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Abstract. The availability of the most relevant vehicle states is crucial for the 
development of advanced vehicle control systems and driver assistance sys-
tems. Specifically the vehicle sideslip angle plays a key role, yet this state is 
unpractical to measure and still not straightforward to estimate. This paper in-
vestigates a particle filter approach to estimate the chassis sideslip angle of road 
vehicles. The filter relies on a physical model of the vehicle and on measure-
ments available from cheap and widespread sensors including inertial meas-
urement unit and steering wheel angle sensor(s). The approach is validated us-
ing experimental data collected with the research platform RoboMobil (RoMo), 
a by-wire electric vehicle with wheel-individual traction and steering actuators. 
Results show that the performance of the proposed particle filter is satisfactory, 
and indicate directions for further improvement. 

Keywords: Sideslip angle, particle filter, electric vehicles, estimation, rear 
wheel steering, experiments. 

List of symbols 

ܽ௬ vehicle lateral acceleration (m/s2) 
ܽ௬∗  vehicle lateral acceleration with roll angle correction (m/s2) 
 ௬ଵ cornering stiffness of the front axle (N/rad)ܥ
 ௬ଶ cornering stiffness of the rear axle (N/rad)ܥ
ܿ input vector 
݁௜ difference in measurement between actual one and i-th particle prediction  
 ௫ଵ longitudinal force at front axle (N)ܨ
 ௫ଶ longitudinal force at rear axle (N)ܨ
 ௬ଵ lateral force at front axle (N)ܨ
 ௬ଶ lateral force at rear axle (N)ܨ
 ௭ଵ,଴ static vertical load on front axle (N)ܨ
 ௭ଶ,଴ static vertical load on rear axle (N)ܨ
݂ function describing the model propagation 
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݃ gravity acceleration (m/s2) 
݄ function relating the measurements to the state vector ݔ 
 ௭ vehicle yaw mass moment of inertia (kg m2)ܬ
݇ time step 
݉ vehicle mass (kg) 
ܰ number of samples 
݊௣ number of particles of the particle filter 
݊௫ process noise 
݊௬ measurement noise 
 exogenous input vector ݍ
 vehicle yaw rate (rad/s) ݎ
 vehicle longitudinal velocity (m/s) ݑ
 vehicle lateral velocity (m/s) ݒ
௔ܹ೤ weight on the lateral acceleration error 

௜ܹ weight for the i-th particle 

௥ܹ weight on the yaw rate error 
 ଵ front semi-wheelbase (m)ݓ
 ଶ rear semi-wheelbase (m)ݓ
 state vector ݔ
 ො estimated state vectorݔ
 measurement vector ݕ
 ଵ front tire slip angle (rad)ߙ
 ଶ rear tire slip angle (rad)ߙ
 sideslip angle at the centre of mass (rad) ߚ
መߚ  estimated sideslip angle at the centre of mass (rad) 
 ଵ front sideslip angle (rad)ߚ
 ଶ rear sideslip angle (rad)ߚ
 time step (s) ݐ∆
 ଵ front steering angle (rad)ߜ
 ଶ rear steering angle (rad)ߜ
߮ estimated roll angle (rad) 
 average tire-road friction coefficient ߤ
߶௜ predicted measurement for i-th particle 
߯௜ i-th particle  

1 Introduction 

In recent years, industrial and academic research has dedicated great effort to the 
development of advanced driver assistance systems [1]. These systems use a combi-
nation of environmental perception, estimation and control methods to assist the driv-
er manoeuvring the vehicle - in both normal and challenging driving conditions - 
improving comfort and road safety. However, to guarantee correct operation of these 
systems, accurate knowledge of vehicle states and parameters is required. Variables 
such as the vehicle sideslip angle (from a top view, the angle between the vehicle 
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longitudinal axis and the centre of mass velocity vector) or the tyre-road friction coef-
ficient are of paramount importance, especially from the point of view of lateral dy-
namics control [2]. In practice, such variables are difficult, expensive or even impos-
sible to be directly measured. That encourages the use of estimation techniques. 

