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Abstract 
 

Hospital readmission is widely recognized as 
indicator of inpatient quality of care which has 
significant impact on healthcare cost. Thus, early 
recognition of readmission risk has been of growing 
interest in various hospitals. Additionally, there has 
been growing attention to provide better care to patients 
with more complications, whose care would impact the 
quality of care in multiple directions. To this regard, this 
research specifically targets comorbidity patients i.e., 
the patients with chronic disease. 

This research proposes a novel deep learning-
framework termed SDAE-GAN. The presented 
approach consists of three phases. Firstly, various 
groups of variables from heterogeneous sources are 
collated. These variables mainly include demographic, 
socioeconomic, some statistics about patient’s frequent 
admissions and their diagnosis codes. Then, more 
processing applies dealing missing values, digitization 
and data balancing. Afterwards, stacked denoising 
auto-encoders function to learn underlying 
representation; and technically to forms a latent space. 
The latent variables then are used by a Generative 
Adversarial Neural Networks to evaluate the risk of 30-
day readmission. The model is fine-tuned and being 
compared with state-of-the-arts. Experimental results 
exhibit competitive performance with higher sensitivity.  
 

1. Introduction 
  

 Hospitalized readmission has been receiving 
growing attentions [1] because of its implications on 
cost and quality of care in the most recent decade. 
Professional experts in the field mostly believe a 
remarkable number of readmissions are truly 
preventable [2]–[5]. Moreover, the recent focus on 
readmissions in some countries, including the United 
States, Germany, Switzerland, and England, underlies a 

much more global concern about patients’ safety [6]. 
For policymakers, reducing the rates of readmission is 
considered a key issue to improve patient's outcomes 
and contain hospital costs [5], [7]. 

Although numerous reasons may lead to the 
occurrence of 30-day hospital readmission, recent 
studies have shown that the increased risk of 
readmission is linked to comorbidities [6], [8]. The 
evidence shows that higher comorbidity has been shown 
to be associated with an increased risk of readmission 
[9]–[11]. The comorbidity related issues will take on 
greater importance as a growing percentage of the 
world’s population becomes older and the incidence of 
comorbidities rises. However, hospital readmission 
represents a multifaceted problem and the complexity of 
care and patient’s comorbidity condition hinders deeper 
understanding of readmission patterns and relatively 
few studies have looked at this. Therefore, a better 
understanding of the causes and patterns of 
readmissions in patients with common comorbidities 
may lead to more accurate prediction, targeted and 
successful interventions. 

One of the strategies to reduce the unplanned 
hospital readmission rate is the application of predictive 
models to identify patients at high risk for readmission. 
Preventive approaches can then be developed and 
applied to target the identified high-risk patients. 
However, the performance of traditional risk predictive 
model for readmission are poor and inconsistent 
according to the systematic review by [12]. The limited 
applicability of hospital readmission risk predictive 
models is partly due to the lack of data quality and the 
robustness of the statistical model.  In the meantime, 
with new technologies and automations huge amount of 
data have been created in different domain especially in 
healthcare and genomics [13]–[15]. However, 
utilization of large amount of data has been particularly 
a great challenge for different machine learning and AI 
application. There are many common and difficult 
challenges such as high-dimensionality, heterogeneity, 
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sparseness, incompleteness, random errors, and 
systematic biases [16]–[18]. To deal with such 
challenges depends on the problem, various kinds of 
kinds of statistical and machine learning methods have 
been employed.  

Meanwhile, deep learning methods revealed some 
promising results in handling noise through 
representation learning [19]. Hence, such learning 
methods have attracted many researchers and 
institutions in clinical research tasks which were quite 
difficult to solve [20] [21]. Although a series of 
excellent work have been conducted in seek of novel 
deep learning solutions in different healthcare 
applications, there is very few deep learning-based 
researches available to predict readmission risk for 
comorbidity patients. Furthermore, the challenging 
nature of EPR such as inherent noises, and missing 
value make it extremely difficult to apply most deep 
learning models for accurate prediction [22]. 

