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We propose to smooth the objective function, rather than only the indicator on the check function, in
a linear quantile regression context. Not only does the resulting smoothed quantile regression estimator
yield a lower mean squared error and a more accurate Bahadur–Kiefer representation than the standard
estimator, but it is also asymptotically differentiable. We exploit the latter to propose a quantile density
estimator that does not suffer from the curse of dimensionality. This means estimating the conditional
density function without worrying about the dimension of the covariate vector. It also allows for two-
stage efficient quantile regression estimation. Our asymptotic theory holds uniformly with respect to the
bandwidth and quantile level. Finally, we propose a rule of thumb for choosing the smoothing bandwidth
that should approximate well the optimal bandwidth. Simulations confirm that our smoothed quantile
regression estimator indeed performs very well in finite samples. Supplementary materials for this article
are available online.

KEY WORDS: Asymptotic expansion; Bahadur–Kiefer representation; Conditional quantile;
Convolution-based smoothing; Data-driven bandwidth.

1. INTRODUCTION

Quantile regression (QR) enjoys some very appealing fea-

Q1

tures. Apart from enabling some very flexible patterns of
partial effects, quantile regressions are also interesting because

Q2

they satisfy some equivariance and robustness principles. See
Koenker and Bassett (1978) and Koenker (2005) for theoretical
aspects; and Koenker (2000), Buchinsky (1998), Koenker and
Hallock (2001), Koenker (2005), and references therein for
applications.

There is a price to pay, though. The objective function that
the standard QR estimator aims to minimize is not smooth.
As established in Bassett and Koenker (1982), it follows that
the paths of this estimator have jumps, even if the underly-
ing quantile function is very regular. Because the objective
function does not have second derivatives, statistical infer-
ence is not straightforward and involves ancillary estimation
of nuisance parameters (namely, the asymptotic covariance
matrix depends on the population conditional density eval-
uated at the true quantile). See the discussions in Koenker
(1994), Buchinsky (1995), Koenker (2005), Goh and Knight
(2009), and Fan and Liu (2016), among others. Unsurpris-
ingly, the literature now boasts a wide array of techniques
to tackle this issue, including bootstrapping (Horowitz 1998;
Machado and Parente 2005), MCMC methods (Chernozhukov
and Hong 2003), empirical likelihood (Whang 2006; Otsu
2008), strong approximation methods (Portnoy 2012), nonstan-
dard inference (Goh and Knight 2009), and other nonparametric
approaches (Fan and Liu 2016; Mammen, Van Keilegom, and
Yu 2017).

Further, the asymptotic normality of the standard QR esti-
mator relies on Bahadur–Kiefer representations with poor rates

of convergence. The latter is at best of order n−1/4 for iid
(homoscedastic) errors (see Koenker and Portnoy 1987; Knight
2001; Jurečková, Sen, and Picek 2012). This means that the
first-order linear Gaussian approximation for the distribution
of the QR estimators could well fail in finite samples. Portnoy
(2012), however, obtains a nearly n−1/2 rate using a nonlinear
approximation, explaining perhaps why QR inference is actu-
ally rather good in finite samples despite the poor rates of the
Bahadur–Kiefer remainder.

In this article, we employ a convolution-type smoothing
of the objective function that helps produce a continuous QR
estimator, which is not only less irregular and variable than
the standard estimator but also more linear, in the sense that
the stochastic order of the Bahadur–Kiefer remainder term
is much closer to n−1/2 for a proper bandwidth choice. As
the smoothing we propose ensures the twice differentiabil-
ity of the objective function with respect to the parameter
vector, we can readily estimate the asymptotic covariance
matrix of our smoothed QR estimator using a standard sand-
wich formula. In fact, the second derivative of our kernel-
smoothed objective function indeed coincides with the usual
kernel-based covariance matrix estimators in the standard QR
setup.

Quantile estimation aims to offer a global picture of the
distribution. Bearing this in mind, we contemplate an asymp-
totic theory that holds uniformly with respect to quantile levels,
or in a functional sense. This is in line with the functional
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central limit theorem that Koenker and Xiao (2002) establish
for specification-testing purposes. Apart from uniformity in
quantile level, we also focus on bandwidth uniformity in
consistency and asymptotic distribution results to provide some
robustness against bandwidth snooping. Practical applications
of smoothing procedures may indeed involve several bandwidth
choices, exposing practitioners to the risk of biasing inference
by selecting a bandwidth that agrees with prior beliefs. As
a result, our asymptotic theory considers uniformity in both
quantile level and bandwidth, allowing for data-driven choices
for the latter. This is in sharp contrast with related works
on smoothing, such as Horowitz (1998) and Kaplan and Sun
(2017). In particular, they restrict attention to a given quantile
level and to deterministic bandwidths when studying higher-
order accuracy for confidence interval coverage and Type I test
errors, respectively.

Our main contributions are as follows. First, smoothing the
QR objective function induces bias in the QR estimation. We
derive the order of such bias, showing that it is negligible
with respect to

√
n for the optimal bandwidth rate, as well

as for the data-driven bandwidth we use in the Monte Carlo
experiments. Second, we establish that the smoothed QR esti-
mator has a smaller Bahadur–Kiefer linearization error than the
standard QR estimator as long as the bandwidth remains large
enough. Third, we find that, for a proper bandwidth choice,
our smoothed QR estimator yields a lower asymptotic mean
squared error (AMSE) than the standard estimator. Moreover,
we derive the optimal bandwidth for our smoothed QR esti-
mator. Fourth, we provide a covariance matrix estimator that
captures the variance improvement term. Fifth, we provide
a functional central limit theorem analogous to Koenker and
Machado’s (1999) that holds uniformly with respect to the
bandwidth. Sixth, we show that our smoothed QR slope esti-
mator is asymptotically differentiable. We exploit this feature
to come up with conditional quantile density function (qdf)
and probability density function (pdf) estimators that do not
suffer from the curse of dimensionality under correct QR
specification. In particular, this allows us to propose an efficient
QR estimator using sample splitting weights based on the qdf
estimator.

Our simulations examine confidence intervals using a ran-
dom bandwidth. Although it is as usual hard to estimate it
due to the derivative of the conditional pdf that appears in the
bias term, we show how to circumvent that by resorting to
Silverman’s (1986) rule-of-thumb bandwidth for the standard
QR residuals. The simulation experiment also illustrates the
estimation of the qdf and pdf in presence of a reasonably large
number of explanatory variables.

We are obviously not the first to sail in the smoothing
direction. In particular, Nadaraya (1964) and Parzen (1979)
estimate unconditional quantiles, respectively, by inverting a
smoothed estimator of the cumulative distribution function
(cdf) and by smoothing the sample quantile function. Xiang
(1994) and Ralescu (1997) provide Bahadur–Kiefer representa-
tions for smoothed quantile estimators. Azzalini (1981) shows
that the former smoothed estimator dominates sample quantiles
at the second order (see also Cheung and Lee 2010), with
Sheather and Marron (1990) establishing a similar result for
the latter. For discussions on the relative deficiency of sample

quantiles with respect to kernel-based quantile estimators, see
also Falk (1984) and Kozek (2005). Although the above quan-
tile estimators are all continuous, only a few of them consider
covariates in a quantile regression fashion. Volgushev, Chao,
and Cheng (2019) allow for covariates, ensuring quantile-level
differentiability using spline smoothing.

The asymptotic covariance matrix of quantile estimators
involves an unknown pdf (Koenker 2005), making inference
a bit harder.1 Smoothing the objective function helps in this
dimension for it allows estimating the asymptotic covariance
matrix using a standard sandwich formula (Kaplan and Sun
2017). In turn, we focus more on the implications of smoothing
the objective function, notably in terms of smoothness of the
QR estimator, and on quantile level and bandwidth uniformity.

There is notwithstanding an intimate connection between the
above papers on inference and ours. Although the smoothed
objective function of Horowitz (1998) differs from ours, his
theoretical arguments easily extends to our framework. In
addition, the first-order conditions that Whang (2006) employs
to derive his empirical likelihood QR estimator is identical
to the ones our smoothed QR estimator solves. Interestingly,
the same applies to Kaplan and Sun’s (2017) smoothed esti-
mating equations (SEE) if restricting attention to QR without
instrumental variables. As us, they argue that their smoothing
approach can improve on Horowitz’s (1998) smoothed QR
estimator. See also Kaido and Wuthrich (2018) for numerical
algorithms that connect standard SEE and QR estimations.

Finally, our article also relates with the literature on qdf
estimation. Parzen (1979) is the first to notice the important
role that the quantile density plays. See Guerre and Sabbah
(2012) for a recent application in the econometrics of auctions,
as well as Roth and Wied (2018) and references therein for
related estimation methods.2 We propose a novel efficient QR
estimator based on a first-step qdf estimation, whose second-
order behavior avoids the curse of dimensionality, as opposed
to the estimation procedures of Newey and Powell (1990), Zhao
(2001), Otsu (2008), and Komunjer and Vuong (2010).

The remainder of this article proceeds as follows. Section 2
introduces our smoothed QR estimator. Section 3 describes
the main assumptions, the estimation procedure, the asymp-
totic covariance matrix estimator, and main results. Section 4
assesses by means of a simulation study the performance of our
kernel-based QR estimator relative to Koenker and Bassett’s
(1978) and Horowitz’s (1998) estimators. Section 5 offers some
concluding remarks. Appendix A collects the proofs of our
main results, whereas we relegate the proofs of the intermediary
results to an online appendix. The latter also includes an in-
depth comparison with Horowitz’s (1998) smoothing approach.

2. SMOOTHED QR ESTIMATION AND EXTENSIONS

Let (Yi, Xi), with i = 1, . . . , n, denote an iid sample from
(Y , X) ∈ R×R

d, where the conditional quantile of the response

1For instance, Hall and Sheather (1988) study higher-order accuracy of confi-
dence intervals. See also Portnoy (2012) and references therein.
2In particular, Roth and Wied (2018) develop a qdf estimator based on the
estimation of the second derivative of the population QR objective function.
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Y given the covariate X = x is such that

Q(τ | x) = x′β(τ), τ ∈ (0, 1) , (1)

with Q(τ | x) := inf
{
q : F(q | x) ≥ τ

}
and F(· | x) denoting

the conditional cdf of Y given X = x, with density f (· | x). We
henceforth assume the correct specification of the QR model in
(1).

