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Abstract
Reliable and affordable telecommunications are an integral part of service-based econo-

mies, but the nature of the associated physical infrastructure leads to considerable expo-

sure to weather. With unique access to observational records of the UK fixed-line

telecommunications infrastructure, an end-to-end demonstration of how extended range

forecasts can be used to improve the management of weather risk is presented, assessing

forecast value on both short-term “operational” (weeks) and long-term “planning” time-
frames (months/years). A robust long-term weather-related fault-rate climatology is first

constructed at weekly resolution, based on the ERA-Interim reanalysis. A clear depen-

dence of winter fault rates on large-scale atmospheric circulation indices is demonstrated.

The European Centre for Medium-Range Weather Forecasts (ECMWF) sub-seasonal

forecast system is subsequently shown to produce skilful forecast of winter weekly fault

rates at lead times of three to four weeks ahead (i.e. days 14–20 and 21–28). Forecast
skill at a given lead time is, however, a necessary rather than a sufficient condition for

improved risk management. It is shown that practical decision-making leads to depen-

dencies across multiple forecasts times that cannot be modelled using traditional “cost-
loss matrix” methods as errors in previous forecasts influence the value of subsequent

forecasts. A parsimonious model representing operational decision-making for fault

repair scheduling is therefore constructed to show that fault-rate forecast skill does

improve both short- and long-term management outcomes (in this case meeting perfor-

mance targets more often in the short term, or reducing the resources required to achieve

these targets in the long term). Consequently, it is argued that new methods are needed

for forecast skill assessment in complex decision environments.
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1 | INTRODUCTION

Telecommunication networks are an integral part of secure
and competitive societies where commerce and services

depend on low-cost and reliable communications. In the
United Kingdom, an estimated net economic contribution of
£33 billion/year (or 1.5% of gross domestic product (GDP))
is attributable to telecommunications infrastructure (Kelly,
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2015). However, as with other aspects of infrastructure, the
exposed nature of the fixed-line telecommunications net-
work leads to weather risk (e.g. transport and electricity;
e.g. McColl et al., 2012; Palin et al., 2013). Indeed,
Openreach—a division of BT plc responsible for almost
90% of the UK's fixed line telecommunications
infrastructure—highlights weather as a contributor to
increased line fault rates associated with service delays, dis-
ruptions and challenging conditions in each of its annual
reports from 2013 to 2018 (BT, 2013, 2014, 2015, 2016,
2017, 2018). The quantification, prediction and management
of weather-related line fault rates on the UK fixed-line net-
work (hereafter, the “network”) is therefore an important
problem, with each aspect presenting distinct challenges.

First, the quantification of weather impacts on line fault
rates is difficult due to the rapidly evolving nature of the
infrastructure, with different line types having different
exposures to weather. While the overall number of fixed
lines for which Openreach is responsible has only increased
slightly from 2012 to 2017, the mixture of line types (copper
versus fibre, voice only versus voice-and-broadband) has
changed dramatically. A large-scale network weather-
hardening programme intended to improve its weather resil-
ience also took place in the period 2009–2011. As a conse-
quence, relevant line fault rate data are available only over a
short period, presenting challenges for identifying weather-
drivers of fault rates. This problem, which is also faced by
other types of critical infrastructure, has recently been tack-
led through the creation of “synthetic” historical data sets
derived from meteorological reanalyses (e.g. electricity; Ely
et al., 2013; Kubik et al., 2013; Cannon et al., 2015; Sharp
et al., 2015; Pfenninger and Staffell, 2016; Santos-Alamillos
et al., 2017; Troccoli et al., 2018).

Second, the prediction of line faults days to months in
advance is useful for day-to-day decisions required to ame-
liorate the impact of disruptive weather on network perfor-
mance (e.g. overtime, transferring engineering resources
between regions, temporarily contracting additional engi-
neers). Surveys and semi-structured interviews conducted
within BT reveal that these actions typically need to be taken
several days or weeks in advance (Halford, 2018). The
development of climate services, using skilful meteorologi-
cal predictions weeks to months in advance (e.g. Lynch
et al., 2014; Scaife et al., 2014; Clark et al., 2017; Beerli
et al., 2017; Buontempo et al., 2018; Troccoli et al., 2018),
may therefore enable improvements in the performance of a
given system (i.e. the network and its associated set of main-
tenance resources) on a day-to-day “operational” basis.
Moreover, these operational improvements may translate
into better long-term “planning” decisions by changing the
dimensions of the system itself (e.g. improvements in

operational decision-making could enable the same network
to be managed with fewer resources without perfor-
mance loss).

It is beyond the scope of the present paper to discuss
sub-seasonal-to-seasonal (s2s) forecasting in detail. It is,
however, noted that s2s systems are typically probabilistic,
consisting of an ensemble of multiple realizations of possi-
ble future weather, and skill is derived from this ensemble
rather than a single deterministic forecast (Richardson,
2000). Moreover, s2s systems are typically better at
predicting the evolution of large-scale atmospheric patterns
(about 100–1,000 s of km) rather than localized surface
properties. For simplicity, the North Atlantic Oscillation
(NAO) is used here to indicate the dominant pattern of
large-scale winter atmospheric circulation over Western
Europe (positive NAO states are associated with warm,
wet, windy winters in the UK and vice versa for negative;
Hurrell et al., 2003).

Finally, a forecast is useful insofar as it provides value
for a particular end-user. For a forecast to provide value, it
must relate to a quantity of concern to a particular user
and enable better decision-making compared with alterna-
tive strategies (Murphy, 1985; Richardson, 2000). In the
present context, line fault rate forecasts are not the primary
concern; instead, it is ability to meet performance targets
for timely fault repair that matter most directly to the
end user.

With unique access to observational records of the UK
telecommunications infrastructure, the present paper
addresses all three aspects described above, providing an
end-to-end demonstration of how meteorological informa-
tion can be used in an important practical setting, addressing
forecast value over both day-to-day “operational” and longer
term “planning” timeframes. It does not seek to produce the
best possible forecast, instead using simple techniques to
highlight the processes involved and demonstrate the poten-
tial value. The end-user application, which shares many sim-
ilarities with applications in energy-systems operations and
planning, represents a shift in the way weather and climate
forecasts and simulations are used and evaluated: from a sit-
uation where forecast skill is assessed primarily in terms of
meteorology (upon which user decisions are subsequently
taken) towards one where decisions are explicitly included
in the assessment process.

