal antibody, Hsiao and colleagues showed that ADGRG3 is a proteolytically processed, N-

glycosylated bipartite receptor. Immunohistochemistry and microarray confirmed ADGRG3 expression in 

tissue-infiltrating granulocytes and showed its induction during systemic inflammation in pneumonia or 

endotoxemia. Antibody ligation of ADGRG3 increased reactive oxygen species production and proteolytic 

enzyme activity in granulocytes via NF-κB and ERK signaling. By analyzing ADGRG3 signaling, a possible 

switch from basal Gαs/cAMP-mediated signal transduction to a Gαi-induced reduction in cAMP levels upon 

mutation-induced activation of the receptor was detected, in combination with an increase in downstream 

effectors of Gβγ, such as SRE and NF-ĸB. Hsiao and coworkers concluded that the specific expression of 

ADGRG3 regulates antimicrobial function in human granulocytes. 

Kimberley Tolias (Baylor College of Medicine). Tolias presented on the role of ADGRB1 (BAI1; Brain-

specific angiogenesis inhibitor 1) in promoting excitatory synapse development. Excitatory synapses mediate 

information flow and storage in the brain. Most excitatory synapses are located on dendritic spines, which 

rapidly remodel during development and activity-dependent synaptic plasticity associated with learning and 

memory. Spine and synapse abnormalities are a common feature of brain disorders including intellectual 

disabilities, autism spectrum disorders (ASDs), schizophrenia, and Alzheimer’s disease, suggesting that their 

proper regulation is critical for normal cognitive function. 

ADGRB1 is a post-synaptic aGPCR that Tolias and colleagues previously identified as a critical 

regulator of spine and synapse development [Duman et al. 2013]. Like most aGPCRs, ADGRB1 possesses 

an extended NTF containing multiple adhesion domains, including five thrombospondin type 1 repeats (TSRs) 

and a GAIN domain located N-terminal to its 7TM. ADGRB1 promotes spinogenesis and synaptogenesis in 

part by recruiting the Rac1-guanine nucleotide exchange factor (GEF) Tiam1 and the polarity protein Par3 to 

spines, resulting in localized Rac1 GTPase activation and actin cytoskeleton remodeling that drives spine and 

synapse growth [Duman et al. 2013]. ADGRB1 also stabilizes the synaptic scaffolding protein PSD-95 by 

binding to the E3 ubiquitin ligase MDM2 and preventing it from targeting PSD-95 for degradation [Zhu et al. 

2015]. Moreover, genetic ablation of Adgrb1 results in mice with hippocampus-dependent spatial learning and 

memory deficits, enhanced long-term potentiation (LTP), and impaired long-term depression (LTD) [Zhu et al. 

2015].  

Despite these recent advances, many unanswered questions remain around the function of ADGRB1 

at synapses. Understanding the function of ADGRB1 in the nervous system is important because of its 

implications for neural circuit development and neurological disease. The human ADGRB1 gene is located in 

a hot spot for de novo germline mutations in patients with ASD, and Adgrb1 expression is altered in mouse 

models of Rett and MeCP2 Duplication Syndromes and in glioblastoma [Kaur et al. 2003, Chahrour et al. 

2008, Michaelson et al. 2012]. Since GPCRs are often successful therapeutic targets for disease intervention, 

further insight into ADGRB1 regulation and function could facilitate the development of new treatments for 

these disorders. 

Here, Tolias and colleagues confirmed that ADGRB1 promotes hippocampal spine development in 

the mouse brain, and they identify three distinct mechanisms by which ADGRB1 mediates its synaptogenic 

functions [Tu et al. 2018]. ADGRB1 appears to function as a receptor at synapses, as its extracellular NTF is 
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required for both its spinogenic and synaptogenic functions, and activation of ADGRB1 with a Stachel-derived 

peptide, which mimics a tethered agonist motif found in aGPCRs, drives synaptic Rac1 activation and 

subsequent spine and synapse development [Tu et al. 2018]. Their work also reveals a trans-synaptic function 

for ADGRB1, demonstrating that ADGRB1 induces the clustering of pre-synaptic vesicular glutamate 

transporter 1 (vGluT1) in contacting axons, indicative of pre-synaptic differentiation [Tu et al. 2018]. Finally, 

they show that ADGRB1 forms a receptor complex with the synaptogenic cell-adhesion molecule Neuroligin-

1 (NRLN1) and mediates NRLN1-dependent spine growth and synapse development [Tu et al. 2018]. 

Together, their findings establish ADGRB1 as an essential post-synaptic aGPCR that regulates excitatory 

synaptogenesis by coordinating bidirectional trans-synaptic signaling in cooperation with NRLN1.  

Garret Anderson (University of California, Riverside). Anderson presented on the role of Latrophilin 

aGPCRs (ADGRL1-3/LPHN1-3) in synaptic assembly. Synapse assembly likely requires postsynaptic target 

recognition by incoming presynaptic afferents. Using newly generated conditional knockin and knockout mice, 

Anderson and colleagues showed that the cell-adhesion GPCR ADGRL2 controls the formation of a specific 

subset of synapses in CA1-region hippocampal neurons, suggesting that ADGRL2 acts as a synaptic target-

recognition molecule. In CA1-region pyramidal neurons in vivo, ADGRL2 was specifically targeted to post-

synaptic sites at dendritic spines in the S. lacunosum-moleculare hippocampal sub-region. There it was found 

that ADGRL2 functions to regulate synaptic assembly by matching with presynaptic entorhinal cortex 

afferents. Postsynaptic deletion of ADGRL2 from CA1 pyramidal neurons selectively decreased spine 

numbers and impaired synaptic inputs from entorhinal but not from Schaffer-collateral afferents. Behaviorally, 

loss of ADGRL2 from the CA1-region increased spatial memory retention, but decreased learning of sequential 

spatial memory tasks. Thus, it was concluded that ADGRL2 appears to control synapse formation in the 

entorhinal cortex/CA1-region circuit by acting as a domain-specific postsynaptic target-recognition molecule. 

Swati Srivastava (Friederich-Alexander-Universität Erlangen-Nürnberg). Srivastava presented her work 

on the role of the extracellular domain of ADGRG6 (GPR126) in regulating cardiac development. Trabeculation 

is a complex morphogenetic process in heart development, which leads to the formation of muscular 

protrusions in the ventricular lumen [Liu et al. 2010]. Recently, Srivastava and colleagues have suggested that 

the extracellular domain of Adgrg6 (Adgrg6/Gpr126-NTF) is required for this process in zebrafish and mouse 

[Patra et al. 2013]. However, this conclusion was mainly drawn from zebrafish experiments utilizing splice 

morpholinos, a technique that has been questioned in recent years regarding its specificity. Therefore, their 

work focused on analyzing the genetically modified zebrafish lines adgrg6/gpr126stl47 (full length-depleted 

mutant) and adgrg6/gpr126st49 (CTF-depleted mutant expressing NTF) [Monk et al. 2009, Petersen et al. 