Koenker and Bassett (1978) define the (population) objective
function of the quantile regression as

R(b; τ) := E
[
ρτ

(
e(b)

)] =
∫

ρτ (t) dF(t; b), (2)

where e(b) := Y − X′b, F (t; b) = Pr
[
e(b) ≤ t

]
, and ρτ (u) :=

u
[
τ − I(u < 0)

]
is the usual check function with I(A) denoting

the indicator function that takes value 1 if A is true, zero
otherwise. As the true parameter β(τ) minimizes (2), Koenker
and Bassett’s (1978) standard QR estimator β̂(τ ) minimizes the
sample analog based on the empirical distribution, namely,

R̂(b; τ) := 1

n

n∑
i=1

ρτ

(
ei(b)

) =
∫

ρτ (t) dF̂(t; b), (3)

where ei(b) := Yi − X′
ib, and F̂(·; b) denotes the empirical

distribution function of ei(b).
The right-hand side of Equation (2) suggests that one may

obtain a different QR estimator by varying the integrating
measure of the check function integral, that is to say, by
changing the estimator of the cdf. Instead of employing the
empirical distribution as in the standard QR estimator, we shall
consider a kernel-type cdf estimator as the integrating measure
in a similar fashion to what Nadaraya (1964) proposes for
smoothing the unconditional quantile estimator.

Consider a bandwidth h > 0 that shrinks to zero as the
sample size grows and a smooth kernel function k such that∫

k(v) dv = 1. Letting kh(v) = 1
h k(v/h), the kernel density and

distribution estimators are given by f̂h(v; b) := 1
n

∑n
i=1 kh

(
v −

ei(b)
)

and F̂h(t; b) := ∫ t
−∞ f̂h(v; b) dv, respectively. We then

apply kernel smoothing to the empirical objective function in
(3), yielding

R̂h(b; τ) :=
∫

ρτ (t) dF̂h(t; b) =
∫

ρτ (t) f̂h(t; b) dt. (4)

Accordingly, the resulting smoothed QR estimator is

β̂h(τ ) := arg min
b∈Rd

R̂h(b; τ). (5)

By smoothing the integrating measure of the objective
function, we ensure that the mapping b 	→ R̂h(b; τ) is twice
continuously differentiable, in opposition to the nonsmoothness
of the standard objective function b 	→ R̂(b; τ). The differen-
tiability of the objective function is very convenient for at least
two reasons. First, the smoothness of the objective function
entails the regularity of the resulting QR estimator. Second,
differentiability allows us to estimate the asymptotic covariance
matrix of our quantile slope coefficient estimates in a canonical
manner (see, e.g., Newey and McFadden 1994).

Finally, observe that

R̂h(b; τ) = (1 − τ)

∫ 0

−∞
F̂h(v; b) dv + τ

∫ ∞

0

(
1 − F̂h(v; b)

)
dv,

so that the first- and second-order derivatives of R̂h(b; τ) with
respect to b are, respectively,

R̂(1)
h (b; τ) = 1

n

n∑
i=1

Xi

[
K

(
−ei(b)

h

)
− τ

]
and

R̂(2)
h (b; τ) = 1

n

n∑
i=1

XiX
′
ikh
(− ei(b)

)
,

where K(t) := ∫ t
−∞ k(v) dv.

2.1. Asymptotic Inference

The availability of the second-order derivative
R̂(2)

h

(
β̂h(τ ); τ

)
allows us to propose asymptotic confidence

intervals for β(τ) in a standard fashion. We show in
Section 3.4 that

√
n
(
β̂h(τ ) − β(τ)

)
weakly converges to

a Gaussian distribution with mean zero and covariance matrix
�(τ) := D−1(τ )V(τ )D−1(τ ), where V(τ ) := τ(1 − τ)E(XX′)
and

D(τ ) := R(2)
(
β(τ); τ

) = E
[
XX′f

(
X′β(τ) | X

)]
is the Hessian of the objective function evaluated at the true
parameter. In addition, we show that

�̂h(τ ) := D̂−1
h (τ )V̂h(τ )D̂−1

h (τ ),

with D̂h(τ ) := R̂(2)
h

(
β̂h(τ ); τ

)
and

V̂h(τ ) := 1

n

n∑
i=1

XiX
′
i

[
K

(
−ei

(
β̂h(τ )

)
h

)
− τ

]2

,

is a consistent estimator of �(τ).3 This means that we may
compute a (1 − α)−confidence interval for the kth QR coeffi-
cient βk(τ ) as

CI1−α

(
βk(τ )

)
:= β̂k,h(τ ) ± zα/2 σ̂k,h(τ )√

n
,

where σ̂k,h(τ ) is the square root of the kth diagonal entry of
�̂h(τ ), β̂k,h(τ ) is the kth element of the smoothed QR estimator,
and zα is the α quantile of a standard Gaussian distribution.

2.2. Smoothness of β̂h(·) and Extensions

Given that β̂h(τ ) satisfies the first-order condition
R̂(1)

h

(
β̂h(τ ); τ

) = 0, it follows from the implicit function
theorem that β̂h(τ ) is continuously differentiable with respect
to τ with

∂β̂h(τ )

∂τ
= −

[
R̂(2)

h

(
β̂h(τ ); τ

)]−1 ∂R̂(1)
h

(
β̂h(τ ); τ

)
∂τ

=
[
R̂(2)

h

(
β̂h(τ ); τ

)]−1
X̄ =: β̂

(1)
h (τ ) (6)

3Alternatively, one could simply employ the sample analog of τ(1−τ)E[XX′] to
estimate V(τ ), which would lead to Powell’s (1991) estimator of the asymptotic
covariance of the standard QR estimator. See also Angrist, Chernozhukov, and
Fernández-Val (2006) and Kato (2012). However, we expect that our variance
estimator to entail better finite-sample properties and, accordingly, shorter
confidence intervals.
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Figure 1. Examples of quantile paths implied by the standard and smoothed QR estimates. We consider a sample of 100 observations from
Y = (0.1+0.5X)ε, where ε is a standard Gaussian error independent of X ∼ U(0, 1). The left and right panels compare the conditional quantiles
of Y , respectively, given X = 0.1 and X = 0.9 (dashed line) with their corresponding standard (gray) and convolution-type kernel (black) QR
estimates. We employ the rule-of-thumb bandwidth hROT for the smoothed QR estimator as in Section 4.

as long as the Hessian has an inverse, which holds with a
probability tending to 1. Because the Hessian matrix is asymp-
totically positive, it also follows that the QR function evaluated
at the average covariate, X̄′β̂h(τ ), is strictly increasing in τ .

Figure 1 compares two different paths of our smoothed QR
estimator with the ones of the standard QR estimator. The
quantile paths implied by the convolution-type kernel QR esti-
mates are not only much smoother but much less variable than
the conditional quantiles based on the standard QR estimates.
Theorem 2 indeed shows that our smoothed QR estimator is
continuous with a probability tending to one, while the standard
QR estimator is a step function. Theorem 3 also establishes
that smoothing reduces the variance of the QR estimator. Even
though Figure 1 evaluates the conditional quantiles at X = 0.1
and X = 0.9, rather than at X̄, the quantile paths based on our
smoothed QR estimator look increasing such that there is no
need to apply Chernozhukov, Fernandez-Val, and Galichon’s
(2010) rearrangement procedure. This is most likely due to the
smoothness of the convolution-type kernel estimator, inasmuch
as the nonmonotonicity of the standard QR estimator is mostly
due to small jumps.

We next consider two extensions based on the qdf given by

q(τ |x) = ∂Q(τ |x)
∂τ

= 1

f
(
Q(τ |x)|x) .

As noted by Guerre and Sabbah (2017), the curve τ 	→(
Q(τ |x), 1/q(τ |x)) =: f(τ |x) is the graph y 	→ (

y, f (y|x)) of
the conditional pdf f (·|x). The qdf plays a major role in first-
price auctions (Guerre and Sabbah 2012) and in semiparametric
efficient QR estimation (see, among others, Newey and Powell
1990; Zhao 2001). In particular, the efficient QR slope estima-
tor b̃q(τ ) = arg minb R̃q(b; τ) is infeasible because

R̃q(b; τ) = 1

n

n∑
i=1

ρτ (Yi − X′
ib)

q(τ |Xi)
(7)

depends on the conditional qdf. Newey and Powell (1990)
and Zhao (2001) propose to estimate the conditional qdf using
kernel methods. However, their estimators are bound to perform
poorly if the covariate dimension is large due to the curse of
dimensionality. The same drawback also applies to the efficient
estimators put forth by Otsu (2008) and Komunjer and Vuong
(2010).

2.2.1. pdf Curve Estimation. The linear QR model dic-
tates that q(τ |x) = x′β(1)(τ ), which we may estimate using

β̂
(1)
h (τ ) =

[
R̂(2)

h

(
β̂h(τ ); τ

)]−1
X̄ in (6). The resulting condi-

tional qdf estimator, q̂h(τ |x) := x′β̂(1)
h (τ ), does not suffer from

the curse of dimensionality because it makes use of the linear
QR structure. The pdf curve estimator

f̂h(τ |x) :=
(

x′β̂h(τ ),
1

x′β̂(1)
h (τ )

)
(8)

converges to f(τ |x) at the rate of univariate kernel den-
sity estimator. If q̂h(·|x) > 0, the pdf estimator is positive
and integrates to one given that

∫ 1
0 1/̂qh(τ |x) dQ̂h(τ |x) =∫ 1

0 dτ = 1. This means that the pdf curve estimator is strict.
Figure 2 depicts an example of pdf curve estimation with
three covariates using a sample of 200 observations. It also
exhibits the QR and qdf estimates we use for computing
the pdf estimator. The pdf curve estimator seems to cap-
ture reasonably well the underlying density despite the high
dimensionality of the estimation problem relative to the sample
size.

2.2.2. Semiparametric Efficiency. As in Newey and
Powell (1990) and Zhao (2001), we resort to sample splitting to
obtain efficient QR slope estimators. To this end, we minimize
a feasible counterpart of the objective function R̃q(b; τ) in (7),
namely,
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Figure 2. Conditional quantile function, qdf, and pdf estimation examples. We sample 200 observations from Q(τ |x) = β0(U) + β1(U)X1 +
β2(U)X2 + β3(U)X3, where U, X1, X2, and X3 are independent and uniformly distributed variables on the unit interval [0, 1], β0(·) and β1(·)
are, respectively, given by the Beta(1, 16) and Beta(32, 32) quantile functions, β2(τ ) = 1, and β3(τ ) = (2π+8)τ−(cos(2πτ)−1)

2π+8 . Panels (a) to
(c) are about the conditional quantile function, qdf, and pdf of Y given x1 = 0.5, x2 = x3 = 0.9, respectively. True functions are in gray dashed
lines, whereas black solid lines correspond to estimates using hROT as bandwidth.