The paper begins with a description of the data and meth-
odologies, and the creation of a long-term synthetic recon-
struction of line fault rates (Sections 2 and 3). The resulting
data set is used to quantify the extent to which large-scale
winter atmospheric circulation patterns influence line fault
rates and demonstrates that predictive skill is achievable
from the current generation of numerical weather prediction
systems up to four weeks ahead (Section 4). Finally, a
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parsimonious model of the decision-making process is used
to identify the conditions under which the fault rate forecast
can provide user value (Section 5). Section 6 provides con-
cluding discussion.

2 | ESTABLISHING A LONG
“FAULT RATE CLIMATOLOGY”

2.1 | Observed faults

Observed fault data from the telecommunications network is
provided by Openreach from April 2011 to December 2017.
A fault is defined as an unintended interruption in service on
Openreach's network that Openreach is required to repair.
Faults are reported to Openreach from their customers via
their communications service provider and thus there is often
a delay of hours, days or even weeks between the fault
occurring and it being recorded by Openreach. In recogni-
tion of this unknown and variable delay, weekly rather than
daily fault rates are used.

Faults arise from a range of causes. Where possible, non-
weather-related faults associated with “early life” issues
(within the first 28 days from installation) are removed from
the data set, along with faults within exchange buildings and
customer premises (which are not part of Openreach's
responsibility).

Observed fault rate data are available at several spatial
scales and across four different line types (Halford, 2018).
These line types are known as VOICE, VOICE_BB,
VOICE_NGA and MPF, employing different network tech-
nologies and different combinations of communications
products. Here, fault rates are aggregated nationally, with
three distinct line types considered (VOICE, VOICE_BB
and MPF), broadly corresponding to a set of predominantly
copper-based lines capable of carrying voice-only (VOICE)
and voice-plus-broadband (VOICE_BB and MPF) services.
Collectively the three types correspond to over 80% of the
installed lines in 2016, and large numbers of each line type
are present across the whole record. The remaining line type
(VOICE_NGA corresponding to newer “Next Generation
Access” lines) is excluded because only a small number of
lines of this type were present before about 2014/15. Each
line type is modelled individually before aggregation across
the line types because, although the three line types have
similar average weekly fault rates per installed line (Halford,
2018), each has a distinct set of technological characteristics
and quantitatively different weather responses.

Neither actual fault rates nor numbers of lines installed
are presented (for commercial sensitivity); instead, fault rates
are normalized with respect to a reference period (discussed
below).

2.2 | Meteorological data

Raw 6 hr surface meteorological data from ERA-Interim
(Dee, 2011; about 80 km resolution, 1979–2017) are
extracted for land-points only in the domain 12� W–4� E,
48� N–61� N. This is aggregated over area and time to
weekly resolution for use in the fault rate regression model
(Section 3).

An NAO index is defined as the first empirical orthogo-
nal function (EOF) of weekly mean sea level pressure
(MSLP) over the North Atlantic domain (20–80� N, 80� W–
40� E). The resulting spatial pattern resembles other similar
NAO calculations, typically performed on monthly mean
MSLP (e.g. Hurrell et al., 2003; Zubiate et al., 2017), and
explains a similar amount of the variance (36%).

Archived meteorological hindcasts are taken from the
European Centre for Medium-Range Weather Forecasts
(ECMWF) extended range forecast system (Vitart et al.,
2008), via the S2S database (Vitart and Robertson, 2018),
corresponding to twice-weekly (Monday and Thursday)
forecast launch dates over December 2016 to February
2017. These are chosen as they correspond to a single,
recent, version of the operational ECMWF forecast model
(Cy43r1). Each launch date produces an 11-member
hindcast ensemble corresponding to the same calendar date
occurring in each of the previous 20 years (i.e. the December
1, 2016, forecast produces hindcasts for December 1, 1996,
1997, …, 2015).

For each hindcast ensemble member, a weekly NAO
index is calculated by projecting the NAO spatial pattern
derived from reanalysis onto the weekly mean MSLP pattern
derived from the forecast model. To account for model bias
and drift, a lead time-dependent bias correction is applied to
the NAO values calculated from the hindcast using a “leave-
one-year-out” method. In effect, the bias of each individual
ensemble member's NAO hindcast for a particular year
[x ∈ X] is estimated by comparing the ensemble-mean time-
mean NAO averaged over all the remaining years (i.e. X
\{x}) and comparing this with the observed time-mean NAO
from ERA-Interim (averaged over the same years, X\{x}).
This correction is applied to each ensemble member for the
year x. This correction is applied separately for each lead
time, for each launch date and for each year (following
Lynch et al., 2014). As this correction is applied for each
launch date separately, it removes the impact of any sub-
seasonal drift in the climatological-mean NAO (i.e. the fore-
cast cannot produce skill by predicting the climatological
evolution of the NAO across the winter season; e.g. Keeley
et al., 2009).

Forecast “week 1” is defined as days 0–6, “week 2” as
days 7–13, and so forth. Owing to the fixed launch dates and
the focus on forecasting the same period (December–
February) there are fewer hindcast launch dates available for
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longer lead times (e.g. for the first week of December, the
first hindcast launch date December 1 provides a week 1 pre-
diction but the corresponding week 2, 3, …, 6 hindcasts are
not available as earlier launch dates are excluded). Reduced
sample sizes at longer lead times lead to wider confidence
ranges in the forecast skill assessment but do not affect the
conclusions of the present paper.

Several standard forecast skill metrics are applied to both
NAO index forecasts and fault-rate forecasts: anomaly corre-
lation co-efficient (ACC), rank-probability skill score (RPS),
continuous rank probability skill score (CRPS); root mean
square error (RMSE) and mean absolute error (MAE). Defi-
nitions can be found in standard statistical textbooks
(e.g. Wilks, 2011). In most cases, these metrics are presented
as skill scores (i.e. normalized with respect to a reference
forecast such as climatological expectation) such that the
numerical values are dimensionless.

