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ABSTRACT

The accepted idea that there exists an inherent finite-time barrier in deter-

ministically predicting atmospheric flows originates from Edward N. Lorenz’s

1969 work based on two-dimensional (2D) turbulence. Yet, known ana-

lytic results on the 2D Navier-Stokes (N-S) equations suggest that one can

skilfully predict the 2D N-S system indefinitely far ahead should the initial-

condition error become sufficiently small, thereby presenting a potential con-

flict with Lorenz’s theory. Aided by numerical simulations, the present work

re-examines Lorenz’s model and reviews both sides of the argument, paying

particular attention to the roles played by the slope of the kinetic energy spec-

trum. It is found that when this slope is shallower than −3, the Lipschitz con-

tinuity of analytic solutions (with respect to initial conditions) breaks down

as the model resolution increases, unless the viscous range of the real system

is resolved – which remains practically impossible. This breakdown leads

to the inherent finite-time limit. If, on the other hand, the spectral slope is

steeper than −3, then the breakdown does not occur. In this way, the apparent

contradiction between the analytic results and Lorenz’s theory is reconciled.
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1. Introduction29

Now an accepted fact in dynamical meteorology, the existence of an inherent finite-time barrier30

in predicting atmospheric flows was first conceptually shown by Lorenz (1969). Using a simple31

model, he estimated the predictability limit to be slightly over two weeks – a result echoed by32

recent studies with real-world operational models at major numerical weather prediction centres33

(Buizza and Leutbecher 2015; Judt 2018; Selz 2019; Zhang et al. 2019). Although advances in34

probabilistic prediction make it possible to extract predictable signals beyond this limit, the ex-35

tended predictability mainly results from temporal averaging of the predicted fields, together with36

the slowly varying components of the climate system (Buizza and Leutbecher 2015). Moreover,37

the loss of information in probabilistic prediction is reflected in the growth of deterministic error,38

and under statistically stationary conditions, saturation of the error spectrum corresponds to the39

predicted probability distribution matching that of the climatology, so that the loss of determin-40

istic and probabilistic predictability are matched. Indeed, empirical evidence suggests that the41

decay of forecast skill behaves broadly similarly across deterministic and probabilistic predictions42

(Buizza and Leutbecher 2015). Thus the study of deterministic error growth can be used to un-43

derstand the mechanisms limiting the range of predictability to a finite horizon and the role of44

multi-scale interactions in error growth (Rotunno and Snyder 2008; Durran and Gingrich 2014;45

Sun and Zhang 2016). Such an analysis requires averaging over multiple cases to ensure robust46

results, which is a somewhat different notion of predictability compared to the fully probabilistic47

notion used today. However, since the earlier works adopted the deterministic approach with the48

averaging, we shall take the same approach as we revisit their works.49

In his original work, Lorenz (1969) classified fluid systems into two categories:50
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• those whose error at any future time can be made arbitrarily small by suitably reducing the51

initial error, and52

• those whose error at any future time cannot be reduced below a certain limit unless the initial53

error is zero.54

Using an appropriate skill function, these systems can be equivalently characterised in terms of55

range of predictability (or simply predictability): the former category has an indefinite range and56

the latter has only an inherently finite range. The reader is referred to Appendix A for a motivation57

of the concept and more details about the skill function. By modelling atmospheric flows by the58

two-dimensional (2D) barotropic vorticity equation and assuming a −5
3 spectral slope along the59

inertial range of the kinetic energy (KE) spectrum of the unperturbed flow, he argued that such60

flows have an inherently finite range of predictability. (The inertial range is a continuous part61

of the spectrum where a specific power-law relationship is followed so that the flow restricted to62

such scales is self-similar. It is identified by a spectral slope which is the slope of the spectrum as63

appearing in a log-log plot.)64

Although the barotropic vorticity equation with large-scale forcing produces a steeper spectral65

slope of −3, and unbalanced dynamics are required to produce a spectral slope of −5
3 in more66

realistic models (Sun and Zhang 2016), it has been shown that predictability is determined much67

more by the spectral slope than by the nature of the dynamics (Rotunno and Snyder 2008). Thus, it68

is appropriate to use the barotropic vorticity equation to study predictability with a range of spectral69

slopes, recognising that this only addresses one aspect of what limits atmospheric predictability in70

practice.71

Closely related to this system are the incompressible 2D Navier-Stokes (2D N-S) equations,72

whose well-posedness (existence of a unique solution to the initial-value problem that depends73
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continuously on the initial conditions) was first rigorously shown by Ladyzhenskaya also in the74

second half of the twentieth century (Robinson 2001). As we will see in Section 4, it is not difficult75

to show that well-posedness implies an indefinite range of predictability in the sense of Lorenz.76