Řq(b; τ) = 1

n − m

n∑
i=m+1

ρτ

(
Yi − X′

ib
)

q̌h(τ |Xi)
, (9)

where q̌h(τ |x) = x′β̌(1)
h (τ ) considers only the first m < n

observations. One could alternatively use either a smoothed
version of the check function ρτ (·) or a version of Newey
and Powell’s (1990) one-step estimator using the weights
q̌h(τ |Xi).

Theoretical results for pdf graph and for the efficient
QR in (9) readily follow from the asymptotic theory we
establish for the smoothed QR estimator. We state them in
Section 3.5.

2.3. Alternative Smoothed Objective Function

In the absence of covariates, the first-order condition
R̂(1)

h

(
β̂h(τ ); τ

) = 0 that results in our smoothed QR estimator
coincides with the first-order condition in Nadaraya (1964),
namely, F̂h

(
β̂h(τ )

) = τ . This confirms that the smoothing
we apply to the objective function boils down to estimating
the conditional cumulative distribution function using a kernel
approach. In turn, the smoothed objective function R̂h(b; τ) put
forth by Horowitz (1998) replaces the indicator in the check

function by a kernel counterpart: R̂h(b; τ) := 1
n

∑n
i=1 ei(b)

[
τ−

K
( − ei(b)/h

)]
. As noted by Kaplan and Sun (2017), the first-

order derivative of this objective function is

R̂
(1)
h (b; τ)= 1

n

n∑
i=1

Xi

[
K

(
−ei(b)

h

)
− τ − k

(
−ei(b)

h

)
ei(b)

h

]

= R̂(1)
h (b; τ) − 1

n

n∑
i=1

Xik

(
−ei(b)

h

)
ei(b)

h
. (10)

The resulting first-order condition differs from the one we
obtain because of the additional term in (10). We show in
the online appendix that, as a consequence, Horowitz’s (1998)
smoothed QR estimator exhibits larger bias and variance than
ours.

3. ASYMPTOTIC THEORY

We start with some notation. Let ‖·‖ denote the Euclidean
norm of a matrix, namely, ‖A‖ = √

tr(AA′). We denote by
f (· | x) the conditional probability density function of Y given
X = x, with jth partial derivative given by f (j)(y | x) :=
∂ j

∂yj f (y | x). Similarly, let q(τ | x) := ∂
∂τ

Q(τ | x). In what
follows, we first discuss the assumptions we require to work
out the asymptotic theory and then derive the asymptotic
mean squared error and Bahadur–Kiefer representation for our
smoothed QR estimator. We wrap up this session with some
inference implications.

3.1. Assumptions

In this section, we discuss the conditions under which we
derive the asymptotic theory. Apart from standard technical
conditions on the covariates and kernel function, we essen-
tially require the conditional quantile and density functions
to be smooth enough. In particular, we assume the following
conditions.

Assumption X. The components of X are positive, bounded
random variables, that is, the support of X is a compact subset
of R̄d+∗. The matrix E[XX′] is full rank.

Assumption Q. The conditional quantile and density func-
tions Q(τ | x) and f (y | x) satisfy

Q1 The map τ 	→ β(τ) is continuously differentiable over
(0, 1). The conditional density f (y | x) is continuous and
strictly positive over R × supp(X).

Q2 There exists an integer s ≥ 1 such that the derivative
f (s)(· | ·) is uniformly continuous in the sense that
limε→0 sup(x,y)∈Rd+1 supt: |t|≤ε

∣∣f (s)(y + t | x) − f (s)(y | x)
∣∣

= 0, as well as such that sup(x,y)∈Rd+1

∣∣f (j)(y | x)
∣∣ < ∞ and

limy→±∞ f (j)(y | x) = 0 for all j = 0, . . . , s.

Assumption K. The kernel function k and bandwidth h
satisfy
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K1 The kernel k : R → R is even, integrable, twice differen-
tiable with bounded first and second derivatives, and such
that

∫
k(z) dz = 1 and 0 <

∫∞
0 K(z) [1 − K(z)] dz < ∞. In

addition, for s as in Assumption Q2,
∫ ∣∣zs+1k(z)

∣∣ dz < ∞,
and k is orthogonal to all nonconstant monomials of degree
up to s, that is,

∫
zjk(z) dz = 0 for j = 1, . . . , s, and∫

zs+1k(z) dz �= 0.
K2 h ∈ [¯hn, h̄n] with 1/¯hn = o

(
(n/ ln n)1/3

)
and h̄n = o(1).

Some remarks are in order. First, observe that R(2)(b; τ) =
E
[
XX′f

(
X′b | X

)]
is positive definite for all b and any τ

under Assumptions Q1 and X. This means that D−1(τ )

exists for every τ . Second, Assumption Q1 also ensures that
τ 	→ Q(τ | x) is strictly increasing over (0, 1), with a strictly
positive derivative with respect to τ given that q(τ | x) =
1/f

(
Q(τ | x) | x

)
. Third, we assume that Y has support on the

real line merely for notational simplicity. It is straightforward
to relax it with some minor adaptations. Fourth, the reason why
we choose a kernel such that

∫∞
0 K(z) [1 − K(z)] dz is positive

will become clear in Theorem 3. It makes sense because it
guarantees that our smoothed QR estimator dominates the
standard QR estimator in the AMSE sense. Fifth, in view that
Assumption K does not preclude high-order kernels, f̂h (·; b) is
not necessarily a density, even if it is a consistent estimator of
the density of the error term e(b). It is nonetheless possible
to show R̂h(b; τ) = 1

n

∑n
i=1 ρτ ∗ kh

(
ei(b)

)
, where ∗ is the

convolution operation. This means that, technically speaking,
it is probably more rigorous to interpret our approach as a
convolution-type smoothing. Finally, it is also important to
clarify that the bandwidth h implicitly depends on the sample
size n through its lower and upper limits in Assumption K2.
This is paramount because we wish to entertain data-driven
bandwidths.

3.2. Bias and Bahadur–Kiefer Representation

In this section, we study the order of the asymptotic bias and
obtain a Bahadur–Kiefer representation for the stochastic error
of β̂h(τ ). As for the former, it is indeed expected from popu-
lar wisdom that smoothing the QR objective function should
induce bias in finite samples. More formally, β̂h(τ ) actually
estimates βh(τ ) := arg minb∈Rd Rh(b; τ), with Rh(b; τ) :=
E[̂Rh(b; τ)]. This yields βh(τ ) − β(τ) as the bias term and
β̂h(τ ) − βh(τ ) as the stochastic error of our smoothed QR
estimator. Our first result shows that the smoothing bias shrinks
to zero as the sample size grows.

Theorem 1. For h̄n small enough, βh(τ ) is unique under
Assumptions X, Q, and K for every τ ∈ [¯τ , τ̄ ] and
such that βh(τ ) = β(τ) − hs+1B(τ ) + o(hs+1) uni-
formly over (τ , h) ∈ [¯τ , τ̄ ] × [¯hn, h̄n], with B(τ ) =∫

zs+1k(z) dz
(s+1)! D−1(τ )E

[
Xf (s)

(
X′β(τ) | X

)]
.

It is interesting to discuss the implications of Theorem 1 to
the particular case of a standard linear regression model Yi =
X′

iβ + εi with iid errors independent of the covariates. Let Xi =
(1, X̃i)

′, with X̃i ∈ R, so that the conditional pdf of Yi given
Xi = x is f (y|x) = fε

(
y − x′β(τ)

)
. It then follows that D(τ ) =

fε(0)E[XX′] for all τ and B(τ ) ∝ E
−1[XX′]E[X] = (1, 0)′, so

that the first term in the bias appears only for the intercept. More
generally, Theorem 1 settles the issue of possible side effects of
smoothing in that βh(τ ) eventually becomes uniformly close to
the true parameter β(τ).

The next result derives some convenient expansions for the
stochastic error β̂h(τ ) − βh(τ ). For this purpose, let Ŝh(τ ) :=
R̂(1)

h

(
βh(τ ); τ

)
and Dh(τ ) := R(2)

h

(
βh(τ ); τ

)
. Note that the first-

order condition R(1)
h

(
βh(τ ); τ

) = 0 implies that the score term
Ŝh(τ ) has zero mean, and hence, the stochastic error in the
Bahadur–Kiefer representation (11) is asymptotically centered.

Theorem 2. Under Assumptions X, Q, and K, β̂h(·) is unique
and continuous over (τ , h) ∈ [¯τ , τ̄ ] × [¯hn, h̄n] with probability
tending to one, satisfying the following two representations
√

n
(
β̂h(τ ) − βh(τ )

) = −√
nD−1

h (τ ) Ŝh(τ ) + Op
(
�n(h)

)
(11)

= −√
nD̂−1

h (τ )̂Sh(τ ) + Op(1/
√

n) (12)

with �n(h) = √
ln n/(nh) and both remainder terms uniform

with respect to (τ , h) ∈ [¯τ , τ̄ ] × [¯hn, h̄n].
Unlike the standard QR objective function, R̂h(·; τ) is not

necessarily convex because higher-order kernels may take neg-
ative values. We address this issue by first showing that β̂h(τ )

is close to βh(τ ), uniformly in τ and h, and then proving
that the smoothed objective function R̂h(·; τ) is asymptotically
strictly convex in the vicinity of βh(τ ). This follows from the
convergence of R̂(2)

h (b; τ) to R(2)(b; τ), uniformly for b in any
compact set and also in τ and h, as established using a powerful
concentration inequality from Massart (2007). The first-order
condition R̂h

(
β̂h(τ ); τ

) = 0 implies the following integral
representation

β̂h(τ ) − βh(τ )

= −
[∫ 1

0
R̂(2)

h

(
βh(τ ) + u

[
β̂h(τ ) − βh(τ )

]
; τ
)

du

]−1

Ŝ(1)
h

(
τ
)

for the stochastic error. Deriving the order of the score uni-
formly in τ and h via a concentration inequality entails the
representations (11) and (12). One could also obtain higher-
order expansions for the stochastic error along the same lines
by establishing uniform convergence of higher-order deriva-
tives of the smooth objective function through concentration
inequalities.