3 | FAULT-RATE MODEL

Following similar approaches in weather-related electricity
demand modelling (Taylor and Buizza, 2003; Bloomfield
et al., 2016), a multiple linear regression model is con-
structed for each line type to characterize the link between
the observed fault rates and selected trial weather variables
during the observational period (listed in Table 1). The trial
weather variables are based on BT's experience of fault
repair and prevention, recorded through interviews and
expert elicitation (Halford, 2018). The model fitting proce-
dure is described, using the VOICE line type as an example.

For commercial sensitivity reasons, the observed fault
rates for VOICE lines are first divided by their average fault

rate over the observational period (hereafter referred to as

FRVOICE
obs ). The resulting data are presented in Figure 1a, and

are subsequently normalized by the number of VOICE lines
installed (NLINESVOICE) to account for the installation and
removal of lines (Figure 1b).

The resulting fault rate record, however, still contains
year-to-year trends associated with non-weather-related
effects, such as network degradations, preventative mainte-
nance, changes in processes and working practices, and
changes in customer expectations. A smooth locally esti-
mated scatterplot smoothing (LOESS) curve is fitted to the
fault data (window of 156 weeks; Cleveland, 1979), to iden-
tify these inter-annual trends in fault numbers. This trend
line is referred to as the “background fault rate” (BFRVOICE).

TABLE 1 Fault-rate model variables

Variable Description

PS Weekly total precipitation (three week running mean)

PT Weekly total precipitation over threshold (binary
value; threshold 105 mm�week−1)

T Weekly mean temperature

W Square of weekly mean 10 m wind speed

WT Weekly mean wind speed over threshold (binary
value; threshold 15 m�s−1)

RHT Flag to indicate if three or more consecutive days
occur with relative humidity over a threshold
(binary value; threshold 85%)

HOL Public holidays in a week

ε(0, σ) Residual/“noise” term; normal distribution

Note: For each weather variable where a smoothing window or threshold is used,
a range of windows/thresholds was tested before the final selection
presented here.

FIGURE 1 Fault-rate model for VOICE lines: (a) observed fault
rate (divided by the average fault rate over the entire period);
(b) observed fault rate per installed line (black line), with “background
trend” (smooth grey line)—the 2017 reference point is identified;
(c) observed fault-rate anomalies (with the “background trend”
removed); and (d) comparison between observed and simulated
expected fault rates over the observational period

4 of 15 BRAYSHAW ET AL.



Fault-rate anomalies with respect to the trend line are then
calculated (Figure 1c). The value of the long-term trend at
the last week in 2017, BFRVOICE|2017, is also noted for later
use as a reference point in the network's physical configura-
tion (i.e. the y-axis value of the right-hand most point of the
smooth grey line in Figure 1b).

A stepwise regression (Burnham, 2004) is performed on
the fault-rate anomalies, linking them to selected weather
parameters. This tests all possible combinations of the trial
weather parameters, seeking the minimal combination with
the best model fit (measured by minimizing the Akaike's
information criterion score; Akaike, 1974). The resulting
model takes the form (see Table 1 for definitions; the unit is
normalized fault rate per line per week, i.e. line−1 week−1):

EFRAVOICE = α0 + α1PS+ α2PT + α3T + α4W +α5WT

+ α6RHT + α7HOL,
ð1Þ

where EFRAVOICE is the expected fault-rate anomaly on
VOICE lines; and α1,…,7 are the fitted regression co-
efficients (Table 2). The residuals (i.e. model minus
observed fault-rate anomalies) are near normal with weak
autocorrelation and therefore a normally distributed random
number, εi(0, σ), is optionally added to produce an individ-
ual realization, i, of the fault-rate anomaly FRAi:

FRAVOICE
i = α0 + α1PS+ α2PT +α3T + α4W + α5WT

+ α6RHT + α7HOL+ εi 0,σð Þ ð2Þ

such that in the limit of a very large set of individual
realizations:

EFRAVOICE =
1
N

XN!∞

i=1

FRAVOICE
i : ð3Þ

Once the regression co-efficients have been calculated,
the fault-rate anomalies (FRAVOICE

i and EFRAVOICE) are
converted back to normalized fault rates for the line type
assuming a steady-state network equivalent to late 2017, that
is, using the number of installed lines and background fault
rate from the end of 2017. The resulting model for VOICE
lines performs well, with an R2 = 0.64 and
RMSE = 0.079week−1, with a clear correspondence
between the simulated expected fault-rate and the observed
fault rate (Figure 1d; note that the observed fault rate has
been similarly adjusted to match a network corresponding to
late 2017, but both the simulated and observed fault rates
remain normalized by the long-term average fault rate,
�FRVOICE

obs , for commercial sensitivity reasons). A similar pro-
cess follows for the other two line types (MPF and
VOICE_BB), with R2 = 0.59 and 0.64 and RMSE = 0.11
and 0.069week−1 respectively (for model co-efficients;
Table 2).

To evaluate the fault rates on the network as a whole, that
is, the total faults across the three line types, the normalized
fault-rate anomalies for each line type are converted back to
actual fault rates for the line type before summing over the
line type. For example, a single realization of the simulated
total fault rate across the three line types is TFRi:

TFRi =
X

linetypes

FRAlinetype
i �BFRlinetype

��
2017 �NLINESlinetype

��
2017

�FRlinetype
obs

ð4Þ

with an equivalent expression for the simulated expected
total fault rate TEFR:

TEFR=
X

linetypes

EFRAlinetype �BFRlinetype
��
2017 �NLINESlinetype

��
2017

�FRlinetype
obs :

ð5Þ

Finally, the values of TFRi and TEFR are normalized by
averaging over a baseline period in the simulated expected
fault rates (for commercial sensitivity reasons). The reference
chosen is arbitrary but corresponds to the long-term average
over the entire observational record (April 2011–December
2017) once calibrated to a network state of 2017. In other
words, as in the fault-rate models, the observations for each
line type is divided by NLINESlinetype and the long-term trend
BFRlinetype subtracted, then the 2017 “network state” is applied
(add BFRlinetype|2017 and multiply by NLINESlinetype|2017),
before summing over the three line types.