Recently, the development of generative adversarial 
network (GAN) [23] provides a new capability to 
provide more robust model to noisy data with 
considerable missing values. In this study, we employ 
the full power of deep learning by introducing a new 
methodology comprising of representation learning and 
GANs. Additionally, this research work specifically 
targeted chronic comorbidity patients although provide 
the applicability for using across whole board of 
specialties. We believe, studding different cohort of 
patients separately and take proper course of actions 
accordingly will help to provide more robust and 
applicable solution in real-life environment. Many 
successful applications can be seen in the most recent 
decade focusing on specific specialty, specific cohort of 
patients, rather considering all problem together. In this 
study, Comorbidity patients were identified based on 
Charlson Chronic Comorbidity Indexes. These patients 
have growing complications over time; and 
consequently, require more attention.  

Furthermore, from machine learning perspective, 
dealing with different comorbidity codes over time, 
itself, is a time-series problem. Each patient has a 
dynamic sequence of codes and time besides other 
variables. For each sequence, technically speaking, 
based on machine learning perspective, there are some 
important facts in connection with readmission, which 
must be considered: 
- The readmission might happen because of other 

complication that was already existed in long time 
ago 

- In some episodes (time intervals), there are missing 
codes which possibly impacted the care and 
consequently readmission 

- Patients with quite more history in database have 
more records which create a potential sparsity in 
data space. Such sparsity, evidently, affects 

negatively the learning process of various 
classification or probabilistic models. 

- Repetitive events in a sequence can locally form a 
bias for a learning method. 

To address all these issues, we employed a simple, yet 
efficient strategy. A table was created by applying data 
mining techniques to have all comorbidity codes in one 
place for each record. A time window was applied and 
the selected codes then augmented to each patient 
profile vector. This vector was used as the input of auto 
encoders. After, pre-training auto encoders, the obtained 
latent variables were employed as input to a GAN 
model.  

In summary, this study proposes a novel framework 
for predicting the risk of re-admission mostly suitable 
for patients with multiple complications. 
 
2. Literature review 
 

Predicting hospital readmission risk is of great 
interest to identify which patients would benefit most 
from care transition interventions, as well as to risk-
adjust readmission rates for the purposes of hospital 
comparison [12]. Readmission risk assessment could be 
used to help target the delivery of these resource-
intensive interventions to the patients at greatest risk. 
Ideally, models designed for this purpose would provide 
clinically relevant stratification of readmission risk and 
give information early enough during the hospitalization 
to trigger a care intervention, many of which involve 
discharge planning and begin well before hospital 
discharge. Models designed for these purposes should 
have good predictive ability; be deployable in large 
populations; use reliable data that can be easily 
obtained; and use variables that are clinically related to 
and validated in the populations in which use is intended 
[12], [13]. According to recent review conducted by 
[24], the utilization outcome of existing readmission 
prediction models include all-cause admissions such as 
[25], cardiovascular-related disease including 
pneumonia such as [26],  medical/internal medicine 
conditions such as [27], surgical conditions such as [28] 
and mental health conditions such as [29]. There is no 
model developed for readmission risk for all 
comorbidity patients.  

Furthermore, all those models are traditional 
statistical model based using clinical/medical records 
data. They are hypothesis driven and repetitively assess 
the predictive abilities of the same set of biomarkers as 
predictive features. The performance of the applied 
existing models was inconsistent and due to the poor 
performance, there is limited applicability to be used in 
the hospital [24]. The research by [30] attempts to 
develop a data-driven, electronic-medical record-wide 
(EMR-wide) feature selection approach and subsequent 
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machine learning to predict readmission probabilities. 
They designed a multistep modeling strategy using the 
Naïve Bayes algorithm with encouraging results and 
revealed the utility of such data-driven machine learning 
in predicting readmission for heart failure cohort.   