The Bahadur–Kiefer representation in (11) shows that β̂h(τ )

is, in a sense, more linear than the standard QR estimator β̂(τ ).
Knight (2001) and Jurečková, Sen, and Picek (2012) show that,
in many cases of interest, the Bahadur–Kiefer representation
for the standard QR estimator is given by

√
n
(
β̂(τ ) − β(τ)

) =
−√

n D−1(τ )̂S(τ ) + Op(n−1/4), with Ŝ(τ ) = R̂(1)
(
β(τ); τ

)
. In

contrast, the remainder term in (11) is of order nearly Op(n−1/2)

for proper bandwidth choices if centering around βh(τ ). The
asymptotically negligible bias given by the difference between
βh(τ ) and β(τ) is the price we pay for improving the rate of the
Bahadur–Kiefer representation.

The nonlinear approximation in (12) obtains a smaller
remainder term of order n−1/2 by replacing the deterministic
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standardization D−1
h (τ ) in (11) with D̂−1

h (τ ). This slightly
improves the rate of the remainder term in Portnoy’s (2012)
approximation. One could also obtain higher-order approxima-
tions involving quadratic terms under stronger bandwidth rate
conditions. As in Horowitz (1998), this would however exclude
bandwidths of the optimal order n−1/5 for a kernel of order s +
1 = 2, and hence, we do not follow such alternative. Lemma 4
in the Appendix shows that (12) also holds for R̂(2)

(
βh(τ ); τ

)
in lieu of D̂h(τ ). Using the standardization D̂h(τ ) instead of
the infeasible R̂(2)

(
βh(τ ); τ

)
is important for practical purposes,

such as computing Wald statistics.
It also follows from Theorems 1 and 2 that β̂h(·) offers a fair

global picture of β(·) in that∥∥β̂h(τ ) − β(τ)
∥∥ = Op

(
1√
n

+ hs+1
)

, (13)

uniformly for τ ∈ [¯τ , τ̄ ] and h ∈ [¯hn, h̄n]. Accordingly,
the remainder in (13) is of order Op(n−1/2) for any h ≤
O
(
n−1/(2(s+1))

)
. The latter restriction is quite light, holding not

only for the infeasible AMSE-optimal bandwidth in Theorem 4
but also for the corresponding rule-of-thumb bandwidth that we
suggest in Section 3.3.

Lastly, it is important to stress the major role that unifor-
mity plays here. It ensures that, if a random (possibly data-
driven) bandwidth process

{̂
h(τ ); τ ∈ [¯τ , τ̄ ]} has sample paths

in [¯hn, h̄n] with a sufficiently high probability, then (11) remains
valid even if we replace h with a data-driven bandwidth ĥ(τ ).
The next result states this property in a rigorous manner.

Corollary 1. If
{̂
h(τ ); τ ∈ [¯τ , τ̄ ]} satisfies

Pr
(̂
h(τ ) ∈ [¯hn, h̄n] for all τ

) → 1, then both (11) and (12) hold
with ĥ(τ ) in place of h, uniformly in τ .

The asymptotic theory so far posits that our smoothed QR
estimator entails a better Bahadur–Kiefer representation than
the standard QR estimator and that we may employ a data-
driven bandwidth that depends on the quantile level and covari-
ates. In the next section, we complement the asymptotic theory
by characterizing the AMSE of our convolution-type kernel QR
estimator as well as the bandwidth choice that minimizes it.

3.3. Asymptotic Mean Squared Error

The asymptotic covariance matrix of β̂h(τ ) comes from the
leading term of its Bahadur–Kiefer linear representation in
(11). The next result not only characterizes this asymptotic
covariance matrix but also shows that it is smaller than the
asymptotic covariance matrix of β̂(τ ). In what follows, let

�h(τ ) := V

(√
n D−1

h (τ )̂Sh(τ )
)

.

Theorem 3. Assumptions X, Q, and K ensure that

�h(τ ) = �(τ) − ck h D−1(τ ) + o(h), (14)

with ck = 2
∫∞

0 K(y)[1 − K(y)] dy > 0, uniformly with respect
to (τ , h) ∈ [¯τ , τ̄ ] × [¯hn, h̄n].

Theorem 3 shows that the asymptotic covariance matrix
of the smoothed QR estimator is equal to the asymptotic

Table 1. Examples of Gaussian-type kernels

Gaussian-type Kernel Order
kernel constant (s + 1)

k(x) = φ(x) ck = 1√
π

2

k(x) = 3
2

(
1 − x2

3

)
φ(x) ck = 7

16
√

π
4

k(x) = 15
8

(
1 − 2x2

3 + x4

15

)
φ(x) ck = 321

1024
√

π
6

k(x) = 35
16

(
1 − x2 + x4

5 − x6

105

)
φ(x) ck = 4175

16384
√

π
8

NOTE: We provide examples of kernel functions that satisfy Assumption K1 and their
corresponding kernel constants ck . We denote by φ the standard Gaussian density.

covariance matrix of the standard QR estimator minus a term
ck h D−1(τ ) induced by smoothing. Table 1 reports the values
of ck for Gaussian-type kernels that satisfy Assumption K1.
The order ln n/(nh) of the squared Bahadur–Kiefer remainder
term is negligible with respect of the order h of the smoothing-
related term given that 1/h = o(

√
n/ ln n) by Assumption K2.

It is sometimes possible to refine the asymptotic covariance
matrix expansion in Theorem 3 using strong approximation
tools. For instance, assume there is no covariate and that Yi

is uniform over [0, 1]. In this case, there is no bias in that
βh(τ ) = τ and Dh(τ ) = D(τ ) = 1 for h small enough. The
score function then reads

Ŝh(τ ) =
∫

1√
n

n∑
i=1

[
I(Yi ≤ τ + ht) − (τ + ht)

]
k(t) dt,

using
∫

k(t) dt = 1 and
∫

tk(t) dt = 0. The Komlós–
Major–Tusnády strong approximation result shows
that one may reconstruct the sample jointly with
a sequence of Brownian bridges Bn(·) such that

supy∈[0,1]
∣∣∣ 1√

n

∑n
i=1

[
I(Yi ≤ τ + ht) − (τ + ht)

]
− Bn(t)

∣∣∣ =
Op

(
ln n√

n

)
; see Pollard (2002). It follows that, if k has a compact

support,

Ŝh(τ ) =
∫

Bn(τ + ht)k(t) dt + Op

(
ln n√

n

)
(15)

= Bn(τ )+
∫ [

Bn(τ + ht) − Bn(τ )
]
k(t) dt+Op

(
ln n√

n

)
.

As the integral term that comes from smoothing vanishes for
h = 0, Bn(τ ) gives the limit distribution of the standard QR
estimator.

The covariance between Bn(τ ) and Bn(τ + ht) − Bn(τ ) is
negative of order h. This implies a negative covariance between
Bn(τ ) and the integral term in (15). As the variance of the latter
is of smaller order than this negative covariance, the asymptotic
variance of Ŝh(τ ) is smaller than V(Bn(τ )) = τ(1 − τ) by a
term of order h. Theorem 3 also implies that the distribution of
Dh(τ )−1̂Sh(τ ) is a centered normal with variance τ(1 − τ) −
ckh up to the order ln n/

√
n. Because the second term in (14)

is negative, the asymptotic variance of β̂h(τ ) is indeed smaller
than the asymptotic variance of β̂(τ ).

We next focus on obtaining the bandwidth h∗
λ

that minimizes the asymptotic mean squared error of
λ′β̂h(τ ) for a given λ ∈ R

d: AMSE
(
λ′β̂h(τ )

) =
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E

[
λ′(βh(τ ) − D−1

h (τ )̂Sh(τ ) − β(τ)
)]2

. This approximates the

mean squared error MSE
(
λ′β̂h(τ )

) = E
[
λ′(β̂h(τ ) − β(τ)

)]2

by essentially ignoring the asymptotically negligible remainder
term of the Bahadur–Kiefer representation. To do so, we
require that the bandwidth is such that 1/h = o

(√
n/ ln n

)
; see

Theorems 2 and 3.

Theorem 4. Let Assumptions X, Q, and K hold. If λ′B(τ ) �=
0, and the conditional density f (· | x) is s-times continuously
differentiable for all x, then AMSE

(
λ′β̂h(τ )

)
is minimal for

h∗
λ =

(
ck λ′D−1(τ )λ

2n(s + 1)
(
λ′B(τ )

)2

) 1
2s+1

, (16)

and equal to AMSE
(
λ′β̂h∗

λ
(τ )

) = 1
n λ′[�(τ) − ck h∗

λ
2s+1
2s+2

D−1(τ )
]
λ + o(h∗

λ/n).

The optimal bandwidth we derive in Theorem 4 obviously
depends on λ. This is not the case of Kaplan and Sun’s (2017)

bandwidth choice, which minimizes E

[∥∥β̂(τ ) − β(τ)
∥∥2
]
.

Although their optimal bandwidth has the same order of h∗
λ in

(16), it obviously does not depend on λ given that they focus
on the global estimation of β(τ). As such, it is suboptimal for a
linear combination of the elements of β(τ), as we consider here.
This matters for instance in the particular case of a standard
linear regression in view that the optimal bandwidth is well
defined only for the intercept as the leading term of the bias
vanishes for the slope coefficients.

It is easy to appreciate that Theorem 4 remains valid for any
bandwidth hλ = [1 + o(1)]h∗

λ. Although entertaining a plug-
in bandwidth based on the nonparametric estimation of D(τ )

and B(τ ) is certainly feasible, it is perhaps not very advisable
due to the presence of the pdf derivative in the bias term. We
circumvent this issue by means of a rule-of-thumb approach.
In particular, it follows from the objective function in (4) that
it is as if our convolution-kernel QR estimator were using a
kernel-based estimator of the cdf of the standard QR residuals.
This naturally leads to using Silverman’s (1986) rule-of-thumb
bandwidth based on residual dispersion measures (e.g., sample
standard deviation or interquantile range).

3.4. Inference

In this section, we derive a functional limit distribution of the
smoothed QR estimator that holds for data-driven bandwidths.
We also discuss how to consistently estimate the asymptotic
covariance matrix of β̂h(τ ) to make inference. In particular, we
establish not only that �̂h(τ ) := D̂−1

h (τ )V̂h(τ )D̂−1
h (τ ), with

D̂h(τ ) := R̂(2)
h

(
β̂h(τ ); τ

)
and

V̂h(τ ) := 1

n

n∑
i=1

XiX
′
i

[
K

(
−ei

(
β̂h(τ )

)
h

)
− τ

]2

,

is a consistent estimator of �(τ), but also the asymptotic
normality of our convolution-type kernel QR estimator.

Theorem 5. Let Assumptions X, Q, and K hold.

