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Abstract 
 

This research uses a likelihood ratio (LR) framework to assess the discriminatory power 

of a range of acoustic parameters extracted from speech samples produced by male 

speakers of Standard Thai. The thesis aims to answer two main questions: 1) to what 

extent the tested linguistic-phonetic segments of Standard Thai perform in forensic voice 

comparison (FVC); and 2) how such linguistic-phonetic segments are profitably 

combined through logistic regression using the FoCal Toolkit (Brümmer, 2007). The 

segments focused on in this study are the four consonants /s, ʨh, n, m/ and the two 

diphthongs [ɔi, ai].  

First of all, using the alveolar fricative /s/, two different sets of features were compared 

in terms of their performance in FVC. The first comprised the spectrum-based 

distributional features of four spectral moments, namely mean, variance, skew and 

kurtosis; the second consisted of the coefficients of the Discrete Cosine Transform 

(DCTs) applied to a spectrum. As DCTs were found to perform better, they were 

subsequently used to model the consonant spectrum of the remaining consonants. The 

consonant spectrum was extracted at the center point of the /s, ʨh, n, m/ consonants with 

a Hamming window of 31.25 msec.  

For the diphthongs [ɔi] - [nɔi L] and [ai] - [mai HL], the cubic polynomials fitted to the 

F2 and F1-F3 formants were tested separately. The quadratic polynomials fitted to the 

tonal F0 contours of [ɔi] - [nɔi L] and [ai] - [mai HL] were tested as well. Long-term F0 

distribution (LTF0) was also trialed.  

The results show the promising discriminatory power of the Standard Thai acoustic 

features and segments tested in this thesis. The main findings are as follows.  

1. The fricative /s/ performed better with the DCTs (Cllr = 0.70) than with the spectral 

moments (Cllr = 0.92).  

2. The nasals /n, m/ (Cllr = 0.47) performed better than the affricate /tɕh/ (Cllr = 0.54) 

and the fricative /s/ (Cllr = 0.70) when their DCT coefficients were parameterized. 

3. F1-F3 trajectories (Cllr = 0.42 and Cllr = 0.49) outperformed F2 trajectory (Cllr = 

0.69 and Cllr = 0.67) for both diphthongs [ɔi] and [ai]. 
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4. F1-F3 trajectories of the diphthong [ɔi] (Cllr = 0.42) outperformed those of [ai] 

(Cllr = 0.49). 

5. Tonal F0 (Cllr = 0.52) outperformed LTF0 (Cllr = 0.74). 

6. Overall, better results were obtained when DCTs of /n/ - [na: HL] and /n/ - [nɔi 

L] were fused. (Cllr = 0.40 with the largest consistent-with-fact SSLog10LR = 

2.53). 

In light of the findings, we can conclude that Standard Thai is generally amenable to FVC, 

especially when linguistic-phonetic segments are being combined; it is recommended that 

the latter procedure be followed when dealing with forensically realistic casework. 

 

 

 

 

 

 

 

 

 

 

  



 
v 

 

Table of contents 

 

Declaration                                                                                                                                      i 

Acknowledgements                                                                                                                        ii 

Abstract                                                                                                                                         iii 

Table of Contents                                                                                                                           v 

List of Tables                                                                                                                                xi 

List of Figures                                                                                                                             xiii 

Chapter 1 Introduction .................................................................................................................. 1 

1.1 Introduction ......................................................................................................................... 1 

1.2 A brief history of the study of speaker recognition............................................................. 1 

1.3 Types of speaker recognition: Speaker identification/verification/forensic voice  

      comparison .......................................................................................................................... 2 

1.4 What is Forensic Voice Comparison? ................................................................................. 5 

1.5 Motivations ......................................................................................................................... 9 

1.6 The research approach ...................................................................................................... 10 

1.6.1 Traditional vs automatic parameters .............................................................................. 10 

1.6.2 Statistical modelling techniques..................................................................................... 11 

1.7 Linguistic-phonetic segments and acoustic parameters .................................................... 12 

1.8 Research questions ............................................................................................................ 14 

1.9 Thesis outline .................................................................................................................... 14 

1.10 Summary ......................................................................................................................... 15 

Chapter 2 Literature review ........................................................................................................ 16 

2.1 Introduction ....................................................................................................................... 16 

2.2 Ideal features of forensic scientific evidence .................................................................... 16 

2.2.1 Lack of control over variation ........................................................................................ 17 

2.2.1.1 Between-speaker variation .......................................................................................... 17 

2.2.1.2 Within-speaker variation ............................................................................................. 18 

2.2.2 Reduction in dimensionality .......................................................................................... 20 

2.3 Speech variation and the role of probability theory .......................................................... 21 



 
vi 

 

2.4 What is the Likelihood Ratio? .......................................................................................... 22 

2.4.1 Why forensic experts should limit themselves to the calculation of Likelihood  

          Ratio (LR) ..................................................................................................................... 29 

2.5 The Thai legal system ....................................................................................................... 29 

2.6 Shift to a new paradigm .................................................................................................... 31 

2.7 Standard Thai and other main dialects: Phonetics and phonology.................................... 34 

2.7.1 Standard Thai consonant phonemes ............................................................................... 35 

2.7.2 Standard Thai clusters .................................................................................................... 35 

2.7.3 Standard Thai vowels ..................................................................................................... 36 

2.7.4 Standard Thai tones ........................................................................................................ 37 

2.8 Northern Thai dialect ........................................................................................................ 38 

2.8.1 Northern Thai consonant phonemes .............................................................................. 38 

2.8.2 Northern Thai clusters .................................................................................................... 39 

2.8.3 Northern Thai vowels .................................................................................................... 39 

2.8.3.1 Monophthongs ............................................................................................................ 39 

2.8.3.2 Diphthongs .................................................................................................................. 39 

2.8.4 Northern Thai tones ....................................................................................................... 39 

2.9 Southern Thai dialect ........................................................................................................ 40 

2.9.1 Southern Thai consonant phonemes .............................................................................. 40 

2.9.2 Southern Thai clusters .................................................................................................... 41 

2.9.3 Southern Thai vowels .................................................................................................... 42 

2.9.4 Southern Thai tones ....................................................................................................... 42 

2.10 Northeastern Thai dialect ................................................................................................ 43 

2.10.1 Northeastern Thai consonant phonemes ...................................................................... 43 

2.10.2 Northern Thai clusters .................................................................................................. 43 

2.10.3 Northeastern Thai vowels ............................................................................................ 43 

2.10.3.1 Monophthongs .......................................................................................................... 43 

2.10.3.2 Diphthongs ................................................................................................................ 44 

2.10.4 Northeastern Thai tones ............................................................................................... 44 

2.11 Speech signal representation ........................................................................................... 44 

2.11.1 General feature extraction process: Short-time analysis .............................................. 44 

2.12 Source of individualizing information: Spectral, phonotactic, prosodic and idiolectal 

        levels ............................................................................................................................... 46 

2.13 DCT-smoothed spectrum vs cepstrally smoothed spectrum ........................................... 47 

2.14 Mel- and Bark-scaled DCT (cepstral) coefficients ......................................................... 52 

2.14.1 Hertz-scaled DCT (cepstral) coefficients fitted to a raw spectrum .............................. 52 



 
vii 

 

2.14.2 Bark-scaled DCT (cepstral) coefficients fitted to a raw spectrum ............................... 54 

2.15 Spectrum of the fricatives ............................................................................................... 57 

2.15.1 Articulatory description of the fricatives ..................................................................... 58 

2.15.2 Previous acoustic studies of English fricatives ............................................................ 59 

2.15.3 Previous FVC research on the English fricative /s/ ..................................................... 62 

2.15.3.1 Acoustic measurement .............................................................................................. 63 

2.15.3.2 Experimental results of /s/......................................................................................... 63 

2.16 Spectrum of the affricates ............................................................................................... 63 

2.16.1 Articulatory description of affricates ........................................................................... 64 

2.16.2 Previous acoustic studies of the affricates ................................................................... 64 

2.16.3 Previous FVC studies of affricates ............................................................................... 65 

2.17 Spectrum of the nasals /m/, /n/, and /ŋ/ ........................................................................... 65 

2.17.1 Articulatory description of nasals ................................................................................ 66 

2.17.2 Previous acoustic studies of the nasals ........................................................................ 66 

2.17.3 Previous FVC studies of nasals .................................................................................... 67 

2.17.3.1 FVC results of English /n/ ......................................................................................... 68 

2.17.3.2 FVC results of English /m/ ........................................................................................ 68 

2.17.3.3 FVC results of English /ŋ/ ......................................................................................... 68 

2.18 Fundamental frequency (F0) ........................................................................................... 69 

2.18.1 Background knowledge................................................................................................ 69 

2.18.2 Tonal F0 ....................................................................................................................... 71 

2.18.3 Previous FVC research on tonal F0 ............................................................................. 71 

2.18.4 Long-term F0 distribution ............................................................................................ 72 

2.18.5 Previous FVC studies on LTF0 .................................................................................... 72 

2.19 Formant trajectory ........................................................................................................... 74 

2.19.1 Background knowledge................................................................................................ 74 

2.19.2 Previous FVC research ................................................................................................ 74 

2.20 Summary ......................................................................................................................... 79 

Chapter 3 Methodology .............................................................................................................. 80 

3.1 Introduction ....................................................................................................................... 80 

3.2 Likelihood ratio (LR) as the logical framework ............................................................... 80 

3.3 Statistical tools: the MVLR formula ................................................................................. 81 

3.4 Speech corpus ................................................................................................................... 84 

3.4.1 Informants ...................................................................................................................... 85 

3.4.2 Elicitation ....................................................................................................................... 85 



 
viii 

 

3.5 Tippett plots ...................................................................................................................... 88 

3.6 Logistic regression calibration .......................................................................................... 90 

3.7 Why logistic regression is better than the Gaussian models ............................................. 91 

3.8 Metric for assessing the validity (accuracy) of MVLR ..................................................... 92 

3.9 Logistic regression fusion ................................................................................................. 94 

3.10 Summary ......................................................................................................................... 96 

Chapter 4 Pilot FVC studies using Standard Thai diphthongs .................................................... 97 

4.1 Introduction ....................................................................................................................... 97 

4.2 Pilot study on the Standard Thai diphthongs [i:aw], [ɯ:a] and [u:a] ................................ 97 

4.2.1 Parameters and informants ............................................................................................. 97 

4.2.2 Results ............................................................................................................................ 98 

4.3 Pilot study on the Standard Thai diphthongs [o:i] and [ə:i] ............................................ 101 

4.3.1 Parameters and informants ........................................................................................... 101 

4.3.2 Results .......................................................................................................................... 102 

4.4 Pilot study on Standard Thai diphthongs [ai] and [u:a] .................................................. 104 

4.4.1 Parameters and informants ........................................................................................... 104 

4.4.2 Results .......................................................................................................................... 104 

4.5 Summary ......................................................................................................................... 106 

Chapter 5 Results of the spectral moments of /s/ and cepstral coefficients (CCs) of /s, ʨh,  

    n, m/ ...................................................................................................................................... 108 

5.1 Introduction ..................................................................................................................... 108 

5.2 Segmentation criteria ...................................................................................................... 108 

5.2.1 Segmentation of /s/ ...................................................................................................... 109 

5.2.2 Segmentation of /tɕh/ .................................................................................................... 111 

5.2.3 Segmentation of /n/ - [nɔi L] ........................................................................................ 112 

5.2.4 Segmentation of /n/ - [na: HL] ..................................................................................... 114 

5.2.5 Segmentation of /m/ - [mai HL] ‘no’ ........................................................................... 115 

5.3 Spectral mean, variance, skew, kurtosis (spectral moments) .......................................... 116 

5.4 Results of the spectral moments of /s/ ............................................................................ 118 

5.4.1 Distribution of the spectral moments using histograms ............................................... 119 

5.4.2 ANOVA results ............................................................................................................ 120 

5.4.3 MVLR results ............................................................................................................... 122 

5.4.4 DCT results .................................................................................................................. 132 

5.4.4.1 Fricative /s/ extracted from the word [sa:m LH] ‘three’ ........................................... 132 

5.4.4.2 Affricate /tɕh/ extracted from the word [tɕhai HL] ‘yes’ ........................................... 135 



 
ix 

 

5.4.4.3 Nasal /n/ extracted from the particle [nɔi L] ............................................................. 137 

5.4.4.4 Nasal /n/ extracted from the word [na: HL thi: HL] ‘duty’ ....................................... 139 

5.4.4.5 Nasal /m/ extracted from the word [mai HL] ‘no’ .................................................... 142 

5.5 Overall comparisons and discussions ............................................................................. 144 

5.6 Summary ......................................................................................................................... 145 

Chapter 6 Results of the formant trajectories of the diphthongs [ɔi] - [nɔi L] and [ai] -  

    [mai HL]................................................................................................................................ 147 

6.1 Introduction ..................................................................................................................... 147 

6.2 Why were the F2 trajectories of the diphthongs [ɔi] - [nɔi L] and [ai] - [mai HL]  

      experimented on? ............................................................................................................ 147 

6.3 Informants ....................................................................................................................... 148 

6.4 Segmentation................................................................................................................... 148 

6.4.1 Formant trajectories of [ɔi] - [nɔi L] ............................................................................ 148 

6.4.2 Formant trajectoires of [ai] - [mai HL] ........................................................................ 150 

6.4.3 Formant tracking errors and manual correction ........................................................... 151 

6.4.4 Discarding of poor recording speech samples ............................................................. 154 

6.4.5 Formant trajectories of the diphthong [ɔi] ................................................................... 155 

6.4.6 Polynomial curve fitting (cubic polynomials).............................................................. 156 

6.4.7 Formant trajectories of the diphthong [ai] - [mai HL] ................................................. 158 

6.4.8 Polynomial curve fitting of the diphthong [ai] - [mai HL] .......................................... 159 

6.5 Experimental results: F2 trajectory of diphthongs [ɔi] - [nɔi L] and [ai] - [mai] ............ 160 

6.6 Experimental results: F1-F3 trajectories of diphthongs [ɔi] - [nɔi L] and [ai] -  

      [mai HL].......................................................................................................................... 163 

6.7 Discussion ....................................................................................................................... 165 

6.8 Summary ......................................................................................................................... 166 

Chapter 7 Results of the fundamental frequency (F0): Long-term F0 (LTF0) and tonal F0 .... 167 

7.1 Introduction ..................................................................................................................... 167 

7.2 Long-term fundamental frequency (LTF0) ..................................................................... 167 

7.2.1 Data extraction ............................................................................................................. 168 

7.2.2 Standard Thai LTF0 distribution plots ......................................................................... 169 

7.3 Experimental results when using LTF0 .......................................................................... 170 

7.3.1 LTF0: all six features ................................................................................................... 171 

7.3.2 LTF0: the four spectral moments ................................................................................. 172 

7.3.3 LTF0: model F0 and modal density ............................................................................. 174 

7.4 Experimental results when using the 10% percentile technique ..................................... 175 



 
x 

 

7.5 Tonal F0 of [ɔi] - [nɔi L] and [ai] - [mai HL] ................................................................. 177 

7.5.1 F0 tracking of [ɔi] - [nɔi L] .......................................................................................... 178 

7.5.2 F0 tracking of [ai] - [mai HL] ...................................................................................... 179 

7.5.3 F0 contours of [ɔi] - [nɔi L] ......................................................................................... 181 

7.5.4 F0 contours of [ai] - [mai L] ........................................................................................ 181 

7.5.5 Polynomial curve fitting of tonal F0 for [ɔi] - [nɔi L] .................................................. 182 

7.5.6 Polynomial curve fitting of tonal F0 for [ai] - [mai HL] .............................................. 183 

7.6 Informants ....................................................................................................................... 183 

7.7 Experimental results when using tonal F0 ...................................................................... 184 

7.7.1 The Tippett plot of [ɔi] - [nɔi L] .................................................................................. 184 

7.7.2 The Tippett plot of [ai] - [mai HL] .............................................................................. 185 

7.8 Summary ......................................................................................................................... 187 

Chapter 8 Conclusions and recommendations for future research ............................................ 188 

8.1 Introduction ..................................................................................................................... 188 

8.2 Answers to the research questions .................................................................................. 188 

8.3 Future research ................................................................................................................ 193 

8.3.1 Speech corpus .............................................................................................................. 193 

8.3.2 Parameters .................................................................................................................... 194 

8.3.2.1 Voice onset time (VOT) of a stop /kh/ ...................................................................... 194 

8.3.2.2 Trill /r/ and liquid /l/.................................................................................................. 194 

8.3.3 Statistical tools and data extraction techniques ............................................................ 195 

8.4 Implications for the forensic academic community ........................................................ 195 

8.5 Summary ......................................................................................................................... 196 

References ................................................................................................................................. 197 

Appendix A Recording manuals ............................................................................................... 217 

Appendix B F1-F3 values of [ɔi] plotted against a normalized time scale (100 msec) ............ 235 

Appendix C F1-F3 trajectories of [ɔi] plotted together with cubic polynomials ...................... 240 

Appendix D F1-F3 values of [ai] plotted against a normalized time scale (100 msec) ............ 245 

Appendix E F1-F3 trajectories of [ai] plotted together with cubic polynomials ...................... 250 

Appendix F Tonal F0 values of [ɔi] plotted against a normalized time scale (100 msec) ............. 255 

Appendix G Tonal F0 values of [ɔi] plotted together with a quadratic polynomial curve  

     fitting .................................................................................................................................... 260 

Appendix H Tonal F0 values of [ai] plotted against a normalized time scale (100 msec) ............... 265 

Appendix I Tonal F0 values of [ai] plotted together with a quadratic polynomial curve  

     fitting .................................................................................................................................... 270 



 
xi 

 

List of Tables 

 

Table 1: Acoustic parameters and linguistic-phonetic segments ................................................ 13 

Table 2: Sources of within-speaker variation ............................................................................. 18 

Table 3: Verbal equivalents of LRs ............................................................................................ 26 

Table 4: Standard Thai consonant phonemes ............................................................................. 35 

Table 5: Standard Thai consonant clusters ................................................................................. 36 

Table 6: Northern Thai consonant phonemes ............................................................................. 38 

Table 7: Northern Thai tones ...................................................................................................... 39 

Table 8: Consonant phonemes of the Southern Thai dialect (Phang-Nga) ................................. 41 

Table 9: Southern Thai clusters .................................................................................................. 41 

Table 10: Southern Thai tones .................................................................................................... 42 

Table 11: Northeastern Thai consonant phonemes ..................................................................... 43 

Table 12: Northeastern Thai Tones ............................................................................................. 44 

Table 13: Acoustic parameters, datasets and filter conditions for the fricative /s/ ..................... 62 

Table 14: Frequencies and their corresponding spectral data extracted at the midpoint of the  

     token /s/ spoken by Speaker 8, Session 1 ............................................................................. 117 

Table 15: ANOVA results for speaker and/or session (N = 56 in 4000 and 8000 Hz) on each  

     spectral moment calculated from /s/ .................................................................................... 120 

Table 16: Bonferroni’s pairwise comparisons for a Skew (m3) of /s/ ...................................... 121 

Table 17: Log10LR, Cllr, and EER values of the fricative spectra /s/ according to the combined  

     parameters (leftmost column) measured at the temporal midpoint of the fricative /s/ from  

     56 speakers, in 500-4000 Hz as well as 500-8000 Hz conditions ........................................ 123 

Table 18: Calibrated Log10LR, Cllr, and EER of the fricative /s/ - [sa:m LH] when its 15 DCTs  

     and 20 DCTs were parameterized in both Hertz and Bark scales, in the 500-8000 Hz  

     filter.. .................................................................................................................................... 132 

Table 19: Calibrated Log10LR, Cllr, and EER of the affricate /tɕh/ - [tɕhai HL] when its 15 DCTs  

     and 20 DCTs were parameterized in both Hertz and Bark scales, respectively ................... 135 

Table 20: Calibrated Log10LR, Cllr, and EER of the nasal /n/ - [nɔi L] when its 15 DCTs and  

     20 DCTs were parameterized in both Hertz and Bark scales, respectively.. ....................... 137 

Table 21: Calibrated Log10LR, Cllr, and EER of the nasal /n/ - [na: HL] when its 15 DCTs and  

     20 DCTs were parameterized in both Hertz and Bark scales, respectively.. ....................... 140 

Table 22: Calibrated Log10LR, Cllr, and EER of the nasal /m/ - [mai HL] when its 15 DCTs and  

     20 DCTs were parameterized in both Hertz and Bark scales, respectively.. ....................... 142 

Table 23: Ranking order of the linguistic-phonetic segments experimented on in terms of their  

     Cllr and EER values (from low to high) with their corresponding acoustical parameters .... 145 



 
xii 

 

Table 24: Calibrated Log10LR, Cllr, and EER values when cubic polynomial coefficients from  

     the diphthongs [ɔi] - [nɔi L] and [ai] - [mai HL] were parameterized, respectively ............ 160 

Table 25: Calibrated Log10LR, Cllr, and EER values when cubic polynomial coefficients of the  

     diphthongs [ɔi] - [nɔi L] and [ai] - [mai HL] were parameterized, respectively .................. 163 

Table 26: Log10LR, Cllr, and EER values when mean, SD, skew, kurtosis, modal F0, and modal 

     density were combined according to different patterns ....................................................... 170 

Table 27: Largest consistent-with-fact/contrary-to-fact SSLRs and DSLRs of Standard Thai  

     when all six LTF0 features were parameterized .................................................................. 172 

Table 28: Largest consistent-with-fact/contrary-to-fact SSLRs and DSLRs of Standard Thai  

     when the four spectral moments (mean, SD, skew, kurtosis) were parameterized .............. 173 

Table 29: Largest consistent-with-fact/contrary-to-fact SSLRs and DSLRs of Standard Thai  

     when modal F0 and model density were parameterized ...................................................... 174 

Table 30: Largest consistent-with-fact/contrary-to-fact SSLRs and DSLRs of Standard Thai  

     LTF0 when their distribution was captured by the 10% percentiles and parameterized in a  

     Hertz scale ............................................................................................................................ 176 

Table 31: Calibrated Log10LR, Cllr, and EER values when a quadratic polynomial was fitted to  

     the F0 contours of [ɔi] - [nɔi L] and [ai] - [mai HL], respectively ....................................... 184 

 

 



 
xiii 

 

List of Figures 

 

Figure 1: Standard Thai monophthongs ...................................................................................... 36 

Figure 2: Standard Thai diphthongs ............................................................................................ 37 

Figure 3: F0 contours of the five Standard Thai tones for the same segmental sequence [pa:]. . 37 

Figure 4: The South of Thailand ................................................................................................. 40 

Figure 5: Feature extraction process ........................................................................................... 45 

Figure 6: A raw spectrum (black) extracted from the temporal midpoint of an oral vowel /i/  

and its corresponding Hertz-scaled DCT curve fitting (red) using 512 data points. .............. 48 

Figure 7: Cepstral analysis .......................................................................................................... 50 

Figure 8: A DCT-smoothed signal (cepstrally smoothed spectrum) superimposed on the  

original spectrum (in black) by summing up the first 30 half-cycle cosine waves on a Hz 

scale (in red) of /s, ʨh, m, n/................................................................................................... 53 

Figure 9: A DCT-smoothed signal (cepstrally smoothed spectrum) superimposed on the  

original spectrum (in black) by summing up the first 30 half-cycle cosine waves in a Bark 

scale (in red) of /s, ʨh, m, n/................................................................................................... 54 

Figure 10: A DCT-smoothed signal (cepstrally smoothed spectrum) of /s, ʨh, m, n/ from 

Speaker 1’s 1st session, plotted by summing up the first 30 half-cycle cosine waves in a  

Hertz scale uttered on 1st and 2nd repeats (in black), and Speaker 1’s 2nd session, similarly 

consisting of 1st and 2nd repeats (in red). ................................................................................ 55 

Figure 11: A DCT-smoothed signal (cepstrally smoothed spectrum) of /s, ʨh, m, n/ plotted  

by summing up the first 30 half-cycle cosine waves in a Hertz scale from Speaker 2’s 1st 

session (1st – 5th repeats, in black) and Speaker 3’s 1st session (1st – 5th repeats, in red). ...... 57 

Figure 12: MVLR formula (Aitken & Lucy, 2004) .................................................................... 82 

Figure 13: Floor plan of the recording rooms ............................................................................. 86 

Figure 14: Tippett plot of 20 Hertz-scaled DCTs of /m/ - [mai HL]. ......................................... 89 

Figure 15: Tippett plot of the 15 Hertz-scaled DCTs of /ʨh/ [ʨhai HL]. .................................... 92 

Figure 16: Tippett plot of [i:aw] - [li:aw H] when [F2, F3, F4] were fitted with cubic 

polynomials (reproduced from Pingjai et al., 2013). ............................................................. 99 

Figure 17: Tippett plot of [ɯ:a] - [phɯ:aʔ HL] when [F2, F3, F4] were fitted with cubic 

polynomials (reproduced from Pingjai et al., 2013). ........................................................... 100 

Figure 18: Tippett plot of [u:a] - [su:an L] when [F2, F3, F4] were fitted with cubic  

polynomials (reproduced from Pingjai et al., 2013). ........................................................... 100 

Figure 19: Tippett plot of [o:i M] - [do:i M] when its F2 trajectory was fitted by cubic 

polynomials. ......................................................................................................................... 102 

Figure 20: Tippett plot of [ə:i] - [khə:i M] when its F2 trajectory fitted by cubic polynomials 

plus duration were parameterized. ....................................................................................... 103 



 
xiv 

 

Figure 21: Tippett plot of [ai] - [ʨhai HL] when its F0 contour was fitted by quadratic 

polynomials. ......................................................................................................................... 105 

Figure 22: Tippett plot of [u:a] - [ru:am HL] when its F0 contour was fitted by linear  

regression. ............................................................................................................................ 105 

Figure 23: Label tier (top), waveform (middle), and spectrogram (bottom) of the phrase  

“every three weeks”, with overlaid formants. The section highlighted in grey in the label  

tier shows the target segment /s/. ......................................................................................... 110 

Figure 24: Label tier (top), waveform (middle), and spectrogram (bottom) of the phrase  

“every three weeks”, with overlaid formants. The section highlighted in grey in the label  

tier shows the target segment /s/. ......................................................................................... 110 

Figure 25: Label tier (top), waveform (middle), and spectrogram (bottom) of part of the 

sentence frame “This is because we do not have any responsibility”, with overlaid formant 

tracking values. The section highlighted in grey in the label tier shows the target segment 

/tɕh/ ....................................................................................................................................... 111 

Figure 26: Label tier (top), waveform (middle), and spectrogram (bottom) of part of the 

sentence frame “This is because we do not have any responsibility”, with overlaid formant 

tracking values. The section highlighted in grey in the label tier shows the target segment  

/n/ ......................................................................................................................................... 113 

Figure 27: Label tier (top), waveform (middle), and spectrogram (bottom) of a target  

segment /n/ - [nɔi L]. ............................................................................................................ 114 

Figure 28: Label tier (top), waveform (middle), and spectrogram (bottom) of the target  

segment /n/ - [na: HL͜ thi: HL]. ............................................................................................. 115 

Figure 29: Label tier (top), waveform (middle), and spectrogram (bottom) of the target  

segment /m/ - [mai HL]. ...................................................................................................... 116 

Figure 30: Histograms of the spectral mean, variance, skew, and kurtosis of /s/ uttered by  