The present paper aims to reconcile the difference between the inherently finite predictability77

result of Lorenz and the indefinite predictability corollary of Ladyzhenskaya’s proof, in the con-78

text of incompressible 2D flows. Section 2 reviews Lorenz’s argument of its inherent finite-time79

behaviour. In Section 3 we reproduce Lorenz’s numerical results and discuss the predictability in80

the directly simulated 2D barotropic vorticity model. An account of the well-posedness and indef-81

inite predictability of the incompressible 2D N-S equations is presented in Section 4, with which82

we reconcile Lorenz’s result of inherently finite predictability in Section 5. The major findings are83

summarised in Section 6.84

2. Lorenz’s argument of inherently finite predictability85

The model of Lorenz (1969) is based on the dimensionless 2D barotropic vorticity equation86

∂θ

∂ t
+ J(ψ,θ) = 0, θ = ∆ψ (1)

where ψ is the velocity streamfunction (related to the velocity u by u = −∇× (ψk̂)), ∆ =87

∇ ·∇,∇ =
(

∂

∂x ,
∂

∂y

)
and J(A,B) = ∂A

∂x
∂B
∂y −

∂A
∂y

∂B
∂x . Assuming a doubly periodic domain, Lorenz88

expanded the variables ψ and θ in Fourier series and re-wrote the linearised error equation of89

(1) in Fourier components. Then he made various assumptions to an ensemble of error fields90

for the linearised error equation of (1), most notably homogeneity and a slight generalisation91

of the quasi-normal closure. The resulting equation was then passed into the large-domain and92

continuous-spectrum limit.93
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The derivation is arguably more straightforward if the domain is the whole R2 space and the94

variables are Fourier-transformed rather than expanded in Fourier series. We have checked that95

this method returns the same equation as the limiting equation of Lorenz, up to a constant multi-96

plicative factor.97

A further assumption of isotropy simplifies the equation, which was then discretised and numer-98

ically approximated. Depending on the specification of a KE spectrum for the unperturbed flow,99

a matrix of constant coefficients C was constructed so that the vector Z of error KE at different100

scales (each scale K collectively represents wavenumbers k = 2K−1 to k = 2K) evolves according101

to the linear model102

d2

dt2 Z =CZ, or equivalently
d
dt

Z

W

=

0 I

C 0


Z

W

 , (2)

where W is the first time-derivative of Z.103

As Rotunno and Snyder (2008) mentioned, the computation of C involves computing integrals104

of nearly singular functions. We have been cautious about these integrations and have made sure105

that our integrations for C are accurate, some details of which are provided in Appendix B.106

To time-integrate equation (2), it is necessary that the initial conditions for Z and W are speci-107

fied. Lorenz did not explicitly give an initial condition for W , but as Rotunno and Snyder (2008)108

assumed W (t = 0) ≡ 0 in their predictability experiments, we shall prescribe the same for our109

numerical simulations (Section 3(a)). The non-linear effects were accounted for by removing the110

corresponding components of Z, W and C when the error KE saturated at a particular scale, where-111

upon an inhomogeneous forcing term was added to the right-hand-side of equation (2) to account112

for the saturated scale’s contribution to the error growth at the unsaturated scales (details available113

in Appendix C). Time-integration with the resulting lower-dimensional system was carried on,114

until all scales became saturated. The evolution of the error KE spectrum in time is depicted in115
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Figure 1 (for illustrative purposes only; this is for a spectral slope of −3 whose simulation Lorenz116

excluded in his original work).117

As Lorenz noted down the saturation times tK of scale K, he found that the successive differences118

tK − tK+1 behaved approximately proportional to 2−βK with β depending on the spectral slope.119