(G)
{√

n
(
β̂h(τ ) − βh(τ )

)
: τ ∈ [¯τ , τ̄ ]

}
converges in distribu-

tion to a centered Gaussian process
{
W(τ ) : τ ∈ [¯τ , τ̄ ]}

with covariance structure

V
(
W(τ ), W(ς)

) =(τ ∧ ς − τς)D(τ )−1
E(XX′)D(ς)−1,

τ , ς ∈ [¯τ , τ̄ ]. (17)

(S) Consider a data-driven bandwidth ĥn which satisfies ĥn =
h0
{
1 + op(1/

√
hn ln n)

}
for some deterministic hn in

[¯hn, hn].
{√

n
(
β̂ ĥn

(τ ) − β ĥn
(τ )

)
: τ ∈ [¯τ , τ̄ ]

}
converges

in distribution to
{
W(τ ) : τ ∈ [¯τ , τ̄ ]}.

(U) If ¯hn = o(1/ ln n), the convergence result in (G) is uniform
in that

sup
h∈[¯hn,hn]

∥∥√n
(
β̂h(τ )−βh(τ )−[β̂hn(τ )−βhn(τ )

])∥∥=op(1)

for any arbitrary deterministic sequence hn in [¯hn, hn].
(V) �̂h(τ ) = �h(τ ) + Op

(√
ln n/(nh)

)+ o(hs) uniformly for
(τ , h) ∈ [¯τ , τ̄ ] × [¯hn, h̄n].

Theorem 5(G) shows that the functional limit distribution
of the smoothed and standard QR estimators are identical.
Theorem 5(S) posits that such a functional central limit theorem
(FCLT) holds for data-driven bandwidths that converge to a
deterministic counterpart. Theorem 5(U) states that the FCLT
holds uniformly with respect to the bandwidth. Theorem 5(V)
implies not only that the confidence intervals of Section 2.1
asymptotically have the desired level, but also that �̂h(τ ) is
a consistent estimator of the asymptotic covariance matrix of
both standard and smoothed QR estimators. Under Assump-
tion K2, as s ≥ 1,

�̂h(τ ) = �h(τ ) + op(h) = �(τ) − ck h D−1(τ ) + op(h)

by Theorem 3. This means that �̂h(τ ) captures the improve-
ment in precision due to smoothing and, accordingly, the length
of a confidence interval based on �̂h(τ ) for any element of
β(τ) is asymptotically smaller than the length of a confi-
dence interval based on the naive variance estimator τ(1 −
τ)D̂−1

h (τ ) 1
n

∑n
i=1 XiX′

i D̂
−1
h (τ ).

Note that both (S) and (U) make use of the implicit function
theorem applied to the first-order condition R̂(1)

h

(
β̂h(τ ); τ

) = 0
to obtain

∂β̂h(τ )

∂h
= −

[
R̂(2)

h

(
β̂h(τ ); τ

)]−1 ∂R̂(1)
h

(
β̂h(τ ); τ

)
∂h

.

We then establish a convergence rate that holds uniformly in h
for R̂(2)

h

(
β̂h(τ ); τ

)
and ∂

∂h R̂(1)
h

(
β̂h(τ ); τ

)
, leading to

√
n
(
β̂h1(τ ) − βh1(τ ) − [

β̂h0(τ ) − βh0(τ )
])

= √
n
∫ h1

h0

[
∂β̂h(τ )

∂h
− ∂βh(τ )

∂h

]
dh

= √
n Op

(∫ h1

h0

√
ln n

nh
dh

)
= Op(

√
ln n)

∣∣∣√h1 −√
h0

∣∣∣ ,

uniformly for (h0, h1) ∈ [¯hn, hn]2.
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3.5. Extensions

3.5.1. pdf Curve Estimation. The next result states the
uniform consistency of the pdf curve estimator. A distinctive
feature of the estimation procedure we propose is that con-
sistency holds even when the covariate value x is not in the
support of X. The key for this ability to extrapolate lies on the
underlying quantile regression specification, which we assume
correct.

Proposition 1. Under Assumptions X, Q, and K,∥∥f̂h(τ |x) − f(τ |x)∥∥ = o(hs) + Op
(√

ln n/(nh)
)

uniformly for
x in any compact set, τ in [τ , τ ], and h in [hn, hn].

Proposition 1 shows that the dimension of the covariate
vector X does not affect the order

√
ln n/(nh) of the stochastic

estimation error of f̂h(τ |x), so that the curse of dimensionality
does not apply. This result obviously depends on the correct
specification of the quantile regression model. The bias in
Proposition 1 is of order o(hs) due to the Hessian bias in
Lemma 1. The latter arises instead of the usual O(hs) bias order
because we calibrate the kernel order for the QR estimation,
which involves a function with s + 1 derivatives. In contrast, it
is the estimation of the pdf, which has only s derivatives, that
drives the bias in the Hessian term.

As it turns out, the quantile density estimator q̂h(τ |x) drives
the nonparametric consistency rate. Alternatively, we could
estimate the pdf by f̂h(y|x) = 1/̂qh

(
F̂h(y|x)|x

)
, where F̂h(y|x) is

a conditional cdf estimator. The consistency rate of such f̂h(y|x)
is the same as in Proposition 1 if F̂h(y|x) ensues from inverting
x′β̂h(τ ) for y in its range.

3.5.1.1. Semiparametric Efficiency. We next establish
the asymptotic equivalence of the feasible QR estimator b̌q(τ )

in (9) to its unfeasible counterpart b̃q(τ ) in (7). In addition,
we also document the asymptotic normality and efficiency of
both estimators. Before stating the result, recall that Newey and
Powell (1990) show that �q(τ ) := τ(1 − τ)D−1

q (τ ), with

Dq(τ ) := E

[
XX′

q2(τ |X)

]
= E

{
XX′f 2[X′β(τ)|X]

}
,

is the asymptotic covariance matrix of the asymptotically effi-
cient QR estimator.

Proposition 2. Let m = o(n1/2) and h = o(1), with
1/h = o

(
(m/ ln m)1/3

)
. Assumptions X, Q, and K1 ensure

that
√

n
(

b̌q(τ ) − b̃q(τ )
)

= Op(�q + �s + �bk), where �q =
hs + √

ln m/(mh), �s = √
m/n, and �bk = (ln n)3/4 n−1/4.

In addition, both
√

n
(
b̌q(τ ) − β(τ)

)
and

√
n
(
b̃q(τ ) − β(τ)

)
converge in distribution to N

(
0, �q(τ )

)
.

Both b̌q(τ ) and b̃q(τ ) are asymptotically efficient, with
asymptotic covariance matrix �q(τ ). To estimate the latter, one

may employ a weighted version of the Hessian R̂(2)
h (b; τ). The

rate at which the difference
√

n
(

b̌q(τ ) − b̃q(τ )
)

shrinks to zero

involves three components. The first is the consistency rate �q

of the qdf estimator q̌h(τ |x) in Proposition 1. Using standard
kernel estimators as in Otsu (2008) and Komunjer and Vuong
(2010) or k-NN smoothing as in Newey and Powell (1990)

and Zhao (2001) would also involve a variance term of order
1/(mhd) due to the curse of dimensionality. The rate �s comes
from the sample splitting scheme, whereas �bk arises from the
Bahadur–Kiefer linear approximation.

A natural extension of Proposition 2 is to consider smoothed
versions of the objective functions corresponding to the effi-
cient feasible and infeasible estimators, to obtain better AMSE
performances.

4. MONTE CARLO STUDY

To assess how well the asymptotic theory reflects the per-
formance of our estimator in finite samples, we run simulations
for a median linear regression: Y = X′β + ε, where X = (1, X̃),
with X̃ ∼ U[1, 5], and β ≡ β(1/2) = (1, 1). We entertain
five different specifications for the error distribution. The first
three are asymmetric, with errors coming from exponential,
Gumbel (Type I extreme value), and χ2

3 distributions. The
fourth specification displays heavy tails, with errors following
a t-student with 3 degrees of freedom. The fifth distribution
exhibits conditional heteroscedasticity: ε = 1

4 (1 + X̃) Z, with
Z ∼ N (0, 1). We recenter, if necessary, the error distributions
to ensure median zero and, except to the χ2

3 distribution, also
rescale them to obtain unconditional variance equal to two.
Apart from the exponential distribution, the other specifications
are as in Horowitz (1998), Whang (2006), and Kaplan and Sun
(2017).

In each of the 100,000 replications, we sample n ∈
{100, 250, 500, 1000} observations and then compute Koenker
and Bassett’s (1978) standard median regression estimator
(MR), Horowitz’s (1998) smoothed median regression estima-
tor (SMR), and our convolution-type kernel estimator (CKMR).
We also compute the empirical coverage of their asymptotically
valid confidence intervals at the 95% and 99% levels. We gauge
the latter as the proportion of replications in which the absolute
value of the t-statistic is below the corresponding percentile in
the standard normal distribution (namely, 1.96 and 2.58 at the
95% and 99% confidence levels, respectively).

We compute the smoothed estimators using a standard
Gaussian kernel and a bandwidth grid with values ranging from
0.08 to 0.80, with increments of 0.02. In addition, we also
evaluate them at Silverman’s (1986) rule-of-thumb bandwidth
hROT = 1.06 ŝ n−1/5, where ŝ is the minimum between the
sample standard deviation and the interquartile range (divided
by 1.38898) of the standard MR residuals. We compute the MR
standard errors by a pairs bootstrap procedure as usual in the
literature,4 whereas the SMR standard errors are as in Horowitz
(1998, sec. 2). Finally, we estimate the standard errors for the
CKMR estimator using the square root of the diagonal entries
of �̂h(1/2).

Figures 3–7 show how each estimator performs across distri- Q3
butions and sample sizes. For simplicity, we focus exclusively
on the slope coefficient given that we find little difference
between the intercept estimates. For every figure, the first
row displays the relative mean squared error (RMSE) of the

4We omit results using standard errors as in Koenker (2005, secs. 3.4.2 and
4.10.1) because bootstrapping always entails better empirical coverage. They
are available from the authors upon request.
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smoothed estimators with respect to the standard MR estimator
across different sample sizes, whereas the second row depicts
the standard error of the slope estimators, within their one-
standard-deviation band. The third and fourth rows portray,
respectively, the empirical coverage of the asymptotic confi-
dence intervals at the 95% and 99% levels.