The predictive analysis study includes two key 
components: feature learning and classification. The 
application of deep learning in these two areas has 
recently gained unprecedented popularity [13]. Deep 
learning classification from EPR is initially studied to 
predict disease progression. For example,  [31] applied 
recurrent neural network in longitudinal time stamped 
EPR to predict diagnoses and medications for the 
subsequent visit by building a generic temporal 
predictive model that covers observed medical 
conditions and medication uses, followed by the 
development of specific heart failure prediction model. 
The other research by [32] utilized a long-short memory 
(LSTM) method to model disease progression and 
predict future risk. Recently more attention is received 
in using deep learning method to predict the risk of 
readmission. For example, these researches [33], [34] 
applied convolutional neural network methods to detect 
and combines predictive local clinical motifs to stratify 
the risk of readmission. Authors in [35] developed an 
artificial neural network model to predict all cause risk 
of 30-day hospital readmission and [36] developed a 
hybrid deep learning model that combines topic 
modelling and recurrent neural network (RNN) to 
embed clinical concepts in short-term local context and 
long term global context to predict readmission. The 
research by [37] further developed a scalable deep 
learning model using RNN for prediction across 
multiple centers without site-specific data 
harmonization which is validated in readmission task.   
Aside from those researches, [38] compares various 
deep learning-based models for predicting early hospital 
admissions. They found that the performance of existing 
models is insufficient for practical applications as the 
models generally fit to homogeneous patient subgroups. 
This leads to attentions of challenging nature of EPR 
such as inherent noises, and missing value that make it 
extremely difficult to apply most existing matured 
models for prediction [22].  

Another challenge in EPR data processing is the 
class imbalance problem. There literally significantly 
higher number of records for normal people than those 
whose suffering from a specific disease [39]. Therefore, 
it is necessary to develop the learning method which is 
more robust against the class imbalance problem. Such 
challenges lying in EPR prevent many deep learning 
methods from exerting their strength in predictive 
analytics. 

Recent development of generative adversarial 
network (GAN) caught attention [40] and have been 
mainly used on image, video and text data to learn useful 

features with better understandings, and robustness for 
incomplete and imbalanced data. GAN simultaneously 
trains a deep generative model and a deep discriminative 
model, which captures the data distribution and 
distinguishes generated data from original data 
respectively, as a mini-max game. Although there are 
attempts to apply GANs in EPR directly to predict 
disease [22], [41], there is no research on readmission 
prediction benefited from GANs methods. In this 
research, a novel deep learning approach proposed 
integrating both autoencoders and GANs in a learning 
framework. This framework actually leverages the true 
potential of deep learning which is representation 
learning and classification through adversarial learning. 
This study ultimately reveals completive performance 
with state-of-the-are models while achieving the highest 
sensitivity.  
 
3. EPR processing and feature 
representation 
  

The quality of the data in the hospital is of crucial 
importance as the accuracy and fairness of the 
algorithms are closely linked to the data they are being 
fed. However, the quality of coding for comorbidities 
has been a challenge for analytics and hospital pay by 
results because lack of adequate information captured 
consistently in the source documents. This has led to 
comorbidity information missing in some spells with 
negative implications such as resource planning and 
monitoring, full understanding of the complexity of 
condition and the utility of predictive models.  

Different with exiting studies, we started our 
predictive modelling from discovering comorbidity 
codes that were missed the coding process from EPR. 
The information of over 130K comorbidity patients over 
half a million records (over 2 million records 
considering all patients) were extracted, beginning in 
2010 and going through end of 2017 in one of the largest 
of hospitals in Berkshire, UK.  

To identify all the relevant codes for comorbidity 
patients, we created a reference table in our database for 
Charlson comorbidity index [42]. Then, a time-code 
table was collated which enabled us looking in the real 
whole journey of patients in EPR. This table also 
included other information associated with patient 
profile like sociodemographic variables. A binary label 
then was added to the table to indicate 30-day 
readmission. Thereafter, only the records of 30-day 
readmission was filtered and selected for further 
evaluation. It is worth noting, filtering 30-day 
readmission does not mean that the comorbidity codes 
were filtered. All the codes were included as clinicians 
usually expect the chronic disease will last for a very 
long time.  
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Dealing with missing values in other variables like 
ethnicity, gender and age, we endeavor to find such 
information from reference tables in other databases. 
Collating data from different databases and Tables, 
assess for any conflicts/duplication/alternatives, and 
appropriately join them to the resulting table were quite 
a tedious and challenging task. Finally, for filing out the 
remaining missing-values we employed mode statistic 
for categorical variables and K-nearest neighbor for 
continuous one. The list of variables used in this study 
is listed in Table 1. 