56 speakers. .......................................................................................................................... 119 

Figure 31: Tippett plots for SS and DS comparisons when mean, variance, skew and  

kurtosis were parameterized in the 500-4000 Hz (left) and 500-8000 Hz (right)  

band-pass filters. .................................................................................................................. 124 

Figure 32: Tippett plots for SS and DS comparisons when two or three of the four parameters 

(as indicated on top of each of the plots) were combined in a 500-4000 Hz band-pass  

filter. ................................................................................................................................... 1265 

Figure 33: Tippett plots for SS and DS comparisons when two or three of the four parameters 

(as indicated on top of each of the plots) were combined in a 500-8000 Hz band-pass  

filter. ..................................................................................................................................... 127 

Figure 34: The means (circles) and ranges of spectral mean. ................................................... 129 

Figure 35: The means (circles) and ranges of spectral variance. .............................................. 130 

Figure 36: The means (circles) and ranges of spectral skew .................................................... 130 

Figure 37: The means (circles) and ranges of spectral kurtosis ................................................ 131 



 
xv 

 

Figure 38: Tippett plot of the best performing parameter, 15 Bark-scaled DCTs of /s/ -  

[sa:m LH]. ............................................................................................................................ 133 

Figure 40: Tippett plot of the best performing parameter, 20 Bark-scaled DCTs of /tɕh/ -  

[tɕh ai HL]. ............................................................................................................................ 136 

Figure 41: Tippett plot of the worst performing parameter, 15 Hertz-scaled DCTs of /tɕh/ -  

[tɕh ai HL]. ........................................................................................................................... 137 

Figure 42: Tippett plot of the best performing parameter, 20 Hertz-scaled DCTs of /n/ -  

[nɔi L]. ................................................................................................................................. 138 

Figure 43: Tippett plot of the worst performing parameter, 20 Bark-scaled DCTs of /n/ -  

[nɔi L]. ................................................................................................................................. 139 

Figure 44: Tippett plot of the best performing parameter, 15 Bark-scaled DCTs of /n/ -  

[na: HL]. ............................................................................................................................... 141 

Figure 45: Tippett plot of the worst performing parameter, 20 Bark-scaled DCTs of /n/ -  

[na: HL]. ............................................................................................................................... 141 

Figure 46: Tippett plot of the best performing parameter, 20 Hertz-scaled DCTs of /m/ -  

[mai HL]. ............................................................................................................................. 143 

Figure 47: Tippett plot of the worst performing parameter, 15 Bark-scaled DCTs of /m/ -  

[mai HL]. ............................................................................................................................. 144 

Figure 49: Label tier (top), waveform (middle), and spectrogram (bottom) of [ai] - [mai HL] 

with the corresponding formant frequencies tracking.......................................................... 150 

Figure 50: Label tier (top), waveform (middle), and spectrogram (bottom) of [ɔi] - [nɔi L]  

with the corresponding formant tracking containing some errors (in the last one-third). .... 151 

Figure 51: Label tier (top), waveform (middle), and spectrogram (bottom) of [ɔi] - [nɔi L]  

with the corresponding formant tracking after manual correction. ...................................... 152 

Figure 52: Label tier (top), waveform (middle), and spectrogram (bottom) of [ai] - [mai HL] 

with the corresponding formant tracking containing some errors. ...................................... 153 

Figure 53: Label tier (top), waveform (middle), and spectrogram (bottom) of [ai] - [mai HL] 

with the corresponding formant tracking after manual correction ....................................... 153 

Figure 54: Label tier (top), waveform (middle), and spectrogram (bottom) of [ɔi] - [nɔi L] 

containing many formant tracking errors. ............................................................................ 154 

Figure 55: Speaker 1’s F1-F3 trajectories of the diphthong [ɔi] - [nɔi L] plotted against 

normalized duration (100 msec). ......................................................................................... 155 

Figure 56: Speaker 1 and Speaker 9’s F1-F3 trajectories of the diphthong [ɔi] - [nɔi L]  

plotted against normalized duration (100 msec). ................................................................. 156 

Figure 57: F2 trajectory values of [ɔi] - [nɔi L] (black dots), plotted together with its cubic 

polynomial curve fitting (dotted red line) of (0.000531)x3 + 0.155159x2 + (–15.291889)x  

+ 1539.427481. .................................................................................................................... 157 

Figure 60: F2 trajectory values (black dots) of the diphthong [ai] - [mai HL] plotted together 

with its cubic polynomial fitting (dotted red line) of (–0.000854)x3 + (–0.023227)x2 + 

(16.052403)x + 1589.501831............................................................................................... 160 



 
xvi 

 

Figure 61: Tippett plot of [ɔi]’s second formant (F2) trajectory when cubic polynomials  

were parameterized. ............................................................................................................. 161 

Figure 62: Tippett plot of [ai]’s second formant (F2) trajectory when cubic polynomials  

were parameterized. ............................................................................................................. 162 

Figure 63: Tippett plot of [ɔi]’s F1-F3 trajectories when cubic polynomials were  

parameterized. ...................................................................................................................... 164 

Figure 64: Tippett plot of [ai]’s F1-F3 trajectory when cubic polynomials were  

parameterized. ...................................................................................................................... 165 

Figure 65: Label tier, speech waveforms, and F0 tracking. Each u in the label tier  

represents an utterance of speech samples used to extract LTF0. ....................................... 168 

Figure 66: LTF0 distribution plots extracted from Speakers 1-4. Blue and red curves  

represent the first and second recording sessions, respectively. .......................................... 169 

Figure 67: Tippett plot of LTF0 when all six LTF0 features (mean, SD, skew, kurtosis,  

modal F0 and modal density) were parameterized. ............................................................. 171 

Figure 70: Tippett plot of LTF0 when its distribution was captured by the 10% percentiles  

and parameterized in a Hertz scale. ..................................................................................... 176 

Figure 71: Label tier (top), waveform and overlaid F0 tracking (middle), and spectrogram 

(bottom) for the target segment [ɔi] - [nɔi L] ....................................................................... 178 

Figure 72: Label tier (top), waveform and overlaid F0 tracking (middle), and spectrogram 

(bottom) for the target segment [ai]. .................................................................................... 179 

Figure 73: Label tier (top), waveform and overlaid formant tracking (middle), and F0  

tracking (bottom) for the target segment [ɔi] - [nɔi L]. There are some F0 tracking errors in 

the middle of [ɔi].................................................................................................................. 180 

Figure 74: Label tier (top), waveform and overlaid formant tracking (middle), and F0  

tracking after manual correction (bottom) for the target segment [ɔi] - [nɔi L]. ................. 180 

Figure 75: F0 contours of the diphthong [ɔi] - [nɔi L] plotted against normalized duration  

(100 msec) for Speakers 1 and 9. ......................................................................................... 181 

Figure 76: F0 contours of the diphthong [ai] - [mai HL] plotted against normalized duration 

(100 msec) for Speakers 1 and 9. ......................................................................................... 182 

Figure 77: F0 values (black dots) of the diphthong [ɔi] - [nɔi L] plotted together with its 

quadratic polynomial curve fitting (dotted red line) in normalized duration (100 msec). ... 182 

Figure 80: Tippett plot of [ai] - [mai HL] when its tonal F0 contours were parameterized by  

a quadratic polynomial. ........................................................................................................ 186 

Figure 81: Tippett plot for the fused and calibrated LRs for /n/ - [na: HL] and /n/ - [nɔi L]. ... 192 

 



 
1 

 

Chapter 1 

Introduction 

 

1.1 Introduction 

It is clear from our everyday experience that humans are able to quite effectively 

recognize or identify familiar speakers such as family members, friends, and celebrities 

by their voices (Atal, 1972, p. 1687; Nolan, 2001, p. 276). Such scenarios could include, 

for example, recognizing someone who is speaking on the phone from just a relatively 

short utterance such as hello, or recognizing someone who is speaking but whom we 

cannot directly see (Bricker et al., 1971). This “normal everyday ability” or “naïve 

speaker recognition” (Nolan, 2001, p. 276), prompts us to investigate how acoustic cues 

can reliably encode information about a speaker.  

 

1.2 A brief history of the study of speaker recognition 

As early as 1962, Kersta (1962) developed a spectrographic methodology in order to 

compare speech samples. This was colloquially called “voiceprint”. Kersta claimed that 

such spectrographic patterns obtained from speech samples are “uniquely different 

enough to make any given speech sample identifiable with the same accuracy that 

fingerprint identification enjoys” Kersta (1962, p. 1355). His assumption is principally 

based on the notion that the vocal tract size and the manner of articulation are uniquely 

different among individuals. As such, Kersta (1962, p. 1355) strongly believed that the 

simple visual matching of spectrographic patterns could be used to identify speakers. This 

theory is easy to dispute in the present day, however, through the use of state-of-the-art 

speech analysis tools such as Praat (Boersma & Weenink, 2003) and the EMU speech 

database system (Cassidy, 1999). These tools can empirically show that even a sound that 

linguistically seems identical to another produced by the same speaker, and uttered just a 

few seconds apart, is different acoustically (e.g. having a different frequency (Hz) and 

relative amplitude (dB)). This means that the resulting differences can be audible and 

measurable (Ladefoged & Johnson, 2014, pp. 207-208). Vanderslice (1969) also affirmed 

that some speech spectrograms that looked similar were actually produced by different 

speakers, and some that looked different were produced by the same speakers. In Chapter 
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2, I will elaborate more on how speech varies both within and between speakers, making 

speech difficult to discriminate forensically. 

The “voice print method” by Kersta (1962, p. 1355), just described, has been challenged 

by many researchers such as Bolt et al. (1970), who questioned its reliability and validity 

as well as its applicability in investigations and in judicial applications. In particular, the 

questions researchers like Bolt et al. (1970) raise are about the probabilities of false 

identification and of correct identification, as well as the probabilities of correct 

identification under various conditions, ranging from controlled situations to forensically 

realistic ones.  

In the early 1970s, many experiments concerning acoustic parameters in automatic 

speaker recognition were undertaken. These experiments can be placed into two 

categories – speaker verification and speaker identification (Bricker et al., 1971, p. 1427). 

Specifically, speaker verification is the process of rejecting or accepting the identity 

claimed by a speaker, whereas speaker identification is the process of assigning an 

unknown utterance to a known speaker/group (or of leaving it unassigned, as the case 

may be) (ibid.). Among the automatic speaker identification experiments done between 

1960 and 1970 are those by Glenn and Kleiner (1968), Pruzansky (1963), Pruzansky and 

Mathews (1964), and Wolf (1970), where the first of these studies employed parameters 

extracted from the nasal spectrum, and the second and third used parameters based on a 

spectrum obtained from whole words; the last study, by Wolf, instead employed 

phonological features as parameters for testing. All of these speaker identification studies 

showed a similar rate of success of around 90% correct recognition (or more). However, 

since these studies were exploratory experiments in the early days of automatic speaker 

recognition research, they were controlled using a small population of 10-30 voices 

recorded in a laboratory environment and obtained from a reading style; as such these 

favorable factors might have contributed to such a high success rate (ibid.). 

 

1.3 Types of speaker recognition: Speaker identification/verification/ 

      forensic voice comparison 

When considering the use of standardized terminology within the field, which may be 

confusing to newcomers, it is useful to look at definitions of the term speaker recognition 
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itself and its classifications (Gonzalez-Rodriguez, Ortega-Garcia, & Sanchez-Bote, 2002; 

Meuwly, 2004; Nakasone & Beck, 2001; Nolan, 1983; Rose, 2002, 2006). We will firstly 

begin here with a definition of speaker recognition by Atal (1976, p. 460), who states that:  

The term speaker recognition refers to any decision-making process that uses some features of the 

speech signal to determine if a particular person is the speaker of a given utterance which will include 

tasks such as identification, verification, discrimination and authentication of speakers. 

From the above, speaker recognition can be defined as the task of using acoustic features 

to discriminate between the speech samples of different speakers. Indeed, Rose and 

Clermont (2001, p. 33) point out that identification is the end result of a process of 

discrimination. That is, if speech samples are discriminated as coming from the same 

speaker, the suspect can be identified as the offender; if not then no identification is 

possible (ibid.). Therefore, discriminating a speech sample does not necessarily entail 

identification. In contrast, speaker verification, which is the most common task in speaker 

recognition, is a process of accepting or rejecting the identity claimed by an unknown 

whose utterances are to be compared against those in the stored reference samples  whose 

identities are claimed (Nolan, 1983, p. 8; Rose, 2002, p. 85). Usually the result of the 

verification process can be one of the following: correct acceptance; correct rejection; 

false acceptance; false rejection (Rose, 2002, p. 85). False acceptance is considered the 

most serious result in speaker verification, as the security system verifies the speaker is 

an imposter and not who he claims to be. False rejection happens when a security system 

incorrectly denies a bona fide speaker access into his or her installation. Regarding the 

term authentication, which is not directly relevant to the current work, this involves tasks 

such as determining if speech samples have been digitally edited or not (Rose, 2002, p. 

2).  

However, as outlined in a position statement resulting from the collaborative effort of a 

number of researchers and forensic practitioners working in the United Kingdom (French, 

Nolan, Foulkes, Harrison, & McDougall, 2010), the term recognition and its two main 

categories, i.e. identification and verification, are not appropriate for the current research; 

instead the term comparison, which is regarded as neutral amongst these terms, will be 

adopted (Rose & Morrison, 2009, p. 7). This is because the terms recognition, 

identification and verification imply that we can give a definitive answer to the question 

of whether a suspect is guilty or not. In other words, these words imply that categorical 
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decisions can be made in answer to the question: are the unknown and known samples 

from the same speaker? For a forensic expert to categorically decide whether a suspect is 

guilty or not is, in fact, logically impossible and legally inappropriate (Rose, 2002, p. 89). 

It is intuitively easy and straightforward to understand why it is legally inappropriate. 

This is because only the trier-of-fact would be in the position where the ultimate decision 

(i.e. the suspect being guilty or not) is to be made. Thus, in this scenario, forensic experts 

trying to give a decision on guilt would be seen as usurping the duties of the fact finders 

(e.g. judges or juries). Although in Chapter 2, I will explain in detail why it is logically 

impossible to make such categorical decisions, one has to consider all relevant 

information to the case (e.g. all different types of evidence presented). However, it is 

impossible for experts to consider all the information relevant to the case at hand; thus, it 

is impossible for forensic experts to derive a categorical decision (or an ultimate 

decision). Having said that, it is far easier to derive a categorical rejection where, for 

example, it is sometimes clear to trained linguists that speech samples sound too different 

from one another (e.g. different sexes, languages, accents) (Rose, 2002, pp. 64-65). It is 

considered that it will usually be obvious to the trained linguists what language a speaker 

is speaking, whether a speaker is a male or a female, and broadly what accent a speaker 

is using (Morrison, Enzinger, & Zhang, 2016; Rose, 2002). But it is also reported that this 

is not a trivial task (Hughes & Rhodes, 2018). Moreover, such a categorical rejection may 

be arrived at with a closed set of comparisons (ibid.).  

Following on from the above discussion concerning the terms selected for use in the 

current work, Rose and Morrison (2009, p. 7) point out that speech samples, not speakers, 

are the things that are being compared. Thus, the term ‘forensic voice comparison’ (FVC) 

should be adopted instead of ‘forensic speaker comparison’. Rose (2002, p. 278) defines 

voice as “vocalisations (i.e. sound produced by a vocal tract) when thought of as made by 

a specific individual and recognisable as such”. In this definition, voice is produced by a 

speaker and needs to be perceived as such by its speaker. Since the voice is the only item 

to be compared, not any other aspect, e.g. DNA profiling or finger print analysis of the 

speaker, I will use the term ‘forensic voice comparison’ (FVC) in the current thesis. Its 

exact meaning is discussed in §1.4. 
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1.4 What is Forensic Voice Comparison?   

FVC, as the name suggests, concerns the task of comparing speech samples, usually of 

the offender and the suspect(s), under two competing hypotheses, one of which is the 

prosecution hypothesis, according to which the speech samples are from the same 

speaker, while the other one is the defense hypothesis, according to which the speech 

samples are from different speakers (Robertson & Vignaux, 1995; Champod & Meuwly, 

2000; Aitken & Taroni, 2004; Rose & Morrison, 2009). The results of such comparisons 

are dependent on the ratio of two conditional probabilities: firstly, how likely the evidence 

occurs under the prosecution hypothesis; and secondly, how likely the same evidence 

occurs under the defense hypothesis; these probibilities make up the so-called “strength 

of voice” evidence, which can be mathematically expressed as follows: 

LR = 
𝒑(𝑬|𝑯𝒑)

𝒑(𝑬|𝑯𝒅)
       

Equation 1 

 

In equation 1, p stands for probability, Hp stands for prosecution hypothesis (the two 

speech samples come from the same speaker), Hd stands for defense hypothesis (the 

samples come from different speakers), and E for speech evidence.   

The above ratio between the two probabilities is called a likelihood ratio (LR); it shows 

the strength of the evidence. In equation 1, the difference between the offender and 

suspect samples is considered as E. This means that an LR tells us how much more likely 

(p) a difference between the offender and suspect samples is on the assumption that they 

have come from the same speaker (Hp) than on the assumption that they have come from 

different speakers (Hd) (Robertson & Vignaux, 1995; Champod & Meuwly, 2000; Aitken 

& Taroni, 2004; Rose & Morrison, 2009, p. 6). For example, an LR of 20 means that it is 

20 times more likely that we will observe similarities/differences between speech samples 

that are from the same speaker rather than from different speakers. Another way of 

understanding the LR is that the numerator calculates the similarities/differences between 

the speech samples of the suspect and those of the offender; the denominator calculates 

the typicality of the speech samples being compared, i.e. how likely it is that by chance 

we will find speech samples that are similar to those of the suspects and the offenders in 

a relevant population sample (Rose, 2002, p. 58). We should be aware that the strength 
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of voice evidence or LR depends not only on the similarities/differences between speech 

samples, but also on how typical they are (ibid.). One of the arguments of the current 

thesis concerns the proper role of forensic experts when dealing with LR. I will argue 

throughout that forensic experts should limit themselves only to its evaluation.  

In this section, I will briefly illustrate how we can calculate LRs using voice-related 

matter. Suppose that a court wants to know whether given speech samples are from the 

same or from different speakers. Imagine further that the numerator of the LR formula is 

90% and the denominator is 10%; the ratio between them, which is an LR, is 9. The LR 

value of 9 means that the voice evidence is 9 times more likely to be from the same 

speaker (Hp) than from different speakers (Hd). The LR will be elaborated on more in 

Chapter 2, particularly in the context of the Bayesian Theorem. 

Given the previous definitions, FVC is actually a subtype of speaker verification because 

both of them deal with two hypotheses: whether two speech samples are likely to be from 

the same or from different speakers. However, there are three main differences between 

the two terms. Thus, it is worth contrasting the term FVC on the one hand and the term 

speaker verification on the other, with reference to the three crucial differences (1. 

reference data; 2. categorical decision and threshold; and 3. control over samples) that I 

will outline below.  

1) Reference data 

In speaker verification, the referenced speech samples are from a known population, such 

as a company’s clientele and employees, and their speech properties (whether they are 

from the same or different speakers) are known (Rose, 2002, p. 88). As such, the threshold 

needed to discriminate speech samples produced by one and the same speaker from 

speech samples produced by different speakers can be set directly using the (known) 

reference data (as we know which speech samples are from which speakers). This means 

that the threshold is not only maximized by the between-speaker distances (which are 

directly estimated from the known reference data), but also that it can be updated by 

changes in the known reference data (Furui, 1981, p. 258). 

In contrast, the referenced speech samples in FVC are not known beforehand and the 

corresponding acoustic properties can only be approximated (Broeders, 1995). Thus, the 

constitution of the reference data for FVC depends on circumstances (Rose, 2002, p. 89). 
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As Gold and Hughes (2014, p. 295) point out: “without knowing who the offender is, it 

is not possible to be certain what the population is of which he is a member”. In agreement 

with Gold and Hughes’s statement, Rose points out that it is still plausible for competent 

linguists to approximately delimit a population that is relevant to the offender using the 

information available (e.g. age, sex, accent) (Rose, 2002, pp. 64-65, 84). Selecting 

appropriate reference data is a very important aspect of the LR framework, which needs 

to be addressed here. First, as Drygajlo, Meuwly, and Alexander (2003) point out, the 

suspected speaker reference data should be as much as possible equivalent to that of the 

questioned speaker. This includes, for example, the equivalence in speaking style, 

quantity of the recorded speech and the technical characteristics of speech recordings. 

More discussion on refining the reference data specified in the defense hypothesis can be 

found, among others, in Morrison, Enzinger, and Zhang (2016), Hicks et al. (2015) and 

Hughes and Rhodes (2018). Second, in order to assess the extent of within-speaker 

variations, the suspected speaker reference data should be collected on two separate 

occasions in order to model the within-speaker variations, which always vary over time 

(ibid., p. 691). Third, FVC should be conducted on the open-set speakers, as opposed to 

the closed set, in order to avoid a misleading FVC calculation (Champod & Meuwly, 

2000, p. 196). According to Champod and Meuwly (2000, p. 196), “it seems particularly 

unfair to disclose only the identity of the best candidate without providing the evidence 

obtained for the others”. Last but not least, the task of FVC should also be conducted on 

a large potential population database as the reliable statistical models rely heavily on large 

population databases (Drygajlo et al., 2003, p. 691). However, there are many theoretical 

and practical issues that should be addressed. I will discuss these separately in Chapter 3, 

but will now return to my discussion of the differences between speaker verification and 

FVC. 

2) Categorical decision and threshold  

In speaker verification, the ultimate goal is to give a categorical answer (yes/no) to the 

question: are the speech samples that are being verified the same as those in previously 

stored reference data? In such a verification system, as discussed above, the decision 

thresholds need to be calculated from a known and pre-set population so that (tested) 

speech samples with differences not exceeding a certain threshold are considered as being 

from the same speaker, but also that samples with differences greater than the threshold 
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are considered to have come from different speakers (Rose, 2002, p. 90). In the forensic 

field, this categorical answer, which is the probability of a hypothesis (H) given the speech 

evidence (E) or P(H|E), is seen as a logical flaw as it transposes the conditional 

probabilities of the LR (Equation 1 above) (Robertson & Vignaux, 1995, pp. 19-20). That 

is, the probability of evidence under the competing hypotheses P(E|H) is transposed to 

the probability of hypotheses given the evidence P(H|E). The experts should not be giving 

such categorical answers about guilt or innocence.    

With FVC, if an expert tries to give such a categorical answer, which is the probability of 

a hypothesis given the speech evidence or P(H|E), he or she needs to take into account all 

information relevant to the case (which is usually not known by experts). This, however, 

would be seen as a legal usurpation (Morrison, 2009a). However, we need to be aware 

that such a categorical decision is possible in real casework if FVC experts conduct a 

closed-set comparison and when there are speech samples that sound very dissimilar (e.g. 

originating from different sexes) (Kinoshita, Ishihara, & Rose, 2009, p. 103). I will now 

discuss the last difference between speaker verification and FVC. 

3) Control over samples 

In speaker verification, there is a very good level of control over reference data, i.e. 

speakers are asked to read prescribed texts, which are stored and retrievable as templates 

from an automatic speech recognition system (Rose, 2002, pp. 90-91). Such templates 

contain high speaker-specific parameters (this is done deliberately) (Broeders, 1995, p. 

156). Additionally, those doing the tests have a high degree of control (high degree of 

comparability) over the samples being tested. That is, speakers who wish to be verified 

are cooperative with the test and repeat the phrases of any desired reference templates 

(ibid.). For FVC, in contrast, the questioned samples might be incriminating speech 

recorded during a robbery, whereas the speech samples obtained from suspects might be 

from a police interview and intimidating. Asking suspects to utter the same incriminating 

lines of text might be construed as a means of obtaining comparability. However, this is 

not the case as no one ever says the same thing twice in a way that has exactly the same 

acoustic/physical properties (Rose, 2002, p. 10). 
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Having presented the three main differences (reference data, categorical decision making 

and threshold, and control over samples) between speaker verification and FVC, I will 

now discuss the motivations for conducting this thesis. 

 

1.5 Motivations 

In Thailand, like in other countries, many crimes are committed using mobile phones. 

Criminal cases in which digital forensic evidence obtained from the mobile phone carrier 

led to an arrest of suspects are now increasingly reported (Ngamkham & Nanuam, 2015). 

Unfortunately, to the best of my knowledge, no legal cases in which voice evidence was 

admitted in court have been publicly reported in the media. This does not mean that the 

Thai authorities are not interested in voice evidence in criminal proceedings. Indeed, I 

myself was asked via e-mail, in February 2015, by a defendant’s lawyers, to proffer voice 

evidence to a court in Chiang Mai, Thailand. The defendant, who had been accused of 

bank fraud, perjury, and extortion, hoped that expert opinions concerning voice evidence 

might be of value for the adjudication of their case. Such an FVC demand suggests that 

the number of FVC experts needed in Thailand is growing. Thus, my first motivation for 

conducting this research is to help fulfill this requirement. 

My second motivation for conducting this thesis and choosing Standard Thai is my 

background as a Thai native speaker. Being a linguist who has the ability to comprehend 

the forensic samples under investigation yields many advantages. As Rose (2002, p. 333) 

explains, a native speaker automatically knows which sounds realize which phonemes, as 

well as what constitutes the typicality of a language peculiar to a community. This means 

that as a trained phonetician, who is a speaker and listener of the language under 

examination, I am able to interpret the speech complexity that is normally to be found in 

forensic samples. Another reason for choosing Standard Thai is that it is standardized and 

used nation-wide in Thailand, i.e. it is taught in educational institutions, used in the media, 

and described by grammar books and dictionaries (Tingsabadh & Abramson, 1993). As 

such, it can be said that Standard Thai is spoken by the majority of people in Thailand 

(approximately 20 million, as compared to the 15 million, 6 million and 4.5 million 

natives of Thailand who speak the Northeastern, Northern and Southern Thai dialects, 

respectively) (Lewis, Simons, & Fennig, 2013).  
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Given that there has been conspicuously little FVC research done on Standard Thai, 

except that of Thaitechawat and Foulkes (2011), the third motivation for undertaking this 

thesis is to further empirically test the applicability of the LR framework to that language. 

Based on these three motivations, I conduct the current work in order to search for the 

specific parameters that might potentially contain high speaker-specificity, and that are 

of forensic use in Standard Thai. Thus, it is appropriate for me to now discuss the 

approach employed in the current thesis. 

 

1.6 The research approach  

In this section, I aim to make clear the research approach employed in the current thesis, 

by illustrating the differences in parameters, on the one hand, and the statistical modelling 

techniques used, on the other. 

1.6.1 Traditional vs automatic parameters  

To begin with, the current thesis employs the traditional approach, which comprises both 

auditory and acoustic analyses. This means that, before proceeding to an acoustic 

analysis, forensic experts will first listen to incriminating speech samples of unknown 

origin, taken for instance from recordings embedded in CCTV footage, and speech 

samples of suspects, i.e. of known origin, taken for instance from conversations during a 

police interview, to judge the quality and the comparability of the speech recordings (in 

an attempt to extract comparable words, phrases, etc). The auditory-acoustic approach 

was revealed as the most popular both in an INTERPOL survey of the use of speaker 

identification by law enforcement agencies, by Morrison, Sahito, et al. (2016), and in a 

survey on forensic speaker comparison, by Gold and French (2011). The two surveys 

were different in terms of the use of differing types of respondents: all the respondents of 

the former survey were from law enforcement agencies, but half of the latter were from 

government labs, while the rest were academics and private practitioners. The other 

difference between the two surveys is that the former revealed the usefulness of FVC both 

for the investigative as well as for forensic applications, while the latter reported the 

usefulness of FVC for forensic applications only. 