TABLE 2 Parameters in the fault-rate models (see the text for a
discussion)

Co-efficient (×106) VOICE VOICE_BB MPF

α0 (line
−1 week−1) −36.30 −37.30 −20.60

α1 (line
−1 week−1/

mm�week−1)
1.37 1.29 0.75

α2 (line
−1 week−1/

mm�day−1)
n.s. n.s. n.s.

α3 (line
−1 week−1/oC) 0.90 0.92 0.34

α4 (line
−1 week−1/m2�s−2) 0.08 0.10 n.s.

α5 (line
−1 week−1/m�s−1) n.s. n.s. 1.07

α6 (line
−1 week−1/%) 0.93 1.06 1.17

α7 (line
−1 week−1�days–1) −17.50 −11.60 −11.90

σ (line−1 week−1) 10.60 8.56 8.03

Note: Entries marked “n.s.” indicate the corresponding variable was not selected
by the stepwise regression. Units of each co-efficient are marked in parentheses
for convenience.
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In summary, TEFR is considered to represent the weekly
fault rate that would have been expected to occur due to the
weather conditions in some historic period if the network at
the end of 2017 had existed at that point in time. Similarly,
by using multiple realisations of TFRi, a probability distribu-
tion of fault rates can be constructed under the same network
assumptions. Here, 1,000 realizations of TFRi, are used to
estimate each probability distribution.

Figure 2 demonstrates the resulting models. Figure 2a
indicates a good match between the modelled and observed
fault rates, though the model has a slight tendency to over-
estimate low fault numbers and underestimate high fault
numbers. Overall, the national model aggregated over the
three line types has an R2 = 0.67 and RMSE = 0.074 week−1.
The spread around the 1:1 line in Figure 2a is well captured
by the “residual” εi(0, σ) term: Figure 2b shows that the
observed fault rate values typically lie within the 5–95%
confidence interval of the stochastic model.

The resulting model has many applications in terms of
establishing a “climatological” perspective (i.e. 1979–2017)
on weather-related faults. Figure 3a provides a simple indi-
cation of this: the expected range of fault rates across the
annual cycle. The distribution of fault rates encompasses not
only the effects of the residual in the fault-rate model but
also an estimate of the weather uncertainty (i.e. the fault
rates that could be experienced given a different weather
year). A clear annual cycle is visible, with fault rates peaking
in late autumn into winter (about 0.9–1.2 week−1) compared
with lower values in late spring and early summer (about
0.7–1.1 week−1), though the latter is somewhat influenced
by public holidays.

Having demonstrated the model's overall performance, it
is now possible to focus on the impact of weather on fault
rates. Some terms—in particular public holidays, α7HOL,
and the residual, εi(O, σ)—have no meteorological signifi-
cance such that a simplified version of the model can be
written (with these terms neglected):

EFRAlinetype = α0 + α1PS+ α2PT + α3T + α4W + α5WT

+ α6RHT :

ð6Þ

Figure 3b shows that the annual cycle in this simplified
model still has a clear fault rate peak in winter. In the
remainder of the present paper, the resulting simplified mod-
elled total expected fault rate (TEFR), after normalization by
the long-term mean, is referred to simply as the “fault rate”
and symbolically represented as FR.

4 | THE NAO AND WINTER FAULT
RATES

The strong seasonal cycle of fault rates means that winter is
an important period for network and resource management.
A key driver of UK and European winter weather is the
NAO, with recent studies suggesting potential predictability
weeks to months ahead.

Two components are required for the construction of a
weather forecast-based fault-rate prediction system. First,
there must be a strong relationship between a weather
predictand and the fault rate; and second, the chosen weather

FIGURE 2 Comparison between the fault-rate simulation and observed fault data illustrated as (a) frequency density and (b) time series. In
each case, the observed fault data are adjusted to correspond to a constant 2017 network state (see the text for a description). In (a), the best linear fit
is shown by the black curve, and a 1:1 line is provided (grey dashed)
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predictand must be skilfully predicted by the weather forecast
system. These two components are discussed in the following
sections separately, before the performance of a complete
“fault rate-prediction” system is presented. For simplicity, the
only weather predictand considered is the NAO, but other
weather predictands such as direct measures of pressure gradi-
ents may lead to higher overall levels of fault rate forecast
skill (Zubiate et al., 2017; Thornton et al., 2019).

4.1 | Historic relationships between the NAO
and winter faults

Figure 4 shows the correlation of the NAO with simulated
historic fault rates during winter. Positive NAO values gen-
erally lead to higher than normal fault rates, though there is
also considerable scatter (Figure 4a). This is consistent with
the well-known impact of the NAO on Northern European

winter climate, whereby positive NAO states lead to warm,
wet and windy conditions.

The continuous NAO index is divided into three
roughly equal bins (in terms of frequency of occurrence)
in Figure 4b. A positive NAO state is associated with
higher than normal fault rates, and vice versa for NAO
negative, though there is some overlap between the distri-
butions. Therefore, there are many different possible
UK/European weather states (and therefore fault rates)
associated with the same value of the NAO state,
highlighting the importance of viewing the relationship
between the NAO, European weather and fault rates as
probabilistic rather than deterministic. Nevertheless, the
strong relationship between NAO and fault rates suggests
that a skilful meteorological forecast of the NAO could
potentially provide valuable information.

FIGURE 3 Annual cycle of fault rates: (a) the “full model” (Equation (4); includes the bank holiday term); and (b) the “no bank holiday
model” (with α7 in Equation (4) set to zero). Each panel shows the simulated mean (central line) and expected range of fault rates (shading) that
could be expected under different weather years. The available whole years of observed fault data (2012–2017) are shown in (a) as thin solid lines

FIGURE 4 Impact of the North
Atlantic Oscillation (NAO) state on winter
fault rates: (a) NAO index versus fault
rate; and (b) fault-rate distributions
contingent on NAO “states”, defined as:
“high” (NAO > 0.45), “low” (NAO < –
0.45) and otherwise NAO “neutral”. These
thresholds correspond to three divisions
with each containing approximately one-
third of the time series
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4.2 | NAO forecast skill

Figure 5 shows three metrics of NAO-forecast skill,
expressed as a score relative to a climatological forecast
(i.e. the mean NAO value observed for that week, averaged
over the whole ERA-Interim record 1979–2017). A score of
unity represents a perfect forecast, positive values indicate
the model is outperforming climatology, and negative values
worse than climatology. As expected, the skill reduces with
increasing lead time and the following:

• ACC: a measure of whether the ensemble-mean NAO can
forecast the sign of the NAO suggests good skill in weeks
1–3 (about 1.0 dropping to about 0.5), with a small mea-
sure of positive skill across even out to week
6 (about 0.3).