He therefore concluded that, given an initial error at an infinitesimally small scale, the range of120

predictability is inherently finite if and only if the telescoping series121

tK =
∞

∑
j=K

(t j− t j+1) =
∞

∑
j=K

2−β j (3)

is summable, which is the case if and only if β > 0. By observing β = 2
3 for the atmospherically122

relevant spectral slope of−5
3 , he suggested inherently finite predictability for the atmosphere. Ad-123

ditionally, he found that β = 1
3 for a hypothetical spectral slope of −7

3 . Lorenz thus hypothesised124

by linear extrapolation that the range of predictability would be indefinite if the spectral slope were125

steepened to −3.126

This result is echoed by arguments on dimensional grounds (Vallis 1985; Lilly 1990). Assuming127

that tK in equation (1) depends only on the wavenumber k and the one-dimensional KE spectral128

density E(k) of the background flow, one has tK ∼ (k3E(k))−0.5 as this is the only way the physical129

units of k and E(k) can combine to give the dimension of time. With k ∼ 2K , one obtains tK ∼130

2−βK , with β = 2
3 , 1

3 and 0 for the spectral slopes of −5
3 , −7

3 and −3 respectively, the same result131

as Lorenz’s.132

3. Numerical simulations133

We performed a series of numerical simulations, first on the Lorenz model (2) followed by a134

forced-dissipative version of the full 2D barotropic vorticity system (1), to see whether indefinite135

predictability is indeed achieved with a KE spectral slope of −3 as Lorenz hypothesised.136
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a. Lorenz’s model137

Rotunno and Snyder (2008) solved for the growth of the error KE spectrum for a background138

spectral slope of −p where p = 3. In order to assess the range of predictability in Lorenz’s frame-139

work, we extended their calculations to study the relationship between K and tK .140

Having computed the matrix C as in Rotunno and Snyder (2008), we solved the linear matrix141

system (2) explicitly, that is, by writing out the general solution in terms of the eigenvalues and142

eigenvectors of143 0 I

C 0


and projecting the initial condition onto such an eigenspace to determine the constants of the144

general solution. This exact approach is a good and easy alternative to the numerical schemes145

used by Lorenz (1969), Rotunno and Snyder (2008) and its extension by Durran and Gingrich146

(2014). Details of the solution procedure can be found in Appendix C.147

Figure 1 shows the evolution of the error for the −3 spectrum as in Rotunno and Snyder (2008),148

and Figure 2 shows the saturation times tK as a function of the scale K. Note that in Figure 2 tK149

is plotted instead of tK − tK+1 against K, but the choice makes little difference when β > 0 since150

if tK − tK+1 is proportional to 2−βK then so is tK (cf. equation (3)). It is clear that the saturation151

times tK scale as 2−βK with a small but positive β (0.05) along the inertial range, so that the sum152

in equation (3) is still finite for p = 3, contrary to Lorenz’s prediction. Indeed, arguing in the same153

way as Lorenz, our result indicates inherently finite predictability for a −3 spectrum which is154

contrary to Lorenz’s hypothesis, although we acknowledge that β = 0.05 is just marginally away155

from the critical value of zero. We did, however, recover Lorenz’s result for the case of a −5
3156

spectrum (not shown).157
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b. Forced-dissipative 2D barotropic vorticity equation158

The difference between our value of β and Lorenz’s for the −3 spectrum deserves particular159

attention because it amounts to a qualitative contrast between inherently finite and indefinite ranges160

of predictability. To further investigate this, we performed direct numerical simulations (DNS) on161

this p= 3 spectrum in the form of identical-twin experiments (pairs of runs which only differ in the162

initial condition), and assessed the predictability following Lorenz’s methodology with necessary163

adaptations.164

First of all, equation (1) had to be restricted to a doubly periodic domain and be made forced-165

dissipative:166

∂θ

∂ t
+ J(ψ,θ) = f +d, θ = ∆ψ. (4)

The forcing and dissipation, however small, are necessary for generating statistically stationary167

KE spectra in the DNS. To generate a −3 spectral slope, following standard practice (Maltrud168

and Vallis 1991), forcing was applied at the large scale: f (t) was chosen to be an independent169

white-noise process for each 2D wavevector whose scalar wavenumber k falls in the narrow band170

(±10%) around k = 20. The dissipation d was a highly scale-selective hyperviscosity d ∼−∆6θ .171

It is worth noting that equation (4) would also be the vorticity form of the incompressible 2D172

N-S equations173

∂u

∂ t
+(u ·∇)u=−∇p+ f (x, t)+ν∆u, ∇ ·u= 0 (5)

if d were chosen to be d = ν∆θ ,ν > 0. We would have liked to run these DNS on the 2D N-S174

equations which will be discussed in Section 4, but the build-up of KE at the smallest scales as175

a numerical artefact was so strong that we had to either increase ν – which would substantially176

shorten the inertial range and thus reduce the reliability of our conclusions – or choose a more177