As Rose (2002) and Enzinger (2009) point out, the choice of parameters used in FVC is 

in part language-specific. Thus, conducting FVC research on Standard Thai is also 
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justifiable due to the need to add to our existing knowledge of the extent to which 

Standard Thai, which is a tonal language, lends itself to FVC as compared to other 

languages, with different parameters found to contain highly individualizing information. 

For the purposes of this thesis, various segments, consonantal (/s/, /ʨh/, /n/, /m/) as well 

as vocalic (diphthongs [ɔi], [ai]), were selected, from which different acoustic information 

(the spectrum, fundamental frequency (F0) and formant trajectories) was extracted 

depending on the segments. These parameters were chosen based on promising results 

reported in the relevant literature, as I will show in detail in Chapter 2. However, to give 

an overview, the traditional parameters, which are the F0 and formant trajectories, will 

be tested in this study because they have been proven to work well in many languages, 

including Standard Thai, cf. Thaitechwat and Foulkes (2011). Furthermore, they are 

directly correlated to articulatory and auditory phonetic features (Rose & Clermont, 

2001). Apart from the traditional parameters, spectrum, which is one of the most popular 

parameters in ASR, will also be tested (Franco-Pedroso, Gonzalez-Rodriguez, Gonzalez-

Dominguez, & Ramos, 2012). Spectrum is one way of looking at speech waveform in 

terms of the amounts of energy that are present at particular frequencies, a so-called 

“frequency-domain representation” (Rose, 2002, p. 199). Spectrum is relatively easy to 

extract as opposed to other traditional linguistic parameters such as formants. As such, 

the spectrum of /s/, in particular, has been chosen for the current experiment as it has 

recently been reported to have promising FVC results in English by Kavanagh (2012). 

Spectrum extracted from nasals will also be investigated, as it is said that nasal spectrum 

contains considerable amounts of individualizing information (Enzinger & Zhang, 2011; 

Glenn & Kleiner, 1968; Su, Li, & Fu, 1974; Wolf, 1972; Yim & Rose, 2012).      

Following on from the above, it can be concluded that the current research is traditional, 

in the sense that traditional acoustic parameters from the same comparable phonemes are 

tested (Rose, 2011, p. 5900). However, the spectrum-based features, which are common 

in automatic speech recognition, are also trialed in the current work in order to see 

whether either automatic or traditional parameters perform better in testing.  

1.6.2 Statistical modelling techniques  

The statistical modelling technique used in the current thesis is the multivariate likelihood 

ratio (MVLR), which is more often used to calculate LR in semi-automatic FVC than the 

GMM-UBM (Gaussian Mixture Model - Universal Background Model) (Rose, 2002, p. 
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89). Having said that, the MVLR may also be used with automatic parameters, e.g. Mel-

frequency cepstral coefficients (MFCCs), and the GMM-UBM with traditional 

parameters (cf. Zhang, Morrison, & Thiruvaran, 2011) – but this possibility is not being 

pursued here. Thus, the current thesis adopts semi-automatic principles: it requires human 

experts to listen to and select speech segments that are of use for FVC analysis. 

Furthermore, the experts themselves interpret the FVC results and present their testimony 

to a court of law (ibid.). 

 

1.7 Linguistic-phonetic segments and acoustic parameters 

Many scholars (e.g. Boves, 1998; Andrews, Kohler, Campbell, & Godfrey, 2001; 

Doddington, 2001) have argued that significant improvements to automatic speaker 

recognition hinge on the discovery of acoustic parameters that contain highly 

individualizing information. This applies to forensic voice comparison as well, where 

forensic experts are expected to calculate, with as high a level of validity as possible, the 

probability of observing speech evidence under competing hypotheses. Focussing on 

Standard Thai, this thesis aims to identify which of its linguistic segments (consonants, 

vowels and tones/tonal F0) perform best in FVC and which of their acoustic parameters 

(both traditional and automatic) potentially contain the most highly individualizing 

information. 

It is of course beyond the scope of any single study to examine all of a language’s 

phones/allophones and potential parameters available for FVC. The selection of various 

acoustic parameters (F0, format trajectories, spectrum) in this thesis is motivated, as 

previously discussed, by the fact that Standard Thai is a tonal language and that promising 

results for tonal F0 and formant trajectories of Standard Thai were reported in 

Thaitechawat and Foulkes (2011) (100% correct classification rate using discriminant 

analysis (DA)). Spectrum, too, is selected for testing in this thesis, in addition to 

traditional linguistic-phonetic parameters, as promising results have long been reported 

in automatic speaker recognition (ASR) literature that details the use of this method (cf. 

Franco-Pedroso et al., 2012).  

Table 1 (overleaf) shows the specific acoustic parameters explored in this thesis; it is 

categorized according to linguistic-phonetic segments. Table 1 shows that, in this thesis, 
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I explore various acoustic parameters, extracted from different linguistic-phonetic 

segments. Since the spectral moments (mean, variance, skew and kurtosis) of the English 

consonants /s, m, n, ŋ/ have been found by Kavanagh (2012) to contain promising  

Acoustic parameters Linguistic-phonetic segments 

1. Spectrum 

1.1 Spectral moments (mean, 

variance, skew, kurtosis)  

1.2 Cepstral coefficients (CCs) 

 

1. /s/, /ʨh/, /n/, /m/ 

 

2. /s/, /ʨh/, /n/, /m/ 

2. Fundamental Frequency (F0) 

2.1 Tonal F0  

2.2 LTF0 (Long-term F0) 

  

2.1 Diphthongs [ɔi], [ai] 

2.2 Fax task 

3. Formant trajectory 

3.1 Formant trajectories (F1-F3) 

 

3.1 Diphthongs [ɔi], [ai] 

Table 1: Acoustic parameters and linguistic-phonetic segments 

individualizing information, it will be prudent to test FVC performance in Standard Thai 

with reference to the fricative /s/, the affricate /ʨh/ and the nasals /n/ and /m/ (I will 

discuss how to select these linguistic-phonetic segments in greater detail in Chapter 2). 

Apart from spectral moments, the ceptral coefficients (CCs) approximating the spectral 

shape of /s/, /ʨh/, /n/, and /m/ are also trialed. Additionally, based on the promising results 

of the discriminant analysis (DA) of Standard Thai tones and formants by Thaitechawat 

and Foulkes (2011), the traditional parameters, constituting the tonal fundamental 

frequency, together with the formant trajectories (F1-F3) of the diphthongs [ɔi], [ai], will 

be tested as well. These fundamental frequency (F0) and formant trajectories will be 

extracted using the polynomial coefficients. I will proceed based on the research findings 

achieved, among others, by McDougall and Nolan (2007) and Zhang, Morrison, Ochoa, 

and Enzinger (2012), which suggest that these formant trajectories contain more 

individualizing information than the static formant values measured at the temporal 

midpoint of a vowel. In order to find additional F0 features, which might be of FVC use, 

the distribution of long-term fundamental frequency (LTF0) extracted from an 

information exchange task (two informants having a conversation based on obfuscated 

information given in a fax message) will also be trialed in order to see how it performs in 

Standard Thai.  
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1.8 Research questions 

Following on from my discussion of the acoustic parameters and linguistic-phonetic 

segments listed in Table 1, the first aim of my thesis is to examine to what extent such 

acoustic parameters and linguistic-phonetic segments work in Standard Thai FVC. Thus, 

the following are the specific research questions I pursued in this study. 

1.1 How well does the spectrum extracted from the consonants /s/, /ʨh/, /n/, /m/,  

and modelled using two different techniques, firstly by means of the so-called 

spectral moments (mean, variance, skew, kurtosis) and secondly by means of 

the coefficients of a discrete cosine transform (DCTs), perform in Standard 

Thai FVC; and which parameterization techniques perform better? 

1.2 How well do the diphthongs [ɔi] and [ai]’s tonal F0 contours and the first three 

formant trajectories modelled by polynomials perform in Standard Thai FVC 

and which diphthong performs better? 

1.3 How well do the six long-term F0 (LTF0) parameters that relate to the shape 

of the F0 distribution (1. mean; 2. standard deviation (SD); 3. skew; 4. 

kurtosis; 5. modal F0; and 6. modal density) perform in Standard Thai FVC 

and which LTF0 parameter performs better? 

The second aim of this thesis is, through an interpretation of fusion results (whereby 

two or more parameters are fused or combined), to further add to the research findings 

pursued in the current work. The specific question is:  

2. How can the linguistic-phonetic segments tested in this thesis be profitably 

combined? 

 

1.9 Thesis outline 

In Chapter 2, I present an overview of the existing literature relating to Bayes’ theorem. 

I will also review the effectiveness of forensic voice comparison (FVC) and the so-called 

paradigm shift to provide background knowledge about a Likelihood Ratio (LR) 

framework. Then, I will discuss Standard Thai sound systems. Many previous studies on 

FVC, in particular the literature on which I based my decision to select the specific 

parameters for Standard Thai, will be summarized.  
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In chapter 3, the statistical tools that I employed to calculate LRs, i.e. the multivariate 

likelihood ratio (MVLR), and to assess the performance of the FVC system, i.e. log-

likelihood ratio cost (Cllr), will be extensively discussed. Then, I will describe the speech 

corpus design, which involves the selection of informants and the elicitation method. 

Finally, I review the basic concepts of logistic regression calibration and fusion. 

In chapter 4, three pilot studies on 1) the Standard Thai (phonetic) diphthongs [i:aw], 

[ɯ:a] and [u:a], 2) the Standard Thai (phonetic) diphthongs [o:i] and [ə:i], and 3) the 

Standard Thai (phonetic) diphthongs [ai] and [u:a], all of which are conducted as parts of 

the current work, are presented to justify the use of the selection of traditional parameters 

(F0 and formant trajectories). 

In chapter 5, I illustrate the annotation of the target segments /s, ʨh, n, m/ and diphthongs 

[ɔi], [ai]. I review the basic concepts of mean, variance, skew, and kurtosis (also known 

as spectral moments). I present the results of the FVC experiments with /s, ʨh, n, m/. This 

is followed by a discussion about the linguistic-phonetic in relation to the forensic 

perspectives. 

In chapter 6, I present and discuss the results of the FVC experiments with the diphthongs 

[ɔi] and [ai], with a focus on formant trajectories. 

In chapter 7, I first present and discuss the results of the FVC experiments with the 

diphthongs [ɔi] and [ai], with a focus on the tonal F0. This will be followed by the 

presentation and discussion of the LTF0.  

In chapter 8, I present the answers to the research questions and the overall findings of 

the thesis. Finally, I outline opportunities for future research, which can build upon the 

current work.  

 

1.10 Summary 

In this chapter, I have introduced the background of the current study, including the scope 

and the details of what will be covered in the thesis. The primary purpose of this chapter 

was to make sure that the term ‘forensic voice comparison’ or FVC is clearly explained 

from the outset.  
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Chapter 2 

Literature review 

 

2.1 Introduction 

In this chapter, I will first explain the less-than-ideal factors that make voices difficult to 

discriminate forensically. I aim here to explain how forensic experts should deal with 

speech evidence, and how such speech evidence should be integrated into the case at hand. 

Then, the justification of the Bayesian theorem, specifically the LR framework, for the 

current research will be extensively discussed. After that, I introduce Standard Thai sound 

systems as well as those of other Thai dialects. Then, I will review previous FVC studies 

employing the spectral moments (mean, variance, skew, and kurtosis), coefficients of the 

Discrete Cosine Transform (DCTs), tonal F0, LTF0, and the formant trajectories, whilst 

introducing and explaining the basic acoustic knowledge that is required for 

understanding the results of this thesis. 

 

2.2 Ideal features of forensic scientific evidence  

In an ideal forensic scientific system, individuals can be easily discriminated because of 

features that are: 1) unique (individuals can be distinguished based on these features); 2) 

unambiguous; 3) more or less probable with the features than without (“able to place 

individuals at a crime scene”); 4) unchanging; and 5) relatively easy and economical to 

operate (Robertson & Vignaux, 1995, p. 6). However, it is difficult to find such features 

in evidence in real-world circumstances. This is because pieces of evidence supposedly 

constituting ideal features may satisfy some but not others (ibid.). As for the fourth ideal 

feature just described, the suspect’s speech may sound hesitant during a police interview 

but the offender may sound aggressive or provocative in CCTV footage showing an 

incriminating act. Such different communicative settings, involving two speech samples 

with different sounding emotions and different background noise levels (loud vs quiet), 

and recorded at a different time of the day, may show different F0 values due to differing 

acoustic properties. Anger in a voice and loud background noise will increase F0 levels 

to a different degree (Braun, 1995; Klasmeyer & Sendlmeier, 2013; Laukkanen, Vilkman, 

Alku, & Oksanen, 1996; Rose, 2002; Williams & Stevens, 1972). Likewise, F0 levels rise 
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from morning to afternoon (Garrett & Healey, 1987; Rantala, Vilkman, & Bloigu, 2002). 

Therefore, voice quality will change depending on various internal and external factors. 
In §2.2.1, I summarize the two main variations that voices inherently carry, i.e. within- 

and between-speaker variations, which make speech evidence difficult to discriminate 

forensically. Besides variations, I will explain the issue of dimensionality (§2.2.2). 

2.2.1 Lack of control over variation 

In forensically realistic conditions, the first factor that makes speech samples difficult to 

discriminate forensically is their level of variation. As Rose (2002, p. 19) points out, 

variation is typical in voices, and this variation always occurs both within and between 

speakers. One example of within-speaker variation is when two speech samples obtained 

from the same speaker, uttered a few seconds apart, are found to be acoustically different. 

This is also true for speech samples uttered by different speakers, i.e. in the case of 

between-speaker variation (ibid.).  

2.2.1.1 Between-speaker variation 

Voice differences produced by different speakers are termed between-speaker variation 

(Rose, 2002, p. 10). In this section, I discuss the factors that make different speakers speak 

differently with reference to a range of different models of sources of between-speaker 

variation found in the literature. As shown below, between-speaker variation is 

characterized differently by various scholars: 

Differences in voices stem from two broad bases: organic and learned differences 

(Wolf, 1972, p. 2045) 

Organic and learned differences are the sources of intertalker variability 

(Tosi, 1979, p. 55) 

We can tentatively categorise speaker-diagnostic variables in terms of two basic distinctions:  

organic versus acquired or learned, and individual versus group 

(Garvin & Ladefoged, 1963, p. 194) 

Acoustic parameters of speech reflecting speaker identity must be derived either from the unique  

physiological characteristics of the speaker’s vocal apparatus or from idiosyncrasies in his  

manner of speaking 

(Glenn & Kleiner, 1968, p. 368) 

Given the models quoted above, it is easy to understand that different people have 

different voices, due to: 1) anatomical or organic differences, i.e. differently sized vocal 
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cords and different shape of the vocal tract; and 2) learned/acquired differences in their 

manner of speaking – how a speaker habitually speaks, i.e. a speaker’s idiosyncratic 

usage. With respect to organic differences, the length and mass of vocal cords in women 

is generally shorter and lighter than in males (Stevens, 2000, p. 5), resulting in the higher 

pitch of female voices (180-300 Hz) compared to male voices (90-140 Hz) (Rose, 2003, 

p. 4102).  

2.2.1.2 Within-speaker variation 

It could be argued that if someone were to constantly speak in the same way, it would 

naturally be easier to identify that individual. However, as Rose (2002, p. 10) points out, 

no one ever speaks in exactly the same way twice. That is, there are factors that cause 

even the same individuals to speak differently; this is called within-speaker variation 

(ibid.). It follows, then, that FVC is feasible on condition of small within-speaker 

variation and large between-speaker variation. Otherwise, FVC evidence would be near 

to useless, because within- and between-speaker variations are equally likely.  

I will now discuss some of the factors that cause within-speaker variation. The factors 

listed in Table 2 are typical causes of within-speaker variation. 

Within-speaker variation 

 Emotions 

 Linguistic message 

 Social settings 

 Health 

 Elapsed time between recordings 

 Technical factors 

Table 2: Sources of within-speaker variation 

(Based on Wolf 1972, p. 2045; Tosi, 1979, p. 55; Garvin & Ladefoged, 1963, p. 194; 

Glenn & Kleiner, 1968, p. 368; Nolan, McDougall, De Jong, & Hudson, 2006; Butterfint, 2004; 
Loakes & McDougall, 2004) 

I will begin with emotional factors. When a speaker feels sorrow, F0 levels will decrease 

considerably by up to 30 Hz; when a speaker is angry, his/her F0 level will increase 

(Johnstone & Scherer, 2000; Paeschke, Kienast, & Sendlmeier, 1999; Williams & 

Stevens, 1972). Second, the F0 level or a perceived pitch by a listener will also change as 



 
19 

 

a function of the linguistic message. That is, there is a falling pitch in the word studying 

in the English statement: “She is studying”, but there is a rising pitch in the last word of 

the English yes/no question: “Is she studying?” (Rose, 2002, p. 19). Moreover, F0 tends 

to be higher for reading tasks than for spontaneous speaking (Braun, 1995, p. 17). This is 

important to remember when conducting FVC analysis. That is, the FVC experts should 

select speech samples that are comparable in terms of syntactic, semantic, idiomatic and 

stylistic elements. This should be done to ensure comparability, because different 

speaking styles, among other factors, may result in different acoustic properties in a voice. 

Third, same-speaker voices may change as a function of the interlocutors, i.e. speakers 

tend to accommodate their speech in social interaction with their interlocutors (Rose, 

2002, p. 20). Such examples can be found in everyday conversation. For example, when 

we talk to a child, our voice may, in some situations, tend to be high-pitched to make our 

speech sound like that of the child. However, when we give a presentation in front of a 

classroom, our voice may become low-pitched to convey a sense of discretion. This kind 

of pitch convergence should be considered when conducting FVC analysis, to ensure 

comparability remains valid (ibid.). Fourth, a speaker’s state of health may also cause 

within-speaker variation. It has been found by Klingholz, Penning, and Liebhardt (1988) 

and Schiel and Heinrich (2009) that moderate levels of intoxication increase the F0 

standard deviation by up to 100%. Additionally, the influence of legal drugs for use in 

the treatment of cancer as well as steroids and androgens used in the treatment of female-

to-male transsexuals are found to lower voice pitch (Braun, 1995, p. 15). Stress is also 

found to affect F0 levels quite consistently with regard to within-speaker variation (but it 

affects between-speaker variation levels differently) (Hecker, Stevens, von Bismarck, & 

Williams, 1968). Fifth, when the elapsed time of one of the two recordings is longer than 

the other, the within-speaker speech samples will sound different to those lasting a shorter 

period of time (Rose, 2002, p. 20). Given the facts just described, it would be prudent to 

conduct FVC research with non-contemporaneous speech (speech recorded in two 

sessions separated by at least a week or up to two months for the current work) when 

testing the accuracy and reliability of the FVC system for Standard Thai. 

Lastly, there are technical factors that may cause same-speaker speech samples to sound 

different (Künzel, 2001; Rose & Simmons, 1996). They include the disguising of one’s 

voice, either through a lowering/raising of F0 level, or a change in register – language 

variation according to use as defined by Halliday, McIntosh, and Strevens (1964), e.g. 
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modal vs falsetto (Braun, 1995). Moreover, differences in measurement/analysis process 

such as the different quantizations or differing tape recorder speeds are also found to 

cause F0 level differences (Braun, 1995, p. 10).  

2.2.2 Reduction in dimensionality  
The second effect of real-world conditions on FVC is a reduction in dimensionality or 

reduction in dimension number (Rose, 2002, p. 25). By “dimension number”, or 

dimensionality, I mean the number of (acoustic) dimensions per speech sample (ibid.). 

The number of dimensions considered for the purposes of FVC is inherently variable and 

“not all dimensions are equally powerful” (Rose, 2002, p. 16). However, if a decision 

were made to assess a series of speech samples in terms of three dimensions, e.g. the F0 

value of one of its vowels, for example /e/ (Dimension 1), the F-pattern of one of its 

diphthongs, for example /ia/ (Dimension 2), and one of the spectral moments of a nasal, 

for example /n/ (Dimension 3), then one would expect, in ideal circumstances, all samples 

to be three-dimensional. In practice, though, the suspect’s speech samples may lack the 

vowel /e/, which makes them quantifiable only on Dimensions 2 and 3, whereas the 

offender’s speech samples may lack diphthongs, which makes them quantifiable only on 

Dimensions 1 and 3. According to Rose (2002, pp. 21-22), a reduction in dimensionality 

means that some powerful features or parameters that are of forensic use might not be 

available due to many factors. Apart from a reduction in dimensionality, the distortion of 

dimensions is another real-world condition that makes voices difficult to discriminate 

forensically (ibid.). An example of this is telephone signals that are degraded by a 

telephone line or distorted by 1) technical factors such as a low-quality tape recording 

and 2) the effect of echoic rooms and background noise (ibid.). To put it another way, 

forensic samples are never available in optimal conditions due to various inherited and/or 

unavoidable reasons (ibid.). Rather, an expert should be aware what factors affect 

different dimensions and which dimensions are more resistant to distortion (ibid.). The 

last thing to consider, though it is of no less importance than the factors listed above, is 

the time available for forensic experts to evaluate as many potential features as possible 

(ibid.). Some powerful features, even though they contain much individualizing 

information, might need to be excluded from the analysis because of time constraints. 
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2.3 Speech variation and the role of probability theory  

Given the within- and between-speaker variations just described, we can see that forensic 

experts need to find ways of properly dealing with these kinds of variations/uncertainties. 

To put this in context, when speech evidence is tendered to a court, interested parties 

(police/prosecution, trier-of-fact) want to know whether the speech recordings of known 

and unknown origin were produced by the same speaker or not. In the Thai legal context 

(which will be explained in more detail in §2.5), the courtrooms may request a person 

who has specialized knowledge beyond that of the courts, i.e. a so-called expert witness, 

to give his/her testimony related to the matters at hand (Wannasaeng, 2008). The role of 

an expert witness is to provide a testimony to help the courts draw certain inferences to 

reach their conclusion, as opposed to a testimony that will lead to an accusation being 

made against an offender or to the elimination of a suspect (ibid.). Of course, a hypothesis 

such as whether given speech recordings were produced by the same speaker or not can 

be either true or false; no one can be sure about its truth (Robertson & Vignaux, 1995, p. 

13). One of the best ways to deal with such uncertainties is through the use of probability 

models (Aitken & Stoney, 1991), which are a “rational measure of the degree of belief in 

the truth of an assertion based on the information” (Robertson & Vignaux, 1995, p. 14). 

In the current thesis, the probability model that will be used to deal with speech variations 

is called the Bayesian theorem or Bayes’ theorem (I will discuss this in detail in §2.4). 

Before going further, I will explain how I interpret the word probability in the current 

thesis. 

Probabilities are often interpreted as either 1) frequencies of repeated or long-running 

events (for example: What is the probability that we will get heads after tossing a fair coin 

infinitely many times? As probability scores are between 0 and 1 inclusive, with 1 

meaning that an event is certain to happen while 0 means that an event is excluded from 

happening, the answer is 0.5); or 2) descriptions of beliefs (describing our degree of belief 

about uncertain situations); or 3) betting preferences (what kind of bets we are willing to 

make) (Bertsekas & Tsitsiklis, 2002; Murphy, 2012, p. 28).  

As  Bertsekas and Tsitsiklis (2002) point out, whether a prediction will be any good or 

not depends on the probability model that we choose to employ. My interpretation of the 

probability theory employed in this thesis, called the Bayesian interpretation, is that it 

can quantify our degree of belief about uncertain situations (Robertson & Vignaux, 1995, 
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p. 17). In the Bayesian interpretation, the above example of coin tossing will be 

interpreted like this: “it is equally likely that the coin will land on heads or tails in the 

next toss” (Bertsekas & Tsitsiklis, 2002; Murphy, 2012, p. 27). Bayes’ probability model 

provides a systematic way of thinking about and describing our beliefs concerning 

uncertainty, which is one of its big advantages (Murphy, 2012, p. 27), particularly where 

evidence is not obtainable in a numerical format. In order to evaluate the degree of our 

belief in a hypothesis such as: “Speech samples from the suspect were in fact made by 

the offender”, which is true or false (we cannot be sure either way), we need to know 

about the similarity and typicality of the offender’s and the suspect’s speech samples. The 

ratio of similarity (between the offender’s and the suspect’s speech samples) and 

typicality (how likely it is that speech samples like those of the suspect or offender are to 

be found by chance in a relevant population sample) is called a likelihood ratio or LR; it 

allows the strength of voice evidence to be evaluated. §2.4 introduces the framework of 

the Likelihood Ratio used in this study.  

 

2.4 What is the Likelihood Ratio? 

As previously mentioned, in a typical FVC scenario, a recording of incriminating speech 

samples, e.g. a CCTV recording of a telephone bomb threat from an unknown speaker 

(offender), is compared with recordings from one or more known speakers; the latter are 

being assessed as potential suspects whose speech samples are obtained, for instance, 

during a police interview. The task of forensic experts is to calculate the strength of this 

evidence or LR (Robertson & Vignaux, 1995). 

In order to do so, two probabilities are taken into account. First, the probability of the 

similarity/difference between the suspect’s and the offender’s speech samples, given the 

same-speaker hypothesis (prosecution hypothesis). Second, the probability of observing 

the same evidence (the similarity/difference between the speech samples) under the 

different-speaker hypothesis (defense hypothesis) (Rose & Morrison, 2009, p. 6). The 

ratio of these two probabilities is called a likelihood ratio or LR, and is part of Bayes’ 

theorem (Robertson & Vignaux, 1995, p. 17), which is shown below: 
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Bayes’ theorem 

𝒑(𝑯𝒑|𝑬)

𝒑(𝑯𝒅|𝑬)
              =              

𝒑(𝑯𝒑)

𝑷(𝑯𝒅)
             ×             

𝒑(𝑬|𝑯𝒑)

𝒑(𝑬|𝑯𝒅)
                      

         Posterior odds                   Prior odds                     Likelihood ratio 

Equation 2 

In this theorem p stands for probability, Hp for prosecution hypothesis, Hd for defense 

hypothesis, and E for (speech) evidence.  

It is this quantified LR that creates a logical link between the measurement of speech 

similarity/difference (E) and a competing hypothesis (H). That is, we calculate how much 

more likely such speech evidence, which is based on the similarity/difference between 

the offender’s and the suspect’s samples, is likely to be from the same speakers p(E|Hp), 

rather than from different speakers p(E|Hd) (Rose & Morrison, 2009, p. 6).  

I will now explain in more detail (from right to left of the equality sign) what Equation 2 

means. The prior odds, which is the ratio of the probabilities of two competing hypotheses 

(the probability that the same-speaker hypothesis is true is divided by the probability that 

the different-speaker hypothesis is true), are considered in forensic science before taking 

the evidence into account (Robertson & Vignaux, 1995, p. 17). Calculating prior odds is 

the purview of the trier-of-fact because these prior odds depend on the initial assumptions 

plus the changes of belief in the probability of the hypotheses, based on the evidence 

already presented (Morrison, 2009a, p. 300). As such, the priors are usually not known 

by forensic experts (ibid.), and thus, when following Bayes’ theorem, they cannot 

calculate the posterior odds (posterior odds = prior odds x LR) (Li & Rose, 2012). In stark 

contrast, forensic experts can calculate the likelihood ratio, which is the probative value 

or the strength of evidence in favor of the hypothesis (Robertson & Vignaux, 1995, p. 