  
Table 1. Variables employed in this study 

Group Variables 
Demographic  Age, Sex 
Discharge Month, Discharge type 
Socioeconomic Deprivation Index, Ethnicity, 

Marital status 
Diagnostic codes Charlson Comorbidity Indexes 
Admission Admission type, Admission source 
Statistics Average number of admissions per 

year, Average length of stay 
 
 
4. Patients feature learning using Stacked 
denoising-Auto-Encoders  
 

To overcome the challenging nature of EPR 
especially for large data dimension, noise and 
sparseness, feature learning and extraction exploiting 
de-noising auto-encoders is a robust way to deal with 
such issues [43]. It is worth noting, the auto-encoder, 
itself, will help constructing the real data manifold. In 
this context, dealing with missing values and 
approximating them in the previous section can be 

partly addressed by auto encoders. In other words, we 
may not need to try comprehensively and precisely 
calculate the missing values. A good approximation 
employing simple statistics in large scale data perhaps 
is an efficient way; specifically, when a representation 
learning method is supposed to be employed on top of 
that.  

A denoising autoencoder (DAE) is simply a neural 
network with one hidden layer that should be trained to 
reconstruct a clean version of input X from a 
corrupted/current version of x’. It is accomplished by a 
so-called encoder that is a deterministic mapping from 
an input vector x into hidden representation y.  

 
𝑓#(𝐱) = 𝑠(𝐖𝐱+ 𝐛)    (1)     
 
where the parameter 𝜃 is (𝑾, 𝒃), 𝑾 is a weight matrix 
and 𝑏 is bias vector.  

In stacking of DAE as demonstrated in Figure 1, the 
auto-encoder layers are placed on top of each other. 
Each layer is trained independently (‘greedily’) and then 
is stacked on top of previous one. In denoising 
autoencoders, the loss function is to minimizing the 
reconstruction loss between a clean X and its 
reconstruction from Y [44]. A decoder is then used to 
map the latent representation 𝑦 into a reconstructed 
(‘repaired’) vector such as g: 

 
g34(𝐲) = 𝑠(𝐖6𝒚+𝐛6)    (2)  
 

Training process starts with per-training the first 
hidden layer fed the training samples as input, training 
the second hidden layer with the outputs flowing from 
the first hidden layer, and so on. The auto-encoders have 
widely used for feature reconstruction. Nevertheless, it 
could be used as dimensionality reduction [45]. It would 

 
 
Figure 1. Patients feature learning process using Stacked denoising-Auto-Encoders (SDAE) 
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specifically effective for reducing the model complexity 
and extracting salient features when the input data is 
highly sparse. In our study, the input vector is quite 
sparse as there will be high dimensions of ICD codes but 
each patient will only have certain amount of ICD codes 
for their comorbidity conditions and the ICD codes’ 
dimension value is 1 or 0 depending on patients’ 
comorbidity. Learning highly non-linear and 
complicated patterns such as the relations among input 
features is one the prominent characteristics of SAE 
[46]. Another important feature of SAEs is the potential 
to learn the latent representation in data manifold. 
Authors in [47] showed that the learnt representation by 
autoencoders  has connections to the intrinsic 
dimensionality of data. When the number of hidden 
layer nodes is restricted to be less than the number of 
original input dimension, a compressed representation 
of patient features is achieved.  