The smoothed estimators obviously depend on the band-
width choice, and hence, we plot their results as a function of
the bandwidth h, singling out the corresponding outcomes for
the rule-of-thumb bandwidth hROT. As the value of the latter
changes across replications, we arbitrarily place the results at
the average value of hROT across the 100,000 replications. The
inside tick marks in the horizontal axis depict the deciles of the
distribution of the rule-of-thumb bandwidth across replications.
The distribution seems symmetric in every instance, with dis-
persion reducing drastically once we move from a sample size
of 100 to 1000 observations.

Smoothing seems to pay off as both SMR and CKMR
entail lower MSE than the standard MR estimator for every
distribution. Interestingly, the RMSE of the CKMR estimator is
less sensitive to the sample size and bandwidth value, especially
around the rule-of-thumb choice, than the RMSE of the SMR
estimator. For instance, if errors are exponential as in Figure 3,
the CKMR estimator using the rule-of-thumb bandwidth yields
a RMSE of about 70% for the smaller sample sizes, and
between 75% and 80% for the sample sizes of 500 and 1000
observations. Conversely, the RMSE of the SMR estimator
changes from 80% to 90% as we increase the sample size from
100 to 250 observations and then cease to improve the standard
MR estimator in terms of MSE for the larger sample sizes.

Regardless of the specification we consider, the key to the
CKMR success lies on the much lower standard errors. It
is apparent from Figures 3 to 7 that the standard errors of
the SMR estimator that uses the rule-of-thumb bandwidth are
very close to the bootstrap-based standard errors of the MR
estimator. They are slightly lower for the exponential and chi-
squared errors, but slightly larger for the Gumbel, t-student, and
heteroscedastic specifications.

The confidence intervals match very well their nominal
values for every estimator at the 95% and 99% levels. This is
particularly reassuring for the CKMR estimator, whose confi-

dence intervals are significantly narrower due to the smaller
standard errors. In addition, the empirical coverage of the
CKMR estimator is very stable across bandwidth values, espe-
cially for samples with 250 or more observations. In contrast,
the empirical coverage of the SMR estimator deteriorates for
larger bandwidth values regardless of the error distribution and
sample size. All in all, the CKMR estimator performs very well
relative to the MR and SMR estimators, with lower MSE and
tighter (asymptotic) confidence intervals that are nonetheless
valid even in small samples.

4.1. Conditional qdf and pdf Estimation

Next, we complement the discussion in Section 2.2 by
illustrating the qdf and pdf estimation of the QR model Y =
β0(U)+β1(U)X1 +β2(U)X2 +β3(U)X3, where U, X1, X2, and
X3 are independent and uniformly distributed variables on the
unit interval [0, 1], β0(·) and β1(·) are, respectively, given by
the Beta(1, 16) and Beta(32, 32) quantile functions, β2(τ ) =
1, and β3(τ ) = (2π+8)τ−(cos(2πτ)−1)

2π+8 . The large number of
regressors relative to the sample size of 1000 observations does
not bode well for standard nonparametric estimation due to the
curse of dimensionality.

In each of the 1000 replications, we estimate the pdf by
means of (8) using the rule-of-thumb bandwidth hROT.5 Fig-
ure 8 displays the true quantile function in Panel (a), the true
qdf in Panel (b), and the true conditional density of Y given
(x1, x2, x3) = (0.9, 0.5, 0.9) in Panel (c). The gray-shaded
regions in Panels (a) and (b) correspond to the interquantile
band from 0.05 to 0.95, that is, the region for which at most
5% of the replications lay below its lower bound and at most
5% above its upper bound, at each fixed τ .

Figure 8(a) suggests that the variability and bias of the QR
estimator are not only quite small but also of a similar magni-
tude. Panel (b) reveals that the qdf estimates approximate well
the poles in the tails, up to some boundary bias at τ = 0, with
a very narrow band regardless of the quantile level τ . Panel (c)
displays the paths τ 	→ f̂h(τ |x) for τ ∈ {0.01, 0.02, . . . , 0.99},
5It is perhaps worth mentioning that the optimal bandwidth for the QR
estimation is not necessarily optimal for the qdf estimator.

Figure 8. Conditional quantile function, qdf, and pdf estimates. We consider 1000 samples of 1000 observations from Y = β0(U)+β1(U)X1+
β2(U)X2 + β3(U)X3, where U, X1, X2, and X3 are independent and uniformly distributed variables on the unit interval [0, 1], β0(·) and β1(·)
are, respectively, given by the Beta(1, 16) and Beta(32, 32) quantile functions, β2(τ ) = 1, and β3(τ ) = (2π+8)τ−(cos(2πτ)−1)

2π+8 . Panels (a)
to (c) are about the conditional quantile function, qdf, and pdf of Y given (x1, x2, x3) = (0.9, 0.5, 0.9), respectively. Gray shades refer to the
[0.05,0.95]-interquantile bands of the corresponding estimators using hROT as bandwidth, whereas solid black lines depict the true functions.
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corresponding to the 100 first realizations of f̂h. We find a
much higher variability for the pdf curve estimates, as typical in
nonparametric estimation. As before, we evince some boundary
bias at τ = 0 and tighter interquantile bands in the tails.
Altogether, the pdf estimator seems to perform reasonably well
even for three conditioning variables.

5. CONCLUDING REMARKS

This article proposes a convolution-type kernel QR estima-
tor based upon smoothing the objective function. The resulting
estimator improves on standard QR estimation both in terms
of asymptotic mean square error (MSE) and Bahadur–Kiefer
representation. Applying the implicit function theorem to the
corresponding first-order condition gives way to a conditional
pdf estimator that avoids the curse of dimensionality by exploit-
ing the QR specification. We also show how to use this pdf
estimator to come up with a two-step efficient QR estimator.
Many of our asymptotic results are uniform with respect to
the quantile level and bandwidth. The latter is convenient
because it makes room for data-driven bandwidth choices, such
as the rule-of-thumb bandwidth we propose. In particular, we
establish a functional central limit theorem for our smoothed
QR estimator that accommodates data-driven bandwidths.

Simulations show that the rule-of-thumb bandwidth works
well in practice, yielding very good results in terms of confi-
dence interval coverage. They also reveal that our smoothed QR
estimator outperforms not only the standard QR estimator, but
also Horowitz’s (1998) alternative smoothed estimator. Finally,
our Monte Carlo study also confirms that our QR-based pdf
estimator does not suffer from the curse of dimensionality.

There are many extensions to consider in future research.
First, uniformity in bandwidth is useful not only for adaptive
bandwidth choices as in Lepski, Mammen, and Spokoiny
(1997), but also for bandwidth-snooping-robust inference as in
Armstrong and Kolesár (2018). Second, one could combine our
QR-based pdf estimator in a data-rich environment with Belloni
and Chernozhukov’s (2011) lasso-type methods to select the
relevant covariates and with Volgushev, Chao, and Cheng’s
(2019) to cope with large sample sizes. Third, one could
exploit the connection between QR and quantile instrumental
variable models (Kaido and Wuthrich 2018) to obtain smoother
estimators and better inferential procedures (Chernozhukov
and Hansen 2005; Jun 2008; Andrews and Mikusheva 2016;
de Castro et al. 2019). Finally, one could also extend our
smoothing approach to handle panel QR as in Galvão and Kato
(2016).

A. PROOFS OF MAIN RESULTS

Notice that R̂(b; τ) is integrable if and only if Y and X are
integrable. This matters for the definition of β(τ) as the minimizer of
R(b; τ) := E

[̂
R(b; τ)

]
. It is convenient to assume that both R̂(b; τ) and

R̂h(b; τ) are integrable such that R(b; τ) and Rh(b; τ) are well defined.
Otherwise, one should define Rh(b; τ) as E

[̂
Rh(b; τ) − R̂h(0; τ)

]
, and

similarly for R(b; τ). These quantities are finite under Assumption X.
Let S denote the set Rd × [¯τ , τ̄ ] × [¯hn, h̄n] to which (b, τ , h) belongs.
Note that S depends on n through [¯hn, h̄n]. In what follows, C denotes

a generic constant that may vary from line to line. Lastly, the online
appendix collects the proofs of the intermediary results.

A.1. Smoothing Bias

To study the bias of our smoothed QR estimator, we make use of
the following result.

Lemma 1. Assumptions X, Q2, and K1 ensure that

(i) sup
(b,τ ,h)∈S

∣∣∣∣Rh(b; τ) − R(b; τ)

hs+1

∣∣∣∣ = O(1);

(ii) sup
(b,τ ,h)∈S

∥∥∥∥∥R(1)
h (b; τ) − R(1)(b; τ)

hs+1

∥∥∥∥∥ = O(1);

(iii) sup
(b,τ ,h)∈S

∥∥∥∥∥R(2)
h (b; τ) − R(2)(b; τ)

hs

∥∥∥∥∥ = o(1);

(iv) sup
(δ,b,τ ,h)∈Rd×S

∥∥∥∥∥R(2)
h (b + δ; τ) − R(2)

h (b; τ)

‖δ‖

∥∥∥∥∥ = O(1).

Proof of Lemma 1. See online appendix.

Proof of Theorem 1. Observe first that R(·; τ) is strictly convex. To
see this, we show that, for any b ∈ R

d , R(2)(b; τ) is an element of
the open set M+

d of positive-definite d × d matrices. Indeed, for any

v ∈ R
d ,

v′R(2)(b; τ)v =
∫

(v′x)2f (x′b | x) dFX(x)

≥ v′
E(XX′)v inf

x∈supp(X)
f (x′b | x) > 0

by Assumptions X and Q. It follows from Lemma 1(i) and the
continuity of b 	→ R(2)(b; τ) = R(2)(b) that any potential minimizer
βh(τ ) of Rh(·; τ) must lie in a compact B for every admissible (τ , h).
As Lemma 1(i) ensures that Rh(·; τ) is convex over B for all admissible
τ and h small enough, it follows that βh(τ ) is unique for (h, τ) ∈
[¯hn, h̄n] × [¯τ , τ̄ ] and n large enough.