21). As Morrison (2009a, p. 300) stated, the task of forensic experts is to limit themselves 

to the calculation of the likelihood ratio, which is the ratio of speech 

similarities/differences being compared, while taking into account their typicality with 

reference to the speech of a relevant population, “from which the true perpetrator of the 

crime could conceivably have come”, Morrison, Ochoa, and Thiruvaran (2012, p. 64). 

Rose (2002), Nolan et al. (2006) and Loakes (2008) further explain that the suspect’s (or 

suspects’) speech samples should be similar-sounding or “at least not too different-
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sounding”, in terms of sex, language, and accent, to those of the offender (Rose, 2002, p. 

97). When the prior odds and the likelihood ratio are combined using Equation 2, it gives 

us the posterior odds – the posterior probabilities of a guilty versus not guilty hypothesis 

(ibid.). The posterior odds are what the court would like to know.     

Prior odds can have a substantial effect on the strength of evidence because a different 

prior odd will yield a different posterior odd (Robertson & Vignaux, 1995, p. 18). In this 

section, I will try to illustrate in more detail why this is the case. Imagine, for example, 

that two people (including the suspect) were recorded by CCTV cameras carrying a 

backpack in the vicinity of a crime scene right before a bomb blast. In this case, the 

probability of the hypothesis that the suspect is the offender will be 1/2 or 0.5. This 

probability can be converted into a prior odd “by dividing the probability by one minus 

the probability” (Rose, 2002, p. 63), or, in mathematical terms, 0.5 / (1 – 0.5) = 0.5 / 0.5 

= 1, which means that the hypothesis that the suspect is the offender is as likely to be true 

as the defense hypothesis (that the suspect is not the offender). When this prior odd is 

combined with a LR of, say, 10, the posterior odd is (1 x 10 =) 10. At this point it is 

possible to say that it is 10 times more likely that the suspect is the offender. In contrast, 

when for example five males (including the suspect) have been recorded by CCTV 

cameras instead of two, the probability of the hypothesis that the suspect is the offender 

is reduced to 1/5 or 0.2, which is a prior odd of (0.2 / 1 – 0.2 =) 0.25. When this is 

combined with an LR of 10, it gives a posterior odd of (1/4 x 10 =) 2.5, which in turn 

gives less support (two point five times less, to be precise) to the hypothesis that the 

suspect was the offender than in the previous example (ibid.). Given the example just 

described, we see that the prior odds have an important effect on the posterior odds (i.e. 

they give more or less support to the hypothesis that the suspect is an offender), even 

though the LR is the same (ibid.). 

Typically, in an FVC scenario, a police officer (a layperson with respect to FVC) will 

listen to the recordings of speech samples from the offender and decide whether they 

sound sufficiently similar to those of a particular suspect (Morrison, Ochoa, & 

Thiruvaran,  2012, p. 64). If they do sound sufficiently similar, the police officer will 

submit the two recordings (of speech samples of the suspect and the offender) for further 

FVC analysis (ibid.). A same-speaker hypothesis is then generated (ibid.). In contrast, if 

the police officer thinks that the speech samples of an offender and a suspect do not sound 
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similar enough, he or she will not submit the two recordings to FVC experts and a same-

speaker hypothesis will not be generated (ibid.).  

Apart from prior odds, which have a substantial effect on the calculation of scientific 

evidence, the selection of an appropriate alternative or defense hypothesis (denominator 

of LR) also has an enormous effect on LRs or the strength of evidence (Robertson & 

Vignaux, 1995, pp. 33-50). This is because the alternative or defense hypothesis (which 

can take many forms), and which directly relates to the selection of background samples 

(the denominator of LR), changes the prior odds (Morrison, Ochoa, & Thiruvaran, 2012, 

p. 64). Usually, a defense hypothesis is generated as: “the speech samples are from some 

other speaker” (Morrison, Ochoa, & Thiruvaran, 2012, p. 64). Preferably, the defense 

hypothesis should be more specific than simply stating: some other speaker, in order to 

define a relevant population group (ibid.). For example, if the defense hypotheses were 

that 1) the speech samples are from other male speakers with high-pitched voices on a 

particular island and 2) it is a suspect’s brother, the relevant population or background 

speech samples would need to be changed accordingly. That is, under the first defense 

hypothesis, the recordings of male speakers with high-pitched voices on a particular 

island will be selected; under the second defense hypothesis, the recordings of a suspect’s 

brother will be considered.  

Intuitively, the posterior odds will significantly increase for the second defense 

hypothesis (it is a suspect’s brother), as the prior odds are bigger (even odds) than the 

former (100/1 against it being male speakers with high-pitched voices on a particular 

island). That is, with the defense hypothesis that the suspect’s brother made the call, for 

example, the posterior odds would be derived by timing a prior odd of 1 with an LR value 

of say 50, giving posterior odds of 50 in favor of a hypothesis that the suspect’s brother’s 

voice is indeed the one heard in the incriminating speech samples. However, under the 

defense hypothesis that other male speakers with high-pitched voices, on a particular 

island, made a telephone call, let us scale up the LR value accordingly to 100. Then the 

posterior odds become (1 / 100 x 100 =) 1, suggesting that it is equally likely that every 

male with a high-pitched voice on a particular island is responsible for the incriminating 

speech samples. Given these examples, we can appreciate that the selection of a defense 

hypothesis can alter the strength of voice evidence (Morrison, Ochoa, & Thiruvaran,  

2012, p. 64). 
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To interpret derived numerical LRs, it is common practice to use log10LR, where unity 

is set at 0 (Rose, 2006). The greater the deviation from unity either way, the greater the 

strength of evidence supporting either the prosecution or the defense hypotheses 

(Robertson & Vignaux, 1995, p. 17). In contrast, if a log10LR reading is close to or equal 

to unity, the examined evidence provides only limited support for either hypothesis and 

is thus regarded as useless or unhelpful (ibid.). Since LRs or the strength of evidence 

are assessed using numeric values, verbal equivalents of such LR values (both linear 

LRs and Log10LRs) have been proposed, among others, by Champod and Evett (in Rose, 

2002, p. 62). The verbal equivalents in Table 3 make the experts’ numerical analyses and 

interpretations more understandable for the court (ibid.). Linear LRs and their 

corresponding Log10LRs, supporting both the prosecution and defense hypotheses, are 

presented in the first and second columns, respectively, whereas the verbal equivalents 

are shown in the third column. 

Likelihood Ratio Log10Equivalent Possible interpretation  

> 10 000 > 4 Very strong… 

…support for  

the prosecution hypothesis 

1000 to 10 000 3 to 4 Strong… 

100 to 1000 2 to 3 Moderately strong… 

10 to 100 1 to 2 Moderate… 

1 to 10 0 to 1 Limited… 

 

1 to 0.1 0 to –1 Limited… 

…support for  

the defense hypothesis 

0.1 to 0.01 –1 to –2 Moderate… 

0.01 to 0.001 –2 to –3 Moderately strong… 

0.001 to 0.0001 –3 to –4 Strong… 

< 0.0001 > –4 Very strong… 

Table 3: Verbal equivalents of LRs 

(Adapted from Champod & Evett, 2000, p. 240) 

Before I go further, I should point out that there is no consensus agreement on the use 

of the scaling of LRs (whether linear or log LRs). Although it is more intuitive than a 

linear LR of 1000, which, instead of 3, should be used to reflect “moderately strong 

evidence” (Rose, 2002, p. 62), there are advantages in using a common log LR over a 

linear LR. A linear LR = 1, suggests useless evidence and since a common log of 1 is 

0, a threshold of Log10LR = 0, rather than LR = 1, is preferable as the value of zero is 
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naturally linked to the notion of its “worthlessness” (Rose, 2002, p. 62). Moreover, a 

common log LR is preferred because it is relatively easier to use when combined with 

LRs obtained from other independent pieces of evidence (ibid.). For example, a log of 

104 (LR of 10000) and a log of 103 (LR of 1000) can be added in the form of a common 

log 104 + log 103, giving the overall log LR = 107 (this is equivalent to multiplying an 

LR of 10000 with a LR of 1000, which also gives the overall LR = 10000000 or log 

107). 

I will now discuss how to read the numeric LR values. Ideally, when two speech 

samples produced by the same speakers are compared, the same-speaker comparisons 

(or SS comparisons) should yield log LRs greater than 0. In addition, when two speech 

samples produced by different speakers are compared, those different-speaker 

comparisons (DS comparisons), should be lower than 0 (Rose, 2002, p. 62). As such, 

if speech evidence with log10LR > +4 is tendered to the court, it can be translated into 

“There is very strong evidence to support the prosecution hypothesis that the speech 

samples are more likely from the same speaker than from different speakers” (Rose, 

2002, p. 62). In contrast, if log10LR < –4 is presented to the court, it is interpreted as 

“There is very strong evidence to support the defense hypothesis that the speech 

samples are more likely to come from different speakers than from the same speaker” 

(ibid.).  It should be noted from Table 3 that the mathematical symbol used to indicate 

a negative value that is smaller than log10LR = –4 is > (greater than), not < (less than). 

This means that the pure magnitude or size of a number (after the negative sign) is 

taken into account. Since it is difficult to explain how to read Tippett plots without 

actually looking at one, I will provide more detail in §3.5.     

Surveys (Morrison, Sahito, et al., 2016; Gold & French, 2011) on the use of FVC among 

its practitioners around the globe  show the same result: the presentation of conclusions 

using non-numeric LRs is more popular than that of conclusions using numeric LRs 

(Morrison, Sahito, et al., 2016, pp. 96-97). Moreover, subjective judgement approaches 

(whereby phoneticians form a qualitative opinion based on the auditory analysis of the 

speech recordings and/or the spectrographic analysis) are more popular in FVC than 

quantitative statistical approaches (whereby phoneticians carry out a quantitative analysis 

and make use of a statistical model to calculate the strength of evidence) (Morrison, 

Sahito, et al., 2016, p. 94). 
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In this section, I discuss the negative criticism that has been levelled against the use of 

verbal interpretations of LRs. Firstly, there is the danger that interpretations of verbal 

equivalents will vary among different interested parties, such as the jury, expert 

witnesses, counsel, and the judiciary (Robertson & Vignaux, 1995, pp. 55-57). For 

example, the expression “moderately supports” might be interpreted differently among 

these interested parties. Secondly, words are inadequate when the evidence becomes 

stronger than: “very strong”, but less than certain (ibid.). Third, descriptive 

phrases/adjectives such as “very strong” and “good” evidence cannot be combined (ibid.). 

A solution to such controversies concerning the presentation of LRs is offered in 

Robertson and Vignaux (1995, p. 57), who suggest that the LR numbers, together with 

their verbal equivalents, should be presented to the court. 

It is also important to note that there is some negative criticism concerning the use of the 

Bayesian approach. Firstly, since the prior odds, by nature, are not known, calculating the 

prior odds under the Bayesian framework is said to be too subjective an approach (Rose, 

2002, p. 74). To be more precise, since the prior odds are indeterminate, different 

investigators will come up with different prior odds and, as such, different posterior odds 

results (Lindley, 1990, p. 45). Another criticism of the estimation of prior odds under the 

Bayesian framework is that it contradicts the presumption of innocence (Gigerenza et al., 

1989, p. 264). Under the Bayesian framework, presumption of innocence means a zero 

probability of guilt. Thus, whatever the number of LRs, when combined with zero prior 

odds, the posterior odds will also be zero (ibid.). The solution to the determination of 

prior odds is that, as previously discussed, the experts should limit themselves to the 

calculation of LRs (Robertson & Vignaux, 1995). However, in practice, it is possible that 

an expert will be invited by an opposing side to calculate different prior odds under 

different assumptions; as such it is prudent for experts to prepare themselves for this 

eventuality (Rose, 2002, p. 74). As explained by Champod and Meuwly (2000, p. 199), 

not knowing the priors is rather beneficial for the experts so as to prevent them from 

making false evaluations of scientific evidence, due to the expectation effect. Secondly, 

under legal systems where the defense is not allowed to disclose its line of defense in 

advance, the calculation of an LR is not possible (Robertson & Vignaux, 1995, pp. 210-

211). The solution to this is that the expert be prepared for the calculation of LR under a 

different defense hypothesis (ibid.). Thirdly, the logical and mathematical complexity of 

the Bayesian approach makes it difficult to explain to the court (Evett, 1991, p. 14; 
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Gigerenza et al., 1989). As such, it is recommended that an expert explain the logic and 

methodology used under the Bayesian framework and explain how the results are derived 

(Morrison, 2009a). I will now discuss in detail the reasons why forensic experts should 

limit themselves to the calculation of the likelihood ratio. 

2.4.1 Why forensic experts should limit themselves to the calculation of  

         Likelihood Ratio (LR)  

There are both logical and legal reasons why forensic experts should limit themselves to 

the calculation of LR. As Morrison (2009a, p. 300) explains, it is not logically possible 

for forensic experts to calculate the posterior odds and say, for example, that speech 

samples “are highly likely to be from the same speaker given the similarity of speech 

samples”. Since the expert is not able to access all evidential information relevant to the 

case, they cannot estimate the prior odds and hence derive the posterior odds as these are 

the product of the LR and the prior odds (Rose, 2002, p. 56). 

Such an attempt to calculate the posterior probability by forensic experts would be seen 

as a legal violation or usurpation of the duty of the judges or jury (Morrison, 2009a, p. 

300). Thus, an expert logically cannot and legally must not estimate the posterior odds. 

To avoid these issues, the expert should instead calculate the likelihood ratio – the 

probability of the evidence given the competing hypotheses (p(E|H)/p(E|𝐻̅)), not the 

probability of the hypothesis given the evidence (p(H|E)) (Rose & Morrison, 2009, p. 4). 

 

2.5 The Thai legal system 

The Thai legal system is based on Civil law, which has evolved from Roman law. All 

regulations are recorded in writing. There are three levels of courts in the Thai legal 

system. These are 1) the Courts of First Instance, which include, for example, the family 

court and the juvenile court; 2) the Courts of Appeal; and 3) the Supreme Court (Tiamjan, 

2006). What I am concerned with here is the tendering of scientific evidence, particularly 

voice evidence, to the criminal court of Thailand by experts. I will first define who should 

be an expert by referring to the criminal procedure code, Chapter V (Tiamjan, 2006, p. 

144): 
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Any person having, by profession or otherwise, expert knowledge on any subject such as science, 

art, work of skill, commerce, medicine or foreign law, and whose opinion may be of value for the 

adjudication of a case may, in the course of an inquiry, preliminary examination or trial, be a witness 

in matters such as the examination of the body or mind of the injured person, alleged offender or 

accused, or of handwriting, or the carrying out of experiments or other works. 

From the above quote, we can see that an expert witness may be any person who has 

specialized knowledge, beyond that of the court, in order to help the court understand 

matters related to the case at hand. Such expertise may be acquired through the expert’s 

profession, training and experience from almost any discipline or endeavor. The quote 

above can be further interpreted to include FVC experts as their expertise is gained from 

qualifications, research and experience. The criminal procedure code (Tiamjan, 2006, p. 

144), Chapter V further states the following: 

The Court may order the expert to submit his opinion in writing, but he shall be required to appear 

and give testimony in corroboration of such a written opinion. A copy thereof shall be served on the 

parties not less than three days before the date fixed for giving evidence. 

From the above, it can be inferred that an expert witness may be asked to present a 

testimony in writing, which may or may not be followed by an oral presentation (as 

requested by the court or other parties in the case). Although there is no specific 

legislation that regulates the use of voice evidence, there are three guidelines for an expert 

witness to follow. First, the expert witness should give opinions based solely on their 

expertise (Wannasaeng, 2008). For example, a fingerprint expert cannot give testimony 

on DNA testing. Second, an expert witness must not give testimony about an issue that 

will lead to an accusation being made against an offender or the elimination of a suspect 

(ibid.). This is reasonable in the sense that an expert witness is privy to the rest of the 

information relevant to the case at hand. Thus, an expert witness should give his or her 

opinion to help the court draw certain inferences allowing it to reach a conclusion but not 

an opinion on the ultimate issue (ibid.). This is where the LR framework fits in the context 

of Standard Thai, where the task of an expert witness is limited to calculation of the 

likelihood of the evidence (E) being valid based on competing hypotheses (H). Third, an 

expert witness should give his opinion based on facts, and the information used should 

be supported by theory or academic reasoning (ibid.). It follows that the likelihood ratio 

framework fits well in the current work as it satisfies how the scientific evidence should 

be evaluated under the Thai legal system (i.e. the experts are not permitted to give a 
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categorical answer). The criteria for the admissibility of scientific evidence in the Thai 

legal system just described are congruent with those reported in other countries such as 

the U.S. and Canada (Campbell, 2014) as we shall see in the following discussion.  

 

2.6 Shift to a new paradigm 

Responding to the call for an objective procedure to evaluate and present forensic 

scientific evidence with empirically demonstrable scientific validity (e.g. National 

Research Council (2009) and President's Council of Advisors on Science and Technology 

(U.S.) (2016)), many disciplines within the forensic science community have increasingly 

sought to use quantitative methods. Some rulings regarding the admissibility of scientific 

evidence in the U.S. (Daubert v. Merrell Dow Pharmaceuticals Inc, 1993 (Abboud, 2017)) 

– in which the court ruled that for evidence to be accepted as scientific evidence, the error 

rate of a methodology used for forensic analyses must remain within acceptable levels, 

and the methodology itself must be empirically testable so that others can validate it – are 

the original driving force for this change in the evaluation and presentation of evidence 

in the forensic sciences. 

The use of LRs for conveying expert opinions to the decision makers, such as the court 

or juries, has been supported and recommended by relevant communities (see e.g. Aitken 

et al., 2011; Evett, 1998). In Aitken et al. (2011), which is a position statement signed by 

31 individuals and supported by the Board of the European Network of Forensic Science 

Institutes (ENFSI), LR is described as “the most appropriate foundation for assisting the 

court”. 

Similarly, Rose (2002) strongly recommends the use of the LR framework in FVC. To be 

more precise, the use of objective measurements, databases that reflect the true population 

of the speakers, and statistical models is preferred (over subjective opinions formed by 

phoneticians), in order to test the validity and reliability of FVC systems under 

forensically realistic conditions (ibid.). As Gonzalez-Rodriguez, Rose, Ramos, Toledano, 

and Ortega-Garcia (2007) report, much forensic testimony has been presented in the form 

of expert opinions where a hard match (individualization), with categorical opinion or the 

use of verbal scales concerning the probability of a hypothesis, given the evidence p(H|E), 

is reported. Such forensic analyses lack scientific rigor (are not transparent), and are 
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inherently unfalsifiable (not testable) (Gonzalez-Rodriguez et al., 2007, p. 2104). The 

driving force behind this change from expert opinions to a more testable and replicable 

form of testimony, at least in methodology, has been dubbed a paradigm shift (not a 

Kuhnian paradigm shift) (Evett, 1998, p. 2105). Such a paradigm shift towards more 

scientifically sounding techniques is provoked by the success of using DNA profiling 

within the forensic domain (ibid.). To emulate the approach used to objectively quantify 

forensic DNA, in compliance with the admissibility criteria, which is impelled by the U.S. 

supreme court, the forensic testimony should satisfy all or most of the following criteria, 

based on the decision of the judge to be admitted to the court of law (Black, Ayala, & 

Saffran-Brinks, 1993). 

i) Whether the theory or technique can be, and has been, tested. 

ii) Whether the technique has been published or subjected to peer review. 

iii) Whether actual or potential error rates have been considered.  

iv) Whether the technique is widely accepted within the relevant scientific community. 

(Quoted from Robertson & Vignaux, 1995, p. 205) 

The LR framework will now be discussed in relation to the above admissibility criteria to 

justify the use of LR in this thesis.  

First, LR meets the first admissibility criterion as it has been accepted as a logical 

framework (Morrison, 2012, p. 17). Since the LR framework is independent of its 

approaches, which according to Morrison (2012, pp. 16-18), can be typified as subjective 

(the phoneticians form qualitative opinions using an auditory analysis and/or a 

spectrographic analysis) vs objective (the phoneticians use quantitative measurements 

and statistical models to evaluate the strength of evidence), the validity (accuracy) and 

reliability (precision) for each of these approaches must be tested (ibid.) (I shall discuss 

the accuracy and reliability of this in Chapter 3). Thus, we see that the LR framework is 

a logical approach to use as its validity and reliability are tested regardless of the way it 

will be implemented (either subjectively or objectively) by different practitioners. 

The second admissibility criterion is the publication of peer-reviewed papers about the 

use of this technique. As previously touched upon, the use of the likelihood ratio has been 

accepted among members of the forensic speech science community, and it has been 

adopted by many within that group (Aitken & Taroni, 2004; Balding, 2005; Champod & 
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Meuwly, 2000; Evett, 1991, 1998; Friedman, 1996; Gonzalez-Rodriguez et al., 2006; 

Good, 1991; Aitken & Stoney, 1991; Robertson & Vignaux, 1995). There is no doubt that 

peer-reviewed publications about the likelihood ratio framework will continue to be 

produced within the forensic speech science community. 

The third criterion is the known or potential error rates of the technique. As Robertson 

and Vignaux (1995, p. 208) point out: “An error does occur when a test produces a result 

which it ought not to produce, owing to some contamination of the sample, a mistake in 

technique, or an undetected variation in testing conditions”. As we shall see in Chapter 3, 

the multivariate likelihood ratio (MVLR), used to calculate LRs or the strength of voice 

evidence, was originally developed for glass fragments, where the invariant nature of the 

evidence is one of the assumptions in the formula (Aitken & Taroni, 2004). This 

assumption does not hold in FVC, where speech samples vary even when they are 

produced by the same speaker. As such, voice evidence “cannot get any closer than 

minimally different” (Rose, 2002, p. 21). Theoretically, the DSlog10LR and SSlog10LR 

should cross at the threshold at log10LR = 0. However, this is not always the case in FVC. 

In part, this is due to the different nature of the data that are experimented on using the 

same MVLR statistical tool: glass fragments (invariant) vs speech samples (variant, i.e. 

variable over time). Errors may therefore arise in FVC systems if LRs mistakenly support 

the counterfactual hypothesis, i.e. if same-speaker samples are wrongly discriminated as 

coming from different speakers and vice versa. Such errors, which I have termed scores 

in the current work, can be calibrated into true LRs by means of logistic regression 

calibration; we assess their accuracy using the log-likelihood-ratio-cost (Cllr). 

I will now discuss the last criterion that makes LR admissible for use – general 

acceptance within the relevant scientific community. Robertson and Vignaux (1995, p. 

208) explain that “acceptance within the relevant scientific community will usually 

follow from the testing and replication of such experiments”. To date, many empirical 

experiments have been carried out on LR-based FVC to test the realistic level of forensic 

application, in a number of languages including Cantonese (Li & Rose, 2012; Chen & 

Rose, 2012; Yim & Rose, 2012), Chinese (Zhang & Tan, 2008; Zhang, Morrison, & 

Thiruvaran, 2011), English (Morrison, 2009b; Rose, 2003; Rose, Warren, & Watson, 

2006) and Japanese (Kinoshita et al., 2009;  Rose, Osanai, & Kinoshita, 2003).  
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So far, we have seen that Bayes’ theorem or the LR-based approach is suitable for 

evaluating and interpreting speech evidence. There is another important characteristic of 

LR that justifies its use in FVC or forensic evidential science in general. That is, when 

the LR values from any pieces of evidence are not correlated, they can be multiplied via 

Naïve Bayes’ theorem to get the overall LR (Rose, 2002, p. 61). For example, an LR of 

8 from blood type and another one of 2 from voice evidence results in an overall LR of 

16 (= 2 x 8). Not only different pieces of evidence, but also the LRs obtained based on, 

say, two different properties of the same evidence, can be combined if they are not 

correlated. For example, the formant and F0 values (which are obtained from the same 

vocal tract of a speaker) can be combined via the logistic regression fusion proposed by 

Brümmer and du Preez (2006). I will discuss this alongside statistical analysis in 

Chapter 3. 

To sum up, we have seen many advantages of using the Bayesian framework in this thesis. 

Firstly, the Bayesian framework allows forensic experts to obtain and present numerical 

and meaningful values of the weight of evidence to the court in the form of LRs 

(Robertson & Vignaux, 1995). Secondly, there is a clear distinction between the role of 

forensic experts and that of fact finders, leaving the court to incorporate the priors into 

their decision-making process (ibid.). Given these advantages, the degree of belief in the 

conditional probabilities under two competing hypotheses is assessed in a scientific way 

using the LR framework (Gonzalez-Rodriguez et al., 2007, p. 2105).  

 

2.7 Standard Thai and other main dialects: Phonetics and phonology  

This section describes the phonetics and phonology of Standard Thai, a dominant 

language taught in schools, used in the media, and described by grammar books and 

dictionaries (Tingsabadh & Abramson, 1993). The phonetics and phonology of other 

major dialects, grouped according to regions, will also be discussed to explain the 

linguistic situation in Thailand. They are: 1) the Lanna Thai or Northern Thai dialect, 

spoken in the north of Thailand by 6,000,000 native speakers (Lewis et al., 2013); 2) the 

Isan or Northeastern Thai dialect, spoken in the northeastern part of Thailand by 

15,000,000 native speakers; and 3) the Southern Thai dialect, spoken in the South of 

Thailand by 4,500,000 native speakers (ibid.). The presentation of the phonetics and 

phonology of other Thai dialects can help the reader appreciate which linguistic-phonetic 
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features, e.g. consonant and vowel phonemes as well as tones, are shared between the 

dialects and Standard Thai, and which are different. In a forensically realistic scenario, 

for example, a speech sample of Standard Thai retrieved from a relatively short recording 

has not necessarily been produced by a speaker of Standard Thai who has a “Bangkok 

accent”. There might be some other linguistic-phonetic cues, e.g. the different vowel 

phoneme realization of the Standard Thai diphthong [oi], that suggest that the author of 

the questioned speech sample is more likely to be from a different speech community, 

e.g. from a person who has a Northern Thai accent.   

2.7.1 Standard Thai consonant phonemes 

Table 4 shows the Standard Thai consonant phonemes listed according to their place 

(horizontal axis) and manner (vertical axis) of articulation. 

Table 4: Standard Thai consonant phonemes  

(Adapted from Tingsabadh & Abramson, 1993, p. 24) 

In Standard Thai, a stressed syllable may be represented as TC(C)VC or TC(C)VV(C), 

where C is a consonant, CC a consonant cluster, V a short vowel, VV a long vowel, and 

T a tone (adapted from Onsuwan, 2005, p. 5). Stressed syllables consist of a tone and up 

to two initial consonants followed by a short vowel and a coda, or a long vowel with 

optional coda (ibid.). As shown in Table 4, 21 consonant phonemes – 9 stops, 2 affricates, 

3 fricatives, 3 nasals, 2 liquids (lateral, trill), and 2 glides – are possible in the onset. Only 

nine, /p, t, k, ʔ, m, n, ŋ, j, w/, are allowed in the coda (ibid.). These final consonants, 

which are stops, are unreleased and phonetically transcribed as [p˺, t˺, k˺]. 