The proposed model is demonstrated in Figure 1. 
Just after preparing the input tables in the last section, 
the SAE is applied to learn the higher level of 
representation to create the latent space. The latent 
variables instead of original features will be employed 
afterward. In this study, the auto encoders with the same 
structure discussed in our previous work for outpatient 
appointment prediction was employed [48]. Along with 
other studies, we empirically found a three-layer 
autoencoders performs more efficiently. We used many 
trial and errors to tune the parameters of the models 
upon validation data. Actually, only 1o% of whole data 
were employed as validation. After pre-training phase 
and obtain latent variables, different classifiers can be 
used over the extracted variables. We used GANs and 

other well-known classifiers to evaluate the final 
performance.  

Furthermore, this approach has a specific advantage 
specifically for GANs model. The GANs generally 
works upon continuous data space. The latent variables 
are all continuous variables which are theoretically in 
line with such assumptions of GANs. On the other hand, 
considering lower dimensionality, the generator in 
GANs needs to learn the distribution of lower number 
of compact features which is evidently more efficient.  

 
5. Generative Adversarial Networks  
 

 Adversarial models [40] are specific class of 
generative models [49] formalized as a competitive 
process between two players with distinct objectives. 
These players are represented by two neural network 
models with different architectures: the generator and 
discriminator (as shown in Figure 2).  The discriminator 
role in GAN is like an artist that draws real images 
whereas the generator attempts to create fake versions 
from scratch. In this scenario, discriminator tries to 
produce better images from real world by analyzing not 
only the observed variables but also the noise images 
generated from outside source. Statistically speaking, 
the discriminator captures the conditional distribution of 
data given evidences while the generator is trying to 
learn the intrinsic distribution of data just from a random 
noise as well as the feedback from discriminator. 
Considering readmission, a statistical or probabilistic 
model may only need to look for similar cohort of 
patients in terms of similarity over a few variables; or 

 
 
Figure 2. Readmission risk prediction using Generative Adversarial Networks, p1 indicates the probability 
of readmission, p0 indicate the probability of no future readmission  
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probabilistic models mainly exploit frequency 
distributions to approximate probability of occurrence 
like [50]. Despite that, an adversarial model seeks for 
complex interdependencies among all sampled 
variables.  Interestingly, unlike most models, the 
training process in GAN does not include a global loss 
function to be minimized. Instead, these models are 
supposed to reach an equilibrium point where no 
competitors could improve itself.   

The learning in GAN is performed in two phases. 
Firstly, a noise which is produced from normal 
distribution will be fed into generator. The generator, 
then, attempts to produce an input for discriminator 
which resembles the real data. In this scenario, the 
discriminator has two responsibilities. It should learn 
how to distinguish between real and noise data while 
simultaneously realize the probabilities of occurring 
readmission based on highlighted comorbidities. In our 
case, the discriminator is basically a three-class 
classifier differentiating among admission-readmission 
classes if it realized the input as a real data and the noise 
class otherwise. In our implementation, we used 
softmax with three-class output. Thus, the generator 
produces three probabilities, sum of them equals 1, for 
three classes. The probability value close to zero means 
the data is fake/noise. It has been demonstrated [51]  
such discriminator extrapolates better on the test data 
than a basic classifier since it deals with more data 
patterns than a regular classifier does in a completely 
supervised manner. The Softmax [52] with three class 
outputs, Kernel size 5, was used in our implementation. 
Our implementation is based on the original 
implementation of DCGAN [22], [51]. The main 
purpose of using generator is to further robustness of the 
discriminator in the training process. 

The generator, just after receiving feedback from the 
discriminator, would be optimized. It means that the 
generator attempts to learn the structural patterns [51]  
of training data to produce some samples as close to 
training samples as possible. The new input of generator 

would feed into the discriminator again. This 
optimization process continues to finally the 
discriminator failed to distinguish real and fake data. It 
happens when the generator is highly learnt various 
patterns while at the same time, the discriminator learns 
to differentiate between two data classes i.e., the 
readmission/admission. 