2015]. Their data regarding trabeculation at 5 days post-fertilization verified that the NTF is required for proper 

trabeculation of the zebrafish heart. In addition, mRNA injection experiments indicate that Gpr126-NTF might 

be sufficient to partially induce trabeculation, a process including cardiomyocyte selection, depolarization, 

delamination, and proliferation [Jimenez et al. 2016]. Furthermore, they performed a comparison of gross 

morphological phenotypes with other mutants which exhibit trabeculation defects. Their preliminary analysis 

revealed that adgrg6 mutants exhibit characteristics typical for Erbb2 misregulation. Thus, it will be important 

in the future to determine whether the observed trabeculation phenotypes in adgrg6 zebrafish mutants are 

due to altered Erbb2 signaling, and if so, how Adgrg6 contributes to the known Erbb2 signaling pathway. 

Doreen Thor (Leipzig University). Thor presented her work on the role of aGPCRs in modulating glucose 

homeostasis. aGPCRs have many appreciated roles within the immune and central nervous systems and in 

cell adhesion and development. However, an impact of aGPCR in metabolic processes remains largely 

unstudied, even though for several metabolic relevant tissues, regulating properties of GPCRs are well 

established and high expression of aGPCRs have been shown. 
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In pancreatic islets, Gs- and Gq-protein signaling has 

been linked to hormone exocytosis, while Gi-protein signaling 

leads to a reduced hormone secretion [Winzell et al. 2007]. 

RNAseq analyses revealed expression of 13 aGPCRs in 

murine pancreatic islets, suggesting physiological relevance 

of aGPCRs in glucose homeostasis [Meister et al. 2014]. Until 

now, only ADGRG1 (GPR56) has an assigned function in 

endocrine pancreas regulating insulin secretion [Dunér et al. 

2016, Olaniru et al. 2018]. However, Thor and colleagues 

have also demonstrated high expression of other aGPCRs, 

such as members of the ADGRL (Latrophilin/LPHN) family 

and ADGRF5 (GPR116), which is partly restricted to specific 

pancreatic cell types. 

They used islet-derived cell lines to analyze 

expression patterns of the aGPCR group under low and high 

glucose conditions. Further, they took advantage of Stachel-

derived peptides to activate the receptors and evaluate 

hormone secretion in cell lines and primary islets. Comparing 

islet composition and hormone content of wild-type and 

knock-out islets will shed light on the influence of aGPCR in 

islet development. Metabolic phenotyping of wild-type and 

knock-out animals will help to understand the physiological 

function of these receptors in modulating glucose homeostasis. With several aGPCR expressed in pancreatic 

islets and other metabolic relevant and endocrine tissues, this might uncover novel targets to intervene with 

metabolic dysfunctions (Fig. 1). 

Benoit Vanhollebeke (Université Libre de Bruxelles) and Mario Vallon (Stanford University). 

Vanhollebeke and Vallon both presented their findings on the regulation of Wnt7-specific signaling cascades 

mediated through ADGRA2 (GPR124) and RECK. Cerebrovascular development in vertebrates functionally 

integrates angiogenic and differentiation programs ensuring that only blood-brain barrier (BBB) forming 

vessels penetrate the brain parenchyma. Endothelial Wnt/β-catenin signaling has emerged as a key signaling 

event in this coupling mechanism. In mammals retinal endothelial Wnt/β-catenin signaling is regulated by 

Müller cell-derived Norrin ligand [Ye et al. 2009], whereas forebrain and ventral neural tube vascularization is 

orchestrated by Wnt7 ligands [Stenman et al. 2008]. In order to respond to Wnt7, endothelial cells were shown 

to require a membrane receptor complex made of ADGRA2 and RECK, a GPI-anchored glycoprotein [Cho et 

al. 2017, Eubelen et al. 2018, Vallon et al. 2018, Vanhollebeke et al. 2015]. Time-lapse confocal imaging of 

genetic mosaics revealed that these proteins control brain vascular invasion by selectively modulating tip cell 

function, consistent with a non-uniform requirement of Wnt signaling in assembling the cerebrovasculature 

[Vanhollebeke et al. 2015].  

The ADGRA2/RECK complex has been suggested to form higher-order receptor complexes with 

Frizzled receptors and Lrp5/6 co-receptors, in a Wnt7-dependent manner [Cho et al. 2017]. Genetic analyses 

in cultured cells confirmed the requirement of Frizzled and Lrp5/6 to transduce Wnt7 signals across the 

membrane bilayer [Eubelen et al. 2018, Vallon et al. 2018]. How ADGRA2 and RECK mediate discrimination 

of Wnt7 ligands from other Wnt isoforms, despite the promiscuous Wnt/Frizzled interaction mode, has been 

elusive.  

RECK and ADGRA2 were found to traffic independently to the plasma membrane, where they interact 

to synergistically potentiate Wnt7-specific signaling [Cho et al. 2017, Eubelen et al. 2018, Vallon et al. 2018, 

Figure 1. Latrophilin function in pancreatic beta 

cells. ADGRL3 (LPHN3) coupling to Gαi proteins 
and reducing intracellular cAMP levels reduces 
glucose-induced insulin secretion in pancreatic 
beta cells upon activation with Stachel-derived 
peptides. 



 

9 

 

Vanhollebeke et al. 2015, Bostaille et al. 2016]. The interaction involves the cystine knot motifs of RECK and 

the LRR/GAIN and to a lesser extent HRM domains of the ADGRA2 ectodomain [Cho et al. 2017, Vallon et 

al. 2018]. Within this complex, RECK confers ligand specificity by binding directly and selectively to Wnt7 with 

a 1:1 stoichiometry [Eubelen et al. 2018, Vallon et al. 2018]. Wnt ligand discrimination involves the RECK 

cystine knot motifs that bind with single-digit micromolar affinity to peptides derived from the intrinsically 

disordered linker domain of Wnt7 [Eubelen et al. 2018]. The Frizzled-like cysteine-rich domain (CRD) of RECK 

was further shown to be required for the interaction with the full-length Wnt7 protein [Vallon et al. 2018]. The 

RECK-Wnt7 receptor-ligand interaction has biophysical and signaling implications as it maintains the ligand 

in an active, monomeric, hydrophobic state better suited to activate Frizzled receptors, as free Wnt7 rapidly 

forms inactive aggregates that do not bind to RECK or Frizzled [Vallon et al. 2018]. Recombinant soluble 

RECK protein, in the absence of ADGRA2, promotes formation of soluble Frizzled CRD:Wnt7 complexes in 

conditioned medium [Vallon et al. 2018]. However, on the cell surface, ADGRA2 is absolutely required for 

RECK-bound Wnt7 to become available for Frizzled signaling [Eubelen et al. 2018, Vallon et al. 2018, 

Vanhollebeke et al. 2015], revealing that ADGRA2 is essential to increase the bio-availability of Wnt7 for 

Frizzled receptors.  