In the literature, several types of estimation methods can be found, including mod-
el-based (e.g. Kalman Filters) [3-4] and AI-based (e.g. neural networks) methods [3]. 
The main issue of AI-based methods is that their performance might deteriorate when 
vehicle operation conditions diverge from the ones used in training data [5]. One of 
the main issues of model-based approaches is that they need a sufficiently accurate 
tyre model. This accurate model is difficult to obtain in practice, because tyre behav-
iour is subject to changes with, e.g., wear, road conditions, temperature etc. To tackle 
this issue, some authors proposed estimation approaches where vehicle states and 
model parameters are simultaneously estimated [6-7]. Another approach, investigated 
in [8], exploits kinematic models to estimate vehicle states, which are less sensitive to 
parameter uncertainties. However, these methods are affected by measurement noise 
and sensor drift, which requires several expedients to make these methods reliable 
(see patent [9] for details).  

In this paper, a particle filter (PF) approach is investigated to estimate the vehicle 
sideslip angle. The particle filter has the advantage of being a very general and flexi-
ble estimation framework [10]. Kalman Filters, instead, come with several simplify-
ing hypotheses, such as no correlation between process and measurement noise and 
Gaussian disturbances. The herein developed particle filter relies on a physical model 
of the vehicle and on measures available from cheap and widespread sensors such as 
inertial measurement unit (IMU) and steering wheel angle sensor(s). It is also de-
signed having in mind vehicles with four-wheel steering.  

The remainder of the paper is structured as follows. Section 2 describes the vehicle 
model and the experimental platform. The design of the particle filter is discussed in 
Section 3. Results are presented in Section 4. Conclusions are in Section 5. 

2 Vehicle model 

The particle filter is designed based on a non-linear single track model (Fig. 1, left). 
Differently from a classical single track vehicle model, rear steering is herein consid-
ered - that is a feature of the experimental vehicle used for the validation of the algo-
rithm. That is the research platform RoboMobil (RoMo, Fig. 1, right) - a by-wire 
electric vehicle with wheel-individual traction and steering actuators - built by the 
DLR for demonstrating the benefits of transferring advanced space and robotics tech-
nologies to electric road vehicles (see [11] for details). 

The Adapted ISO sign convention is adopted in this work [12]. The three sets of 
equations describing this non-linear single track model can be written as follows. 

 

Equilibrium equations 

݉ܽ௬∗ ൌ ݉ሺݒሶ ൅ ሻݎݑ ൌ ௫ଵܨ sin ଵߜ ൅ ௬ଵܨ cos ଵߜ ൅ ௫ଶܨ sin ଶߜ ൅ ௬ଶܨ cos  ଶ (1a)ߜ

ሶݎ௭ܬ ൌ ൫ܨ௫ଵ sin ଵߜ ൅ ௬ଵܨ cos ଵݓଵ൯ߜ െ ሺܨ௫ଶ sin ଶߜ ൅ ௬ଶܨ cos  ଶ (1b)ݓଶሻߜ
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Congruence equations 

ଵߙ ൌ ଵߜ െ ଵߚ ൌ ଵߜ െ tanିଵ
௩ା௥௪భ

௨
  (2a) 

ଶߙ ൌ ଶߜ െ ଶߚ ൌ ଶߜ െ tanିଵ
௩ି௥௪మ

௨
  (2b) 

Constitutive equations 

௬௜ܨ ൌ ൝
|௜ߙ|		݂݅								௜ߙ௬௜ܥ ൑

ఓி೥೔,బ
஼೤೔

									݁ݏ݅ݓݎ݄݁ݐ݋						௭௜,଴ܨߤ
	  (3) 

for ݅ ൌ 1,2, where the static loads at the front and rear axle are ܨ௭ଵ,଴ ൌ
௠௚௪మ
௪భା௪మ

 and 

௭ଶ,଴ܨ ൌ
௠௚௪భ
௪భା௪మ

, respectively. For a detailed description of the variables and parameters 

used in the above mathematical model, the reader is referred to the List of Symbols.  