• RPS: a measure of the ability to forecast ranked categori-
cal “states” of the NAO (i.e. positive/neutral/negative)
that decreases rapidly from about 0.7 in the first week to
about 0.1 in week 3. In week 4 and beyond, skill cannot
be statistically detected.

• Similar to the RPS, the CRPS: a measure of the skill
using the full probability distribution for the NAO that
decreases to modest values in week 3 (about 0.15), and is
not statistically significant in week 4 onwards.

In summary, the ECMWF extended range forecast sys-
tem contains demonstrable forecast skill. The weekly mean

NAO probability distribution produced by its ensemble
members has skill in week 3 (days 14–20) while the ensem-
ble mean NAO forecast has skill even in week
6 (days 35–41).

This is not an exhaustive analysis of forecast skill: these
results only illuminate the performance of a single forecast
model over a relatively short hindcast period. It is, however,
expected that the NAO skill results presented are a lower
bound on the achievable forecast skill in the operational fore-
cast model for three reasons: first, the operational forecast
contains more ensemble members than the hindcast (51 com-
pared with 11); second, it is known that the RPS is low-
biased for small ensembles (Weigel et al., 2007); and third,
newer versions of the forecast now in operational service
may offer improvements over the version analysed here.

4.3 | Fault-rate forecasts

Given the meteorological forecast skill for the NAO, two strat-
egies are tested to convert forecasts of NAO state information
into fault rate estimates (deterministic and probabilistic).

4.3.1 | Deterministic fault-rate forecasts

A deterministic forecast is a single estimate of fault rate. In
this case, a fault rate forecast for calendar week w at a fore-
cast lead time l is given by:

FRw,l
det =FRw

clim +
1
M

XM
j=1

�FRA NAOw,l
j

� �
, ð7Þ

where FRw
clim is the climatological-mean fault rate; NAOw,l

j is
the NAO state forecast (positive/neutral/negative) from
ensemble member j; �FRA �ð Þ is the mean fault-rate anomaly
associated with a given NAO state; and M is the ensemble
size. The fault rate predicted is the climatological value for
the relevant week of the year, plus the mean fault-rate anom-
aly associated with the forecast NAO state, weighted by the
number of ensemble members predicting the occurrence of
each NAO state. This is hereafter referred to as the determin-
istic “operational” fault rate forecast.

The performance of this forecast method is compared
against two benchmarks:

• Deterministic “climatological” fault rate forecast where

Equation (7) reduces to FRw,l
det,clim =FRw

clim for all lead

times, l.
• Deterministic “perfect NAO” fault rate forecast where

Equation (7) reduces to FRw,l
det,perf =FRw

clim + �FRA

NAOw,l
observed

� �
for all lead times, l.

FIGURE 5 Skill scores for North Atlantic Oscillation (NAO)
anomaly forecasts from the European Centre for Medium-Range
Weather Forecasts (ECMWF) sub-seasonal forecast: (a) anomaly
correlation co-efficient (ACC); (b) CRPS; and (c) RPS. Skill scores are
referenced with respect to a time-evolving climatological NAO-
anomaly forecast (i.e. the climatological NAO anomaly observed in
each week of winter). A skill of unity represents a perfect forecast;
zero/negative values represents no additional skill or a degradation in
performance compared with the reference climatology forecast. Error
bars indicate the 90% confidence band (i.e. 5–95% range)
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The ECMWF forecasts are launched on Mondays and
Thursdays, but are assessed on their performance to simulate
weekly mean fault rates. To ensure that the two sets of fore-
casts are compared at consistent lead times, the fault-rate cli-
matology (described in Section 3) is recalculated for each
forecast set using week start dates consistent with the launch
days (i.e. the Monday-launched forecasts are compared
against a weekly fault rate climatology with weeks starting
on Mondays, and similarly for Thursdays).

4.3.2 | Probabilistic fault-rate forecasts

A probabilistic fault rate forecast is constructed in a similar man-
ner to the deterministic forecast described above, but provides a
probability distribution of fault rates rather than a single value.
Instead of using the mean fault-rate anomaly associated with
each NAO state, i.e. �FRA �ð Þ, the corresponding empirical
probability distribution corresponding to the NAO state is
used, here denoted ~FRA �ð Þ. Thus a probabilistic fault rate
forecast for calendar week w at a forecast lead time l is given
by:

FRw,l
prob =FRw

clim +
1
M

XM
j=1

~FRA NAOw,l
j

� �
: ð8Þ

This is hereafter referred to as the probabilistic “opera-
tional” fault rate forecast.

The performance can then be evaluated against two
benchmarks:

• Probabilistic “climatological” fault rate forecast. Equa-

tion (8) reduces to FRw,l
prob,clim =FRw

clim + ~FRAallNAO for all

lead times, l, where ~FRAallNAO is the fault-rate anomaly
distribution across all NAO states.

• Probabilistic “perfect NAO” fault rate forecast where

Equation (8) reduces to FRw,l
prob,perf =FRw

clim + ~FRA

NAOw,l
observed

� �
for all lead times, l.

4.3.3 | Fault-rate skill

Figure 6 shows the relative skill of each method. In each
case, the MAE (deterministic) or CRPS (probabilistic) is
expressed as a dimensionless skill score with respect to a
deterministic climatological forecast (see Section 2.2). Posi-
tive scores therefore imply an improvement on deterministic
climatological information.

The perfect NAO forecasts provide an upper bound of the
skill that can be derived from NAO information alone. The
skill scores of about 0.15 (deterministic) and about 0.4 (prob-
abilistic) represent statistically significant improvements on a
purely climatological fault rate forecast, thus it is clear that a

skilful forecast of the NAO provides skill in terms of fault
rate. The operational forecasts (i.e. using ECMWF forecasts
of the NAO) confirm this, with comparable skill to the perfect
NAO fault rate forecast in week 1, with skill dropping at lon-
ger lead times (at week 5 skill scores of around about 0.07
(deterministic) and about 0.35 (probabilistic) represent very
marginal improvements over their respective climatological
equivalents; beyond this any skill improvement over climatol-
ogy is not detectable).