Surprisingly, in this function, ADGRA2 does not rely on its GPCR structure. Experimental variants 

lacking the seven-span transmembrane domain were indeed competent to mediate Wnt7 signaling in vitro 

and promote brain angiogenesis in vivo [Eubelen et al. 2018, Vallon et al. 2018].  

In zebrafish, the intracellular domain (ICD) of Adgra2, like the Adgra3 (Gpr125) ICD, binds Dishevelled 

(Dvl) [Eubelen et al. 2018, Li et al. 2013] and is essential to promote brain angiogenesis [Eubelen et al. 2018]. 

CRISPR/Cas9-mediated gene disruption together with nanobody-based functional complementation assays 

indeed revealed that the Adgra2-Dvl interaction was necessary to mediate brain vascularization in this model. 

The function of Dvl was linked to its capacity to polymerize and assemble higher-order 

Adgra2/Reck/Frizzled/Lrp receptor complexes by binding simultaneously to Frizzled and Adgra2 ICDs 

[Eubelen et al. 2018].  

In cultured cells, however, some ectopically expressed ADGRA2 variants lacking the ICD were still 

able to trigger Wnt7 signaling [Eubelen et al. 2018, Vallon et al. 2018]. By extension, the ICD might, context-

dependently, not be required to initiate signaling in vivo. While genetic analyses in the zebrafish revealed an 

essential function for the ICD, it will be important to address this question additionally in the mouse model. 

The activity of the ICD-lacking ADGRA2 variants in vitro could reflect the fact that the ICD-mediated scaffolding 

function becomes dispensable when the concentrations of ADGRA2/RECK exceed the threshold values 

required for stochastic encounters with Frizzled within the two-dimensions of a cell membrane. Accordingly, 

full-length ADGRA2 triggers higher signaling activities than the ICD-lacking variants, in particular when 

expressed at low levels [Eubelen et al. 2018]. Interestingly, exposing RECK/Wnt7-expressing cells to 

recombinant soluble ADGRA2 extracellular domain (ECD) was also sufficient to initiate signaling in vitro 

[Vallon et al. 2018]. However, ADGRA2-mediated RECK/Wnt7 signaling did not involve regulation of 

RECK:Wnt7 complex formation on the cell surface [Vallon et al. 2018]. This raises the possibility that the 

ADGRA2 ECD and ICD render the RECK:Wnt7 complex available for Frizzled signaling by independent 

mechanisms: The ECD possibly through conformational remodeling of RECK/Wnt7, and the ICD through Dvl-

mediated recruitment of Frizzled. 

Further investigations are warranted to probe the structural basis of this Wnt7 recognition/signaling 

module, the first described to confer Wnt ligand discrimination potential to vertebrate cells. The advent of 

single particle analysis through cryo-EM will likely be pivotal in this endeavor. It will be important as well to 

investigate if the function of the ADGRA2/RECK module is restricted to ligand discrimination at the level of the 

plasma membrane, or if the complex additionally impacts on the downstream signal transduction events. In 

this context, it will be interesting to test if ADGRA2/RECK could also potentiate non-canonical Wnt signaling 
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cascades downstream of Wnt7. Alternatively, RECK/Wnt7 might activate non-canonical Wnt signaling by 

default in cells that do not express ADGRA2, whereas in ADGRA2-expressing cells, RECK/Wnt7 signaling is 

potentially re-routed to the canonical Wnt pathway. 

The presenters concluded that ADGRA2 might function through alternative mechanisms in other 

physiological settings. In these settings, ADGRA2 could operate through signaling mechanisms more generic 

to aGPCRs, including through G-protein coupling, or downstream of tethered or small molecule agonists. 

However, unlike many other aGPCRs, endogenous ADGRA2 does not undergo auto-proteolytic cleavage at 

the GPS [Vallon et al. 2018], which is not conserved at a critical residue. Given the prominent role of brain 

endothelial Wnt/β-catenin signaling in the progression of several brain neurovascular disorders [Chang et al. 

2017], the mechanistic insights recently gained on the ADGRA2/RECK module broadens the therapeutic 

opportunities for treatment of human disorders through aGPCR targeting strategies. 

Signaling and activation 

Ines Liebscher (University of Leipzig). Ines Liebscher discussed the physiological role of the mechano-

responsive aGPCR ADGRD1 (GPR133). aGPCRs have been shown to be activated by mechanical stimuli 

such as vibration and shaking [Petersen et al. 2015] through their tethered agonist sequence. ADGRD1 is 

another aGPCR that is expressed in tissues that are known to be exposed to mechanical stress or to exert 

mechanical force like bone, adipose tissue, and muscle. ADGRD1 has been associated with changes in heart 

frequency [Marroni et al. 2009], human body height [Tönjes et al. 2009], and body weight in mice [Chan et al. 

2012]. Signaling studies have shown that ADGRD1 couples to Gs and Gi proteins through a tethered agonist 

or its derived synthetic peptide [Liebscher et al. 2014]. There are currently no known ligands for this receptor 

and the mechanical properties for activation remain to be determined. To study the physiological role of 

ADGRD1, Liebscher and colleagues generated receptor-deficient zebrafish and mouse lines. They 

phenotyped these mutant animal models with a focus on organs that normally express ADGRD1 and that are 

subject to mechanical force. Based on changes in transcription levels in Adgrd1 knock out in comparison to 

wild type animals, potential interaction partners will be identified. Their binding and receptor-activating 

capacities will be analyzed using standard biochemical methods with or without the addition of mechanical 

force. RNA Sequencing should further indicate changes in signaling pathways that are significantly changed 

in Adgrd1-deficient animals. Liebscher will study the direct contribution of ADGRD1 activation on classical G 

protein-dependent signaling cascades as well as non-classical pathways such as Wnt, Notch, or Sonic 

hedgehog signaling using established agonist peptides and mechanical force. 

Nariman Balenga (University of Maryland School of Medicine). Nariman Balenga showed that ADGRG2 

(GPR64) is highly enriched in human parathyroid glands and is significantly upregulated in parathyroid 

adenomas from patients with primary hyperparathyroidism compared to normal glands from cadaveric donors 

[Balenga et al. 2017]. ADGRG2 increases secretion of parathyroid hormone via its crosstalk with calcium-

sensing receptor and elevation of cAMP levels in parathyroid adenoma cells. To investigate the mechanisms 

of activation, signaling, and trafficking of ADGRG2 in HEK293 cells, Nariman generated a series of receptor 

mutants that lack either the NTF (ADGRG2ΔNTF) or various residues from the Stachel sequence. Using 

second messenger and reporter assays, Nariman showed that a 15-amino acid long peptide after the GPS, 

acts as an agonist of ADGRG2. He also showed that ADGRG2ΔNTF constitutively activates the Gs-cAMP-

PKA-CREB pathway [Balenga et al. 2017] and is constitutively internalized. The mechanisms of basal 

signaling and trafficking of ADGRG2 and their regulators were also discussed. 