     

Fig.1. (left) Single track vehicle model with rear steering capability; (right) The RoMo vehicle, 
developed at the German Aerospace Center (DLR). 

In this work, only lateral dynamics is considered. We assume that the longitudinal 
velocity (ݑ) and the longitudinal forces (ܨ௫ଵ, -௫ଶ) are available. For example, the lonܨ
gitudinal forces ܨ௫ଵ and ܨ௫ଶ can be obtained based on the torque demands at each 
motor, while the longitudinal velocity can be inferred using wheel speed sensors (as-
suming longitudinal tyre slips are low).  

The continuous-time equations (1)-(3) are converted into discrete-time through Eu-
ler's method [13]. The vehicle state includes the vehicle lateral velocity (v) and yaw 
rate (r). Thus, (1)-(3) are rearranged to obtain expressions of the vector field ሺݒሶ  ,ሶሻ்ݎ
leading to the following discrete-time vehicle model: 

ሺ݇ݔ ൅ 1ሻ ൌ ݂ሺݔሺ݇ሻ, ܿሺ݇ሻ, ሺ݇ሻሻݍ ൅ ݊௫  (4a) 

ሺ݇ሻݕ ൌ ݄ሺݔሺ݇ሻ, ܿሺ݇ሻ, ሺ݇ሻሻݍ ൅ ݊௬  (4b) 
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The vehicle state is ݔ ൌ ሺݒ ݕ ሻ், the measurement vector isݎ ൌ ሺܽ௬∗  ሻ், the inputݎ
vector is ܿ ൌ ሺߜଵ ݍ ଶሻ், the exogenous input vector isߜ ൌ ሺݑ, ,௫ଵܨ  ௫ଶሻ,  ݊௫ and ݊௬ܨ
are, respectively, the process noise and the measurement noise. The (noise-free) rela-
tionship between measurement vector and state vector is: ܽ௬∗ ൌ 1/݉൫ܨ௫ଵ sin ଵߜ ൅
௬ଵܨ cos ଵߜ ൅ ௫ଶܨ sin ଶߜ ൅ ௬ଶܨ cos ݎ ,ଶ൯ and, triviallyߜ ൌ  ,Based on this framework .ݎ
the goal of the filter is to estimate ݔ. 

3 Particle filter design 

The PF is a recursive Bayesian estimator based on Monte-Carlo simulations [14]. 
Multiple potential representations of the state, denoted as particles, are propagated, 
weighted and resampled at each time step. Large numbers of particles are normally 
required, resulting in significant computational burden. PFs have gained popularity 
recently, due to the improved processing power capabilities of modern computers. 
The workflow of the developed particle filter can be described as follows (Fig. 2): 
1. the particle filter is initialised; that includes the selection of the number of parti-

cles (݊௣), their initial state and their covariance: the particles are initially random-
ly picked from a normal distribution with mean at initial state and appropriate 
covariance distribution around the initial state, ߯ଵሺ݇ሻ, ߯ଶሺ݇ሻ, … , ߯௡೛ሺ݇ሻ; 

2. based on the vehicle model (prediction model, Equation 4a), each particle 
evolves into a new state, ߯௜ሺ݇ ൅ 1ሻ ൌ ݂ሺ߯௜ሺ݇ሻ, ܿሺ݇ሻ,  ;ሺ݇ሻሻݍ

3. for each of the particles, the corresponding predicted measurements are comput-
ed, ߶௜ሺ݇ሻ ൌ ݄ሺ߯௜ሺ݇ሻ, ܿሺ݇ሻ,  ;ሺ݇ሻሻݍ

4. the predicted measurements are compared to the actual ones, and an error vector 
is calculated, ݁௜ሺ݇ሻ ൌ ሺ݇ሻݕ െ ߶௜ሺ݇ሻ; 

5. the measurement likelihood function MLF൫݁௜ሺ݇ሻ൯ is calculated for each particle; 
6. the best estimate of the state is calculated based on the measurement prediction 

and the likelihood; ݔොሺ݇ሻ ൌ ∑ ௜ܹ߯௜ሺ݇ሻ௜ , weighted by the likelihood function: 

௜ܹ ൌ MLF൫݁௜ሺ݇ሻ൯	/∑ MLF ቀ ௝݁ሺ݇ሻቁ௝ ; 

7. the particles are resampled around the recent best estimate of the state [15]. 
 