While this overall pattern of skill decay with lead time is
consistent with the skill in forecasting the NAO-forecast
itself (Figure 5, Section 4.2), the “operational” fault rate
forecasts' skill decays with lead time more slowly than the
NAO RPS/CRPS skill scores might suggest (there is still
some skill over climatology in weeks 4–6 whereas the NAO
RPS score suggests no skill beyond week 3). This is initially
surprising, given that the fault rate forecast is based on
predicting the NAO states and therefore might be expected
to resemble the NAO's RPS skill. However, the fault rate
forecast methods (Sections 4.3.1 and 4.3.2) are more closely
related to the forecast skill of the ensemble mean NAO (and
hence ACC) rather than its distribution (and hence RPS).
This can be seen by considering the deterministic fault rate
method, where the predicted fault-rate anomaly is the sum of
the individual NAO state anomalies predicted by each
ensemble member (i.e. effectively a weighted ensemble
mean with the weights corresponding to the strength of the
fault anomalies in each NAO state). The skill of the fault-

FIGURE 6 Skill scores for fault rate forecasts (see the text for a
description). Skill scores are referenced with respect to a time-evolving
deterministic climatological fault rate forecast (i.e. the climatological
expected fault rate observed in each week of winter). Probabilistic skill
scores are measured using CRPS, whereas deterministic skill scores use
mean absolute error (MAE). A skill of unity represents a perfect forecast;
zero/negative values represents no additional skill or a degradation in
performance compared with the reference climatology forecast. Error
bars indicate the 90% confidence band (i.e. 5–95% range)
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rate forecast therefore relies on the skill in the ensemble
mean prediction of the NAO, not in the NAO probability
distribution.

Though it is difficult to compare quantitatively the per-
formance of probabilistic and deterministic forecasts the skill
measures used (MAE for deterministic and CRPS for proba-
bilistic) are comparable insofar as CRPS reduces to MAE in
the deterministic limit. On this basis, the probabilistic fault
rate forecast outperforms the deterministic fault rate forecast
at all lead times.

5 | THE VALUE OF FAULT-RATE
FORECASTING

A major internal performance indicator for Openreach is
timely fault repair. Depending on the service level
agreement between Openreach and its customers
(i.e. communication service providers), reported faults typi-
cally must be fixed within one to three working days. The
fraction of successful fault clears within these deadlines is a
key operational measure, which we will refer to here as
RD3, following the naming used internally within
Openreach. Openreach has RD3 targets imposed by the
industry regulator, known as OfCom, and penalties are
incurred if these targets are not met (OfCom, 2014).

Although in practice there are many subtleties associ-
ated with, for example, timing, geography, technology and
the skillsets of particular engineers, repair can be viewed
as drawing upon a pool of engineering resource (a set of
trained engineers) which can be allocated to repairs. The
fault rate is therefore an ingredient in the work stack that
must be completed by the engineering resource in each
period, but improvements in fault-rate prediction do not
guarantee improved performance against an RD3 target.
Moreover, the performance against the RD3 target depends
upon operational decisions (themselves based on work
inflows and forecasts), and thus it is not possible to write
a function linking weather inputs to an estimate of RD3
(in particular, unfixed faults are carried over as a
workstack thus RD3 at any instant in time, t0, is poten-
tially influenced by not only the instantaneous fault rate
but also the fault rate at all previous timesteps {t−N,…,t−2,
t−1}). To understand whether fault rate forecasts can help
to meet RD3 targets, it is necessary to simulate the
decision-making process.

This decision can be approximated as follows. Under nor-
mal conditions, a minimum level of engineering resources
(engineers) are retained: corresponding to a set of appoint-
ment slots that can be allocated to repairing lines. In situations
where the normal level of engineering resource is unable to
meet the RD3 target, a series of actions can be performed
(at a cost) to temporarily increase resource levels by a few

tens of a per cent (e.g. overtime, delaying non-essential
actions, and issuing short-term contracts for additional exter-
nal resource). These actions, however, take time to implement
and so decisions on resource levels are typically taken based
on forecast fault rates and locked in days to weeks ahead.

In the following section, a parsimonious model is pres-
ented to mimic this decision process, enabling the time evo-
lution of the engineering resource (and subsequent failures
to meet a defined RD3-like target) to be simulated for a
given fault rate forecast.

5.1 | Decision model

The real scheduling problem involved is complex with
actions taken across multiple lead times and balancing
resource between multiple objectives (Halford, 2018). For
simplicity, scheduling decisions are reduced to a two-step
framework corresponding to forecast weeks 1 and 2:

• In analogy to the RD3 target, a fraction of each week's
incoming faults is specified as a target repair threshold.
These must be repaired within the week, otherwise a
“target failure”, α, is recorded for each excess
unrepaired fault. A threshold of 70% is used, broadly
consistent with recent OfCom RD3 targets (sensitivity
tests confirm qualitatively insensitivity to moderate vari-
ations, not shown).

• Unrepaired faults carry over to the next week. This work
stack must be repaired before any new faults are repaired.

• Engineering resources, r, are scheduled for week 2 based
on the work stack and incoming fault rate, and may take
any value within the range [rmin, rmax]. Additional engi-
neering resource incurs a finite but small cost.

• The number of foreseeable target failures is always
minimized.

• Consistent with current practice, only deterministic fault
rate forecasts are considered.