By the implicit function theorem, βh(τ ) is continuous in (τ , h)

given that R(1)
h (b; τ) and R(2)

h (b; τ) are continuous in (b, τ , h) and that

R(1)
h (βh(τ ); τ) = 0. Let

A(τ , h) :=
∫ 1

0
R(2)

(
β(τ) + w

[
βh(τ ) − β(τ)

]
; τ
)

dw

and let c := inf f
(

x′[β(τ) + w
(
βh(τ ) − β(τ)

)] | x
)

for (τ , h, w, x) ∈
[¯τ , τ̄ ] × [¯hn, h̄n] × [0, 1] × supp(X). Assumptions X and Q ensure that
c > 0, and so

v′A(τ , h)v =
∫ 1

0

∫
(v′x)2f

(
x′[β(τ)+w

(
βh(τ )−β(τ)

)] | x
)

dFX(x) dw

≥ c v′
E(XX′)v > 0

by Assumption X. This means that the eigenvalues of A(τ , h) are
bounded away from zero, uniformly for (τ , h) ∈ [¯τ , τ̄ ] × [¯hn, h̄n].
However, as R(1)

h

(
βh(τ ); τ

) = R(1)
(
β(τ); τ

) = 0, a Taylor expansion
with integral remainder leads to

R(1)
(
βh(τ ); τ

)− R(1)
h

(
βh(τ ); τ

) = R(1)
(
βh(τ ); τ

)− R(1)
(
β(τ); τ

)
= A(τ , h)

[
βh(τ ) − β(τ)

]
,
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and hence, by Lemma 1(ii), βh(τ ) − β(τ) = O(hs+1) given that∥∥∥∥βh(τ ) − β(τ)

hs+1

∥∥∥∥ ≤ sup
(τ ,h)∈[¯τ ,τ̄ ]×[¯hn,h̄n]

{∥∥∥A−1(τ , h)

∥∥∥
∥∥∥∥∥R(1)

(
βh(τ ); τ

)− R(1)
h

(
βh(τ ); τ

)
hs+1

∥∥∥∥∥
}

= O(1).

Now, a Taylor expansion obtains

−R(1)
h

(
β(τ); τ

) = R(1)
h

(
βh(τ ); τ

)− R(1)
h

(
β(τ); τ

)
=
[
R(2)

(
β(τ); τ

)+ o(1)
][

βh(τ ) − β(τ)
]+ o(hs+1)

by Lemma 1. It follows from
∫ 1

0 w(1 − w)s−1 dw = 1
(s+1)s and (25)

that

T2 :=
∫ x′β(τ)

−∞
{
E
[
kh(v − Y) | x

]− f (v | x)
}

dv

= hs+1
∫

zs+1 k(z) dz

(s + 1)! f (s)(x′β(τ) | x) + o(hs+1).

Using (24) then yields

R(1)
h

(
β(τ); τ

) = hs+1
∫

zs+1 k(z) dz

(s + 1)!
×
∫

x f (s) (x′β(τ) | x
)

dFX(x) + o(hs+1),

completing the proof.

A.2. Bahadur–Kiefer Representation

This section makes use of a powerful functional exponential
inequality by Massart (2007). For the sake of completeness, we state
a version of Massart’s result as a lemma. For real-valued functions

¯
f

and f̄ with
¯
f ≤ f̄ , let [

¯
f , f̄ ] denote the set of all functions g such that

¯
f ≤ g ≤ f̄ . For a set F and a family {Fi} of subsets of F , we say that
{Fi} covers F if F ⊂ ⋃

i Fi.

Lemma 2. Let Zi be an iid sequence of random variables taking
values in the measurable space Z , and let F be a class of real valued,
measurable functions on Z . Assume that

(i) there are some positive constants σ and M such that

E

[
|f (Zi)|2

]
≤ σ 2 and supz∈Z |f (z)| ≤ M for all f ∈ F ;

(ii) for each δ > 0, there exists a set of brackets
{[

¯
fj, f̄j]; j =

1, . . . , J(δ)
}
, for some integer J(δ) > 1, that covers F such that

E

[∣∣f̄j(Zi) −
¯
fj(Zi)

∣∣2] ≤ δ2 and supz∈Z
∣∣f̄j(z) −

¯
fj(z)

∣∣ ≤ M for

every j = 1, . . . , J(δ).

It then follows that, for any r ≥ 0,

Pr

⎛⎝ sup
f ∈F

1√
n

n∑
i=1

(f(Zi) − E[f (Zi)]) ≥ Hn + 7σ
√

2r + 2Mr√
n

⎞⎠
≤ exp(−r), (A.1)

where

Hn := 27

(∫ σ

0
H1/2(u) du + 2(σ + M)H(σ )√

n

)
and H is any nonnegative measurable function of δ > 0 satisfying
H(δ) ≥ ln J(δ).

Proof of Lemma 2. See Corollary 6.9 in Massart (2007).

Before proceeding to the next result, let us introduce some addi-
tional notation. In what follows, let sup(τ ,h) denote the supremum over

(τ , h) ∈ [¯τ , τ̄ ]× [¯hn, h̄n], which depends on n via [¯hn, h̄n]. We also use
the same implicit notation for any other similar operator (e.g., infimum
or union). Recalling that �−1

n (h) := √
nh/(ln n), let

En(r) :=
{

√
n sup

(τ ,h)

�−1
n (h)

∥∥∥β̂h(τ ) − βh(τ ) + D−1
h (τ )̂Sh(τ )

∥∥∥ ≥ r2

}
.

Notice that the event En(r) depends on the sample size n and on a tail
parameter r, but neither on τ nor on h. On the complementary set of
En(r), it holds that

√
n
(
β̂h(τ ) − βh(τ )

) = −√
n D−1

h (τ )̂Sh(τ ) + Êh(τ ),

where the approximation error is such that
∥∥Êh(τ )

∥∥ ≤ �n(h) r2

uniformly for (τ , h) ∈ [¯τ , τ̄ ] × [¯hn, h̄n]. In particular, if Pr
(
En(r)

)
is

small for large r, then the representation (11) from Theorem 2 holds
uniformly in τ and h.

Finally, let Ă denote the complementary set of A and

E1
n (r) :=

{
sup
(τ ,h)

∥∥√n Ŝh(τ )
∥∥ ≥ r

}
,

E2
n (r) :=

{
sup
(τ ,h)

sup
{b: ‖b−βh(τ )‖≤1}

∥∥∥∥∥
√

nh

ln n

(
R̂(2)

h (b; τ) − R(2)
h (b; τ)

)∥∥∥∥∥
≥ r

⎫⎬⎭ ,

where the norms in E1
n (r) and E2

n (r) are the Euclidean and operator
norms, respectively. We are now ready to state the functional exponen-
tial inequality we will apply in the remaining technical proofs.

Proposition 3. Given Assumptions X, Q, and K, β̂h(·) is unique
and continuous over [¯τ , τ̄ ] × [¯hn, h̄n] with probability growing to one.
There also exist positive constants C0, C1, and C2 such that, for small
enough ε, 1/r and 1/n,

(i) Pr
(
En(r) ∩ Ĕ1

n (r) ∩ Ĕ2
n (r)

)
≤ C0 exp (−nε/C0);

(ii) Pr
(
E1

n (r)
)

≤ C1 exp
(
−r2/C1

)
;

(iii) Pr
(
E2

n (r)
)

≤ C2 exp (−r ln n/C2);

Proof of Proposition 3. See online appendix.

Theorem 2 is an immediate corollary to Proposition 3, whose
proof builds on Lemmas 2–4. It is sometimes convenient to con-
sider the auxiliary objective functions R̂h(b; τ) := R̂h(b; τ) −
R̂h
(
βh(τ ); τ

)
and Rh(b; τ) := E

[
R̂h(b; τ)

]
. They are such that

β̂h(τ ) = arg minb R̂h(b; τ) and βh(τ ) = arg minb Rh(b; τ). Similarly,
set R̂(b; τ) = R̂(b; τ) − R̂

(
β(τ); τ

)
and R(b; τ) := E

[
R̂(b; τ)

]
.

The next result shows that β̂h(τ ) is close to βh(τ ) uniformly for
(τ , h) ∈ [¯τ , τ̄ ] × [¯hn, h̄n].

Lemma 3. Suppose that Assumptions X, Q, and K hold. If n is large
enough, there is a positive constant C such that, for any η ∈ [1/ ln n, 1],

Pr

(
sup
(τ ,h)

∥∥β̂h(τ ) − βh(τ )
∥∥ ≥ η

)
≤ C exp(−C n η4).

Proof of Lemma 3. See online appendix.
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Lemma 4. Suppose that Assumptions X, Q, and K hold and
consider r > 0 and η ∈ (0, 1]. As long as n is large enough,

Pr

(
sup
(τ ,h)

∥∥√n̂Sh(τ )
∥∥ ≥ C1(1 + r)

)
≤ C0 exp

(
−r2

)
,

Pr

⎛⎝ sup
(τ ,h)

sup{
b: ‖b−βh(τ )‖≤η

}
∥∥∥∥∥
√

nh

ln n

(
R̂(2)

h (b, τ) − R(2)
h (b, τ)

)∥∥∥∥∥
≥ C1(1 + r)

)
≤ C0 exp (−r ln n) .

Moreover, for any compact subset B of Rd+1,

sup
(b0,b1)∈B2

sup
(τ ,h)

∥∥∥R̂(2)
h (b1, τ) − R̂(2)

h (b0, τ)

∥∥∥
‖b1 − b0‖ = Op(1),

sup
(b0,b1)∈B2

sup
(τ ,h)

∥∥∥∥∥∥∥∥
1
n
∑n

i=1 XiX′
i

{ [
K
(−ei(b1)/h

)− τ
]2

− [
K
(−ei(b0)/h

)− τ
]2 }

∥∥∥∥∥∥∥∥
‖b1 − b0‖ = Op(1),

sup
b∈B

sup
(τ ,h)

∥∥∥∥∥∥
1
n
∑n

i=1 XiX′
i

[
K
(−ei(b)/h

)− τ
]2

−E

[
XiX′

i

[
K
(−ei(b)/h

)− τ
]2]

∥∥∥∥∥∥ = Op(1/
√

n).

Proof of Lemma 4. See online appendix.

Proof of Theorem 2. As uniqueness holds, to establish (11),
it suffices to fix ε and increase r to make Pr (En(r)) ≤
Pr
(
En(r) ∩

[
Ĕ1

n (r) ∩ Ĕ2
n (r)

])
+ Pr

(
E1

n (r)
)

+ Pr
(
E2

n (r)
)

arbitrarily

small for n large enough. As for (12), it readily follows from (28) in
the online appendix and Lemma 4 in view that the latter and (11) imply
that supτ ,h

∥∥β̂h(τ ) − βh(τ )
∥∥ = Op(1/

√
n).