2.7.2 Standard Thai clusters 

There are twelve consonant clusters in Standard Thai, which are listed in Table 5. 

Consonants Bilabial Labio-

dental 

Alveolar Post-

alveolar 

Palatal Velar Glottal 

Plosive p, ph ,b  t, th, d   k, kh ʔ 

Nasal m  n   ŋ  

Fricative  f s    h 

Affricate    ʨ, ʨh    

Trill   r     

Approximant     j w  

Lateral approx.   l     
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No. 1st  phoneme 2nd phoneme Clusters 

1 /p/ /r/ /pr/ 

2 /t/ /r/ /tr/ 

3 /k/ /r/ /kr/ 

4 /ph/ /r/ /phr/ 

5 /th/ /r/ /thr/ 

6 /kh/ /r/ /khr/ 

7 /p/ /l/ /pl/ 

8 /k/ /l/ /kl/ 

9 /ph/ /l/ /phl/ 

10 /kh/ /l/ /khl/ 

11 /k/ /w/ /kw/ 

12 /kh/ /w/ /khw/ 

Table 5: Standard Thai consonant clusters 

(Adapted from Sriyaphai, 2013, p. 78) 

The columns in Table 5 reveal that three different patterns can be observed. In the first 

pattern, only six of the nine stops, /p, t, k, ph, th, kh/, can be followed by a trill /r/. In the 

second, a bilabial /p/ or a velar stop /k/ (both aspirated and unaspirated) are followed by 

a liquid /l/. In the third pattern, only a velar stop /k/ (both aspirated and unaspirated) can 

be followed by a velar glide, giving in total 12 consonant clusters. 

2.7.3 Standard Thai vowels  

The vowel space of the Standard Thai monophthongs and diphthongs is shown in Figure 

1 and Figure 2. 

2.7.3.1 Monophthongs                   

Figure 1: Standard Thai monophthongs 

(Adapted from Tingsabadh & Abramson, 1993, p. 25) 

Figure 1 shows the vowel space of the nine Standard Thai monophthongs. There are three 

front vowels (/i, e, ɛ/), three central vowels (/ɯ, ɤ, a/) and three back vowels (/u, o, ɔ/). 

The monophthongs are contrastive in length, e.g. [ci:p L] “to flirt” vs [cip L] “to sip”.  
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2.7.3.2 Diphthongs 

Figure 2: Standard Thai diphthongs 

(Adapted from Tingsabadh & Abramson, 1993, p. 25) 

Figure 2 shows the vowel space of the three Standard Thai diphthongs. Each diphthong 

consists of a high vowel (/i, ɯ, u/) followed by a low vowel (/a/ or /a:/). As such, /ia/ has 

two allodiphthongs [ia] and [i:a], /ɯa/ has [ɯa] and [ɯ:a], and /ua/ has [ua] and [u:a]. 

The shorter versions ([ia], [ɯa], [ua]) occur in closed syllables while the longer ones 

([i:a], [ɯ:a], [u:a]) occur in open syllables. Short and long allodiphthongs do not differ in 

their diphthongal quality (Roengpitya, 2012, p. 53). 

2.7.4 Standard Thai tones  

Standard Thai tones can be categorized into two groups, static and dynamic (Abramson, 

1962; Naksakul, 1998). The first group consists of low tones [ˋ], mid tones [no phonetic 

symbol] and high tones [ˊ]; the second group consists of rising tones [ˇ] and falling tones 

[ˆ]. Instead of using diacritics to indicate tones, I will symbolize low tone as [L], mid tone 

as [M], high tone as [H], rising tone as [LH] and falling tone as [HL]. Figure 3 shows all 

five tones as uttered by a male speaker. 

 
Figure 3: F0 contours of the five Standard Thai tones for the same segmental sequence [pa:]. 

 The mid tone [M] is navy blue, the low tone [L] is red, the falling tone [HL] is green, the high 

tone [H] is black, and the rising tone [LH] is grey.  

(Reproduced from Pingjai, 2011, p. 15) 
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Each of these five tones was plotted using the averaged F0 values from ten tokens. The 

x-axis represents the time that elapsed in milliseconds (msec) and the y-axis shows the 

frequency in Hertz (Hz). Duration was not normalized, so as to allow readers to observe 

the original shapes of each of the five tones. 

Tone 1 [M] (navy blue) gradually drops in frequency from an onset of ca. 110 Hz to an 

offset of ca. 82 Hz. The entire duration of Tone 1 lasts ca. 70 msec. Tone 2 [L] (red) also 

shows a slightly falling contour along its entire time-course, which lasts about 60 msec. 

Tone 3 [HL] (green) is fairly stable at around 125 Hz during the first 30 msec before it 

sharply falls down towards its offset (at ca. 85 Hz). Tone 4 [H] (black) starts at ca. 105 

Hz and is fairly stable around this frequency, before it gradually rises towards its offset 

(ca. 120 Hz). Tone 5 [LH] (grey) starts at ca. 110 Hz and shows a concave contour during 

the first 40 msec, before it sharply rises towards its offset (155 Hz). 

 

2.8 Northern Thai dialect 

Reasons for including the phonetics and phonology of other major dialects in Thailand, 

grouped according to regions of Thailand, were given above. In this section, I present the 

consonants, vowels and tones of the Lanna Thai or Northern Thai dialect, which is spoken 

in the north of Thailand. The description of Northern Thai phonetics and phonology 

(consonants, vowels, and tones, respectively) is based on earlier work by different Thai 

scholars. Presentations of the Pak Tai or Southern Thai and the Isan or Northeastern Thai 

dialects follow in §§2.9 and 2.10. 

2.8.1 Northern Thai consonant phonemes 

Table 6 lists the Northern Thai consonant phonemes. /c*/ is classified as plosive in 

Rungruengsri (1991) and Wimolkasem (2006), although its place and manner of 

articulation is the same as that of Standard Thai /ʨ/. 

Consonants Bilabial Labiodental Alveolar Palatal  Velar Glottal 

Plosive b, p, ph  d, t, th c* k, kh Ɂ   

Fricative  f s   h 

Nasal m  n ɲ  ŋ  

Lateral   l    

Approximant w   j   

Table 6: Northern Thai consonant phonemes 

(Adapted from Wimolkasem, 2006, p. 9) 
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There are 20 consonant phonemes in the Northern Thai dialect (as opposed to 21 in 

Standard Thai). There are four nasals, /m, n, ŋ, ɲ/, as opposed to three, /m, n, ŋ/, in the 

standard language. There is no trill /r/ in the Northern Thai phoneme inventory, /r/ being 

realized as [h] (most commonly) or [l] (Wimolkasem, 2006, p. 30). Thus, the word for 

the verb study is [ri:an M] in Standard Thai, but [hi:an M], in Northern Thai. Eleven 

consonants (/b, d, c, ph, th, kh, f, s, h, n, l/) only occur word-initially; the nine others (/p, t, 

k, m, n, ŋ, w, y, Ɂ/) can occur both word-initially and word-finally (ibid.). 

2.8.2 Northern Thai clusters 

In the northern Thai dialect, /w/ can occur after the ten initial consonants /Ɂ, k, kh, c, t, ŋ, 

n, s, l, y/ to form clusters (Wimolkasem, 2006, pp. 10-12). By contrast, in Standard Thai, 

there are three consonant phonemes /r, l, w/ that can occur after /p, t, k, ph, th, kh/.  

2.8.3 Northern Thai vowels 

I will now discuss the vowel phonemes of the Northern Thai dialect. 

2.8.3.1 Monophthongs 

The Northern Thai dialect has eighteen monophthongs: /i, i:, e, e:, ɛ, ɛ:, ɯ, ɯ:, ɤ, ɤ:,  a, 

a:, u, u: o, o:, ɔ, ɔ:/, each of which is distinctive in length. These monophthongs have the 

same vowel quality as those of Standard Thai (Wimolkasem, 2006, p. 41). 

2.8.3.2 Diphthongs 

There are six diphthongs in the Northern Thai dialect (as opposed to three in Standard 

Thai). Unlike Standard Thai diphthongs, they are distinctive in length (Roengpitya, 2012). 

2.8.4 Northern Thai tones 

There are also six tones in the Northern Thai dialect (as opposed to five in Standard Thai) 

(Rungruengsri, 1991). They are shown in Table 7. 

1. Mid 

2. Rising 

3. Low 

4. Falling 

5. High-falling 

6. High  

Table 7: Northern Thai tones 

(After Rungruengsri, 1991, p. 251) 
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Following the categorization of tones (static vs dynamic) used by Abramson (1962) and 

Naksakul (1998), Northern Thai has three static and three dynamic tones. The main 

difference between the Northern Thai dialect and Standard Thai in terms of tones is that 

the latter has only one falling tone but the former has two: falling and high-falling. In 

comparison to Standard Thai, five of the Northern Thai tones are the same as those found 

in Standard Thai, the exception being the high-falling tone. 

 

2.9 Southern Thai dialect 

In this section I provide information about the Southern Thai phonology (consonants, 

vowels, and tones, respectively), based on earlier work done by different Thai scholars. 

2.9.1 Southern Thai consonant phonemes 

The Southern Thai dialect is spoken in the south of Thailand, from Chumporn to 

Narathiwat provinces (fourteen provinces in total) (Nookua, 2012, p. 28), as shown on 

the map in Figure 4. There are also dialectal varieties according to regions such as those 

in the Southernmost provinces of Pattani, Yala, Narathiwat and some parts of Songkhla 

(Nookua, 2012, p. 28). 

 

Figure 4: The South of Thailand 

 (Source: Google, n.d.) 
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The main distinction between the Southern Thai dialect and Standard Thai concerns its 

phonology (tones) and its lexicon rather than its syntax (Nookua, 2012, p. 28). 

Additionally, there is no recognized orthography in this dialect (ibid.). In this section, the 

phonology of Phang-Nga has been chosen to represent the Southern Thai dialect (as 

Phang-Nga is mostly cited in the relevant literature). Thus, Table 8 contains the consonant 

phonemes of the Southern Thai dialect (Phang-Nga). 

Consonants Bilabial Labiodental Alveolar Palatal Velar Glottal 

Plosive b, p, ph  d, t, th  k, kh Ɂ 

Affricate    c, ch   

Fricative   s   h 

Nasal m  n  ŋ  

Lateral   l    

Trill   r    

Approximant w   j   

Table 8: Consonant phonemes of the Southern Thai dialect (Phang-Nga) 

(Adapted from Wilaisak, n.d.) 

Unlike Standard Thai and the Northern Thai dialects, there is no fricative /f/ in Southern 

Thai phonology (Phang-Nga). Moreover, /ŋ/ does not occur word-initially in this dialect 

(Wilaisak, n.d.).  

2.9.2 Southern Thai clusters 

We now look at the clusters of the Southern Thai dialect. They are listed in Table 9. 

Clusters l r w 

p pl pr - 

ph phl phr - 

b bl br - 

t - tr - 

k kl kr kw 

kh khl khr khw 

m ml mr - 

Table 9: Southern Thai clusters 

(Adapted from Wilaisak, n.d.) 

Table 9 shows that, interestingly, a nasal /m/ and a plosive /b/ can be followed by a lateral 

/l/ or a trill /r/ to form a cluster. This is not the case in the Northern Thai and Standard 

Thai dialects. 
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2.9.3 Southern Thai vowels 

2.9.3.1 Monophthongs 

There are eighteen monophthongs in the Southern Thai dialect; they are the same as those 

found in Standard Thai and in the Northern Thai dialect (Wilaisak, n.d.). 

2.9.3.2 Diphthongs of the Southern Thai Dialect 

Similar to Standard Thai, there are three diphthongs /ia, ɯa, ua/ in the Southern Thai 

dialect (Wilaisak, n.d.). However, unlike those of the Northern Thai dialects, these three 

diphthongs are not distinctive in length in the Southern Thai dialect. 

2.9.4 Southern Thai tones  

In the Southern Thai dialect (Phang-Nga), there are seven contrastive tones, the highest 

number found among the dialects discussed so far. Southern Thai tones are shown in 

Table 10. 

1. High rising-falling 

2.  High  

3. Mid rising-falling 

4. Mid  

5. Low rising-falling 

6. Low rising 

7. Low falling 

Table 10: Southern Thai tones 

(Adapted from Wilaisak, n.d.) 

There are two static and five dynamic tones in the Southern Thai dialect. A unique aspect 

of this dialect are the rising-falling tones (high rising-falling, mid rising-falling, and low 

rising-falling), which do not exist in the other dialects. Low tones also have rising and 

falling tones. The high and mid tones have allotones – level or rising. These allotones are 

determined by the initial consonant classifications of high, middle, and low (Li, 1966). 

That is, a {high, mid}-rising allotone is determined by high consonants in checked or 

‘dead’ syllables (i.e. those ending in /p, t, k/) with short vowels, and a {high, mid}-level 

variant is determined by high consonants in open syllables or checked syllables with long 

vowels (Gedney, 1972, p. 424). 
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2.10 Northeastern Thai dialect 

This section provides a description of the Northeastern Thai phonology (consonants, 

vowels, and tones), based on earlier work done by different Thai scholars. 

2.10.1 Northeastern Thai consonant phonemes  

Northeastern Thai has twenty initial consonants (based on speakers of Ubon Ratchathani 

province) as shown in Table 11.  

Consonants Bilabial Labiodental Alveolar Palatal  Velar Glottal 

Plosive b, p, ph  d, t, th c* k, kh Ɂ   

Fricative  f s   h 

Nasal m  n ɲ  ŋ  

Lateral   l    

Approximant w   j   

Table 11: Northeastern Thai consonant phonemes 

(Adapted from Wilaisak, n.d.). 

Of note in Table 11 is that /c*/ is classified as plosive in Wilaisak (n.d.), although its place 

and manner of articulation is the same as that of the Standard Thai /ʨ/. We observe from 

Table 11 that the consonant phonemes of the Northeastern Thai dialect are the same as 

those in the Northern Thai dialect. These twenty phonemes can occur in word-initial 

positions. However, only nine consonant phonemes, /p, t, k, m, n, ŋ, w, j, Ɂ/, can occur in 

word-final positions (Luemsai, 2001). In comparison to Standard Thai, there are two 

observations to be made here. First, a trill /r/ does not exist in the Northeastern Thai 

dialect. Second, there are four nasals in this dialect, /m, n, ŋ, ɲ/, as opposed to three nasals 

(/m, n, ŋ/) in Standard Thai.  

2.10.2 Northern Thai clusters 

There are no clusters in this dialect (Wilaisak, n.d.).  

2.10.3 Northeastern Thai vowels 

2.10.3.1 Monophthongs 

There are eighteen monophthongs in the Northeastern Thai dialect. These eighteen 

monophthongs are the same as those found in other Thai dialects discussed so far. 
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2.10.3.2 Diphthongs 

There are three diphthongs in the Northeastern Thai dialect, as in the other dialects, with 

the exception of the Northern Thai dialect. In some varieties of the Northeastern dialect, 

/ɯa/ does not exist (Luemsai, 2001; Wilaisak, n.d.). In other words, in some areas of the 

Northeast only two diphthongs are used: /ia/ and /ua/.  

2.10.4 Northeastern Thai tones 

Northeastern Thai tones range from four to seven, depending on the region (Luemsai, 

2001). As Smalley (1994, p. 89) points out, within the Northeastern area, some small 

differences in tonal systems may be found within certain provinces, districts, and even 

villages; as a result of this, one can identify the area where a person comes from based on 

these tonal qualities. The tonal system illustrated in Table 12 is that of Ubon Ratchathani 

province; it comprises six tones (Wilaisak, n.d.). A mid-rising tone is the distinctive tone 

found in this region (compared to Standard Thai). 

1. Low 

2.  Mid 

3. Mid-rising 

4. High 

5. Falling 

6. Rising 

Table 12: Northeastern Thai Tones 

(Adapted from Wilaisak, n.d.) 

2.11 Speech signal representation  

Having introduced this background knowledge on FVC, including the LR framework, the 

Thai legal system and Thai phonetics and phonology, I will now present a literature 

review detailing my choice of acoustic parameters tested in Standard Thai. As such, the 

following subsections first provide essential knowledge about speech feature extraction. 

This will be followed by a review of previous FVC research using the spectrum, F0, 

LTF0, and formants as parameters. 

2.11.1 General feature extraction process: Short-time analysis 

Although the FVC work in this thesis uses the semi-automatic method, where both a 

computer-based and human-supervised analysis are involved, the speech feature 
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extraction process used in Automatic Speech Recognition (ASR) is introduced here to 

show the basic principles adhered to when speech is parameterized in the current work. 

It should be pointed out here that the current work uses a front-end analysis as opposed 

to a back-end analysis, whereby “the acoustic signal is converted into a sequence of 

acoustic feature vectors” (Meseguer, 2009, p. 14), as we shall see below. 

Figure 5 shows the speech feature extraction process used in automatic speech recognition 

(ASR).  

Figure 5: Feature extraction process  

(Source: Young et al., 2002, p. 59) 

The aspect of most importance for the current work is how the speech signal is converted 

into a sequence of feature vectors and then used to compare speakers. To begin with, 

speech is decomposed into a sequence of short time frames, a so-called short-time 

analysis (Meseguer, 2009, p. 12). That is, each of these frames is converted into a speech 

Speech waveform 
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vector that contains speech information labeled as block n and block n+1 in . The segment 

of the waveform to be analyzed is referred to as window (Young et al., 2002, p. 58). This 

window duration is independent from the frame period, where the former is usually larger 

than the latter (ibid.). In this thesis, Hamming window is chosen as it offers better 

frequency resolution (Meseguer, 2009, p. 13). Once we get the resultant acousticfeature 

vectors, they are used to model a speaker (e.g. offender or suspect), and consequently to 

calculate LRs. 

 

2.12 Source of individualizing information: Spectral, phonotactic,  

        prosodic and idiolectal levels 

This section reviews previous studies with particular consideration given to the acoustic 

parameters of 1) spectral moments and the cepstrum of /s, ʨh, n, m/, 2) tonal F0, 3) long-

term F0 (LTF0), and 4) the formant trajectories, which are the focus of the present thesis. 

It is well known in phonetics and other disciplines, such as engineering, speech signal 

processing and physics, that sources of individualizing information can be found at the 

spectral, phonotactic, prosodic, and idiolectal levels, where spectrum is regarded as the 

lowest-level feature and idiolect as the highest (Reynolds et al., 2003, p. 260).  

Spectrum, the lowest-level feature, is said to be directly related to the dynamic 

configuration of the vocal tract (Castro, 2007, p. 20) because it is one of the processes 

used to separate source and filter components according to the source-filter model. It is 

actually a mathematical abstract and, when combined, can approximate speech 

waveforms. This being the case, spectrum has been commonly found to be a parameter 

in automatic speaker recognition (ASR) in the last decade, and it has been demonstrated 

that it contains much speaker-specific information (ibid.). It should be noted here that 

spectrum is not a common parameter in traditional FVC as opposed to traditional features 

such as formant frequencies, whose F1 inversely correlates with vowel height and whose 

F2 correlates with the vowel backness/rounding (Rose, 2002; Nolan, 1983).  

At the (second lowest) phonotactic level, speaker-specific information is extracted from 

phonemes, syllables and their realizations (Castro, 2007, p. 21). Information at this level 

is said to contain much language-dependent variability, as phonotactics is fundamentally 

concerned with the freedom and restrictions with which phonemes are combined (ibid.). 
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Much of the naturalness of a speaker’s voice is said to be situated at the prosodic level. 

This level contains pitch, loudness, and rhythm, which make speech sound natural and 

human-like (Halliday, 2015). 

Lastly, there is the idiolectal level, where individualizing information is extracted by the 

use of particular words, grammar and pronunciation unique to the speaker (Castro, 2007, 

p. 21). This highest level is assumed to yield optimal results in speaker recognition, as it 

contains information distinctive to an individual (ibid.). However, in this thesis, the 

sources of individualizing information exploited are from the acoustic parameters at the 

spectral and phonetic, rather than the prosodic and idiolectal, levels, and they are 

extracted from the segmental consonants /s/, /ʨh/, /m/, /n/ and the diphthongs [ɔi] and [ai]. 

The following sections present an overview of the body of literature surrounding the 

acoustic parameters of the spectral moments and cepstrum (§§2.15–2.17), tonal F0 and 

LTF0 (§2.18), and the formant trajectories (§2.19), respectively. 

 

2.13 DCT-smoothed spectrum vs cepstrally smoothed spectrum 

In this thesis, a discrete cosine transformation (DCT) is applied to a raw spectrum (I will 

explain this in §2.14) extracted from various consonants. In applying DCTs, a short-time 

Hamming window of 31.25 ms (sampling frequency of 16,000 Hz / a signal of length N 

= 512 points) was selected in the EMU speech database system (Harrington, 2010, p. 

276). The reason for choosing a Hamming window is that it is said to offer a better 

frequency resolution (Meseguer, 2009, p. 13). With these DCT coefficient outputs, 

various experiments were conducted. To execute the DCT analysis, the dct ( ) function is 

used as an argument inside fapply ( ) in the EMU/R library (Cassidy, 1999). For example, 

a cepstrally smoothed spectrum with 30 coefficients (dct) for a spectral matrix /s/, 

extracted at the temporal midpoint in the frequency range between 500–8000 Hz 

(s_dft_500_8000.5), is given by dct s = fapply (s_dft_500_8000.5, dct, 29, fit = T), 

where fit is an argument for cepstrally smoothed spectra. 

A DCT, which is very much like a Discrete Fourier Transformation (DFT), decomposes 

a speech signal into a set of sinusoids; when summated, it reconstructs the original speech 

signal (Harrington, 2010, pp. 304-305). A DCT is a set of sinusoids “at half-cycles, that 

is, at k = 0, 0.5, 1, 1.5 … ½(N–1), rather than, as for the DFT, at integer cycles (k = 0, 1, 
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2, … (N–1)” (ibid.). Moreover, the output of a DCT (as opposed to that of a DFT), is a 

set of sinusoids with no phase, namely a cosine wave. Hence the name, Discrete Cosine 

Transformation (ibid.). The amplitudes of these cosine waves are called DCT coefficients 

(Harrington, 2010, p. 310). With these DCT coefficients of the raw spectrum as fecture 

vectors, a series of experiments were carried out (see Chapter 5). The DCT amplitudes 

are usually labeled from 0 to N–1; “the more that are summed, the more the resulting 

signal approximates the original spectrum” (ibid.). This motivates us to use 1) the 

coefficient zero (k0) up to coefficient 14 (k14) (15 DCT coefficients in total), and 2) k0-

k19 (20 DCT coefficients in total), as they are considered to be sufficient to correlate with 

the speaker’s vocal tract (ibid.). 

To introduce the basic concept of spectral analysis, let us look at the jagged profile of a 

spectrum extracted from the temporal midpoint of an oral vowel /i/ and its DCT fitting. 

Figure 6 further investigates a 512-point dB spectrum of this vowel, sampled at 16,000 

Hz.  

 

Figure 6: A raw spectrum (black) extracted from the temporal midpoint of an oral vowel /i/ and 

its corresponding Hertz-scaled DCT curve fitting (red) using 512 data points.  

The x-axis represents the frequencies in Hertz (Hz); the y-axis is the relative amplitude of the 

spectrum in Decibels (dB). As this segment is an oral vowel, a low-pass filter of 5000 Hz is 

sufficient to capture the first four formants that contribute to its phonetic distinction. 
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According to Harrington (2010, p. 309): 

The 512-point window is easily wide enough so that harmonics appear: there is a gradual 

rise and fall due to the presence of formants and superimposed on this is a jaggedness 

produced by the fundamental frequency and its associated harmonics. 

A close inspection of Figure 6, which is a two-dimensional plot of relative amplitude (y-

axis) against frequency (x-axis), reveals a jagged profile of a vowel /i/ in black and its 

grosser structure, which consists of five major peaks in red. Each of the local spikes 

(black) is a harmonic with a given frequency and relative amplitude. These harmonics in 

even spacing frequencies are the sinusoidal components (Harrington, 2010, pp. 304-305). 

The first harmonic with the lowest frequency, labeled H1, is the fundamental frequency 

(F0) – the rate of the repetition of the vocal cords per second (Rose, 2002, p. 244). It is 

quite difficult to observe the frequency at which this H1 occurs, given the frequency axis. 

But this can be visually approximated as anywhere in the vicinity of 100–500 Hz. The 

second higher spike in frequency, which is double that of the F0 at 60 dB, is called 

H2. The next, higher in frequency, is the third harmonic, H3, and so on (ibid., p. 205). 

Mathematically, the harmonics occur at whole-number multiples of the F0 (ibid., p. 205). 

A grosser structure (the dotted red line in Figure 6) can be obtained when the jagged 

profile of the harmonics is smoothed (only lower DCT coefficients, which exclude 

fundamental frequency and harmonics information, are summated) (Harrington, 2010, p. 

309). There are five major peaks, labeled P1-P5, which are the frequencies where the air 

in the supralaryngeal vocal tract is vibrating at its maximum amplitude. In acoustic 

phonetics, these peaks are termed formant center frequencies. As Rose (2002, p. 206) 

states, “the frequencies of the lowest three major peaks are the primary correlatives of 

vowel quality”. 

It should be made clear at the outset that, in speech technology, the output of a DCT 

analysis applied to a spectrum is considered to be a very close approximation to that of a 

cepstral analysis, notwithstanding their minor differences (Milner & Shao, 2006). Rose 

and Clermont (2001, p. 31) explain that cepstrum is a smoothed spectrum. 

Thus, the following aims to explain minor differences between cepstrum and spectrum in 

terms of their extraction process. Cepstral analysis is the inverse of a Fourier 
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transformation of the log-spectrum (Meseguer, 2009; Bogert, Healy, & Tukey, 1963; 

Nair, Alzqhoul, & Guillemin, 2014); it is illustrated in the diagram in Figure 7. 

                𝑥[𝑛]                                                                                         𝑐[𝑛] (cepstrum) 

Figure 7: Cepstral analysis 

(Adapted from Gutierrez-Osuna, 2017, p. 2) 

In Figure 7, 𝑥[𝑛] stands for the speech signal. First, a discrete Fourier transformation 

(DFT) is applied to the speech signal x[n] to convert acoustic features from the time 

domain into their corresponding representation in the frequency domain. Second, the 

logarithm function (log) is applied to the magnitude  component of speech (and the phase 

is thrown away) to convert it into the “quefrency domain or the cepstral domain, which is 

similar to the time domain” (Meseguer, 2009; Gutierrez-Osuna, 2017; vlab.amrita.edu, 

2011). Third, the inverse discrete Fourier transformation (IDFT) is performed to the 

product of the second stage (log) to get the cepstral coefficients (𝑐[𝑛]) (ibid.). These 

cepstral outputs can separate the source (glottal excitation) and the filter (vocal tract) as 

represented by the higher and lower cepstral coefficients, respectively (Kumar & 

Lahudkar, 2015). 

A DCT analysis, on the other hand, proceeds differently. When a DCT (a mathematical 

operation) is applied to a spectrum, the speech signal is decomposed into a set of cosine 

waves at half-cycles (Harrington, 2010, p. 304). The resultant amplitude of such cosine 

waves is referred to as the DCT coefficients. The outputs of the cepstral and DCT analyses 

are actually the spectrum, which represents the vocal tract filter. In this regard, cepstral 

coefficients are considered a close approximation of the DCT coefficients, although they 

are different in terms of their extraction process. 