 
6. Experimentation 
 
Ultimately after preprocessing step and removing 
duplicating and repetitive records, there remained about 
133K distinct inpatients with 465K records out of which 
approximately 243K records were readmissions (the 
target class). As both classes should be included in 
modeling, all records were pre-processed. Some patients 
have many readmissions even 100 and more. These 
repetitive readmissions make the machine learning 
models highly biased toward these patients. Hence, an 
indicative flag was created pinpointing only the first 
record of a sequence of repetitive readmissions. to this 
context, a sequence could be of any length from 1 
(singular readmissions or the negative class, both were 
considered as sequences of length 1) to infinity. Then, 
those records marked by this flag were included in the 
learning process. 

This strategy created a highly balanced dataset 
comprising of 47K and 38K records for both classes i.e., 
non-readmission and readmission, respectively. For a 
consistent analysis, this procedure applied to all data and 
subsequently in later phase, the training samples were 
randomly separated from testing and validating 
samples. The categorical features were dummy coded 
and continuous features were normalized and centered. 
A total of 1043 features were finally produced. From the 
resulting tables in data processing stage, a matrix and a 
binary readmission label vectors were created. As cross 
validations were computationally extensive, 
conventional strategy was followed to split the dataset 

Table 2. Comparing prediction results with other methods 
 

Methods 
 Measures 

F1-Score Sensitivity Specificity AUC-ROC 
SDAE-SVM  0.34 0.24 0.60 0.55 
SDAE-Random Forest 0.54 0.45 0.68 0.67 
SDAE-GAN  0.66 0.55 0.83 0.65 
Fully-Connected Networks 0.49 0.35 0.81 0.63 
Fully-Connected Networks [35]-500 features 
 

0.32 0.22 0.61 0.77 

CSDNN [34]  - GHWs Dataset 
                       - OPR Dataset 

0.44 0.26 0.89 0.70 
0.64 0.49 0.87 0.73 

* a bold number indicates the highest figure in its column. 
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into three parts dividing 70% as training data, 20% test, 
and 10% for parameter tuning of the model. This 10% 
of samples were not employed anymore in other phases 
like testing the final model.  

Experimentally a three-layer SDAE were found to 
perform equally or better than deeper networks. This 
fact was already shown in our previous research for 
learning patients’ representation [48] and an excellent 
work  by [19] called Deep Patient. The hidden layer 
employs half of the neurons of the previous neurons. 

Table 2 demonstrates the performance of the 
performance of proposed approach with well-known 
classifiers. The first three models in the table depict how 
good those three distinct classification methods i.e., the 
SVM, Random Forest and GAN can learn from the 
latent representation which was learnt through SDAE. 
For all these models, the output of SDAE with 16 latent 
variables were employed as their input. The SVM was 
employed with linear kernel performed slightly better 
than poly kernel with size of 2. The SVM is 
computationally very extensive when the kernel size 
grows up. The Random Forest was highly fine-tuned 
concerning several parameters (Depth, Pruning, 
Number of Trees, minimum number of leaves). Finally, 
a version with 64 trees with pruning enabled and 
minimum number of leaves of 10 were selected. The 
SVM and Random Forest were implemented in MatLab 
2019. 

Besides these models, a fully connected neural 
networks were trained upon the input of SDAE. In that 
experiment, the output of SDAE were not employed; 
instead, a deep neural network with similar structure 
proposed in [35] was employed to learn the 
representation and produce the probability for each 
class. Note in that model the input dimensionality was 
1667 that was the number of features. Then, in the 
middle layer, the output was halved and finally one 
output in the last layer as expected for a binary model. 
In our model the input dimensionality of SDAE and this 
model was 1043 and the middle layer had 521 neurons 
and corresponding drop-out layers.   

It is noteworthy that the AUC of obtained model is 
significantly lower than similar model in [35] while 
other measures seem to be higher. Looking more closely 
into AUC, it can be seen the Random Forest with SDAE 
obtained relatively higher AUC figure than other 
models.  