9



scale-selective dissipation. We opted for the latter, as is standard practice in simulations of 2D178

turbulence (Maltrud and Vallis 1991).179

We performed five pairs of identical-twin experiments on equation (4) by varying the random180

seed that generated the pre-perturbation (original) initial condition. Within each pair, notably,181

the realisations of the large-scale stochastic forcing f (t) in the control and perturbed runs were182

identical. The model was pseudo-spectral with a truncation wavenumber of kt = 512, in which the183

J(ψ,θ) term was computed in the physical domain via a pair of Fast Fourier Transforms with the184

spectral de-aliasing filter proposed by Hou and Li (2007). The original initial condition for each185

of the five cases was an already-developed homogeneous and (approximately) isotropic turbulence186

with a clean logarithmically corrected−3 spectrum in the inertial range (Figure 3), which has been187

shown to be a more accurate description of the large-scale-forced 2D turbulent spectrum for finite188

inertial ranges (Bowman 1996).189

The perturbations were introduced spectrally at each of the 2D wavevectors k for a specified190

value of kp = |k|. A random phase shift independently drawn from a uniform distribution was191

applied on a pre-determined part γ ∈ [0,1] of the spectral coefficients ψ̂(k) and thus θ̂(k), where192

the hat indicates Fourier coefficients. It can be shown that γ(kp) and E(Ee(kp)), the expected value193

of the one-dimensional error KE spectral density at wavenumber kp, are related by E(Ee(kp)) =194

2γ2E(kp). By specifying the relative error E(Ee(kp))
E(kp)

, we could work out γ and thus generate the195

perturbation fields, to which we added the original initial conditions to obtain the perturbed initial196

conditions.197

Since our truncation wavenumber kt = 512 corresponds to K = 9 of Lorenz’s paper, there would198

only be 8 values of tK− tK+1, among which only 4 or 5 would be in the inertial range. It would be199

inaccurate to determine β from such a few data points, so we have transformed Lorenz’s argument200
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to incorporate information from all wavenumbers k, not only from the scale K as a collection of201

wavenumbers.202

To transform the argument, recall that tK ∼ 2−βK when β > 0, and let T (k) be the saturation203

time of wavenumber k. Since k ∼ 2K and both tK and T represent saturation times, we may write204

T ∼ k−β and conclude that the T should vary with k as a power-law if Lorenz’s results hold.205

The argument will break down when β becomes zero, that is, when the threshold for indefinite206

predictability is reached.207

In this study, the perturbations were introduced at kp = 256. The saturation threshold was chosen208

to be 1.315 times the KE spectral density of the control flow, or equivalently 0.6575 times the209

maximum permissible error energy, in accordance with Lorenz (1969). We applied sensitivity tests210

and found that the results are largely insensitive to the saturation threshold. Figures 4 and 5 show211

respectively the evolution of the error KE spectrum, and the saturation times T across different212

wavenumbers k which fit the T ∼ k−β relationship for β = 0.24, averaged over the five cases.213

(The five cases exhibited very similar qualitative behaviour, showing that our results are robust to214

initial conditions, hence justifying the use of averaging to obtain smoother results.) Based on the215

transformed version of Lorenz’s argument, our result also suggests inherently finite predictability216

for a (logarithmically corrected) −3 spectrum, this time with greater confidence as β is further217

away from zero.218

4. Aspects from PDE theory: the incompressible 2D Navier-Stokes equations219

A very different approach to the problem of inherently finite or indefinite predictability is via220

use of the analytic theory of partial differential equations (PDEs). The incompressible 2D N-S221

equations (5), where we shall drop the word ‘incompressible’ for the remainder of the paper, are222

always useful as a pedagogical first step towards understanding and modelling the motion of real223
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fluid flows in the atmosphere. As such, the analytical properties of the 2D N-S problem have been224

extensively studied. Building on these analytic results, we now consider their implications for225

predictability.226

Well-posedness and implications on predictability227

Unlike their three-dimensional counterpart whose regularity problem remains open, the initial-228

value problem for the 2D N-S equations on the torus (i.e. a doubly periodic domain) has been229

proven to be well-posed, by which we mean the existence of a unique solution that depends con-230

tinuously on the initial conditions. Proofs of its well-posedness, for both strong and weak solutions231

respectively, can be found in the book by Robinson (2001). In the present paper we shall use his232

proof for weak solutions to demonstrate that the 2D N-S system is indefinitely predictable. To set233

the context, a summary of the uniqueness proof is provided below. Interested readers may refer to234