The problem is implemented as an iterative programme
on a weekly time step. The target failure rate, α, and stack, s,
at the end of week k are:

αk = sk−1 +FRactual
k � 1−λð Þ

−rksk = sk−1 +FRactual
k −rk,

ð9Þ

where FRactual
k is the observed fault rate in week k, and (1

− λ) is the target threshold parameter (set to 0.7, or 70%);
and rk corresponds to the engineering resource allocation,
which must be calculated 1week in advance (i.e. the value is
calculated for week k+1, based only on information avail-
able at the start of week k). Mathematically, calculation of r
for each week is a linear programme:
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min αforecastk+1 � ct + rk+1 � cr
� �

where:

αforecastk+1 =max sk +FRforecast
k+1 � 1−λð Þ−rk+1,0

� �

subject to:

rmin ≤ rk+1 ≤ rmax, ð10Þ

where ct and cr are the unit costs of failing to meet a repair
target and increasing the engineering resource respectively
such that ct � cr (provided ct > cr is satisfied the solution to
each individual optimization problem is insensitive to the

values of ct and cr). FR
forecast
k+1 and rk+1 are the forecast fault

rate and the resulting engineering resource allocated for
week k+1, respectively. For simplicity, it is assumed that
very high-quality short-range forecast of the fault rates in the
first week (i.e. week k) is available such that

FRforecast
k =FRk, and hence sk and αk are perfectly known

(see Equation 9). However, in the second week (i.e. week k
+1), the fault rate forecast is assumed to be imperfect, such

that αforecastk+1 corresponds to a forecast failure rate which may
be different to the actual failure rate, αk+1. This assumption
therefore seeks to highlight the role of forecast information
in the second week and is consistent with the observation
that short-term forecasts (less than 1week ahead) tend to be
much more skilful than longer range forecasts (greater than
1week ahead).

The fault rate is presented in normalized dimensionless
units (i.e. a fraction of the long-term fault rate). Conse-
quently, r and s are in similar normalized non-dimensional
units: a value of r = 1 week−1, for example, indicates engi-
neering resources sufficient to meet the long-term average
fault rate.

Only the period for which week 2 sub-seasonal hindcasts
are available are considered (the second week of December
1996 through to the last week of February 2016). The model
is run continuously over all winter weeks across all years
(e.g. the last week in February 2010 is followed immediately
by the second week in December 2010). The model is ini-
tialized with s1 = 0 week−1 and r1 = rmin. The first and last
years are removed as spin up and incomplete data respec-
tively, leaving 18 years of 14-week winters data for each
simulation.

A sensitivity test of a similar two-timestep decision
model based on the week 4 fault forecast was performed
(e.g. for the week starting January 22, the week 2 forecast

for FRforecast
k+1 which was launched on January 15 is replaced

with a week 4 forecast launched on January 1). The results

were consistent with the week 2 discussion presented here,
though with weaker skill levels (not shown).

5.2 | Failure rates

The decision model includes two parameters, rmin and rmax,
corresponding to the lower and upper bounds on the engi-
neering resource, r, with the difference between them
(rmax − rmin) representing the schedulable contingency.
These two parameters can therefore be viewed as controlla-
ble through appropriate long-term business planning,
whereas the carryover from week to week (λ) is imposed
externally by the regulator, OfCom.

The concern is to identify the extent to which fault-rate
forecasts translate to:

• Reductions in expected target failure rates given different
prevailing business conditions (i.e. different rmin

and rmax).
• Potential for reducing resource levels (i.e. rmin) without

increasing the long-term expected target failure rate.

Figure 7 addresses the first question, showing the impact
of fault-forecasts on the target failure rate under differing
rmax. The value of rminref ≈1:04 week−1 in each simulation is

FIGURE 7 Impact of rmax (the upper bound on “engineering
resources”) on fault repair target failure rates using different fault-rate
prediction schemes, for a given rmin (about 1.04 week−1), as simulated
by the simplified decision-model outlined in the text: (a) absolute
failure rates; (b) change (reduction) in the target failure rate for each
scheme with respect to the climatological forecast
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set to the average weekly fault rate in the winter period,
broadly consistent with current practice (Halford, 2018).
Three fault rate forecasts (climatology, perfect NAO and
operational week 2) are shown along with a true perfect fore-
cast (where the actual fault rate is used in place of a forecast
fault rate). For all forecast methods, small rmax values lead to
high target failure rates (Figure 7a, about 0.3 week−1). This
drops to low values for rmax≿ 1.1− 1.2 week−1 indicating
that most target failures can be avoided with a modest flexi-
bility in the overall resource (about 15% points,
corresponding to roughly 2 standard deviations (SD) in the
wintertime weekly fault rate). This suggests that overall
character of target failure rates is dominated by the flexibil-
ity to add engineers when required to deal with fault spikes.
As flexibility reduces, target failures necessarily increase.

Figure 7b shows the value of different forecast schemes.
For rmax ≾ 1.1 week−1, the system has insufficient flexibility
in the upper bound of engineering resource to respond to
improvements in fault rate forecasts: despite knowing a fault
rate spike will occur, little additional engineering resource
can be obtained. For 1.1 ≾ rmax ≾ 1.2 week−1, fault rate
forecasts begin to demonstrate advantages over climatology
and for rmax ≿ 1.2 week−1, the benefits of fault rate forecasts
saturate: sufficient contingency engineering resource can be
obtained such that any backlog of unrepaired faults can be
rapidly cleared. In the large rmax limit, the perfect forecast
leads to an almost 100% target failure rate reduction,
whereas the “operational” week 2 forecast leads to an about
12% reduction (similar to the perfect NAO forecast; an oper-
ational week 4 forecast offers a about 5% reduction, not
shown). Operational forecast methods offer a relatively con-
sistent fraction of the total improvement offered by the per-
fect fault rate forecast across the whole range of rmax

(i.e. about 10% for week 2 and about 5% week 4, respec-
tively, week 4 not shown).

Figure 8 addresses the second question: the extent to
which a fault rate forecast can reduce rmin while maintaining
the same expected target failure rate. Based on the analysis
above and stakeholder interviews (Halford, 2018), a contin-
gency level of 15% is assumed (rmax − rmin = 0.15 week−1)
and the target failure rates evaluated for each forecast system
under a range of rmin.

Figure 8a shows that, as rmin decreases, the target failure
rate increases, as expected (there is less engineering capacity
to fix faults so more target failures occur). Figure 8b also
shows that the benefit of all forecasts (including the perfect
forecast) decreases for low rmin, reinforcing the observation
that forecast value is limited by the decision maker's ability
to respond. As before, however, the perfect NAO and opera-
tional week 2 forecasts offer some reduction in target failure
rates compared with a climatological forecast (typically
5–10% reduction).