Thus, DCT coefficients are essentially cepstral coefficients and a DCT-smoothed 

spectrum is a cepstrally-smoothed spectrum (Harrington, 2010, p. 306). This smoother 

version of the original signal, i.e. the DCT-smoothed spectrum or cepstrally-smoothed 

spectrum, results when the harmonics (I will explain this in the subsequent section) are at 

high frequencies due to vocal fold vibrations that are filtering out, reflecting only the 

shape of the vocal tract (ibid.). 

DFT log IDFT 



 
51 

 

The benefits of obtaining these cepstral coefficients, among others, are that 1) they can 

separate source and filter, as indicated above (i.e. high coefficients approximate the glottal 

excitation while low coefficients approximate the vocal tract), and 2) they are very 

compact in representing the spectral envelope (Gutierrez-Osuna, 2017, pp. 8-10). In what 

follows, I justify in more detail why cepstrum is very attractive in traditional FVC, based 

on the three main advantages explained in Rose (2013a).  

The first advantage of using a cepstrum as a parameter in FVC is its great power. Rose  

(2013a, p. 192) empirically shows that, given the same data, cepstrum lends itself to a 

five times stronger LR magnitude than formant frequencies alone. Rose (2013a) further 

explains that this great power of cepstrum is probably due to more information captured 

from the whole of the spectral envelope. That is, there is a greater chance of picking up 

more speaker-specific information (ibid.). Rose (2013a, p. 84) points out that the cepstral-

spectral envelope of a vowel not only reflects the vocal tract dimensions (in its F-

patterns), but also the phonatory activity of the source (in its spectral slope) and the tract 

compliance (in its formant bandwidths). 

The second advantage of cepstrum (over formants) is that it is much easier to extract. 

Additionally, in forensically realistic casework, any speech recordings obtained from a 

degraded transmission channel will typically distort or lose speaker-individualizing 

information. As such, it is more difficult to find acoustic variables that are continuous in 

nature (other than, among others, the cepstrum and duration variables). For example, it is 

empirically found in Hughes, Foulkes, and Wood (2016) that the duration of the hesitation 

marker “um” (together with the formant trajectories) can improve the validity of the Mel-

frequency cepstral coefficients (MFCC)-based ASR. 

The third advantage of cepstrum is its use as a complementary feature to potentially add 

the strongest possible evidence when combined with other parameters under the LR 

framework (J. Holmes, W. Holmes, & Garner, 1997; Rose, 2013a). For example, an 

expert can combine the formant frequencies from an easy-to-extract vowel with the 

cepstral coefficients of a difficult nasal segment (Rose, 2013a, p. 85). 

Last but not least, a cepstrum is preferred over formants because the cepstral coefficients 

can be used to quantify both voiced and voiceless speech segments, while it is harder to 

extract formants in voiceless sounds (Harrington, 2010, p. 316). 
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Regardless of the main advantages of cepstrum in FVC, there are also some caveats about 

its use. Firstly, cepstrum is sensitive to channel transmission (Rose, 2013a, p. 84). When 

the shape of the spectrum is perturbed in telephone transmissions, for example, all cepstral 

coefficients will change (ibid.). Secondly, cepstrum generally lacks “interpretability in 

terms of speech production” (ibid.), i.e. it is just a mathematical operation that, when 

combined, gives the best approximation of a reconstructed smoothing spectral shape 

(Clermont & Itahashi, 2000).  

 

2.14 Mel- and Bark-scaled DCT (cepstral) coefficients 

Apart from using the perceived pitch or frequency in Hertz as a scale to represent a 

spectrum, Mel and Bark scales can be used to warp the frequency in Hz into one that 

corresponds more closely to what humans hear (Harrington, 2010, p. 312). In this thesis, 

I parameterized a spectrum using the frequency in Hertz and Bark scales to identify their 

discriminatory power and determine the best-performing parameter.  

The motivation to use auditory Bark scales was not only the fact that they correlate to the 

frequency processed in human ears, but also that fewer Bark-scaled DCT (cepstral) 

coefficients are needed to efficiently distinguish among different phonetic categories than 

when working with a Hz scale, as reported in automatic speech recognition (Meseguer, 

2009, p. 19). Fewer coefficients, based on perception models, may imply less 

computational cost in terms of experimental time in a forensically realistic world. In what 

follows, I show how well the DCT coefficients fit the spectra in both Hertz and Bark 

scales, using data from the current thesis. 

2.14.1 Hertz-scaled DCT (cepstral) coefficients fitted to a raw spectrum  

Figure 8 (overleaf) shows a raw spectrum (in black) extracted at the temporal midpoint 

of each of the target segments /s, ʨh, m, n/, plotted together with its DCT curve fitting (in 

red) in a Hertz scale. The speech samples are from male speakers of Standard Thai and 

are excerpted from the current FVC corpus (for details, see Chapter 3). The x-axis is the 

frequency in Hz and the y-axis is the relative amplitude in decibels (dB). As shown in 

Figure 8, a DCT or cepstrally smoothed version of the spectrum excludes in principle the 

contribution from the source, i.e. the summation does not include the higher frequency 

cosine waves (only k0-k29 were included) that encode information about the F0 and  
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Figure 8: A DCT-smoothed signal (cepstrally smoothed spectrum) superimposed on the 

original spectrum (in black) by summing up the first 30 half-cycle cosine waves on a Hz scale 

(in red) of /s, ʨh, m, n/.  

Note: /ʨh/ is labeled as /ch/. 

harmonics (Harrington, 2010, p. 310). To simulate realistic forensic conditions of a 

possible telephone transmission effect, a speech signal is high-passed at the same cut-off 

frequency of 500 Hz. However, a signal is low-passed with a different cut-off frequency: 

4000 Hz for the nasals /m, n/ (Figures 8c and 8d), and 8000 Hz for the fricative /s/ and 

affricate /ʨh/ (Figures 8a and 8b). This is because the acoustic energy of nasals can be 

observed and measured in a low frequency range due, among other factors, to a relatively 

narrow opening nasal cavity (Reetz & Jongman, 2011; Stevens, 2000, p. 489). In contrast, 

the acoustic energy of the fricatives and affricates can be observed in as high a frequency 

as 8000 Hz due to the frication noise made when air hits the teeth and the palate before it 

a) 

c) 

b) 

d) 
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is released (Bolt et al., 1973; Stevens, 2000, p. 379). Figure 8 shows that a DCT-

smoothed spectrum in a Hertz scale provides a better fit against the raw spectrum of 

the fricative /s/ and the affricate /ʨh/ (Figures 8a and 8b) than against that of the nasals 

/m/ and /n/ (Figures 8c and 8d). Worse DCT approximations for nasal spectra, especially 

in a high frequency range of ca. 1500-4000 Hz, may have different causes, including the 

fact that the low acoustic energy resulting in the frequency information was not well captured.  

2.14.2 Bark-scaled DCT (cepstral) coefficients fitted to a raw spectrum 

Figure 9 shows a raw spectrum (in black), extracted at the temporal midpoint of each of 

the target segments /s, ʨh, m, n/, plotted together with its DCT curve fitting (in red) in a  

 

 

Figure 9: A DCT-smoothed signal (cepstrally smoothed spectrum) superimposed on the 

original spectrum (in black) by summing up the first 30 half-cycle cosine waves in a Bark scale 

(in red) of /s, ʨh, m, n/. Note: /ʨh/ is labeled as /ch/. 

c) 

a) b) 

d) 
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Bark scale. Figures 9a to 9d show that a raw spectrum of /m/ is best fitted by a cepstrally 

smoothed spectrum in a Bark scale by summing up the first 30 half-cycle cosine waves. 

In comparison with Figure 8c, the higher frequency region of Figure 9c is better 

approximated in a Bark scale than in a Hertz scale. 

Figure 10 reproduces more samples of a raw spectrum extracted from Speaker 1, one of 

our male informants. It shows the speaker’s 1st session (1st and 2nd repeats, in black) and 

2nd session (1st and 2nd repeats, in red). Although data collection involved five repeats per 

session, only two repeats were plotted below to make visual inspection of within-speaker  

 

    

Figure 10: A DCT-smoothed signal (cepstrally smoothed spectrum) of /s, ʨh, m, n/ from 

Speaker 1’s 1st session, plotted by summing up the first 30 half-cycle cosine waves in a Hertz 

scale uttered on 1st and 2nd repeats (in black), and Speaker 1’s 2nd session, similarly consisting of 

1st and 2nd repeats (in red).  

Note: /ʨh/ is labeled as /ch/. 

Frequency (Hz) Frequency (Hz) 

Frequency (Hz) Frequency (Hz) 

a) b) 

c) d) 
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variation easier. Each spectrum was extracted from the temporal midpoint of the target 

consonants; the x-axis is the frequency in Hertz, extracted from a frequency range of 500-

8000 Hz, and the y-axis is the relative amplitude in dBs. The high-pass filter of 500 Hz is 

set to exclude potential distortion of the signal due to realistic transmission effects 

(Künzel, 2001). 

Figure 10 illustrates within-speaker variation as shown by the spectral shape of each of 

the target segments of Speaker 1’s 1st session (1st and 2nd repeats, in black) and 2nd session 

(1st and 2nd repeats, in red). A quick glance at the plots tells us that the spectra extracted 

from both sessions (black and red) uttered by Speaker 1 show a similar trend in their 

curvature for each of the target segments /s, ʨh, m, n/. Moreover, it can be seen in Figures 

10c and 10d that, for the spectra of /m, n/ uttered during Speaker 1’s 1st session (1st and 

2nd repeats, in black) and 2nd session (1st and 2nd repeats, in red), there is greater overlap 

within each segment. In Figures 10a and 10b, there is less overlap in the spectra for /s/ 

and / ʨh/, showing much greater within-speaker variation. 

The smaller within-speaker variations found in nasals are ideal and theoretically should 

provide a better result than the within-speaker variations found in /s/ and /ʨh/, if the degree 

of between-speaker difference is identical. Having said that, the curvature of a spectrum 

as found between speakers needs to be investigated, and I shall do so below. Figure 11 

(overleaf) shows the curvature, in a Hertz scale, of the spectra uttered by two of our 

informants, Speaker 2 (1st session, 1st – 5th repeats, in black) and Speaker 3 (1st session, 

1st – 5th repeats, in red). Not only the degree of between-speaker variation is shown, but 

also the within-speaker variation for each of the target segments /s, ʨh, m, n/. In order to 

see clearly how the curvature of each spectrum differs between speakers, all five repeats 

from session one uttered by Speaker 2 (in black) are plotted against those of Speaker 3 

(in red) in a Hertz scale.   

Looking at Figure 11, we can see different degrees of overlap for the curvatures found in 

Speakers 2 and 3 (plotted in black and red). In the case of the nasals /m, n/, the curvatures 

are clearly different from each other, especially in the higher frequencies (ca. 3000 Hz 

onwards). However, the spectra of the fricative /s/ and the affricate /ʨh/ show significant 

overlap from low to high frequencies, resulting in larger between-speaker variation than 

in the case of the nasals. Based on Figures 10 and 11, the nasals /m, n/ have smaller 

within-speaker and larger between-speaker variation than the fricative /s/ and the affricate 
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Figure 11: A DCT-smoothed signal (cepstrally smoothed spectrum) of /s, ʨh, m, n/ plotted by 

summing up the first 30 half-cycle cosine waves in a Hertz scale from Speaker 2’s 1st session 

(1st – 5th repeats, in black) and Speaker 3’s 1st session (1st – 5th repeats, in red).  

Note: /ʨh/ is labeled as /ch/. 

/ʨh/. As such, it is predicted that the nasals /m, n/ will perform better than the fricative /s/ 

and the affricate /ʨh/. This being the case, the relevant literature needs to be reviewed 

before we can confirm our final decision with respect to the selection of the target 

segments, as we shall see below. 

 

2.15 Spectrum of the fricatives  

To date, much acoustic research on spectrum has been focused on the mapping of distinct 

spectral patterns with phonetic characterizations, i.e. place and manner of articulation 

(Harrington, 2010), especially those of the English stop consonants (Kavanagh, 2012). 

There are considerably less FVC studies that searched for speaker specificity contained 

in other consonants such as the fricatives and affricates. It is established for English that 
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male and female speakers differ in their observed acoustic differences in the production 

of the fricative /s/ (Stuart-Smith, Timmins, & Wrench, 2003). The factors that are 

expected to contribute to such acoustic differences are: 1) the biological sex, i.e. a 

female’s smaller vocal tract; 2) a female’s shorter resonance cavity in front of the 

constriction; and 3) the more fronted articulation of the /s/ in females than in males (ibid.). 

These facts lead us to explore the Standard Thai fricative /s/ when searching for speaker-

specific information that might be contained in its spectrum. 

In addition to the use of /s/, the Standard Thai affricate /tɕh/ is also considered to be one 

of the FVC parameters in the current thesis. The reasons are as follows. First, based on 

advice from Rose (personal communication, 2015), commonly used words such as those 

with the same meaning as the English “yes” and “no” are worth exploring as they are 

most frequently used in everyday conversation. As such, the Standard Thai word [tɕhai - 

HL] ‘yes’ is selected. Second, since dentition is involved in the articulation of the affricate 

/tɕh/ (Rose, 2011, p. 5900), which is assumed to vary largely between speakers, the 

airstream of /tɕh/ is expected to be individually distinctive. Although there have not been 

any results reported in the FVC literature concerning the use of /tɕh/, I believe it will be 

prudent to test the discriminatory performance of /tɕh/ in Standard Thai, due to the above 

reasons. §2.15.1 introduces the articulatory description of the fricatives. This is followed 

by a literature review of various acoustic studies as well as previous FVC research, with 

particular attention given to the fricative /s/. §2.16, where we review previous FVC 

research on the spectrum of the affricate /tɕh/ and the nasals /m, n, ŋ/, follows the same 

general outline. 

2.15.1 Articulatory description of the fricatives  

During the production of a fricative, there is a narrow constriction at some point along 

the vocal tract, from the larynx to the lips, with an approximate area of 0.1 cm2 

(Abramson, 1962; Shadle, 2012). In the case of the fricative /s/, the frication noise is 

generated when the airstream hits the teeth. Ladefoged and Maddieson (1986, p. 57) point 

out that: 

…in a fricative a variation of one millimeter in the position of the target for the crucial part of the 

vocal tract makes a great deal of difference. There has to be a very precisely shaped channel for the 

turbulent airstream to be produced. [In] a stop closure the strength of the closure does not have to 

be constant throughout the gesture. But in many fricatives…an exactly defined shape of the vocal 
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tract has to be held for a noticeable period of time. These demands result in a fricative such as s 

having a greater constancy of shape in varying phonetic contexts, in comparison with the 

corresponding stops t, d, and nasals n (Bladon & Nolan, 1977; Lindblad, 1980; Subtelny & Oya, 

1972).  

We can summarize the information in this quote by saying, first of all, that, during the 

production of a fricative, a constriction must be formed (by active and passive 

articulators) in a very precisely controlled manner, in such a way that sufficient air flow 

rates meet the aerodynamic conditions to change laminar into turbulent airflow (Catford, 

1977, pp. 183-201; Clark & Yallop, 1990). A second passage from the above quote 

(“These demands result in a fricative such as s having a greater constancy of shape in 

varying phonetic contexts”) also has strong relevance to FVC. It means that the fricative 

/s/ is relatively free from a neighboring phonetic context, which would result in a 

relatively constant acoustic realization. It is also well known from the literature (e.g. 

Stevens, 2000) that the front teeth contribute to the acoustic characteristics of fricatives 

as they deflect the airflow that produces additional turbulence in the (dental, alveolar and 

post-alveolar) fricatives. Additionally, since dentition is expected to vary considerably 

between individuals, the fricative /s/ is in principle a good candidate for Standard Thai 

FVC. Although a promising FVC performance of the fricative /s/ has been previously 

reported for English (for an extensive review, see §2.15.3), the fricative /s/ has not yet 

been tested in Standard Thai.    

2.15.2 Previous acoustic studies of English fricatives  

In the literature, many acoustic cues have been reported for the identification of the exact 

place of articulation, with a distinction within the fricative class. Such acoustic cues 

include: 1) the spectral properties of the frication; 2) the amplitude of the frication; 3) the 

frication duration; and 4) the spectral properties of the transition from the fricative into 

the following vowels (Hughes & Halle, 1956; Zhang & Tan, 2008). Fricatives can also 

be grouped according to their place of articulation, their voicing, and the velocity of 

airflow (sibilants and non-sibilants) (Ladefoged & Johnson, 2014). In general, the sibilant 

fricatives /s, z, ʃ, ʒ/, which are perceptually high-pitched, are reported to be different from 

the non-sibilant ones /f, v, θ, ð/, which are perceptually low-pitched, on the basis of 

spectrum, amplitude and duration of the frication noise (Jongman, Wayland, & Wong, 

2000, p. 1253). Within each class, /s, z/ may be distinguished from /ʃ, ʒ/ with respect to 

their place of articulation by spectral properties of the frication, while /f, v/ may be 
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distinguished from /θ, ð/ on the basis of spectral properties of the fricative-vowel 

transition (ibid., p. 1254). 

In Jongman et al. (2000), both static and dynamic parameters were tested to classify the 

place of articulation of the English fricatives /s, z, ʃ, ʒ, f, v, θ, ð/. I will limit the discussion 

to the static parameters that are relevant to the current work – spectral moments. Spectral 

moments are the mean, variance, skew and kurtosis. Mean and variance are defined as 

the average energy concentration and its range, respectively (Jongman et al., 2000, p. 

1253). Skew is a symmetrical indicator for the energy distribution (ibid., p. 1253). That 

is, a skew of zero means that there is a symmetrical distribution of energy around the 

mean, but a positive skew is obtained when the right tail of the distribution extends further 

than the left tail (ibid., p. 1253) whereas a negative skew is obtained when the left tail of 

the distribution extends further than the right tail (ibid., p. 1253). Finally, kurtosis is an 

indicator of energy peakedness (ibid., p. 1253). Positive kurtosis means a well-defined 

spectrum with clear spectral peaks, while negative kurtosis indicates a flat spectrum 

without clear peaks (ibid.).  

Jongman et al. (2000) found that spectral peak, mean, variance and kurtosis were 

significantly higher in females than in males. In contrast, the spectral skew of females 

was significantly lower than that of males (ibid.). This indicates that the spectra obtained 

from females were more well-defined: they displayed clearer peaks with a concentration 

of energy in the higher frequencies when compared to those obtained from males 

(Jongman et al., 2000). In light of the findings presented above, spectral information 

(spectral mean, variance, skew and kurtosis) of the fricative /s/ was proved to significantly 

reflect gender differences between males and females. As such, it is prudent to further 

examine the individualizing information, which might be contained in a fricative /s/ 

produced by Standard Thai male speakers. The reasons to select this particular alveolar 

fricative /s/ to represent the Thai fricative class /f, s, h/ are as follows. Although a 

labiodental fricative /f/ might be a good candidate, as it is phonetically (partly) dependent 

on dentition, empirical research on the typical French fricatives /f, s, š/ reveals that the 

tongue’s body shape, when producing the labiodental fricative /f/, is influenced to a 

greater extent by the following vowels, whereas less influence is found for a dental 

fricative /s/ and palatalo-alveolar fricative /š/ (Stevens, 2000, p. 379). I therefore focus on 
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/s/ in this thesis. Needless to say, the investigation of other fricatives is a topic for future 

research.  

With regard to the articulation of the glottal stop /h/, the vocal cords are opened wide 

enough to let the airstream pass through the glottis (but not vibrate) to produce the 

unvoiced frication (Rose, 2002, p. 239). In terms of source-filter theory, this turbulent 

airstream in the glottis acts as a source of energy that gets the air in the vocal tract to 

vibrate at its resonant frequencies (ibid.). A fricative /h/ is produced with “a spread glottal 

configuration with no significant constriction above the laryngeal region” (Stevens, 2000, 

p. 423). In other words, there is no modification of the airstream through the passage in 

the vocal tract. This being the case, /h/ is expected to contain less individualizing 

information than the other two fricatives /s/ and /f/, and as such is excluded from the 

current experiment.  

Let us look at another acoustic study, by Stuart-Smith et al. (2003), on the Glaswegian 

English /s/ to justify why speech from a single biological sex should be examined in the 

first place in the current thesis. This experiment examined whether 1) the observed 

differences in the acoustic characteristics of /s/, obtained from males and females, differ 

according to biological ‘sex’; 2) the acoustic characteristics of /s/ were influenced by 

‘gender’, in terms of its role as a socio-cultural construct, in addition to biological ‘sex’; 

and 3) to what extent the factor of class contributes to these differences (ibid.). The speech 

spectra were obtained from 31 speakers who were then divided equally according to their 

social groups: 1) middle-class women; 2) middle-class girls; 3) working-class women; 4) 

working-class girls; 5) middle-class men; 6) middle-class boys; 7) working-class men; 8) 

working-class boys. 

The results revealed that 1) to a certain degree, men and women exhibit differences in 

their pronunciation of /s/; 2) gender (social factor) is a more explanatory variable than sex 

(biological factor), as there is a clearly observable difference between working-class and 

middle-class women pronouncing /s/; and 3) working-class women (as opposed to 

middle-class) tend to pronounce “retracted” variants of /s/ in the same way as men. The 

findings show that the fricative /s/ carries not only gender but also socio-cultural 

information, and that it bears some important forensic relevance in, for example, 

approximating the linguistic community of individuals. Given the differences in 

pronunciation of the Glaswegian English /s/ by males and females, it is prudent to 
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examine the FVC performance based on a single sex first (males have been selected for 

this thesis) in order to clearly observe the individualizing information that might be 

contained in male speech. Needless to say, female speech will be explored in future work.  

2.15.3 Previous FVC research on the English fricative /s/  

This section briefly reviews more recent research on FVC by Kavanagh (2012), with 

particular reference to the fricative /s/ (Kavanagh’s research used the spectral properties 

of various English consonants to explore speaker-specific information in the English 

fricative /s/, and the nasals /m, n, ŋ/). To the best of my knowledge, Kavanagh (2012) is 

one of the first to undertake FVC research testing spectral moments extracted from a 

range of English consonants. Given Kavanagh’s (2012) promising results, spectral 

parameters (spectral moments and cepstral coefficients) are chosen as parameters in the 

current work, and I will discuss this below. However, I will first provide a general 

description of the databases and experimental conditions used in Kavanagh’s (2012) 

study. In Kavanagh (2012), there were five acoustic parameters for the fricative /s/ as 

shown in Table 13.  

Acoustic Parameters Datasets Filter conditions 

1. Normalized duration 

30-speaker set 

1. 500-4000 Hz 

2. Center of gravity (COG) 

    or spectral mean 
2. 500-8000 Hz 

3. Standard deviation (SD) 

18-speaker set 

1. 500-4000 Hz 

4. Skew 2. 500-8000 Hz 

5. Kurtosis 
3. 500-16000 Hz 

4. 500-22050 Hz 

Table 13: Acoustic parameters, datasets and filter conditions for the fricative /s/  

(Adapted from Kavanagh, 2012, p. 348) 

The second column in Table 13 shows that Kavanagh’s (2012) speech corpora were 

divided into two datasets: 1) a full 30-speaker set; and 2) an 18-speaker set. To simulate 

the telephone transmission effect, there were two filter conditions for the full 30-speaker 

set (500-4000 Hz and 500-8000 Hz) and four for the 18-speaker set (500-4000 Hz, 500-

8000 Hz, 500-16000 Hz, 500-22050 Hz). 
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2.15.3.1 Acoustic measurement 

There were both static and dynamic measurements for the segment /s/ in Kavanagh 

(2012). For the static measurement, spectral properties were calculated using a single 40 

msec Kaiser 2 window, centered on the midpoint of the segment. For the dynamic 

measurement, 20 ms windows were used at the onset, midpoint, and offset of each 

segment of /s/. No pre-emphasis was applied to the spectra of the fricative /s/. 

2.15.3.2 Experimental results of /s/  

2.15.3.2.1 Results of the static measurements 

Only the LR results of Kavanagh (2012, pp. 373-378) are reported in this section, as LR 

experiments are the most relevant to the current thesis, as we shall see now. In general, 

in the 30-speaker set, the LR results from both the 4000 and the 8000 Hz filter conditions 

were comparatively similar. However, the LRs done at 4000 Hz were considered to 

provide better results on the basis of a lower false positive rate and a lower Cllr (ibid.). In 

the 18-speaker set, 4000 Hz was also considered to perform better than the other three 

filter conditions, with a higher proportion of log10LRs ≥ +4, relatively low false positives 

(20%), false negatives (6%), EER (17%) and the second-lowest Cllr (0.55) (ibid.). 

2.15.3.2.2 Results of the dynamic analysis 

The dynamic results did not show much improvement over those obtained in the static 

measurements (Kavanagh, 2012, pp. 346-386). Kavanagh (2012) pointed out that better 

results might have been achieved using a single 40 msec Kaiser 2 window, centered on 

the midpoint of the segment (static measurement), rather than the 20 msec windows 

placed at the onset, midpoint, and offset (dynamic measurement) of each segment of /s/. 

Given the promising results described above, for example with regard to the EER (the 

error rate in discriminating same speakers from different speakers), which is ca. 17%, I 

decided to work on the spectral properties extracted at the midpoint (static measure) of 

the voiceless alveolar fricative /s/ to search for speaker-specific information. 

 

2.16 Spectrum of the affricates  

This section provides an articulatory description and summarizes previous acoustic and 

FVC studies done on affricates. As previously mentioned, the selection of the Standard 
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Thai voiceless aspirated alveolo-patatal affricate /ʨh/ is motivated by Rose’s (2002) 

suggestion that commonly used words, such as those with the same meaning as the 

English “yes” and “no”, should also be explored. As such, apart from the nasal /m/ 

extracted from the word [mai HL] ‘no’, the affricate /ʨh/, extracted from the word [ʨhai 

HL] ‘yes’, was also selected. The literature surrounding the affricates is reviewed in 

§§2.16.2 and 2.16.3. 

2.16.1 Articulatory description of affricates 

Articulation of affricates involves the initial rapid release of a complete occlusion, formed 

by the articulators at the anterior end of the constriction (Stevens, 2000, p. 412). After 

this release, there is a period of frication, i.e. a constriction, that is formed “immediately 

posterior to the point of release”, “is maintained for a few tens of milliseconds and is then 

released” (ibid.). In other words, an affricate is a stop followed by a fricative (Kent, 2002) 

and the articulators responsible for making affricates can be divided into two parts: 1) the 

anterior part, which forms the closure; and 2) a longer posterior part, which causes the 

frication (Stevens, 2000, p. 412). During this frication, the shape of the constriction must 

be adjusted so that the flow of air hits the appropriate obstacle (ibid.), such as the teeth in 

the case of the Standard Thai affricate / ʨh /. 

2.16.2 Previous acoustic studies of the affricates 

There are various acoustic studies that use spectral moment features to contrast between 

places of articulation of the affricates (cf. Mays and Beckman, 2008). Liu, Tseng, and 

Tsao (2000) found that the Chinese affricates /ʧ, ʧh/ and fricative /ɕ/ can be contrasted by 

their acoustic correlatives. That is, the Chinese affricates /ʧ, ʧh/ have a higher initial burst 

but a shorter frication period than the fricative /ɕ/ (ibid.). In two Catalan dialects, the 

articulatory differences between the affricates /ʧ, ʤ/ “are better specified at the frication 

than at closure” (Recasens & Espinosa, 2007, p. 143). 