Robinson’s book for a full proof.235

First, the 2D N-S equations (5) are cast in the form of an ordinary differential equation in an236

appropriate function space depending on an arbitrary, fixed positive time T . An equation for the237

error velocity field w = u− v of two solutions u and v is formulated, and its inner product with238

w itself is taken to obtain an equation for the time-evolution of the error energy 1
2‖w‖

2, where239

‖·‖ is the L2 norm on the torus. This equation contains a term which can be bounded above by240

Ladyzhenskaya’s inequalities (Robinson 2001) specific to the 2D N-S equations. After some work241

one uses Grönwall’s inequality to show that242

‖w(t)‖2 ≤ exp
(∫ t

0

M
ν
‖∇u(s)‖2 ds

)
‖w(0)‖2, t ∈ [0,T ],
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where M is a positive constant provided by Ladyzhenskaya’s inequalities. Uniqueness follows by243

setting w(0) = 0. One can also show the continuous dependence on initial conditions, since244

‖w(t)‖ ≤

√
exp
(∫ T

0

M
ν
‖∇u(s)‖2 ds

)
‖w(0)‖=: L(T )‖w(0)‖, t ∈ [0,T ], (6)

i.e. errors are Lipschitz in time.245

As an immediate corollary to inequality (6), the 2D N-S system is indefinitely predictable246

(Palmer et al. 2014). Indeed, if a prediction is defined to lose its skill when ‖w(t)‖ > ε , then247

for any given time T ∈ R+, the prediction is skilful for at least up to T when the initial error248

‖w(0)‖ can be made sufficiently small, that is, smaller than ε

L(T ) .249

It is important to note that in the present Section the KE spectral slope plays no role in determin-250

ing the inherent finiteness or indefiniteness of predictability of the 2D N-S equations. The above251

argument applies to 2D N-S systems of any spectral slope.252

5. Reconciling the contradiction with Lorenz253

At first glance, the indefinite predictability derived in Section 4 seems to contradict Lorenz’s254

result in Section 2 for any p < 3. However, we have not discussed the role of the KE spectral slope255

in L(T ) which, as we will see in the following, reconciles the conflict.256

Central to our argument is the inequality (6) presented above. For simplicity, suppose the real257

system has only one inertial range of slope −p (without any logarithmic correction) in its KE258

spectrum so that |û(k)|2 ∼ k−p (note the change of notation: the hat now represents Fourier coeffi-259

cients in the space of one-dimensional wavenumbers k) between its large-scale cutoff wavenumber260

k1 and small-scale cutoff wavenumber k2. Then261

‖∇us‖2 =
∫

∞

0
k2|ûs|2 dk=

∫ k1

0
k2|ûs|2 dk+A0

∫ k2

k1

k2−p dk+
∫

∞

k2

k2|ûs|2 dk (A0 constant), (7)

13



where the subscript s distinguishes the system itself from a model for the system which we will262

denote with subscript m. The three terms on the right-hand-side of equation (7) represent contri-263

butions from the large scale, the inertial range and the viscous range respectively. Compared to264

the first two terms, the term representing the viscous range is assumed to be small. In particular,265

the integrand is assumed to decay rapidly enough so that ‖∇us‖2 remains finite (this is in fact part266

of the definition of the function space to which us belongs).267

Now, suppose the model truncates at wavenumber kt � k2 and numerical dissipation kicks in at268

wavenumber k0 ∈ (k1,kt). For the model,269

‖∇um‖2 =
∫ kt

0
k2|ûm|2 dk =

∫ k1

0
k2|ûm|2 dk+A0

∫ k0

k1

k2−p dk+
∫ kt

k0

k2|ûm|2 dk. (8)

Again, we may neglect the contribution from the viscous range, so that270

‖∇um‖2 ∼
∫ k1

0
k2|ûm|2 dk+A0

∫ k0

k1

k2−p dk. (9)