A.3. Asymptotic Variance and Mean Squared Error

Proof of Theorem 3. We first show that the expansion

V

(√
n D−1(τ )̂Sh(τ )

)
= �(τ) − ck h D−1(τ ) + O(h2) (A.2)

holds uniformly with respect to (τ , h) ∈ [¯τ , τ̄ ] × [¯hn, h̄n]. Given that

E

[
R̂(1)

h

(
βh(τ ); τ

)] = 0,

V
(√

n Ŝh(τ )
) = V

(√
n R̂(1)

h

(
βh(τ ); τ

))
= V

(
X

[
K

(
X′βh(τ ) − Y

h

)
− τ

])

= E

(
XX′

[
K

(
X′βh(τ ) − Y

h

)
− τ

]2
)

= E

[
XX′K2

(
X′βh(τ ) − Y

h

)]

−2 τ E

[
XX′K

(
X′βh(τ ) − Y

h

)]
+ τ2

E(XX′).

Along similar lines to the proof of Lemma 1, it follows from Assump-
tions Q2 and K that

E

[
K

(
X′βh(τ ) − Y

h

)∣∣∣∣X = x

]
=
∫

K

(
x′βh(τ ) − y

h

)
f (y | x) dy

= 1

h

∫
k

(
x′βh(τ ) − y

h

)
F(y | x) dy

= F
(
x′βh(τ ) | x

)+∫ [
F
(
x′βh(τ ) − hz | x

)−F
(
x′βh(τ ) | x

)]
k(z) dz

= τ + O(hs+1), (A.3)

using integration by parts and Theorem 1, in view that x′β(τ) =
F−1(τ | x) by definition. Let now K(z) = 2 k(z) K(z) = d

dz K2(z), so

that
∫

K(z) dz = limz→∞ K2(z) = 1. As before, this leads to

E

[
K2

(
X′βh(τ ) − Y

h

)∣∣∣∣X = x

]
= 1

h

∫
K
(

x′βh(τ ) − y

h

)
F(y | x) dy

= τ + O(hs+1) +
∫ [

F
(
x′βh(τ ) − hz | x

)− F
(
x′βh(τ ) | x

)]
K(z) dz

= τ + O(hs+1) − h
[
f
(
x′βh(τ ) | x

)+ O(h)
] ∫

z K(z) dz

= τ + O(hs+1) − h
[
f
(
x′β(τ) | x

)+ O(h(s+1)) + O(h)
] ∫

z K(z) dz

= τ − h f
(
x′β(τ) | x

) ∫
z K(z) dz + O(h2). (A.4)

The variance expansion (A.2) then follows by noticing that, as
K (−z) = 1 − K(z),∫

z K(z) dz = 2
∫

z k(z) K(z) dz

=
∫ 0

−∞
z dK2(z) +

∫ ∞
0

z d
[
K2(z) − 1

]
= −

∫ 0

−∞
K2(z) dz +

∫ ∞
0

[
1 − K2(z)

]
dz

=
∫ ∞

0

{
−[1 − K(z)

]2 + 1 − K2(z)
}

dz

= 2
∫ ∞

0
K(z)[1 − K(z)] dz.

Finally, the local Lipschitz property of matrix inversion ensures that

V

(√
n D−1

h (τ )̂Sh(τ )
)

= �(τ) − ck h D−1(τ ) + O(h2)

+
[
D−1

h (τ )V
(√

n Ŝh(τ )
)
D−1

h (τ ) − D−1(τ )V
(√

n Ŝh(τ )
)
D−1(τ )

]
.

given (A.2), Lemma 1, and Theorem 1. To establish (14), it suffices to
observe that, by Lemma 1, the norm of the last term within brackets is
at most equal to∥∥∥D−1

h (τ ) − D−1(τ )

∥∥∥ ∥∥V(√n Ŝh(τ )
)∥∥ (∥∥∥D−1

h (τ )

∥∥∥+
∥∥∥D−1(τ )

∥∥∥)
≤ C

∥∥∥D−1
h (τ ) − D−1(τ )

∥∥∥ = o(h).
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Proof of Theorem 4. It follows from Theorem 1, (14) and
E
[̂
Sh(τ )

] = 0 that

AMSE
(
λ′β̂h(τ )

) = h2s+2 [λ′B(τ )
]2

+ 1

n
λ′ (�(τ) − ck h D−1(τ )

)
λ + O(h2)+o(hs)︸ ︷︷ ︸

=o(h)

.

Letting g(h) = h2s+2 [λ′B(τ )
]2 − n−1ck h λ′D−1(τ )λ and then

differentiating with respect to h yields

g′(h) = (2s + 2) h2s+1 [λ′B(τ )
]2 − 1

n
ck λ′D−1(τ )λ.

Solving for h∗
λ such that g′(h∗

λ) = 0 yields the desired result and
AMSE expansion.

A.4. Weak Convergence and Asymptotic Covariance
Estimator

In this section, we first establish the weak convergence of
{√

n̂Sh :
τ ∈ [¯τ , τ̄ ]} to a Gaussian process in Lemma 5 and then derive the
results (G), (V), and (U) in Theorem 5.

Lemma 5. Under Assumptions X, Q and K,
{√

n̂Sh : τ ∈
[¯τ , τ̄ ]} converges in distribution to a tight, centered Gaussian process{
W∗(τ ) : τ ∈ [¯τ , τ̄ ]} with covariance structure

V
(
W∗(τ ), W∗(ς)

) = (τ ∧ ς − τς)E(XX′), τ , ς ∈ [¯τ , τ̄ ], (A.5)

Proof of Lemma 5. See online appendix.

Proof of Theorem 5. (G) is a corollary to Theorem 2 and Lemma 5,
whereas (V) directly follows from the fact that β̂h(τ ) = βh(τ ) +
Op(n−1/2) uniformly and from Lemma 4. To establish (U), recall

that R̂(1)
h

(
β̂h(τ ); τ

) = R(1)
h

(
βh(τ ); τ

) = 0 and β̂h(τ ) = βh(τ ) +
Op(n−1/2) uniformly. By the implicit function theorem, Lemmas 1
and 4 yield that, with probability tending to one,

∂β̂h

∂h
= −

[
R̂(2)

h

(
β̂h(τ ); τ

)]−1 ∂

∂h
R̂(1)

h

(
β̂h(τ ); τ

)
= −

[
R̂(2)

h

(
β̂h(τ ); τ

)]−1 1

nh

n∑
i=1

Xi k̃

(
− ei

(
β̂h(τ )

)
h

)
,

∂βh

∂h
= −

[
R(2)

h

(
βh(τ ); τ

)]−1 ∂

∂h
R(1)

h

(
βh(τ ); τ

)
= −

[
R(2)

h

(
βh(τ ); τ

)]−1 1

h
E

[
Xi k̃

(
− ei

(
βh(τ )

)
h

)]
,

with k̃(t) = tk(t). As in the proof of Lemma 4,
sup

(τ ,h)∈[τ ,τ ]×[hn,hn]
∥∥β̂h(τ ) − βh(τ )

∥∥ = Op(n−1/2) implies

not only that sup
(τ ,h)∈[τ ,τ ]×[hn,hn]

√
nh
ln n

∥∥∥ ∂
∂h R̂(1)

h

(
β̂h(τ ); τ

) −
∂
∂h R(1)

h

(
β̂h(τ ); τ

)∥∥∥ = Op(1) but also that

sup
(τ ,h)∈[τ ,τ ]×[hn,hn]

√
nh
ln n

∥∥∥ ∂β̂h(τ )
∂h − ∂βh(τ )

∂h

∥∥∥ = Op(1). This

means that, uniformly in (h0, h1, τ),

β̂h1(τ )−βh1(τ ) − [
β̂h0(τ )−βh0(τ )

] =
∫ h1

h0

[
∂β̂h(τ )

∂h
− ∂βh(τ )

∂h

]
dh

= Op

(√
ln n

n

)∫ h1

h0

h−1/2 dh

= Op

(√
ln n

n

)
× (√

h1 −√
h0
)
,

completing the proof.

A.5. The pdf Curve and Efficient QR Estimators

Proof of Proposition 1. Applying the implicit function theorem to
the first-order condition R(1)(β(τ ); τ) yields β(1)(τ ) = D−1(τ )E[X].
It then follows from Lemmas 1 and 4, Assumption Q2 and (13) that

sup
τ ,h

∥∥∥R̂(2)
h

(
β̂h(τ ); τ

)− R(2)
(
β(τ); τ

)∥∥∥
≤ o(hs) + Op

(√
ln n

nh

)
+ sup

τ ,h

∥∥∥R(2)
(
β̂h(τ ); τ

)− R(2)
(
β(τ); τ

)∥∥∥
= o(hs) + Op

(√
ln n/(nh)

)
.

The result readily follows.

Proof of Proposition 2. Let Fm denote the σ -field generated by the
first m observations and

Ŝ(τ ; n, m, q) := 1√
n − m

n∑
i=m+1

Xi
I
[
Yi ≤ Q(τ |Xi)

]− τ

q(τ |Xi)
.

By following the same argument as in Guerre and Sabbah (2012), we
find that, conditional on Fm, the Bahadur–Kiefer representations of
b̃(τ ) and b̌(τ ) are

√
n
(

b̃(τ ) − β(τ)
)

=−D−1
q (τ ) Ŝ(τ ; n, 0, q) + Op

(
(ln n)3/4 n−1/4

)
,

√
n
(

b̌(τ ) − β(τ)
)

=−D−1
q̌h

(τ ) Ŝ(τ ; n, m, q̌h)+Op

(
(ln n)3/4 n−1/4

)
,

using Proposition 3 for b̌(τ ) to ensure that the weights q̌h(τ |Xi) stay,
uniformly in i, asymptotically bounded away from 0 and infinity. Note

that Proposition 3 implies that
∥∥∥D−1

q̌h
(τ ) − D−1

q (τ )

∥∥∥ = Op(�q). As the

covariates are bounded by assumption, it follows from Proposition 3
that

E

[ (̂
S(τ ; n, m, q̌h) − Ŝ(τ ; n, 0, q)

)2∣∣∣Fm

]
≤ m

n
+ E

[(̂
S(τ ; n, m, q̌h) −

√
1 − m

n
Ŝ(τ ; n, m, q)

)2
∣∣∣∣∣Fm

]
≤ C

m

n
+ 2E

[ (̂
S(τ ; n, m, q̌h) − Ŝ(τ ; n, m, q)

)2∣∣∣Fm

]
≤ C

⎡⎣m

n
+

n∑
i=m+1

(
q̌h(τ |Xi) − q(τ |Xi)

q̌h(τ |Xi)q(τ |Xi)

)2
⎤⎦

= O(�2
s ) + Op(�2

q).

This implies the first part of Proposition 2. The CLT easily follows.
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