Maike D. Glitsch (University of Oxford). Maike D. Glitsch discussed the detection of membrane stretch and 

extracellular pH by a proton-sensing GPCR. Mechanical forces influence cell shape, proliferation, 

differentiation and survival, thereby affecting tissue and organ formation and function. Exactly how the different 

mechanical forces are sensed and transduced remains largely elusive. 
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 Maike and colleagues reported that Ovarian cancer G protein coupled receptor 1 (OGR1, aka GPR68) 

acts as coincidence detector of membrane stretch and its physiological ligand, H+ (Wei et al. 2018). Using 

fluorescence imaging, substrates of different stiffness, micro-contact printing methods and cell stretching 

techniques, they showed that OGR1 only responds to extracellular acidification under conditions of membrane 

stretch, and vice versa. The level of OGR1 activity mirrors the extent of membrane stretch and degree of 

extracellular acidification. Furthermore, actin polymerization in response to membrane stretch is critical for 

OGR1 activity and provides a “memory” for past stretch. Cells experience changes in membrane stretch and 

extracellular pH throughout their lifetime. Since OGR1 is a widely expressed receptor, it represents a unique 

and widespread mechanism that enables cells to respond dynamically to mechanical and pH changes in their 

microenvironment. 

Randy A. Hall (Emory University). The brain-specific angiogenesis inhibitors 1-3 (BAI1-3; ADGRB1-3) 

comprise a subfamily of aGPCRs with important roles at synapses in the CNS as well as key roles outside the 

CNS (Stephenson et al., 2014; Duman et al., 2016). Prior studies by Hall and colleagues on G protein-

mediated signaling by the members of this family have revealed that ADGRB1 couples predominantly to 

G12/13 to regulate Rho (Stephenson et al., 2013; Kishore et al., 2016), whereas ADGRB2 exhibits preferential 

coupling to Gz (Purcell et al., 2017).  Removal of the N-terminal regions of ADGRB1 and ADGRB2 (up to the 

point of GPS cleavage) was found to strongly enhance receptor signaling, similar to other aGPCRs 

(Stephenson et al., 2013; Kishore eta l., 2016).  However, removal of the membrane-proximal stalk (Stachel) 

region had little or no effect on ADGRB1 or ADGRB2 signaling, which is distinct from the Stachel-dependent 

signaling observed with certain other aGPCRs (Kishore et al., 2016).  A disease-associated mutation in 

ADGRB2 (R1465W) enhanced receptor surface expression and signaling. This mutation did not affect 

receptor interactions with beta-arrestins, but sharply reduced receptor binding to endophilins (Purcell et al., 

2017).  Ongoing studies are focused on achieving a more comprehensive understanding of ADGRB1-3 with 

regard to their downstream signaling pathways, physiological actions, and potential as novel drug targets in 

the treatment of psychiatric and neurological diseases. 

Nicole Scholz (University of Leipzig). Nicole Scholz researches aGPCR function utilizing the 

ADGRL/Latrophilin/Cirl (calcium-independent receptor of latrotoxin) homolog expressed in Drosophila 

(dCIRL). Previously, Scholz and colleagues demonstrated the capacity of dCIRL to shape the mechanoceptive 

profile of larval chordotonal sensory neurons, which leaves dCirlKO larvae less sensitive to gentle touch and 

sound as well as proprioceptive stimuli [Scholz et al. 2015, 2017].  

aGPCRs have long been known to be subject of alternative splicing of both coding and non-coding receptor 

moieties [McKnight et al.1998, Mills et al. 2013, Bae et al. 2014], yet another feature of aGPCRs rather 

uncommon for canonical GPCRs.  

The Drosophila genome contains only a single Cirl gene. Alternative splice events of dCirl pre-mRNA 

produce eight transcripts, some of which encode identical receptor proteins while the rest encode receptor 

molecules signified by varying ECD (extracellular domain) and TM architecture (flybase.org). Interestingly, 

isoform-specific alterations of ECD-size and complexity has been noticed for other aGPCRs in the past 

including ADGRE1/EMR1 and ADGRE5/CD97 [McKnight et al. 1998]. Therefore, Scholz hypothesized that 

this is a more general feature of aGPCRs enabling a certain degree of flexibility with respect to the ligand and 

activity profile. Moreover, aGPCRs typically locate to the surface of the expressing cell engaging in interactions 

with adjacent transmembrane receptors or matricellular components [Langenhan et al. 2013]. Therefore, 

alternative splicing may constitute a mechanism to shape the dimension of aGPCR-ECDs to match the 

geometry of the expressing and surrounding tissues.  

Furthermore, Scholz reported that alternative splicing results in transcripts encoding dCIRL receptor 

variants, which contain only a single TM domain. As G protein-coupling is unlikely to occur for these receptors, 
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the question arises whether they solely serve adhesive functions or if they employ non-canonical signaling 

pathways to shape cellular biology. Preliminary data suggest isoform-specific expression pattern of different 

dCIRL isoforms in heterologous expression systems, which warrants the interrogation of the expression 

pattern of dCIRL isoforms as well as their putative contribution in shaping the physiology of mechanosensory 

neurons in vivo. In sum, it is intriguing to speculate that alternative splicing constitutes a mechanism that 

enlarges the functional diversity of aGPCRs. Thus, deciphering putative isoform-specific functions of aGPCRs 

will be the focus of future studies in the Scholz lab. 

Hee Yong Kim (NIH/NIAAA). Hee Yong Kim presented the role of ADGRF1 (GPR110)-dependent signaling 

in neurodevelopment and neuroprotection. ADGRF1 is an aGPCR recently deorphanized to be a target 

receptor for N-docosahexaenoylethanoamine (Synaptamide) [Lee et al. 2016].  Synaptamide is an 

endogenous metabolite derived from docosahexaenoic acid (DHA, 22:6n-3), a very long-chain omega-3 fatty 

acid highly enriched in the brain. At low nanomolar concentrations this DHA-metabolite promotes 

neurogenesis [Rashid et al. 2013], neurite outgrowth, and synaptogenesis in developing neurons [Kim et al. 

2011]. Synaptamide also attenuates the lipopolysaccharide-induced neuroinflammatory response [Park et al. 