Because k0,kt � k2, the second integral in relation (9) with p < 3 appears to diverge as the res-271

olution (k0,kt) increases. Combining this with inequality (6), L(T ) – until k2 is reached – grows272

exponentially with k0, leading to a breakdown of the Lipschitz-continuous dependence on initial273

conditions in inequality (6). To keep the error ‖w(t)‖ under control, the initial error ‖w(0)‖ would274

have to decrease exponentially, but decreasing the scale of the initial error without changing its275

magnitude relative to the background KE spectral density (Lorenz’s thought experiment) would276

only give a polynomial decrease. The corollary of indefinite predictability therefore fails to hold.277

Hence the range of predictability is inherently finite in practice, even though the system is indefi-278

nitely predictable, because indefinite predictability cannot be achieved without making the model279

resolution so high that its effective resolution k0 (and the scale of the initial error) falls within280

the viscous range of the real system, let alone the large-scale error has to be constrained to zero281

(Durran and Gingrich 2014).282

14



This concept, known as ‘asymptotic ill-posedness’, was put forward by Palmer et al. (2014) as283

they argued that whether the three-dimensional Navier-Stokes system is well-posed is practically284

irrelevant to the well-established theory of inherently finite predictability. We have now extended285

the discussion to the 2D N-S system and given a mathematical basis to the concept in our context.286

When p> 3, the second integral in relation (9) does not appear to diverge as k0→ k2. This means287

one may indeed approximate ‖∇us‖2 by the ‖∇um‖2 in relation (9) with a sufficiently large value288

of k0. So would L(T ) of inequality (6) be approximated without regard to the model resolution,289

making it possible for ‖w(t)‖ ≤ ε by making ‖w(0)‖ small enough in scale and thus achieving290

indefinite predictability.291

So far our argument for the cases p < 3 and p > 3 are in harmony with Lorenz’s result in Section292

2. For the borderline case p = 3, our argument suggests practically inherently finite predictability,293

since ‖∇um‖2 ∼ constant+
∫ k0

k1
k−1 dk = constant+ log k0

k1
which appears to diverge as k0 → k2.294

This disagrees with Lorenz. Even with the logarithmic correction295

|û(k)|2 ∼ k−3
[

log
(

k
kr

)]− 1
3

(kr > 0 constant),

or more generally296

|û(k)|2 ∼ k−3
[

A1 log
(

k
kr

)
+A2

]− 1
3

(A1, A2, kr > 0 constants),

to the−3 spectrum (Bowman 1996), an easy calculation along the previous lines still suggests that297

the range of predictability is practically inherently finite. As such, we are unable to explain the298

disagreement and we leave the problem open.299

For models and systems with multiple inertial ranges, only the range immediately before the300

viscous range pertains to our argument concerning the large-k0 behaviour. This applies to the real301

atmosphere where p = 5
3 (Nastrom and Gage 1985). Since kt for atmospheric models is smaller302

than k2 by ‘at least seven or eight orders of magnitude’ (Palmer et al. 2014), the crucial assumption303
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to our discussion (kt � k2) is satisfied and we conclude that atmospheric predictability is indeed304

practically inherently finite.305

6. Conclusions306

Half a century on since Lorenz’s pioneering result of inherently finite atmospheric predictability,307

we revisited his original argument by (i) re-running his simplified model of the 2D barotropic308

vorticity equation, (ii) directly simulating the full model and (iii) comparing his conclusions with309

the well-posedness of the 2D N-S equations as proven by Ladyzhenskaya.310

Although his main result – that atmospheric predictability is inherently finite because the KE311

spectral slope is shallower than−3 – has now become an ‘accepted part of the canon of dynamical312

meteorology’ (Rotunno and Snyder 2008), the details behind the conclusion were re-assessed. For313

the −3 spectrum, we saw a substantially different β in the DNS (Section 3(b)) than in the simpli-314

fied model (Section 3(a)), which may be an indication that the model is inadequate in simulating315

error growth. In both cases, nevertheless, the hypothesis of indefinite predictability (β = 0) for316

p = 3 based on linear extrapolation (Section 2) was refuted.317

The 2D N-S equations that closely relate to the 2D barotropic vorticity equation were used to ad-318

dress the predictability problem from a more rigorous perspective. The forced-dissipative system319

was shown to be indefinitely predictable regardless of the spectral slope (Section 4). However, we320

found that p = 3 serves as a cutoff between practically inherently finite and indefinite predictabil-321

ity by noting how quickly the initial error has to be brought down with increasing resolution in322