The results of CSDNN at the bottom of the table are 
detailed just to show its achievement upon private 
hospitals datasets. That were not implemented or 
employed in this study. The CSDNN which is 
convolutional network based-model is among the best 
models proposed in literature by [34]. Here is detailed 
only their best reported results for 30-Day Readmission 
Prediction upon two private datasets of theirs: i.e., 
GHWs and OPR. The proposed method exhibits 

competitive performance with higher sensitivity. It 
implies there is still rooms for improvement in future.   

It is interesting to note that similar approach with 
[35] we got significantly higher performance. This, in 
fact, shows the data dependency of learning algorithms. 
In such cases, comparing the achievement of other 
authors can be fair only if we have the same 
configuration and the same data and same variables. 
These criteria can be hardly met in different researches 
though. Given all into account, different methods were 
implemented and evaluated while the results of these 
few researches were reported for giving us an instinct of 
feasible performance.   

Overall, according to Table 2, the SDAE-GAN 
obtained the highest sensitivity and F1-score which is 
perhaps the contribution of GAN network. with learnt 
representation, the Random Forest classifier performs 
dramatically better than SVM while achieved highest 
AUC amongst our experiments. 

 
7. Conclusion and future works 
 

In this study, a novel deep learning model called 
SDAE-GAN exploiting stacked denoising autoencoders 
and generative adversarial networks was proposed. The 
proposed approach was actually an end-to-end deep 
model which incorporate the comorbidity codes, and 
multiple groups of relevant variables including 
sociodemographic, socioeconomic and statistics. To 
construct the input of model, a massive table containing 
the comorbidity codes of each patient was created by 
data mining and record level processing. The Charlson 
comorbidity codes were used as a basis for chronic 
disease. The model input was produced after some 
preprocessing and digitization. The SDAE, then, was 
employed to learn salient features appropriate for the 
following GANs model. Finally, a GANs model was 
manipulated to assess the probability of readmissions 
through the learnt features and its neural network 
structure.  

The SDAE-GAN was evaluated upon 133K patients 
with comorbidities. The experimental results unveiled a 
competitive performance with current state-of-the-art 
approaches and its superior performance over some 
well-known machine learning classifiers. This study 
revealed the potential of deep learning method in 
predicting the risk of readmissions for comorbid 
conditions. Some authors attempted to reduce the 
complexity of readmission prediction by separating the 
patients’ cohort [36]  thereby obtaining different 
performance in different specialties. Therefore, they 
usually utilize more deal of prior knowledge and feature 
engineering to build models. Nevertheless, deep 
learning provides a way to avoid exhaustive analysis by 
suggesting an end-to-end model even without feature 
engineering and prior knowledge. Nonetheless, we 

Page 3242



 

should consider that every model has its own pros and 
cons. That is why various approaches and different 
intelligent models has been proposed in the literature. In 
an ongoing research, we are going to apply our method 
-perhaps with different internal architecture-over all 
ICD-10 codes. It brings us an insight about whether 
more prior knowledge which significantly increase the 
dimensionality and noise (for the model input) could 
improve the performance of the model or not.  

Quality of codes could directly affect the 
performance of the model. It is possible that some 
chronic comorbidity codes about the patient in current 
spell were ignored or missed. The coding quality grows 
over time. However, determining the real comorbidity 
close to reality at least by employing what has been 
stored in EPR, could be a separate research that 
potentially reduces readmissions risks. Such research, 
not only potentially reduces the risk of readmissions - 
by directly targeting the real comorbid conditions- but 
also provide a more reliable input for data-driven 
predictive models.  

As other health conditions than chronic morbidities 
can lead to readmissions, studying about potential 
problems (based on diagnostic codes and procedures) 
which has most probably contributed to readmissions 
could add value to this research. Furthermore, severity 
of disease is different in different geographical regions 
[42]. Therefore, considering the severity, updating, and 
validating the chronic comorbidity indexes could be 
another valuable relevant line of research. Since, on one 
hand, it could reveal the potential risks directly related 
to a specific health center. On the other hand, it would 
provide more insight to target the follow-ups and 
reducing readmissions. 
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