Figure 8a further shows that forecasts enable a reduction
in rmin while maintaining the same level of target failure rate
risk, and the same level of access to contingency resources.
For example, a system with rminabout 1.04 week−1 using a
climatological forecast has the same expected target failure
rate as a system with rminabout 1.03 week−1 using an opera-
tional week 2 forecast: using the operational week 2 forecast
therefore enables a about 1% reduction in permanently held
engineering resources. For comparison, a perfect forecast
could achieve a 5% reduction in permanently held engineer-
ing resources for the same expected target failure rate.

In summary, the usefulness of fault rate forecasts depends
upon the ability of decision-makers to respond. Neverthe-
less, in this simple illustrative decision model, fault rate fore-
cast skill can either reduce the frequency with which repair
target failures occur (by about 5–10% using the present week
2 forecast system) or reduce the amount of permanently held
engineering resources (by about 1%).

6 | DISCUSSION AND
CONCLUSIONS

A fault rate forecast system for the Openreach telecom-
munications network in the UK is demonstrated and a

FIGURE 8 Impact of rmin (the lower bound on “engineering
resources”) on fault repair target failure rates using different fault-rate
prediction schemes, for a given contingency (rmax –
rmin = 0.15 week−1), as simulated by the simplified decision-model
outlined in the text: (a) absolute target failure rates; and (b) change
(reduction) in target failure rate for each scheme with respect to the
climatological forecast. The dotted lines in (a) are discussed in the text
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simple decision model used to explore the consequent
operational and planning benefits. Four aspects are
highlighted:

• Quantifying baseline weather and climate risk: a 38 year
historic reconstruction of fault rates is created using mete-
orological reanalysis. This enables more robust character-
ization of the “climatology” of risk compared with
observational records.

• Identification of climate drivers of fault rates: winter is a
particularly challenging period for faults, with higher fault
rates than summer. The winter North Atlantic Oscillation
(NAO) is shown to affect faults, with positive NAO typi-
cally leading to higher rates compared with NAO nega-
tive conditions.

• Skill is found in ECMWF sub-seasonal NAO forecasts
and can translate into skilful fault rate forecasts weeks in
advance: statistically significant skill is found for the
NAO at lead times of several weeks (6 weeks for ACC;
about 3–4 weeks for RPS/CRPS) and consequently in
NAO-tercile based fault rate forecasts.

• Skilful fault rate forecasts could enable better fault man-
agement in Openreach's UK telecommunications net-
work: improved fault rates forecasts could improve the
rate at which performance targets are met (i.e. reduce the
number of faults that cannot be repaired within a given
time window) or reduce the cost of maintaining the sys-
tem at a given level of risk.

From a business perspective, the simplified decision
model suggests that sub-seasonal numerical weather predic-
tions offer considerable potential advantages. While the
reductions in failure rates and engineering resources appear
modest (about 5% and 1%, respectively, for a week 2 fore-
cast), they correspond to significant potential savings. For
context, the maximum cost of repair target failures is about
£1 million�day−1, while an engineering workforce with on
the order of 10,000 staff implies annual staffing costs of
around £500 million: a 1% saving in engineering resource
could therefore correspond to a potential saving of about
£1 million. These estimates are, of course, upper bounds
insofar as there are competing demands for engineering
resources and limitations on the decision-maker's ability to
respond. Nevertheless, with more advanced methods, partic-
ularly making more use of probabilistic forecasts and
decision-making or inclusion of other meteorological ingre-
dients (e.g. the East Atlantic or Scandinavian patterns;
Zubiate et al., 2017; Halford, 2018), it is likely possible to
achieve reductions towards about 5% achievable with a per-
fect forecast system.

Consistent with the experiences of other recent climate
service activities (e.g. Buontempo et al., 2018; Troccoli

et al., 2018), this research highlights the importance of
understanding the decision-making context in evaluating
weather forecast performance. In this example, it is possi-
ble to recognize two timeframes, operations and plan-
ning, both of which can be informed by the forecast
system.

On the short operational timeframe, the user objective
can be viewed as making the best use of predetermined set
of resources. In the present context, the resources correspond
to the permanently held engineering resources (rmin) and the
contingency available (rmax − rmin). Here, one seeks to mini-
mize the amount of contingency resource used (rt − rmin)
and the failure rate for each time step t such that
rmin < rt < rmax. In this manner, the forecast's value should
be expressed in a reduction in both failure rates and operat-
ing costs (

P
t rt−rminð Þ).

On the long planning timeframe, the user objective is dif-
ferent: it can be viewed as determining the optimal set of
resources to achieve a desired balance between cost and risk
(here, the expected target failure rate). That is, a forecast is
skilful if it enables reductions in permanently held engineer-
ing resources (rmin) or the maximum contingency available
(rmax − rmin) while maintaining the same expected perfor-
mance against given targets.

Neither of these forecast value assessments can, however,
be made without explicitly including a representation of the
decision process. Though there are examples of decision
models in weather/climate forecasting studies (e.g. Sonka
et al., 1987; Kim and Palmer, 1997), and though climate ser-
vice projects have engaged strongly with users in a wide
range of sectors and applications (e.g. Buontempo et al.,
2018), most assessment of s2s forecasts remains focused in
the meteorological domain (e.g. evaluating forecast skill for
meteorological properties or simple transformations of them,
rather than the value added given a particular decision-
making process). The use of an explicit decision model in
the present paper contrasts with standard meteorological
impact assessments where impact I is viewed as a transfer
function from meteorological conditions f(M) and “forecast
value” is determined from an N × N “cost/loss” decision
matrix model (Murphy, 1985; Richardson, 2000). That
approach is insufficient for situations where no transfer func-
tion f exists (∄f : I = f(M); Brayshaw, 2018) and decision
outcomes and forecast errors compound over time. The
inclusion of decision-making represents a different paradigm
in forecast assessment. The impact model used to convert
weather variables to decision outcomes becomes integral to
the forecast assessment (rather than being added afterwards),
and may potentially use forecasts across many different lead
times. This suggests the need not only for continuing in-
depth sectoral engagement in climate service development
(as in, for example, EUPORIAS and its many successors;
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Buontempo et al., 2018) but also for new generalizable tools
and methods to represent better complex decision-making in
weather and climate forecast assessment.
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