2016] and ameliorates the deleterious effects of ethanol on neurogenic differentiation of neural stem cells 

(NSCs) [Rashid et al. 2016]. Specific binding of 

synaptamide to ADGRF1 causes conformational 

changes of ADGRF1, activates Gαs, and induces 

cAMP production and phosphorylation of PKA and 

CREB. This signaling pathway leads to the 

expression of neurogenic and synaptogenic genes 

and suppresses the expression of proinflammatory 

genes. ADGRF1 is heavily glycosylated and contains 

a GPS in the GAIN domain. The GPS cleavage, 

which releases the NTF and exposes the Stachel of 

the 7TM domain, is neither induced by synaptamide 

nor required for ADGRF1 activation by synaptamide. 

In fact, synaptamide binds to the N-terminal side of 

GPS and without it, synaptamide does not activate 

ADGRF1, suggesting that the ligand-induced 

activation mechanism may be distinctively different 

from the GPS cleavage-dependent mechanism 

commonly observed with aGPCRs. ADGRF1 is highly expressed in neural stem cells and fetal brain, but its 

expression in the brain diminishes after birth. Nevertheless, expression of ADGRF1 is sustained in 

hippocampal dentate gyrus, where neurogenic capacity is retained throughout life, suggesting a role of 

ADGRF1 in promoting neurogenesis even after embryonic development. The impact of synaptamide/ 

ADGRF1 signaling on the nervous system beyond developmental stages is further evident as Adgrf1 knockout 

produces significant deficits in memory function in adult mice. The ADGRF1-dependent cellular effects of 

synaptamide recapitulated in in vivo models suggests that synaptamide-derived mechanisms may have 

translational implications, particularly in neurodevelopment and neuroprotection (Fig. 2). 

Katherine Leon (University of Chicago). Katherine Leon from Demet Arac’s group discussed advances in 

ADGRL/Latrophilin structure and signaling. Due to the recent discovery of aGPCRs and the lack of structural 

information about their 7TM domains, the activation and regulatory mechanisms of aGPCRs remain relatively 

uncharted compared to more well-studied GPCR families. However, recent studies on the signaling 

mechanisms of aGPCRs have largely been aided by the development of signaling assays which can probe 

Figure 2. Ligand-activated ADGRF1 (GPR110) signaling with 
neurodevelopmental and neuroprotective implications. 
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the functions of specific receptors. Previous work on ADGRL1 (Latrophilin-1) using newly established signaling 

assays have allowed a better understanding of how aGPCRs function and to probe the signaling effects of 

cancer mutations [Nazarko et al. 2018]. Leon and colleagues found that ADGRL1 is activated by its Stachel 

peptide, similar to other aGPCRs, and studied the residues important for Stachel-mediated activation. Further, 

mutagenesis of residues that are homologous to key conserved residues in other GPCR families was shown 

to change basal signaling and/or Stachel peptide response. In addition, a cancer mutation exhibited high basal 

activity in the signaling assays and also led to a loss in receptor function in vivo. 

Complementary to the new discoveries from the signaling study, they also explored the role of cellular 

communication and adhesion in ADGRL function in a recent study [Lu et al. 2015] in which they solved the 

crystal structure of the ADGRL3/FLRT-3 complex which mediates synapse development. Arac’s group also 

showed that ADGRL3, FLRT-3, and UNC-5, another cell-surface molecule important for neural development, 

form a trimeric complex, which provided further insight into the role of cell adhesion in synapse function. 

Erwin G. Van Meir (Emory University). Erwin Van Meir’s laboratory is studying the role of ADGRB1-3 (BAI1-

3) as tumor suppressors in malignant brain cancers (Cork et al. 2011). He showed that the ADGRB1 gene, 

which encodes Brain-specific Angiogenesis 

Inhibitor 1 (BAI1), is epigenetically silenced 

in both human glioblastoma (Kaur et al. 

2005, Kaur et al. 2009, Cork et al. 2012) and 

medulloblastoma [Zhu et al. 2018] through 

a methyl-CpG binding protein 2 (MBD2)-

dependent mechanism. His team previously 

evidenced trans functions for BAI1, by 

demonstrating that its NTF can be cleaved 

to form fragments with anti-angiogenic and 

anti-tumorigenic properties called 

vasculostatins (Kaur et al. 2009). He now 

presented recent work about how ADGRB1 

(BAI1) suppresses medulloblastoma 

formation in the cerebellum in cis by 

sequestering Mdm2 from p53 through the 

protein’s 7TM intracellular loop 1 [Zhu et al. 

2018]. 

Knockout of Adgrb1 in mice 

augments proliferation of cerebellar granule 

neuron precursors (GNPs), and dramatically increases medulloblastoma penetrance and accelerated death 

when crossed to Ptch1+/- mice. ADGRB1 prevents MDM2-mediated p53 polyubiquitination, and loss of its 

expression through epigenetic silencing substantially reduces p53 levels. ADGRB1 protects p53 from MDM2-

mediated degradation by binding directly to MDM2 through the first intracellular loop of its 7TM and thereby 

excludes MDM2 from the nucleus. Reactivation of the ADGRB1/p53 signaling axis by targeting the MBD2 

pathway with a novel small molecule (KCC07) suppresses human medulloblastoma growth in orthotopic 

xenograft models. These findings highlight the importance of ADGRB1 silencing in medulloblastoma formation 

and demonstrate that epigenetic restoration of its expression with brain-permeable KCC07 has therapeutic 

potential.  

These findings establish ADGRB1 as a physiological tumor suppressor in medulloblastoma and  reveal 

a direct connection between aGPCRs and p53 signaling, thus providing a causal relationship between 

aGPCRs and cancer. The discovery of a new upstream regulator of the p53 tumor suppressor is important 

 

Figure 3. Working model for ADGRB1 (BAI1) protective effect on p53. 

When BAI1 is expressed (left), it binds to MDM2 and prevents MDM2-
mediated poly-ubiquitination of p53. P53 targets that restrict cell 
proliferation (p21, GADD45) are induced. When BAI1 expression is 
lost due to ADGRB1 gene silencing (right), p53 is degraded by the 
proteasome and cells are more prone to transformation. This 
mechanism suggests that MDM2 inhibitors or epigenetic reactivation 
of ADGRB1 with a new MBD2 inhibitor have therapeutic potential. 
Cartoon was modified after Zhu et al, 2018. 
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due to this pathway’s involvement in multiple cancers. Disruption of the ADGRB1/Mdm2/p53 signaling axis 

through ADGRB1 gene silencing unveils a new vulnerability in cancer, which can be therapeutically targeted 

through epigenetic reactivation. The authors show that this is possible with a new chemical scaffold that 

prevents MBD2 binding to methylated DNA, and this lead molecule can be further translated into a first-in-

class therapeutic for medulloblastoma, and possibly other cancers [Zhu et al. 2018] (Fig. 3). 

James P. Bridges (Cincinnati Children’s Hospital Medical Center). Bridges discussed the molecular 

determinants of ADGRF5 (Gpr116) required for pulmonary alveolar homeostasis. It has been previously 

demonstrated that epithelial expression of the aGPCR ADGRF5 regulates pulmonary surfactant levels and 

pulmonary alveolar homeostasis in mice [Bridges et al. 2013, Fukuzawa et al. 2013, Yang et al. 2013]. 