The measurement likelihood function adopted in this work was inspired by [14], 
which considers a bell curve. Accordingly, for each particle ݅, the MLF is defined as 

ሺ݁௜ሻܨܮܯ ൌ ݁ି൫௘೔
೅ௐ೐௘೔൯  (5) 

where	 ௘ܹ ൌ ݀݅ܽ݃ሺ ௔ܹ೤, ௥ܹሻ is a diagonal weight matrix tuned by the designer.  

Appropriate phase-lag-free filters [16] were applied to the measured quantities (yaw 
rate, longitudinal acceleration, lateral acceleration etc.) in order to attenuate the effect 
of measurement noise – see, e.g., Fig. 5d. Additionally, the measured lateral accelera-
tion was corrected based on an estimate of the vehicle roll angle, similarly to [17] 
(since only the lateral dynamics is considered in the estimation, pitch compensation is 
neglected): 

ܽ௬∗ ൌ
௔೤

ୡ୭ୱఝ
െ ݃ tan߮  (6) 
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Fig.2. Particle filter workflow. 

The estimated vehicle sideslip angle was finally computed as ߚመ ൌ tanିଵ
௩

௨
. 

4 Experimental Validation 

This section presents a selection of results discussing the performance of the devel-
oped particle filter. The test data was obtained based on several manoeuvres per-
formed with the ROMO over dry tarmac (ߤ ൎ 1	), including: i) sinusoidal steering 
excitation; ii) sine sweep steering excitation; iii) quasi-steady-state cornering, and iv) 
quasi-steady-state cornering with sudden braking. The actual vehicle states were col-
lected using an advanced inertial measurement unit (OXTS RT4003) and an optical 
sensor (Correvit L-350), sampled at 4 ms. The PF estimator described in Section 3 
was implemented in Matlab environment with a default number of particles set to 
݊௣ ൌ 100.  

Fig. 3 depicts the results of the sinusoidal steering input manoeuvre, including the 
time history of the steering angles. Fig. 4 shows the PF performance with the sine 
sweep (Fig. 4a) and the quasi-steady-state cornering manoeuvre (Fig. 4b). The ma-
noeuvres shown in Fig. 3 and Fig. 4 are all with medium values of lateral acceleration 
(up to 6 m/s2). Inspecting the obtained results, one can find a very good agreement 
between the actual and estimated sideslip angle in both dynamic and quasi-stationary 
manoeuvres.  
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a) b) 
Fig.3. Experimental validation on a sinusoidal steering input manoeuvre with line-

arly increasing speed (up to ݑ ൌ 14 m/s): (a) steering angles; (b) sideslip angle and 
PF estimation (݊௣ ൌ 100). 

 

a) b) 
Fig.4. Experimental validation of the PF estimation (݊௣ ൌ 100ሻ	on: (a) Sine sweep 

ݑ) ൌ 15 m/s); (b) Quasi-steady-state cornering manoeuvre, 30 m radius.  
 
Despite these good estimation results, the PF parameterisation evaluated in Fig. 3 

and Fig. 4 employed a large number of particles, which requires high computation 
effort. To mitigate this issue, and find a good balance between estimation perfor-
mance and computational cost, the PF was evaluated with different numbers of parti-
cles.  The performance of the filter was assessed through the root mean square error 
 :of the sideslip angle (ܧܵܯܴ)

ܧܵܯܴ ൌ ට∑ ൫ఉሺ௞ሻିఉ෡ሺ௞ሻ൯
మಿ

ೖసభ

ே
  (7) 

while the PF’s computational times were obtained on a desktop computer, with 3.40 
GHz processor and 8 GB RAM.  