In Urdu, the acoustic cues of affricates were tested in four native middle-aged (18-22 year 

old) speakers (Sheikh, n.d.). It was found that 1) only minute differences between the 

duration of closure and of friction are observed in Urdu; 2) for a voiced affricate /ʤ/, 

some of the speakers extend the voicing to the frication portion while others do not; 3) 

the ratio of the closure and friction duration varies significantly across speakers, i.e. some 

elongate the frication while others have longer closures; 4) no significant difference 
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between the duration of the preceding and final vowel is observed; 5) no exact relation is 

found between the duration of the following vowel and the frication part; 6) the ratio of 

F4 and F3, when going into the closure, is found to be sufficient to distinguish between 

speakers (although it is not explained how to measure and calculate the ratio); and 7) no 

actual pattern of the intensities (relative amplitudes) during the frication can be observed 

(this is hence regarded as an insignificant acoustic cue to distinguish between speakers) (ibid.). 

So far, a general trend that can be observed from the literature review summarized above 

is that the duration ratio between the stop and frication portions of the affricates, on the 

one hand, and the frication portion itself, on the other, are the potential cues for 

distinguishing between speakers. This is not surprising as the frication portion itself 

provides more information (than a stop portion does) about the articulatory configuration, 

as reflected in spectra, e.g. the burst spectra of English /ʧ/ are relatively flat (Stevens, 

1993, 2000). Since measuring the duration ratio between the stop and the fricative 

portions of the affricates seems to be too laborious for the current work under a limited 

timeframe, only the spectral moments (mean, variance, skew, and kurtosis) of the 

Standard Thai affricate /ʨh/ are to be tested and compared with the other Standard Thai 

consonant segments of /s, m, n/. 

2.16.3 Previous FVC studies of affricates 

To date, not much FVC and ASR research on affricates has been reported. However, n 

English affricate /ʧ/ was tested in Franco-Pedroso et al. (2012), together with various 

other consonants, and the MFCC was extracted. This ASR experiment tested the 2006 

Speaker Recognition Evaluation (SRE) datasets, during which 219 male speakers were 

tested against the training datasets of 367 male speakers. It was found that Cllr and EER 

values were relatively high at 0.98 and 43.53, respectively. As previously indicated, a 

Standard Thai affricate /ʨh/, extracted from the word [ʨhai HL] ‘yes’, which is commonly 

used in everyday conversation, is worth exploring in FVC, although previous ASR studies 

have also reported such high Cllr and EER values. 

 

2.17 Spectrum of the nasals /m/, /n/, and /ŋ/ 

This section firstly aims to introduce the articulatory movements involved in the 

production of the nasals /m/, /n/, and /ŋ/. The phonetic experiments, including the acoustic 
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and perceptual tests that exploited the individualizing information contained in nasals to 

identity speakers, are presented next. After that, previous FVC experiments are reported 

for English nasals.  

2.17.1 Articulatory description of nasals 

In the course of articulating nasals, the velum is lowered, if it is not already open 

(Ladefoged & Johnson, 2014). There is a complete closure at some point along the vocal 

tract (at the labials for /m/, at the alveolar ridge for /n/, and at the velum for /ŋ/), where 

there is no increased pressure behind such oral constriction (Stevens, 2000, p. 287). From 

an acoustic perspective, the vocal cords are held together and are vibrating to generate a 

voiced sound source (Ladefoged & Johnson, 2014). A flow of air and the majority of 

voice energy pass through the nasal cavity (ibid.). Sometimes, this energy passes through 

the constriction in the vocal tract, which helps modify the distinctive sound qualities for 

each of the nasals (ibid.). Once the nasal stop is finished, an oral closure may be released 

with no audible noise as the air pressure passes through the nose (ibid.). The selection of 

the nasals /m, n/ as parameters in the current thesis is justified based on previous acoustic 

and FVC studies, as shown in the following sections. 

2.17.2 Previous acoustic studies of the nasals 

Amino, Sugawara, and Arai (2006) investigated speaker individuality through an analysis 

of the nine Japanese consonants /t, d, s, z, ɾ, j, m, n, ɲ/. This experiment involved both 

perceptual and acoustic tests. In the perceptual test, the fourth syllable of a carrier 

sentence ‘aCaCaCa’, which contained each of the nine consonants, was manually 

excerpted and used as a stimulus. Five subjects who were familiar with the speakers were 

required to identify them. The study revealed that the subjects could identify the speakers 

better when the stimuli were nasal rather than oral sounds. There was also a tendency for 

voiced sounds (as opposed to their voiceless counterparts) to provide better speaker 

identification (ibid.). 

In the acoustic test, the cepstral distance between pairs of the nine selected consonants /t, 

d, s, z, ɾ, j, m, n, ɲ/ was used to investigate the consonants’ contribution to speaker 

individuality. The ratios of between- to within-speaker distance were calculated using the 

F-ratio metric. It was found that the ratios were greatest for the nasals /m, n/ and smallest 

for the stops /t, d/ (ibid.). Both the perceptual and acoustic experiments carried out by 
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Amino, Sugawara, and Arai (2006) therefore demonstrate that nasals carry higher 

individualizing  information than other consonants. This provides justification for 

working on nasals. Although previous FVC studies on nasals present limitations in terms 

of the number of subjects involved, they provide results similar to those reported above. 

2.17.3 Previous FVC studies of nasals 

Nasals are known to have 1) low F1 due to a long resonant cavity (including pharyngeal, 

oral plus nasal branches); 2) low amplitude due to the relatively narrow opening of the 

nasal cavity; 3) increased formant bandwidth as the energy is absorbed by the walls of 

nasal and oral cavities; and 4) anti-formants (Reetz & Jongman, 2011, pp. 194-195), 

rendering extraction of accurate acoustic information difficult, especially in poor 

recording conditions. Besides, nasals are known to be subject to channel transmission 

effects (Rose, 2013a). Despite all these characteristics, it is still prudent to exploit the 

small amount of information available on this subject, to see how the nasals perform in 

FVC. This section summarizes previous FVC research in order to justify the use of the 

nasals /m, n/ as parameters in the current thesis. 

Nasals have been found to contain promising speaker-specific information since the 

1970s (Glenn & Kleiner, 1968; Su et al., 1974; Wolf, 1972). In a speaker identification 

study by Wolf (1972), /m, n/ ranked second and third, respectively, after F0. Moreover, 

Su et al. (1974) found that the spectral transition between /m/ and a following vowel 

contains highly idiosyncratic characteristics, and can be used to identify speakers better 

than the spectral transition between /n/ and a following vowel.  

More recent LR-based FVC experiments that investigate the effectiveness of nasals in 

discriminating speech samples include those carried out by Yim and Rose (2012), who 

compared the effectiveness of the Japanese mora nasal /N/ and the Cantonese syllabic 

nasal /m̩/. In their experiment, the spectral envelopes were fitted using the cepstral 

coefficients and used as parameters (see §2.13 for the detailed explanation of cepstral 

coefficients). The results showed that the Japanese mora nasal and the Cantonese syllabic 

nasal yielded promising results. 

More recent FVC research on the nasals /m, n, ŋ/ was conducted by Kavanagh (2012). 

The acoustics of nasals were extracted by a single 40 msec Kaiser 2 window at the 

midpoint. §§2.17.3.1 and 2.17.3.2 summarize the results of /n/ and /m/ in terms of the 
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magnitude of the derived LR and a cost-based metric, namely log-likelihood ratio cost 

(Cllr) and values (of which a detailed explanation is given in Chapter 3). For /ŋ/, only the 

descriptive results, excluding LRs and Cllr, were reported, as recalled in §2.17.3.3. It is 

worth remembering that the parameters used for nasals are 1) normalized duration; 2) 

center of gravity (COG) or spectral mean; 3) standard deviation (SD); 4) skew; and 5) 

kurtosis. 

2.17.3.1 FVC results of English /n/  

In this section I report on the FVC results of /n/ achieved by Kavanagh (2012, pp. 202-

251). It was found that /n/ performs very well; the lowest Cllr is at 0.47 (ibid.). As evident 

from the lowest Cllr obtained for /n/ in this section, and for /m/ in §2.17.3.2, the two-

parameter combinations were more promising than the individual parameters; when all 

predictors were parameterized, the results were again less promising. As such, it is 

prudent that in the current work I test the spectral parameters (mean, variance, skew, 

kurtosis) in order to look for which segments and combinations perform better than others, 

rather than testing the individual parameters or fusing all predictors together. This 

decision is supported by Rose (2002, p. 18), who states that the discriminatory power of 

each acoustic parameter is not equal (one might be more or less powerful than the other). 

Since time is usually limited for FVC investigations, it is worthwhile to find out which 

acoustic parameters have optimal power. 

2.17.3.2 FVC results of English /m/  

In terms of Cllr, two-parameter combinations such as COG plus SD, or COG plus spectral 

Peak, as opposed to the combination of all available parameters, performed best for /m/. 

They produced fairly strong consistent-with-fact LR values (e.g. Log10 LR ≥ ±4 , 

Kavanagh (2012, pp. 151-201). 

2.17.3.3 FVC results of English /ŋ/  

Since the available tokens of /ŋ/ were relatively limited, no estimate for LRs was 

undertaken in Kavanagh (2012, pp. 252-289), except for the descriptive studies. 

ANOVAs were used to assess potential speaker identity on acoustic measures of the velar 

nasal /ŋ/. The results confirmed once again that two-parameter combinations, such as 

COG and SD, were relatively high in F-ratios, which in turn suggests further investigation 

could be done in searching for speaker specificity. Based on the promising LR results of 
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the English /m/ and /n/, reported by Kavanagh (2012) and other scholars discussed so far, 

I think it will be prudent to search for speaker specificity that might be contained in the 

nasals /m, n/ of Standard Thai. 

 

2.18 Fundamental frequency (F0) 

2.18.1 Background knowledge 

F0 is the “acoustical correlate of rate of vocal cord vibration” (Rose, 2002, p. 244). The 

acoustical F0 values are determined by the length and mass of the vocal cords of a given 

speaker (ibid., 245). Specifically, F0 has an inverse relationship to the length and mass of 

the vocal cords (ibid., 246): higher F0 values will result when shorter and lighter vocal 

cords are vibrating and vice versa (ibid.). Typically, males have thicker and longer vocal 

cords than females (ibid.). As a result, the F0 values of males are usually lower than those 

of females. The presence or absence of F0 also functions to contrast the voicing in speech 

segments (Rose, 2003, p. 4102). That is, when the cords are vibrating, the resulting sound 

is voiced. However, when the cords are not vibrating, the sound is voiceless (ibid.). It 

should be noted that F0 and pitch are different, as the latter is the perceptual descriptor 

of the former (Rose, 2003, p. 4098). We explain the difference between acoustical F0 

and auditory pitch below. 

Producing the English utterance “This is a train to Bangkok” with an increasing rate of 

vocal cord vibration (F0) on the last word to produce an auditory rising pitch signals a 

question (Nolan, 2014). On the other hand, decreasing the rate of vocal cord vibration 

(F0) on the last word to produce an auditory falling pitch signals a statement (ibid.). This 

use of pitch is called intonation and indicates, among others, discourse function (ibid.). 

In contrast, when pitch is used to distinguish the meaning of the words in languages such 

as Standard Thai, a different pitch will convey an entirely different word. For example, 

[pa: L] means “forest” and [pa: HL] means “aunt”. This use of pitch is called tone (Rose, 

2003, p. 4102). 

In traditional FVC, F0 is one of the popular parameters that are expected to yield large 

between- to within-speaker variation (Rose, 2002, pp. 244-46; Nolan, 1983, p. 124). This 

might be due to the fact that the length and mass of vocal cords are biologically 

determined (Hudson, De Jong, McDougall, Harrison, & Nolan 2007). There are many 
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prima facie attractive features of F0 for FVC as it is 1) relatively robust in transmission 

channels; 2) not adversely affected by poor recording quality; and 3) easy to measure and 

extract as compared to other features such as F-patterns (F1 and higher formants), which 

are easily distorted by transmission channels (Hudson et al., 2007; Nolan, 1983). In early 

automatic speaker recognition (ASR) literature, promising results of F0 from various 

studies such as Atal (1972) were reported. However, as has been shown in the literature, 

F0 can be affected by many factors. These involve emotional states, heath conditions, 

linguistic genres, background noise and voice disguise (Elliott, 2000; Maekawa, 1998; 

Watanabe, 1998), all of which make voices difficult to discriminate forensically. 

I elaborate more on voice disguise here as all other factors that affect F0 values have 

previously been discussed in §2.3.2. It is necessary for forensic experts to understand the 

basic concept of voice disguise that can affect the F0 values under investigation. Künzel 

(2007, p. 290) explains that voice disguise can be any kind of falsetto, pertinent creaky 

voice, the act of whispering, faking a foreign accent, or the pinching of one’s nose while 

speaking. All of these result in a slight increase of mean F0 in both males and females 

(Künzel, 2001, p. 172). Synthesizing of voices using electronic devices, on the other hand, 

has been reported very rarely. What has been reported is that using someone else’s voice 

and editing such speech on a computer has caused a lot of trouble in speaker recognition 

(ibid.). Künzel (2007) studied the effects of different kinds of voice disguise on auditory 

and automatic (acoustical) speaker recognition (ASR). He sampled speech data from 50 

males and 50 females who read a written text that was designed to contain semantic, 

idiomatic and stylistic elements typical of a kidnapper’s telephone call. The results show 

a correlation between the F0 of a speaker’s natural speech behavior and the way in which 

speaker disguises his/her voice. That is, a speaker with a higher-than-normal F0 tends to 

raise his/her F0; one with a lower-than-normal F0 is likely to end up with a creaky voice 

(ibid.). The latter is clearly found in males more than in females, who are generally 

reluctant to dramatically change their voices (ibid.). The findings also show that pinching 

one’s nose results in a slight increase in the mean F0 in both sexes (ibid.).  

Voice imitation can be regarded as another form of voice disguise. A study on using 

dialect imitation for the purposes of voice disguise was conducted by Markham (2007). 

He conducted an experiment on eight Swedish speakers who were recorded speaking their 

native dialects and imitating three other speakers’ voices.  From the auditory analysis, the 
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effectiveness of dialect immitation depends on how well the imitator obscures one’s 

native dialect, as opposed to how well one can convincingly imitate a given dialect. 

Zetterholm (2007), too, conducted auditory and acoustical experiments on Swedish 

impersonators (two professional imitators and one amateur); they imitated between six 

and nine target voices of well-known male Swedish politicians and TV personalities. One 

of the findings obtained in the auditory analysis was that the impersonators were flexible 

enough in their imitations to achieve the different target speakers’ pitch (ibid., p. 198). 

This was confirmed by the findings of the acoustical experiment, which showed that the 

averaged F0 values of “some of the voice imitations are quite close to the target voices” 

(ibid., p. 200). This means that the F0 values, among others, are the fundamental speech 

features that imitators use to imitate other people’s voices. As such, voice disguise is a 

very crucial factor; interference caused by voice disguise must be ruled out before speech 

samples are subjected to further FVC analysis as this will affect the alternative hypotheses 

and hence the strength of voice evidence. 

2.18.2 Tonal F0  

So far, there have been multiple FVC experiments exploring the temporary structure of 

F0, i.e. how an F0 changes over a short period of time (Rose, 2002, p. 248). This short-

term F0 is different from the long-term one (LTF0), where the average F0 values over a 

long stretch of speech are statistically estimated to determine their distribution (Rose, 

2002, p. 248). FVC experiments using temporal F0 values have been previously 

conducted in English (Hudson et al., 2007), Chinese (Zhang & Enzinger, 2013), Standard 

Thai (Pingjai, 2011) and Cantonese (Li & Rose, 2012; Wang & Rose, 2012); whereas the 

first two studies extracted F0 values from spontaneous speech, the remainder extracted 

F0 from read speech. 

2.18.3 Previous FVC research on tonal F0 

This section briefly reviews the use of temporal variations of F0 as parameters in 

traditional FVC. Rose (2013b) empirically proved, from real casework, that temporal 

variations of F0 were powerful and could be used as evidence in a $150 million telephone 

bank fraud case. The F0 time course was sampled at 1) the midpoint of the vowel /ʉ:/, in 

too, and 2) the first target, midpoint, and peak of the vowel /æ/, in bad. When LRs of 

these too bad F0 values were combined with LRs from other acoustical parameters, such 

as the F-patterns of /o/, /u:/, /æ/, and the spectrum of /s/, extremely good LRs of ca. 11 
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million (log10LR > 4) were obtained. However, such high LRs should be approached with 

some skepticism, especially since LR calculation, at the time, did not take the correlation 

between acoustical segments into account. As such, Rose (2013b) discarded the 

putatively correlated LRs (LRs from the F-patterns in not too bad), and derived smaller 

LRs of 300,000 instead. Regarding Standard Thai, promising results were previously 

reported in Pingjai (2011), where the tonal F0 extracted from the read-out speech was 

parameterized by polynomical curves. As such, it is prudent to further investigate new 

segments, which can canvas more variations of F0 in Standard Thai, namely the Standard 

Thai (phonetic) diphthongs [ɔi, ai]. 

2.18.4 Long-term F0 distribution

Apart from tonal F0, long-term F0 (LTF0) will also be tested in the current thesis. LTF0 

are the statistical tools used to model the distribution of F0 values. They consist of the 1) 

mean; 2) standard deviation (SD); 3) skew; 4) kurtosis; 5) modal F0; and 6) modal density 

over a long stretch of speech (Rose, 2002, p. 248). The question that may arise is how 

much speech we need to ensure that it characterizes a speaker, not the linguistic content, 

while keeping in mind that these long-term characterizations are valid only for a particular 

occasion (Rose, 2002, pp. 248-262). Nolan (1983, pp. 13,123) suggested that at least 60 

seconds is needed to analyze such long-term characterizations. In contrast, Rose (1991, 

p. 241) found from seven Chinese dialects that less than 60 seconds is sufficient. 

However, Nolan (1983) and Rose (1991) agree that the amount of speech needed for long-

term distribution might vary from language to language. In the current work, an utterance 

of one minute, as opposed to a shorter one, was chosen in accordance with the suggestion 

made in Nolan (1983). This is based on the assumption that longer durations will produce 

better individualizing information. It should be noted that the first four measures of LTF0 

(i.e. mean, standard deviation (SD), skew, and kurtosis) are essentially the four moments 

previously referred to in §2.15.2. The last two measures are the mode (the most often 

occurring value) of F0 and F0’s kernel probability density (the area under such F0 values), 

respectively. We will elaborate more on this when we discuss the LTF0 results.  

2.18.5 Previous FVC studies on LTF0 

A study conducted by Kinoshita (2005) showed that the mean of LTF0 itself was not 

promising. Three years later, Kinoshita, Ishihara, and Rose (2008) proved that by 

combining all six LTF0 distribution properties (mean, SD, skew, kurtosis, modal F0, and 
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modal density) promising FVC results with a lower EER of 10.7% were obtained. 

Kinoshita and Ishihara (2010) further improved their experiment by using four different 

F0 extractions and three different models to approximate the F0 distribution from 

spontaneous speech samples produced by 201 Japanese males. Specifically, F0 values 

were extracted in a Hertz scale and a logarithmic scale; delta features or the dynamic 

information of the F0 sequences were also parameterized (ibid.). It should be pointed out 

that these delta or dynamic features are very popular in automatic speaker recognition 

(ASR) as better accuracy was achieved when these delta features (dynamic features) were 

added to the static cepstral features such as MFCCs (Mel-frequency cepstral coefficients) 

(cf. Furui, 1986; Kumar, Kim, & Stern, 2011). It will be appropriate to point out the 

difference between the dynamic and static features here. The dynamic features, such as 

delta features and percentiles, can capture the F0 distribution better than static metrics 

such as mean and mode (Kinoshita & Ishihara, 2010). This is because delta features can 

approximate the F0 distribution at every 10% and 15% interval (ibid.). This means that 

more data were obtained with these dynamic features as opposed to a single data point 

extracted by the static metrics.        

As such, in Kinoshita and Ishihara (2010), the delta F0 features were parameterized and 

defined as the difference between the two adjacent HzF0 values (∆HzF0i = HzF0i – 

HzF0i+1), and when one of these was equal to 0, they were excluded from the data. In 

addition, the shape of the F0 distribution was captured not only by the six LTF0 statistical 

tools but also by the percentile techniques (10% and 15% percentiles). The percentiles 

were measures of the F0 values at every 10% and 15% interval of the probability density 

function (PDF). By using percentiles, Kinoshita and Ishihara (2010) expected to 

accurately approximate the non-unimodal distribution of F0. To sum up, there were four 

F0 measured scales (HzF0, ∆HzF0, Log10F0, ∆Log10F0) and three F0 distribution models 

(six LTF0 measures, 15% percentiles and 10% percentiles), which resulted in a total of 

12 permuted tests. The results showed that the percentile-based technique with a non-

linear scale (∆Log10F0) performed best as it yielded consistent results and the 10% 

percentile was considered the most effective in terms of its reliability (EER 2.49%) 

(ibid.).   

Based on these promising results, I decided to use six LTF0 measures (mean, SD, skew, 

kurtosis, modal F0, and modal density) as well as percentile-based techniques to model 
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the F0 distribution to capture speaker specificity in Standard Thai spontaneous speech. It 

is also appealing to use long-term distribution in the current work as the concept of long-

term distribution analysis over a long stretch of speech can be applied not only to F0 but 

also to any other acoustical-phonetic parameters (Rose, 1991). 

 

2.19 Formant trajectory 

2.19.1 Background knowledge 

Formants are the acoustical outputs of the transfer function that “correlate with the size 

and shape of the vocal tract” (Rose, 2002, p. 211). The formant with the lowest frequency 

is called F1, followed by F2 and so on (ibid.). The frequency at which there is maximum 

amplitude of energy is called the formant center frequency, which occurs roughly in 1000 

Hz intervals for adult male speakers (ibid.). It is well known that each formant frequency 

has distinct properties. That is, F1 inversely correlates with vowel height and F2 correlates 

with the vowel backness/rounding (Nolan, 1983; Rose, 2002). The formant trajectory of 

diphthongs and triphthongs is of interest in FVC research (Morrison & Kondaurova, 

2009; Zhang, Morrison, & Thiruvaran, 2011). This is because diphthongs and triphthongs 

involve up to two and three vocalic targets, respectively, giving up to three formants for 

each of these vocalic targets (Rose et al., 2006). As such, it is reasonable to assume that 

the formant trajectory of diphthongs and triphthongs contains more individualizing 

information than that of monophthongs. §2.19.2 reviews a number of previous studies on 

FVC employing the formant trajectory or the dynamic behavior of vowel formants as 

parameters. 

2.19.2 Previous FVC research 

McDougall (2004) tested the dynamic feature of formants or formant trajectory of the 

Australian English (AE) diphthong /aɪ/ extracted from five native speakers. F1-F3 

through /aɪ/ were examined in equidistant time, normalized at 10% intervals and 

statistically tested using discriminate analysis (DA). The findings indicated that correct 

classification rates were often achieved between 88 and 95%, with the best performing 

being the nuclear-stressed /aɪ/ (as opposed to a non-nuclear fast speech /aɪ/). Although 

subjected to a DA experiment (as there was no further LR calculation), the results 

confirmed that the formant dynamics of an AE diphthong /aɪ/ can distinguish individual 
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differences in pronouncing this diphthong, as evidently shown by a high classification 

rate of at least 88%. In addition, the discriminatory power was improved when the 

increased numbers of variables both from a given formant or additional formants were 

combined. 

Kinoshita and Osanai (2006), too, conducted an FVC experiment using the formants 

extracted from the AE diphthong /aɪ/ as parameters. The first target (T1), the second target 

(T2) and the slope of F2 in the glide between T1 and T2 of the diphthong /aɪ/ from 10 

speakers were tested against three different speech styles (“Word” style, “Spelling” style, 

and “Sentences” style). It was found that the angle of the F2 slope was not robust against 

the three different speaking styles. However, comparatively speaking, the F2 slope 

performed as well as the T1 and T2 targets. The combination of all three parameters (T1, 

the slope of glide, and T2) yielded an equal error rate (EER) as low as 13.71% (as opposed 

to an EER ranging between 35.26% and 37.80% with one parameter, and between 16.83% 

and 32.02% with two parameters). 

Rose et al. (2006) examined the formant trajectories of AE /aɪ/ sampled from 25 male 

native speakers. In their experiment, the test data were independent of the reference data: 

the F-pattern of the trajectories of the diphthong /aɪ/ from the 25 male AE speakers was 

tested against that from the Bernard (1967) dataset, which included 170 adult males. The 

necessity for forensic evidence evaluation means that the test data should be taken from 

a relevant population. Rose et al. (2006) decided to extrinsically evaluate the test data for 

these two reasons. Firstly, they aimed to see how well the Bernard dataset’s F-pattern for 

the diphthong /aɪ/ represented the population of male AE speakers. Secondly, they aimed 

to see what kind of results they would get when this data, which was recorded a long time 

ago (in 1967), was tested against more recent data. The results turned out to be good with 

calibrated EERs between 8% and 10%.  

Similarly, Morrison and Kinoshita (2008) conducted an FVC experiment using the 

formant trajectories of the AE monophthong /o/ from 27 Australian males. The target /o/s 

were embedded in reading sentences of the type “Hoe, H-O-E spells hoe.” The first three 

formants (F1-F3) of each of the first and last words in this sentence frame were analyzed. 

The formant trajectories were fitted using 1) the quadratic and cubic polynomial 

coefficients and 2) the quadratic and cubic DCTs. Moreover, the formant trajectories were 

scaled in Hz and log-Hz, which were measured in both absolute and equalized time scales. 
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It was found that using F1 through F3 yielded substantially lower Cllr than using only F2 

and F3, suggesting that F1 adds much speaker-specific information to F2-F3. In addition, 

equalized duration yielded lower Cllr than absolute duration. The results also showed that 

there were small differences between using coefficients and DCTs, quadratic and cubic 

orders and log-Hertz and linear-Hertz scales. The best performing parameter was found 

to be the cubic polynomials fitted to Hertz scales for equalized durations of F1-F3/F2-F3 

trajectories. This being the case, cubic polynomials fitted to the normalized duration of 

F1-F3 in a Hertz scale will be trialed in this thesis. 

Morrison and Kondaurova (2009) further examined the formant trajectories extracted 

from the diphthongs /aɪ/, /eɪ/, /oʊ/, /aʊ/, and /ɔɪ/ of 27 AE males. Each of these vowels 

was fitted with the polynomials and DCTs in different orders. The diphthongs were 

measured in linear-Hertz and log-Hertz frequency scales in both original and equalized 

time durations. The results showed that 1) DCTs outperformed polynomials; 2) third-

order as opposed to lower-order curves yielded better results; 3) curves fitted using a 

linear-Hertz frequency scale outperformed those in a log-Hertz scale; and 4) curves that 

were fitted in equalized duration outperformed those in the original time scale. The 

diphthongs were ranked in order from best to worst as /eɪ/, /aɪ/, /oʊ/, /ɔɪ/, /aʊ/. Moreover, 

fusing these vowels using two formants (F2, F3) and three formants (F1-F3) yielded 

similar results, suggesting that the performance would not be extremely compromised by 

excluding F1 in forensic casework. Fusion also resulted in lower Cllr and a complete 

separation between SS and DS comparisons was achieved. 