order to maintain the bound for the error at future times (Section 5). This echoes Lorenz’s original323

conclusions except for the borderline case p = 3 itself, in which case our result of inherently finite324

predictability agrees with our own computations of Lorenz’s model and the DNS.325
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Until recently, KE spectra in global weather forecast models had only resolved the synoptic-326

scale −3 range. As model resolutions start to extend into the −5
3 range, the strong constraints on327

the range of predictability envisaged by Lorenz will become visible (Judt 2018). However, the328

limits on predictability arising from initial errors on the large scales will also limit predictability329

in practice (Durran and Gingrich 2014), and the interplay between the two could be an interesting330

area to explore.331

By providing another approach to attacking the problem of predictability (via the analytic the-332

ory of the 2D N-S equations), we look forward to similar results on more atmospherically relevant333

PDEs such as the surface quasi-geostrophic equations (Held et al. 1995), and a more active contri-334

bution from mathematicians on this topic.335
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APPENDIX A345

Motivating the concept range of predictability346
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Standard theory in deterministic dynamical systems dictates that, for a perfect model of the347

system, the dynamics of the error ε can be completely described by the time t, the initial error348

ε0 and the initial state of the system x, so that ε = ε(t,ε0,x). Suppose now that the skill S of a349

forecast, particular to an initial state, can be quantified by a continuously decreasing function of350

some norm ‖·‖ (such as the kinetic energy) of the error. In such a case, we can write S = S(‖ε‖) =351

S(ε) = S(t,ε0,x). Now, averaging over the initial states on some (non-trivial) attractor D of the352

system, we may define the overall skill S =
∫

x∈D S(t,ε0,x) dx of a forecast. If we further assume353

that the error norm increases with t in the average, as is in the context of atmospheric predictions,354

we can infer that S(t,ε0) is monotonically decreasing in time.355

Let’s say that a prediction loses its skill when S < α (where α is a fixed threshold), which356

is typically realised in fluid flows by saturation of the error kinetic energy spectrum at specified357

scales. Perhaps a first question to the understanding of predictability can be formulated as follows:358

how long does it take for an initial error ε0 to grow so that a prediction is no longer skilful? The359

answer T̃ , known as the range of predictability, is the solution to S(t,ε0) = α for the specified ε0.360

The monotonicity assumption of S guarantees the uniqueness of the solution T̃ .361

By formulating this question for different initial error fields we can regard T̃ as a function of362

ε0. It is clear from the very definition of deterministic systems that ε0 = 0 implies T̃ (ε0) = ∞.363

However, it is not quite obvious as to whether T̃ could be made arbitrarily large by reducing ‖ε0‖ to364

anything positive below a threshold, or equivalently whether the equality liminf‖ε0‖→0 T̃ (ε0) = ∞365

holds, because T̃ may behave irregularly at small ‖ε0‖ – or at least appear to.366
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To see the equivalence, we unwrap the statement liminf‖ε0‖→0 T̃ (ε0) = ∞ to get367

liminf
‖ε0‖→0

T̃ (ε0) = ∞

⇔ ∀R ∈ R, liminf
‖ε0‖→0

T̃ (ε0)≥ R

⇔ ∀R ∈ R, sup
ε ′>0

inf
‖ε0‖∈(0,ε ′)

T̃ (ε0)≥ R

⇔ ∀R ∈ R, ∃ ε
′ > 0 such that inf

‖ε0‖∈(0,ε ′)
T̃ (ε0)≥ R

⇔ T̃ could be made arbitrarily large by reducing ‖ε0‖ to anything positive below a threshold.

With this in mind, a system is said to have an indefinite range of predictability, or be indefinitely368

predictable, if the range of predictability could be made arbitrarily large by reducing the initial369

error to a small yet positive value. Systems that fail to satisfy such a condition are referred to as370

inherently finitely predictable.371

APPENDIX B372

Some details regarding the computation of the matrix C373

The integrations were performed using scipy.integrate.nquad on Python which returned374

a warning message ‘IntegrationWarning: Extremely bad integrand behavior occurs375

at some points of the integration interval’ about the integrand’s singular behaviour,376

even if the integration domain were confined to the support of the integrand so that resources377

were not wasted in integrating zero regions. The warning disappeared by applying a change of378

coordinates (from logarithmic to Cartesian) in the integrand and accordingly the integration limits,379

which sped up the wall-clock time of the computation by a factor of about 9 as well. The entries of380