Mechanistically, activation of ADGRF5 with synthetic peptides that mimic the extracellular ectodomain of the 

receptor elicit Gq/11-coupled responses and actin cytoskeletal rearrangements in primary mouse and human 

alveolar type II (AT2) cells [Brown et al. 2017, Demberg et al. 2017]. The ability to pharmacologically 

manipulate the ADGRF5 pathway, both positively and negatively, would be a major therapeutic advance for 

patients with lung diseases associated with pulmonary surfactant disorders. The goal of this study was to 

define the molecular determinants of ADGRF5 that are essential for activation in vitro and in transgenic mouse 

models, with the long-term goal of designing small molecule modulators of ADGRF5 to treat pulmonary 

disease. 

              Toward this goal, Bridges’ group utilized G protein-coupled assays (calcium transients and inositol 

phosphate (IP) conversion assays) in primary AT2 cells and in HEK293 cells transiently expressing wild-type 

ADGRF5 or chimeric cDNAs of ADGRF5 that harbored alanine substitutions at sites predicted to be essential 

for receptor function. A synthetic peptide corresponding to the first 10 amino acids in the ectodomain of the 

C-terminal fragment of ADGRF5 (termed GAP10) and a scrambled control peptide (SCR) were used in G 

protein-coupled activity assays with chimeric ADGRF5 mutants in vitro and administered to wild type mice to 

determine the impact of ADGRF5 activation on surfactant pool sizes in vivo. Alanine mutation analysis of 

ADGRF5 identified four key amino acids within the ectodomain and four in the second extracellular loop of 

ADGRF5 that were required for full activation. The group also identified a conserved amino acid in the GAIN 

domain of ADGRF5 that is essential for proper cleavage of the receptor into the NTF and CTF. The ADGRF5 

cleavage mutant routed to the cell surface, and elicited GAP10-induced IP responses and calcium transients 

in HEK293 cells comparable to WT ADGRF5, demonstrating that cleavage of the receptor is not essential for 

peptide-based activation in vitro. To test the hypothesis that cleavage of ADGRF5 is required for activation in 

vivo, the authors introduced the cleavage mutation into the endogenous ADGRF5 locus via CRISPR/Cas9-

mediated gene editing. Analysis of 4-week old Adgrf5 cleavage mutant mice revealed increased pulmonary 

surfactant and airspace enlargement, similar to levels observed in Adgrf5-/- mice. These data indicate that 

cleavage of ADGRF5 into the NTF and CTF is essential for receptor function in vivo. 

        While the endogenous ligand of ADGRF5 is unknown, these data support a model in which binding of a 

ligand to the NTF results in separation of the NTF from the CTF, revealing a cryptic tethered peptide that binds 

to the extracellular loops of ADGRF5, resulting in activation and suppression of surfactant secretion from AT2 

cells. Ongoing studies are focused on identification of the endogenous ligand and intracellular signaling events 

mediating ADGRF5 regulated exocytosis in AT2 cells. 

Xianhua Piao (Harvard Medical School). Piao presented her group’s work on how oligodendrocyte ADGRG1 

(GPR56) integrates signals from microglia and the extracellular matrix to regulate developmental myelination 

and myelin repair. Myelin, a fatty membrane that wraps around axons to ensure both efficient impulse 

conduction and health of nerve fibers, is produced and maintained by special glial cells called oligodendrocytes 

(OLs) in the CNS. OLs arise from a lineage-restricted, proliferative pool of OL precursor cells (OPCs) during 

development, and are also abundant in the adult CNS, generating new OLs and new myelin under conditions 
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of myelin damage, as is seen in demyelinating diseases and in rodent models of demyelination. Local 

environmental cues, including neighboring cells and extracellular matrix, influence OPC development. In 

particular, microglia regulate OPC proliferation and differentiation during development and remyelination 

[Shigemoto-Mogami et al. 2014, Miron et al. 2013]. However, the molecular signaling pathways that mediate 

communications between microglia and OL lineage cells during development and repair have not been fully 

delineated. Piao presented the discovery jointly made by her group and Kelly Monk’s group, elucidating how 

OPCs integrate signals from both microglia and matrix during developmental myelin formation and repair.  

ADGRG1 is an evolutionarily conserved regulator of OL development in zebrafish, mice, and humans 

[Ackerman et al. 2015, Giera et al. 2015]. Loss-of-function mutations in ADGRG1 cause the devastating 

human brain malformation called bilateral frontoparietal polymicrogyria (BFPP), which is comprised of a 

constellation of structural brain defects including CNS hypomyelination [Piao et al. 2004]. Conditional deletion 

of Adgrg1 in OL lineage cells in mice results in CNS hypomyelination, and this is specifically caused by 

deficiencies in ADGRG1 signaling in OPCs [Giera et al. 2015]. Loss of ADGRG1 in mice and zebrafish 

decreases OPC proliferation, thereby leading to a reduced number of mature myelinating OLs and fewer 

myelinated axons in the CNS [Ackerman et al. 2015, Giera et al. 2015].  Through a combination of unbiased 

in vitro biotinylation proteomics, biochemistry, in vitro OPC culture, and mouse and zebrafish genetics, Piao 

and colleagues discovered the relevant ADGRG1 ligand during CNS myelination is microglia-derived tissue 

transglutaminase (TG2, gene symbol Tgm2). Interestingly, TG2 signaling to OPC ADGRG1 requires the 

presence of the extracellular matrix protein laminin and that TG2/laminin activation of ADGRG1 promotes 

OPC proliferation. Importantly, signaling by TG2/laminin to ADGRG1 on OPCs is also required for efficient 

remyelination in vitro and in vivo [Giera et al. 2018]. These findings document a tripartite module that signals 

through an aGPCR to promote myelin formation and repair, and suggest new strategies to enhance 

remyelination. 

Gabriela Aust (University of Leipzig). Aust and colleagues identified a mechanism by which an aGPCR 

might transduce mechanical stimuli inside the cell. One third of all aGPCRs contain a PDZ-binding motif (PBM) 

at their intracellular C-terminus [Langenhan et al. 2013]. Together with PDZ domain-containing scaffold 

proteins, aGPCRs can thereby build intracellular signaling complexes near the membrane. Disruption of such 

networks by mutation of a key player protein may result in (patho)physiological signaling.  

Aust and colleagues demonstrated that mechanical stimuli induce rapid phosphorylation of the aGPCR 

ADGRE5 (CD97) at its PBM, and that this biochemical modification has functional consequences [Hilbig et al. 