Fig. 5 shows the effect of different numbers of particles (i.e. 10, 100, 1000)  during 
a challenging quasi-steady-state cornering manoeuvre, where the lateral acceleration 
is increased from 0 up to around 9 m/s2, followed by a sudden braking action. Gener-
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ally, all PF parameterisations produce satisfactory estimations of the sideslip angle, 
with errors smaller than 0.5 deg. The only exception is the estimation around 15-16s, 
when the brake is engaged (Fig. 5d). The likely cause for the estimation divergence 
might be neglected pitch effects in the estimation model. This is to be addressed in 
future work. A more comprehensive evaluation of the PF parameterisations is shown 
in Table 1, which contains the computational cost and RMSE performance of the PF 
for different numbers of particles and manoeuvres. One can find that, decreasing the 
number of particles from 1000 to 100 leads to a significant reduction in the PF’s com-
putational effort (up to 8x times reduction), while having an almost negligible impact 
in the RMSE performance. Decreasing the number of particles to 10 allows another 2-
3 times reduction in computational effort. In fact, since the PF execution time for 
݊௣ ൌ 10 is inferior to the maneuver(s) duration(s), this PF parameterisation might be 
suitable for real-time implementation. However, this PF parameterisation also de-
grades the estimation performance. In comparison with the case ݊௣ ൌ 1000, the PF 
with ݊௣ ൌ 10 increases the sideslip angle RMSE by 4.4% for the sine sweep manoeu-
vre (best estimation performance) and by 53% for the quasi-steady-state cornering 
with sudden braking (worst estimation performance).   

 

   
a) ݊௣ ൌ 10 b) ݊௣ ൌ 100 

  
c) ݊௣ ൌ 1000 d) 

Fig.5. Quasi-steady-state cornering and sudden braking manoeuvre, radius 30 m: 
Particle filter with (a) 10 particles; (b) 100 particles; (c) 1000 particles; (d) Longitudi-
nal acceleration. 
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Analysing in more detail the time domain results of the PF with ݊௣ ൌ 10 (Fig. 5a) 
and with ݊௣ ൌ 1000 (Fig. 5c) reveals that: i) both PF variants have similar average 
estimation behaviour; ii) the PF with lower number of particles has higher estimation 
variance (i.e. noise). These results highlight the trade-offs between computational 
effort vs estimation variance that the designer will face during the practical commis-
sioning of PF-based vehicle estimators. 

Table 1. Computational cost and performance comparison. 

Test Number of particles Manoeuvre 
duration (s) 

PF running 
time (s) 

RMSE (deg) 

Sinusoidal steering 
input 

10  
34 

28.9 0.49 

100 88.4 0.41 

1000 601 0.41 

Sine sweep 

10  
24 

19.2 0.48 

100 49.6 0.46 

1000 315 0.46 

Quasi-steady-state 
cornering 

10  
95 

94.2 0.33 

100 502.6 0.28 

1000 4256.6 0.26 

Quasi-steady-state 
cornering and sudden 

braking 

10  
16.3 

13.2 0.49 

100 29.1 0.33 

1000 155.5 0.32 

5 Conclusions 

This paper presented a particle filter method for estimation of the vehicle sideslip 
angle based on a non-linear single track vehicle model with rear steering capability.  
The algorithm was shown effective on a number of experimental manoeuvres per-
formed with the DLR's robotic platform RoMo. The sensitivity analysis also revealed 
that the computational effort of the particle filter can be significantly reduced by de-
creasing the number of particles, but at the expense of higher estimation variance.  

Future work will tackle: i) the implementation of an effective strategy for the esti-
mation of the vehicle longitudinal velocity; ii) the adoption of a double track vehicle 
model and a more sophisticated tyre model; iii) the implementation of roll and pitch 
dynamics; iv) the investigation of computational efficient approaches for a real-time 
applicability of the method while preserving performance. 
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