C computed by these two methods differ by no more than 0.0025%. Based on these observations,381

we are confident that our computations are accurate.382
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The numerical code for these computations is available in the Supplemental Material.383

APPENDIX C384

Solution procedure of Lorenz’s system385

1. Set a time-step h; in this case, h = 0.001.386

2. Initialise the run by setting time t = 0. Also initialise t0 = 0. (t0 is the time when the previous387

saturation occurs.)388

3. Project the initial condition onto the eigenspace of the block matrix389 0 I

C 0


to determine the constants of the general solution.390

4. Compute the solution at time t− t0 and check if any of the scales K saturates by time t.391

5. If none of the scales saturates, reset t = t +h and repeat step 4.392

6. If, by time t, the error energy at some scale exceeds the background energy at the same scale,393

then the clock (i.e. the variable t) is reset to the previous time-step t− h, and h is refined to394

0.000001.395

7. Repeat steps 4-5 with the new value of h until the error energy at some scale K exceeds the396

background energy at the same scale. The saturation time of scale K is determined as if the397

error energy increases linearly between times t−h and t.398

8. Reset h = 0.001 and set t0 to be the current time t. Remove the row and column of the matrix399

C corresponding to scale K and the corresponding entries of Z, W and all the Fj terms (more400
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on the Fj terms below). The reduced-size system401

d2

dt2 Z =CZ +∑
j

Fj

(where the summation is performed over all saturated scales) has a new inhomogeneous term402

FK which accounts for the contribution of scale K’s saturated energy to the error growth at the403

remaining scales. (FK equals the background energy of scale K multiplied by the removed404

column of C restricted to the rows corresponding to the remaining scales.) As the new system405

is equivalent to the first-order system406

d
dt

Z

W

=

0 I

C 0


Z

W

+

 0

∑ j Fj


(with the size of the identity matrix I accordingly reduced) and ∑ j Fj is a constant vector,407

its solution (Z,W )T can be expressed as the sum of a particular solution (∆Z,∆W )T and a408

solution of of the homogeneous system (Z,W )T . A particular solution to the differential409

equation can be obtained by solving410

−

0 I

C 0


∆Z

∆W

=

 0

∑ j Fj

 .

Re-calculate the eigenvalues and eigenvectors of the new411 0 I

C 0


and project the difference between the current solution at the unsaturated scales (treated as the412

initial condition in the variable t− t0) and (∆Z,∆W )T onto such an eigenspace to determine413

the constants of (Z,W )T and thus the full solution.414

9. Repeat steps 4–8 until all scales saturate.415

The numerical code for the solution procedure is available in the Supplemental Material.416
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FIG. 1. The evolution of the error KE spectrum (red, from bottom to top) in the Lorenz (1969) model, with

a −3-slope background KE spectrum (appearing in this Figure as a −2 slope, as the KE per unit logarithmic

wavenumber is plotted instead of the KE spectral density) as in Rotunno and Snyder (2008). The initial condition

for this run is Z(K = 20) = 2−40, Z = 0 for all other K, and W = 0 for all K.
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FIG. 2. Saturation times of various scales (red) for the same model run as in Figure 1. The blue curve shows

a line of fit with β = 0.05.
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FIG. 3. KE spectrum (averaged over the five cases) of the initial condition (red), and logarithmically corrected

−3 reference spectra E(k) ∼ k−3
[
log
(
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kr

)]− 1
3

(kr = 10 in black, kr = 20 in green), where E(·) is the one-

dimensional KE spectral density.
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FIG. 4. Evolution of the error KE spectrum (magenta and blue, bottom to top) for an initial perturbation (blue

dot) at kp = 256. The magenta curves are for t = 0.3,0.6, . . . ,2.7 and the blue curves are for t = 3,6, . . . ,66. The

background KE spectra at t = 0,3,6, . . . ,66, scaled by a factor of 2, are shown in red (top to bottom), with the

reference spectra in black and green as in Figure 3. The spectra are averaged over the five cases.

483

484

485

486

28



10 50 100 500
Wavenumber k

20

50

100

S
a
tu

ra
ti

o
n
 T

im
e
 T

FIG. 5. Saturation times T at different wavenumbers k (red) for an initial error at wavenumber k0 = 256,

averaged over the five cases. The black curve shows a line of fit with β = 0.24.
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