2018]. At the biochemical level, phosphorylation of ADGRE5 (p ADGRE5) at S740 in the PBM disrupts binding 

of the receptor to the PDZ domain-containing scaffold protein DLG1. Aust described the identification of protein 

kinases with a phorbol ester/DAG-responsive C1 domain as kinases able to phosphorylate ADGRE5 S740.  

At the cellular level, loss of the PBM results in altered mechanical properties and an enhanced 

retraction of cells under shear-stress, both of which are related to alterations in the structure of the actin 

cytoskeleton. Indeed, membranous localization of ADGRE5 depends on an intact F-actin cortex. The loss of 

pADGRE5 S740-positive membrane patches (“footprints”) from shear-stressed retracting cells in the dish 

indicates a cytosolic detachment of the cells that occurs between the ADGRE5 PBM and intracellular proteins. 

The footprint phenomenon is well-known in the rear detachment of a migrating cell forming characteristic 

tracks that mark the direction the cell has taken [Kirfel et al. 2004]. Unlocking cell contacts inside the cell 

between the PBM and intracellular proteins, that is not at the GPS between the NTF and CTF or between the 

NTF of an aGPCR and the dish, releases attachment and is likely to prevent cell injury. Aust postulated that 

phosphorylation might determine the threshold of forces transmitted inside the cell and terminate the junctional 

function of this aGPCR. Phosphorylation at the PBM may subsequently permit the binding of ADGRE5 to other 

intracellular proteins. 
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Importantly, Aust and colleagues detected p ADGRE5 S740 in situ in tumor cells located at the 

invasion front of colorectal carcinomas and in (infiltrating) tissue leukocytes, thus providing evidence of a 

(patho)physiological relevance of ADGRE5 S740 phosphorylation.  

Structure and Function of aGPCRs 

Demet Araç (University of Chicago). Araç presented on her group’s latest research on the structural and 

functional basis of aGPCR activation. aGPCRs have large extracellular regions (ECRs) decorated by 

numerous adhesion domains and a 

conserved GPCR Autoproteolysis Inducing 

(GAIN) domain that mediates self-cleavage of 

the receptor. Two avenues of research from 

her group were discussed: 

1) Araç and colleagues showed that 

adhesion GPCRs are activated via Stachel-

independent mechanisms in addition to 

Stachel-dependent mechanisms [Salzman et 

al. 2017, Nazarko et al. 2018]. Stachel-

independent mechanisms depend on the 

large extracellular regions of adhesion 

GPCRs and form the basis for the complex 

regulation of adhesion GPCR function. 

2) They also determined the high-

resolution structure of teneurin, a large-ligand 

of ADGRL1 (latrophilin/LPHN1) and revealed 

a unique structure that is similar to bacterial 

Tc-toxins [Li et al. 2018]. They further showed 

that an alternatively spliced region within 

teneurin acts as a switch to regulate trans-

cellular adhesion of teneurin to ADGRL1. One 

splice variant activates trans-cellular signaling 

in an ADGRL1-dependent manner, whereas 

the other induces inhibitory postsynaptic 

differentiation. These results highlight the 

unusual structural organization of teneurins 

giving rise to their multifarious functions (Fig. 

4). 

Alexander Bernd Knierim (University of Leipzig). Knierim presented evidence for new and previously 

undescribed splice variants of several aGPCRs. Even though the enormous sizes of aGPCRs and the complex 

genomic exon-intron architecture strongly suggest a large variety of different transcript variants, an up-to-date 

study for the whole aGPCR class is missing, and only splice events for single receptors were reported in the 

past [Bjarnadottir et al. 2007, Kim et al. 2010, Tian et al. 2017]. Knierim and colleagues established a 

bioinformatics pipeline to assemble splice variants for aGPCRs out of large RNA-Seq datasets. The pipeline 

includes a quality check with strict inclusion criteria and a new visualization tool suited to the comparative 

analysis of transcripts with many exons. With the new pipeline the number of exons encoding aGPCR 

transcripts doubled.  Knierim and colleagues found an average of 18 significantly expressed variants for each 

receptor with splice events occurring in the ectodomains, the 7TM region, and the intracellular part. 

Figure 4. Model for the regulation of ADGRL1 (latrophilin)/TEN 
interaction in an alternative-splice-dependent manner. The model 

depicts how alternative splicing acts as a molecular switch to determine 
which adhesion partner TEN2 binds to, and, accordingly, which cellular 
functions TEN2 mediates. On the left, the TEN2 variant lacking the β-
propeller splice insert (-) interacts with ADGRL1 and modulates cAMP 
levels in the neighboring cell. On the right, TEN2 variant including the 
splice insert (+) is unable to interact with ADGRL1, but it induces 
inhibitory synapses by interacting with unknown ligands. The left and 
right sides of the TEN2 dimer represent various cell-cell junctions and 
inhibitory synapses, respectively. The teneurin structure (PDB ID: 
6CMX), membranes and distance between synaptic membranes are 
drawn to scale. The molecules on the post-synaptic side are drawn as 
schemes and are not to scale. Alternative splice site is shown by red 
star. The figure is replicated from Li et al. 2018. 
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Experimental evidence was provided for significant changes in the surface expression and signaling of some 

splice variants indicating the functional relevance of alternative splicing for these receptors. The unexpected 

large number of transcript variants in the aGPCR class may have an impact on a rational design of aGPCR 

gene-deficient mouse lines, primers, and antibodies in the future. 

Antony Boucard (Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 

Mexico City). Boucard has been studying the role of adhesion molecules in the formation of neuronal 

synapses for many years. His recent studies focus on a subfamily of previously orphan aGPCRs, the 

ADGRLs/Latrophilins, which he contributed to “deorphanize” by identifying and characterizing various 

endogenous ligands that support a bidirectional signaling [Boucard et al. 2012, 2014]. The mammalian ADGRL 

subfamily comprises three isoforms (ADGRL1, 2, and 3) that are mainly expressed in the brain and, consistent 

with their expression profile, these aGPCRs are involved in determining inter-neuronal adhesion [Boucard et 

al. 2012, Anderson et al. 2017]. ADGRLs stabilize cell-cell contacts through their N-terminal region mediating 

interactions with endogenous ligands spanning opposite cell membranes such as Teneurins, Neurexins, or 

FLRT proteins [Boucard et al. 2012, 2014]. ADGRL isoforms possess a high degree of protein sequence 

homology, with the N-terminal region displaying the most conserved sequences, whereas the cytoplasmic 

domains that are coupled to the intracellular machinery are more divergent [Matsushita et al. 1999]. Thus, 

ADGRL-dependent adhesion events rely on the presence of extracellular adhesion motifs involved in multiple 

protein-protein interactions, the stabilization of which can lead to the formation or maintenance of inter-

neuronal contacts at the neuronal synapse, for example. Consequently, ADGRLs have the potential to initiate 

intracellular cascades in a way to convert extracellular adhesion signals into the formation of structures that 

support or maintain the adhesive properties of the cell.  

Common but divergent molecular characteristics imply that all ADGRL isoforms can form similar 

adhesion complexes with shared ligands, but that the elicited intracellular signals might lead to different 

activation patterns. This conundrum prompted Boucard and collaborators to conduct a comparative study 

aiming at deciphering how the different isoforms affect cell morphology. Although ADGRLs have been 

described as important stabilizers of neuronal synapses, evidences suggest that their physiological role might 

not be restricted to synaptogenic events. Indeed, their presence in tissues such as kidney, immune cells, lung, 

and heart hints to a ubiquitous role in cell adhesion [Boucard et al. 2014, Lagou et al. 2018]. To identify a 

unifying function for these receptors, Boucard explored the convergent but distinct function of ADGRL isoforms 

in adhesion events expressed by neuronal and non-neuronal cells alike. Boucard exposed his strategy to 

monitor the cellular function of ADGRLs involving the role of these receptors in trans-adhesion and adhesion-

independent events. Using imaging through confocal microscopy and biochemical assays to reveal cell 

signaling pathways, Boucard characterized the cell morphological structures that are modulated by ADGRLs 

signaling. The molecular determinants that support their involvement in the genesis of cell adhesion structures 

was also discussed. Boucard described the constitutive function of ADGRLs in determining the genesis of cell 

structures as well as their ability to reorganize intracellular complexes upon trans-adhesion with endogenous 

ligands. 

aGPCRs in Health and Disease 

Ryan S. Gray (University of Texas at Austin). Ryan Gray presented his group’s research focused on the 

essential function of ADGRG6 (GPR126) in homeostasis of the intervertebral disc (IVD) in mice. Degenerative 

changes of the IVD are a leading cause of back pain and disability worldwide. Yet, surprisingly little is known 

about the homeostatic regulation of the IVD during maturation and aging of the spine. Using conditional 

genetics in mouse and chondrogenic cell culture, the authors demonstrated the necessity of the aGPCR 

ADGRG6 for sustained chondrogenic pathways and homeostasis of cartilaginous tissues of the IVD. 

Interestingly, ADGRG6 function is dispensable for early development of cartilaginous tissue of the spine. 
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However, by 1.5 months and prior to obvious histopathology, Adgrg6-deficent IVDs displayed biomarkers 

associated with degeneration and commonly observed in osteoarthritis. In older adult mutant mice (6-8 

months) IVDs, the authors reported obvious histopathology coupled with increased degenerative marker 

expression. This study demonstrates a novel role for ADGRG6 function in the homeostasis of cartilaginous 

tissues in mouse spine, suggesting a direct regulation of ADGRG6 on the regulation of chondroprotective and 

catabolic gene expression. These findings further suggest that ADGRG6 may provide a promising therapeutic 

target for cartilage degeneration.  

Yuri Ushkaryov (University of Kent). Ushkaryov presented that ADGRL1 (Latrophilin-1) mediates axonal 

attraction induced by proteolytically released Lasso. ADGRL1is a presynaptic aGPCR. When stimulated by 

its exogenous agonist, α-latrotoxin from black widow spider venom, ADGRL1 activates the Gαq/phospholipase 

C/inositol-1,4,5-trisphosphate cascade and release of intracellular Ca2+, leading to massive exocytosis of 

neurotransmitters.  

In 2004, the authors hypothesized that the extracellular NTF of ADGRL1 must bind an endogenous 

protein which, based on its predicted characteristics, was called “Latrophilin-1-associated synaptic surface 

organizer” (Lasso) [Volynski et al. 2004]. Using affinity chromatography on the NTF of ADGRL1, the authors 

isolated its hypothetical ligand from rat brain and identified it as Teneurin-2 [Silva et al. 2011]. Lasso/Teneurin-

2 is the strongest endogenous ligand of ADGRL1 and is also the only protein isolated by ADGRL1 affinity 

chromatography.  

Lasso/Teneurin-2 is a type 2 membrane receptor of ~300 kDa, whose N-terminus is localized inside 

the cell, while the large C-terminal domain containing 8 EGF repeats is extracellular. It is a dimer of two 

subunits linked by two disulfide bridges. Lasso/Teneurin-2 is constitutively cleaved by furin within its 

extracellular domain, but the large extracellular fragment remains tightly tethered to the cell surface due to its 

non-covalent interaction with the transmembrane domain. Lasso/Teneurin-2 is widely expressed in the brain. 

While it is mostly present on dendrites and dendritic spines, ADGRL1 is largely presynaptic, and the two 

proteins form a strong trans-synaptic receptor pair, which mediates cell adhesion [Silva et al. 2011] and has 

been implicated in synapse formation [Boucard et al. 2014].  

Paradoxically, the extracellular domain of up to 20% of cell-surface Lasso is shed into the medium as 

a result of regulated proteolytic cleavage at another position, which releases the whole extracellular domain 

containing the constitutive cleavage site [Vysokov et al. 2016]. This makes the released extracellular domain 

unable to function in cell adhesion. However, the authors found that the released fragment of Lasso binds to 

cell-surface ADGRL1 on distant cells and axonal growth cones and causes intracellular signaling [Vysokov et 

al. 2016, 2018]. This indicated that the interaction of the shed extracellular domain of Lasso/Teneurin-2 with 

ADGRL1 could have a function in growth cone behavior. Using microfluidic devices, the authors further 

showed that a spatio-temporal gradient of the soluble Lasso/Teneurin-2 extracellular domain induces axonal 

attraction, without increasing the length of axons. This effect requires ADGRL1 (as shown by Adrgl1 knockout 

in mice) and involves Lasso-mediated aggregation of ADGRL1 on the cell surface, increased cytosolic Ca2+, 

and enhanced exocytosis, processes that are known to induce growth cone turning [Vysokov et al. 2018]. This 

suggests a novel mechanism of axonal pathfinding, where the ADGRL1/Lasso pair mediates axonal attraction 

and supports synaptogenesis. 

Conclusion 
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The 9th International Adhesion GPCR workshop (a photograph of meeting participants is shown in Figure 5) 

was a great success where we saw a great deal of progress in the field on multiple fronts. New research 

groups have joined the ever-expanding aGPCR community since the 8th International aGPCR workshop in 

Leipzig. Numerous advances have been made in elucidating new mechanisms and functions of these 

receptors, which play important roles in development, neuroprotection, myelination, mechanosensation, 

cancer, the immune system, and other systems. There have been significant efforts in understanding how 

these receptors activate and transduce signals, and the field has also made strides in understanding aGPCR 

structure, isoform differences, and functions in diverse tissues. Newly developed ways to modulate these 

receptors will be very valuable tools for generating therapeutic strategies in the future. With a more elaborate 

understanding of the aGPCR class, we will see a better advancement in their characterization and application 

in health and disease in the near future. 
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