Rose and Winter (2010) conducted the first FVC experiment on female voices using both 

the Gaussian mixture model-universal background model (GMM-UBM) and Multivariate 

likelihood ratio (MVLR) (we will elaborate on this in the following chapter). They 

parameterized the first three formants (F1-F3), extracted from the five long 

monophthongs of 20 “general” AE speakers. The results showed that MVLR 

outperformed GMM-UBM, judging from the lower EER and Cllr values. Specifically, 

EERs less than 1% and a Cllr of 0.04 were achieved in the fused MVLR system. All SS 

comparisons were also correctly discriminated with MVLR. Rose and Winter (2010) 

pointed out that such superior results of MVLR might be attributed to an estimate of 

overall rather than specific between- and within-speaker variance and that there might be 
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“less correlation between the MVLRs than the LRs from the GMM” (Rose & Winter, 

2010, p. 45). 

However, the findings of Rose and Winter (2010) contradict the results obtained by 

Morrison (2011), who empirically showed that the GMM-UBM substantially 

outperformed MVLR in terms of its reliability and validity when several different 

acoustical-phonetic units were fused. The inconsistency of the findings might be due to 

the fact that Morrison (2011) used smaller parameters (four coefficients) but larger 

amounts of data (16-20 tokens per speaker of each recording) (Zhang et al., 2011, p. 

2283).  

Zhang et al. (2011) are among the first researchers who tested the performance of the 

formant trajectories of the Chinese triphthong /iau/ extracted from a relatively large 

corpus of 60 female speakers. The first 20 speakers were used to produce background 

data to model the distribution of the features in the population, the next 20 speakers were 

used for the development data to train the logistic regression weight (we will explain this 

in Chapter 3), and the last 20 speakers were used for the test data. Two statistical tools 

were tested, i.e. MVLR and GMM-UBM, where the former is common in traditional FVC 

and the latter is popular in automatic speaker recognition. 

In the MVLR test carried out by Zhang et al. (2011, p. 300), the different order DCT 

coefficients fitted to F1 through F3 trajectories were initially trialed in the development 

set. Once this was done, zeroth through fourth DCT coefficients of F2 and F3 were finally 

chosen. LRs were then calculated for each speaker pair in the development set and these 

LRs were used as the weights for logistics regression (pooled procedures for calculation 

of the calibration weights were used, i.e. those of acoustical-phonetic and automatic 

systems). The LRs for the test set were then evaluated and calibrated using these weights 

from the development set. 

LRs from the test data of MVLR and those of GMM-UBM were fused in the second test. 

The results showed that incorporating the acoustical-phonetic /iau/ to a fully automatic 

system substantially improved the performance over a single automatic system in terms 

of validity, i.e. the Cllr of the fused system was about one third that of a single automatic 

system. 
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Zhang, Morrison, Enzinger, and Ochoa (2012) further tested the validity and reliability 

of the formant trajectories of Standard Chinese /iau/ when the recording conditions were 

mismatched, i.e. high-quality versus degraded conditions, using both microphone and 

mobile-to-landline conditions. Additionally, they tested the reliability of a human-

supervised formant tracking system using a FORMANT MEASURER (Morrison & 

Nearey, 2011) versus the five fully automatic formant trajectory measurements. The 

results showed that the human-supervised measurements always outperformed the fully 

automatic formant trajectory measurements in terms of the Cllr and LR values (after each 

of these measurements was fused with the MFCC baseline system extracted over the 

entire speech-active portion of each recording) (Zhang et al., 2012, pp. 11-29). Based on 

these findings, any formant tracking errors found in the current thesis are to be manually 

corrected (as I shall explain in Chapter 5). 

Zhang et al. (2012, p. 29) also pointed out that any recordings obtained via mobile 

transmission channels were particularly problematic for a fully automatic formant tracker, 

hence they yielded worse results for both automatic baseline MFCC and human-

supervised systems. In addition, there was also a tendency for human-supervised 

measurements to contribute more to FVC improvement than the MFCC-on-/iau/ system, 

when two same-channel conditions involving a landline telephone were involved. Having 

said that, there is a caveat that one should not generalize these results to any other 

phonemes, languages, or the gender of speakers (ibid.). 

Among the more recent LR-based FVC experiments using formant trajectories as 

parameters are those carried out in Cantonese (Chen & Rose, 2012; Jialin & Rose, 2012; 

Li & Rose, 2012). These empirical studies showed that the formant trajectories of the 

Cantonese /ɔy/ (i.e. /ɔ/, a low back rounded vowel, followed by /y/, a high front rounded 

vowel), /iau/, and /ei/ yielded Log10LRs ≤ 2 with a Cllr of 0.55, 0.6, and 0.46, respectively. 

When Log10LRs from /ɔy/ formant trajectories were fused with those of /iau/, the FVC 

performance was improved, resulting in log10LRs ≤ 2 with a Cllr of 0.44 (ibid.). When 

the formant trajectories (F2-F3) of the /i/ rime were tested, log10LRs ≤ 1 with the Cllr of 

0.65 were obtained (ibid.). 

Given the above empirical findings, I decided to use the formant trajectories extracted 

from the Standard Thai (phonetic) diphthongs [ɔi, ai] under human-supervised 



 
79 

 

measurements. This means that the formants were manually corrected if there were any 

tracking errors. Of course, this task seems to be arbitrary in that it is based on the visual 

judgments of a researcher, which further depends on his/her expertise. This being the 

case, the criteria used for the formant tracking correction were initially set out to ensure 

its reliability and consistency, as we shall see later. In the current work, the cubic 

polynomials fitted to the equalized duration of the first through third formant trajectories 

(F1-F3) of the Standard Thai (phonetic) diphthongs [ɔi, ai] were tested. The selection of 

all these parameters, i.e. third order polynomials fitted to the normalized duration of the 

formant trajectory, were based on the literature summarized above. 

 

2.20 Summary 

In this chapter, we have discussed the factors that make less-than-ideal speech evidence 

difficult to discriminate forensically. In this regard, Bayes theorem and the LR framework 

have been justified as the theoretical and conceptual framework for this thesis. Standard 

Thai sound systems and Thai legal systems were also introduced in this chapter. This was 

followed by a literature review of multiple FVC studies, with particular reference to the 

use of 1) spectrum of the fricatives, affricates and nasals; 2) tonal fundamental frequency 

(F0); 3) long-term fundamental frequency (LTF0); and 4) formant trajectories. Based on 

these promising results reported in the literature, the following are tested in the current 

FVC work: 1) the spectrum of Standard Thai fricative /s/, affricate /tɕh/ and nasals /m/ 

and /n/; 2) the tonal F0 of Standard Thai (phonetic) diphthongs [ɔi, ai]; 3) long-term 

fundamental frequency (LTF0) of the information exchange task (involving two 

informants having a conversation based on obfuscated information given in a fax message 

and a relatively long spontaneous speech); and 4) formant trajectories of Standard Thai 

(phonetic) diphthongs [ɔi, ai]. 
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Chapter 3 

Methodology 

 

3.1 Introduction 

In this chapter I aim to discuss the five main concepts that are important in the current 

thesis: 1) the MVLR formula; 2) the speech corpus; 3) calibration; 4) fusion; and 5) the 

assessment metric employed. First, this chapter aims to review the concept of MVLR 

(Aitken & Lucy, 2004), a statistical tool that was originally developed to assess the 

strength of glass fragments evidence. Apart from its use for glass fragment assessment 

(cf. van Es, Wiarda, Hordijk, Alberink, & Vergeer, 2017), MVLR has been applied in 

other areas of forensics, for example the assessment of handwriting (cf. Bozza, Taroni, 

Marquis, & Schmittbuhl, 2008), finger print (cf. Neumann et al., 2007), text (cf. Ishihara, 

2017) and voice evidence (cf. Morrison, 2009b). The second aim of this chapter is to 

explain the protocol for the collection of databases for FVC research in Standard Thai. 

Third, the mathematical notation of how to calibrate the derived scores into true LRs will 

be described. Fourth, the fusion of the derived LRs from different forensic systems, i.e. 

different sets of linguistic-phonetic parameters will be illustrated. Fifth, the metrics, the 

log-likelihood-ratio-cost or Cllr, which is used to assess the validity of such LR outputs, 

will be explained. A leave-one-out cross-validation will also be discussed in this regard. 

 

3.2 Likelihood ratio (LR) as the logical framework 

The LR framework has been proposed as a standard framework for evaluating forensic 

science evidence (Aitken & Taroni, 2004; Evett & Buckleton, 1996; Lindley, 1977). As 

I discussed in Chapter 2, there are many advantages to using the Bayesian theorem as my 

model. Firstly, the LR, which is part of the Bayesian theorem, allows forensic experts to 

calculate and present the numerical and meaningful values of weight of evidence to the 

court (Robertson & Vignaux, 1995). Secondly, there is a clear distinction between the 

role of forensic experts and that of fact finders, leaving the court to incorporate the priors 

into their decision-making process (ibid.). Given these advantages, the LR framework has 

been widely accepted as a logical and legal framework in the forensic science community 

for evaluating forensic scientific evidence (Gonzalez-Rodriguez et al., 2007, p. 2105). 
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3.3 Statistical tools: the MVLR formula 

In the current experiment, Aitken & Lucy (2004)’s Multivariate Likelihood Ratio 

(MVLR) formula is used to calculate the weight/strength of evidence. 

The MVLR formula was developed at Edinburgh University’s Joseph Bell Center for 

Forensic Statistics and Legal Reasoning (Aitken & Lucy, 2004). The original MVLR 

assumed normal distribution of speech samples, however this assumption cannot be made 

as speech data is likely to be non-normally distributed (Rose, 2002, p. 321; Alderman, 

2005, p. 22). As such, Aitken and Lucy’s (2004) MVLR formula is updated and includes 

a kernel density function to deal with the actual distribution of speech samples that can 

deviate from normality. Kernel density function is a combination of normal distributions; 

when they are combined, they can better approximate the actual distribution of speech 

samples. It is important to note that only the reference data (denominator) can be modeled 

with kernel density in this version of MVLR as the distributions of the suspect and 

offender samples (numerator) may be too sparse to be modelled with anything other than 

normal assumptions. Speech evidence normally needs to be quantified by multiple sets of 

parameters (e.g. F0 and formants) and these parameters are usually correlated as they are 

produced by the same vocal tract. Thus, Aitken and Lucy’s (2004) MVLR is suitable for 

use in the current thesis as a forensic expert can take into account the correlation between 

the parameters extracted from speech evidence (Rose, 2013a, p. 92). When multiple LRs 

are derived from different FVC systems, i.e. different sets of parameters (F0 and 

formants) from the same set of speakers, these can be fused by using the Focal toolkit 

proposed by Brümmer (2007), so the results will show the overall strength of speech 

evidence.  

In the MVLR formula in Figure 12, the numerator approximates the distribution of the 

offender and suspect speech samples (p (E|Hp)) using the normal or Gaussian 

distribution model (Rose, 2013a, pp. 94-95) while the denominator approximates the 

distribution of the reference data (p (E|Hd)) using a kernel density function. For this 

reason, the formula is sometimes named a multivariate kernel density (MVKD) formula 

(ibid.).  
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Figure 12: MVLR formula (Aitken & Lucy, 2004) 

m → number of speakers in the background data 

ni  → number of tokens from each speaker in the background data 

nl → combined number of tokens from suspect and offender data 

p →  number of speech features 

xij → background data measurement 

yij  → suspect and offender data 

D1 → variance/covariance matrix of offender data  

D2 → variance/covariance matrix of suspect data 

U  → within-speaker covariance matrix 

C  → between-speaker covariance matrix 

h  →  smoothing parameter 

y̅1 → mean of offender data 

̅y2  → mean of suspect data 

Some further explanation of the above mathematical notations is called for. The within-

speaker variation of the observation ith, in the background data xi, assumes normal 

distribution (xij|𝜃i,U) ≈ N(𝜃i,U), where N stands for normal distribution, 𝜃i is the mean 

and U is a variance/covariance matrix U, i = 1, 2, …, m and j = 1, 2, …, n (Murphy, 2012; 

Rose, 2013a, pp. 94-95). Between-speaker variation is modelled by the kernel density 

(1)

0 

(2) 
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function with a mean 𝜇 and variance/covariance C (Rose, 2013a, p. 95). The 

similarity/dissimilarity of speech samples is measured by distances. This is expressed 

inside the exponent in the numerator of MVLR as (𝑦̅
1
–𝑦̅

2
)T(D

1
+D

2
)–1(𝑦̅

1
–𝑦̅

2
), which is 

called the Mahalanobis distance (ibid.). We also observe that the inverted 

variance/covariance matrices of the suspect and offender, (D
1
+D

2
)–1, are included to 

decorrelate the individual variables and equalize their contribution to the LR (Khodai-

Joopari, 2006, p. 145). We further observe from the above MVLR that it involves the 

Mahalanobis distance of the offender and suspect mean vectors and variance ratio of the 

suspect and offender (Rose, 2013a, p. 93). Other complexities of the formula concern the 

kernel density function (such as the h smoothing parameter) to model the background 

data as well as the scaling of LR (ibid.).  

Since the MVLR formula was originally developed for glass fragments with three or four 

input parameters, the use of many acoustical parameters (as is the case for FVC, e.g. eight 

coefficient values of the cubic polynomial fitted to F1 and F2) can result in under- or 

over- estimation of LRs (Morrison, 2009a). When the input parameters are larger than 

about four (due to sparse data with many parameters), the smoothing process required for 

the kernel density is likely to become difficult (Nair et al., 2014, p. 91), which will cause 

further computation problems in the inverses of the matrices. As such, erroneous LRs 

may result (ibid.). Such computation weaknesses in the MVLR formula may be due to 

many causes. As pointed out by Nair et al. (2014, p. 91), 1) the matrices of the offender 

and suspect, D1 and D2, are required extensively in the MVLR algorithm; 2) the inverses 

of these offender and suspect matrices, D1
–1 and D2

–1, are also used at several stages; and 

3) these matrices, D1
–1 and D2

–1, are then converted again as in the following term :  

                                  

Since the aim of the current thesis is to explore the discriminatory power of Standard Thai 

FVC rather than to test the robustness of the computational algorithm, Aitken and Lucy’s 

(2004) MVLR is chosen to assess the LRs because 1) the multiple input parameters (as 

compared to one parameter at a time by the Univariate Kernel Density; cf. Lindley, 1977) 

can be calculated at once; 2) MVLR takes correlations between parameters into account; 

and 3) promising FVC results using MVLR are widely reported in the available literature, 

as reviewed in Chapter 2.  
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3.4 Speech corpus 

Experiments conducted to test and justify the real-world application of FVC should 

correspond as closely as possible to real-world conditions. Rose (2002) outlines several 

conditions necessary for FVC testing. One of them is the use of natural conversation. A 

second one, prompted by the need to perform within-speaker comparisons, is the use of 

different, non-contemporaneous recording sessions. Furui, Itakura, and Saito (1972) 

discovered that, whereas a long-term spectrum extracted over a period of between two/ 

three days and three weeks was found to be stable, significant shifts appeared when 

extraction occurred over a longer period of time. Likewise, Rose and Clermont (2001) 

empirically found that speech samples extracted from a single recording session achieved 

a 10% higher correct discrimination rate than those extracted from non-contemporaneous 

sessions (with an interval of at least a year). As such, it is important for the current thesis 

to simulate forensically realistic conditions where speech samples are separated. The third 

condition outlined by Rose (2002) for adequate FVC testing is the use of stratified 

sampling, i.e. a sample drawn from the same population, specifically of the same sex or 

with the same accent. In addition, experiments should be conducted on data obtained 

through different transmission channels, such as mobile phones and telephone landlines, 

to test levels of transmission-channel mismatch (ibid.). 

To date, there have been several speech corpus development projects in Thailand. One of 

them was undertaken at the National Electronics and Computer Technology Center 

(NECTEC) some years ago (Kasuriya, Sornlertlamvanich, Cotsomrong, Kanokphara, & 

Thatphithakkul, 2003; Sornlertlamvanich & Thongprasirt, 2001). The NECTEC 

researchers collected spontaneous speech samples from a relatively large population (248 

speakers). However, this database was put together for the purposes of speech recognition 

research, which means that the speech recordings were obtained in a single session. As 

previously mentioned, non-contemporaneous speech samples are necessary in FVC 

studies because the offender and suspect samples are non-contemporaneous. There is 

therefore a need to build up a corpus of speech samples that can be used to satisfy the 

above three requirements. In order to achieve such a goal, the researchers went back to 

Thailand to collect speech samples during three separate sessions with 60 male speakers. 

There were three tasks for each speaker to complete: 1) an information exchange task; 2) 
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a map task; and 3) the reading of sentences and words. The protocol for the collection of 

databases for FVC research in Standard Thai is described below. 

3.4.1 Informants  

To model the characteristics of speech in my chosen population group, i.e. speakers of 

Standard Thai, I recruited 60 male informants, a number kept low on account of several 

constraints, such as time and budget limitations, but high enough to ensure FVC accuracy. 

As has been reported in the literature (e.g. Ishihara & Kinoshita, 2008; Rose, 2002; 

Hughes & Foulkes, 2014), FVC accuracy (validity) becomes relatively stable once around 

30 speakers are involved. 60 informants are therefore regarded as a respectable number 

of speakers used for the purposes of the current thesis. I decided to collect speech samples 

from 60 males, aged between 22 and 60 years old, in a university setting. Informants were 

mostly students and staff at Thammasat University, Tha Prachan Campus, Bangkok, 

Thailand. This population was sampled because 1) they are native speakers of the Central 

Thai dialect, who represent the true population under investigation; and 2) it was 

convenient for me to recruit volunteers from this institution within a specific time frame. 

The reason male informants were chosen was that, statistically, males are more likely to 

commit crimes than females (Steffensmeier & Allan, 1996). 

Recordings were conducted in a good-quality (not studio-quality) language laboratory at 

Thammasat University, Tha Prachan Campus, during three separate sessions. Standard 

recording conditions, which will be discussed in §3.4.2, were set out to ensure that speech 

data was of the same quality and produced using the same equipment. The protocol for 

speech data collection followed the Protocol for the collection of databases of recordings 

for forensic-voice-comparison research and practice by Morrison, Rose, and Zhang 

(2012). The number of the speakers from whom data were collected differed depending 

on the experiments. 

3.4.2 Elicitation 

Each informant was provided with recording manuals (see Appendix A) explaining all 

the tasks that they were required to complete. The handout was written in Thai. Two of 

the three tasks involved telephone conversations between two informants. Each of the 

two informants and I were in three acoustically separated rooms partitioned by a glass 

window (so that communication with the informants remained possible). That is, there 
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was one room for each informant and one room for myself to monitor the sound 

recordings. A floor plan of the recording room is shown in Figure 13.  

Recording Room1 

Recording Room 2 

Study room Researcher’s control room 

 

Figure 13: Floor plan of the recording rooms 

The microphones used were high-quality lapel microphones. They were connected via 

high-quality cable to a Roland® UA-25EX USB Audio Capture card, which was in turn 

connected to the researcher’s laptop. Audacity software (Mazzoni & Dannenberg, 2000) 

was used to record speech samples. I was also equipped with headphones in order to 

monitor possible problems during recording sessions, such as background noises, poorly 

placed microphones that were likely to result in low speaker volume, or a 

misunderstanding of instructions among informants. Corrective action, such as the 

adjustment of microphone position and repeated explanation of instructions to 

informants, were undertaken as needed. 

The computer used was a Lenovo laptop with a battery backup. The incoming signals 

were stored as WAV files at a sampling frequency of 44.1 kHz and at a 16-bit amplitude 

resolution. These speech signals were then downsampled to 16 kHz for the experiment. 

One speaker was recorded using input channel 1 and the other speaker was recorded using 

input channel 2. The different tasks each informant was required to perform are shown 

below. Similar to the protocol for speech data collection, the elicitation procedures (fax 

and map tasks) followed the Protocol for the collection of databases of recordings for 

forensic-voice-comparison research and practice by Morrison, Rose, and Zhang (2012). 

             Informal Interview            

1) information exchange task (fax task) 

 

2) map task (moving from A to B on a map) 

 

3) reading sentences and words 

Repeated three times, 

with time lapses of at 

least one week 
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Data collection first involved an interview between the informants and myself. In each of 

the recording sessions, two informants who knew each other (a deliberate decision, as it 

is easier to elicit a natural conversation from people known to one another) were asked to 

come to the recording room and provide information about themselves (nickname, 

education, place of birth, where they had been living, and the language they had used 

since they were young). In this way, the informants would feel more at ease and get more 

accustomed to my interview style. 

Next, each informant was given a recording manual containing all the instructions for 

each task (see Appendix A). The first task was an Information exchange task. The 

rationale for selecting this task, as discussed previously, was to elicit as much natural 

speech as possible containing words and numbers commonly found in everyday 

conversation. Each informant was given a partially obfuscated fax message and was asked 

to exchange information about it with the other informant. It should be noted that 

fragments that were illegible for one informant were legible for the other and vice versa. 

The informants were asked to have a conversation on the internal telephone provided in 

the recording room and to write down the obfuscated information on the sheet provided. 

In the second task, a map task, one of the two informants was asked to give his interlocutor 

directions to different places at Thammasat University’s Rangsit campus. A map was 

provided to this end (see Appendix A). The interlocutor asked three questions, for 

example, how to get to Building No.59 if the starting point was Building No.9. The 

building numbers and building names were the targets. 

In the last task, each informant was asked to read 36 sentences out loud. The sentences 

covered at least six tokens of several target consonants and vowels (/s, ʨh, m, n/ and [ɔi, 

ai]) and tones (low and high-falling). Some example sentences in which the target 

segments /s, ʨh, m, n/ and [ɔi, ai] are embedded are shown below, together with an English 

translation. The full reading list can be found in Appendix A. 

1. /phrɔ́ʔ  mâi ʨhâi nâ: thî: ʔá rai sàk nɔ̀i/                              

‘This is because we do not have any responsibility.’           
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2. /lǽʔ mi: ka:n mǔn wi:an sà-ma:-ʨhík| nai klùm tæ̀ làʔ klùm| thúk sǎm ʔa:-thít 

|phɯ̂:aʔ hâ:i phû: ri:an mi: o:-kàt thî: ʨà tham ŋa:n| rû:am kàp phû: ri:an ʔɯ̀n ʔɯ̀n/ 

‘There is a member rotation for each group every three weeks in order for the 

students to participate with others.’     

In total, 72 phonetic targets (6 target segments x 6 repeats x 2 tones) were excerpted from 

the recorded speech and used in the current work. There are several good reasons for 

recording speech in this way. First, different speaking-style mismatches are available, i.e. 

information exchange tasks vs reading tasks, to test forensically realistic conditions, as 

pointed out by Rose (2002). Second, sufficient tokens extracted from the reading tasks, 

which are embedded in the same phonological environment and recorded in the same 

recording conditions, are made available for use in experiments. This being the case, it is 

relatively easy to compare the results obtained from the different FVC systems, i.e. 

different target linguistic-phonetic segments extracted from the same recording 

conditions. (We can even compare the experimental results with those collected in clean 

conditions, and with those where speech samples will eventually become degraded, to 

test the effect of transmission mismatches in future research). 

After reading the 36 sentences, participants were asked to read out the three most 

frequently used words (i.e. [thi: HL], a preposition meaning ‘at’; [ka:n M], a prefix 

meaning ‘-ness’; and [nai M], a preposition meaning ‘in’) in a citation manner and six 

times in a row (see Appendix A). Instructions pertaining to pronunciation were kept to a 

minimum. The scripted words and sentences targeted in the third task were drawn from 

the LOTUS corpus developed at the NECTEC (National Electronics and Computer 

Technology Center) in Thailand by Kasuriya et al. (2003). LOTUS comprises the fewest 

sentences containing all possible phonemes in Thai. The vocabulary of LOTUS is taken 

from written text from Thai language magazines, encyclopedias, and journals.  

 

3.5 Tippett plots  

Having introduced the MVLR formula and speech corpus collected for use in the current 

thesis, I will now explain how to interpret the MVLR results using a Tippett plot 

(sometimes called a reliability or probability distribution plot). Tippett plots are now the 
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conventional way of presenting FVC results. Figure 14 shows the Tippett plot of 20 Hertz-

scaled DCTs of /m/ - [mai HL].  

 

Figure 14: Tippett plot of 20 Hertz-scaled DCTs of /m/ - [mai HL].  

The (red) curves rising to the right represent the cumulative proportion of the SS (same speaker) 

comparisons, with log10LRs equal to or less than the value indicated on the x-axis, while the 

(blue) curves rising to the left represent the cumulative proportion of the DS (different speaker) 

comparisons, with log10LRs equal to or greater than the value indicated on the x-axis. Dotted 

lines and solid lines represent the uncalibrated and calibrated SS and DS Log10LRs, 

respectively. 

An explanation of how to read the Tippett plot in Figure 14 is provided in the figure’s 

caption (this practice will be adopted throughout the thesis) and is repeated here for the 

reader’s convenience. The (red) curves rising to the right represent the cumulative 

proportion of the SS (same speaker) comparisons, with log10LRs equal to or less than 

the value indicated on the x-axis, while the (blue) curves rising to the left represent the 

cumulative proportion of the DS (different speaker) comparisons, with log10LRs equal 

to or greater than the value indicated on the x-axis. Dotted lines and solid lines represent 

the uncalibrated and calibrated SS and DS Log10LRs, respectively.  

In Figure 14, there are two types of errors, false negatives (SS comparisons, which were 

wrongly discriminated as coming from different speakers) and false positives (DS 

comparisons, which were wrongly discriminated as coming from the same speakers). 

There is a trade-off relationship between these two errors. That is, the number of false 

positives decreases while the number of false negatives increases when a Log10LR = 0 
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threshold moves up the LR scales (Enzinger, 2009, p. 47). Having said that, there is a 

point where the two errors are equal, which is the equal error rate (EER).  

As evident in Figure 14, the two dotted curves cross at around log10LR = –4.5 (as marked 

by the black circle) and we get an EER of ca. 11%. This means that about 11% of both 

SS and DS comparisons were wrongly evaluated. Obviously, the scores (represented as 

the dotted curves) are not well-calibrated as 1) the crossing point of the EER is not at the 

theoretical threshold log10LR=0, but instead shifted to the left; 2) there are values of SS 

and DS comparisons that cross the threshold, suggesting wrongly discriminated speech 

samples (Rose, 2013a, pp. 97-98). The reasons why the LRs were not well-calibrated 

when MVLR was implemented for speech samples might be the inherent variability found 

in speech samples (as previously discussed in Chapter 2). As pointed out before, the 

MVLR formula was originally developed for glass fragments, where the within-speaker 

variance/covariance U is assumed to be constant (Aitken & Lucy, 2004). In other words, 

glass fragments are invariant in nature (they do not change over time). This is in contrast 

with the characteristics of voice evidence, where acoustical features are variant (e.g. voice 

changes according to health and emotions; cf. §2.2.1). Additionally, the MVLR formula 

is originally suitable for only three or four input parameters where a large background 

population is also assumed (ibid.). However, in the case of voice evidence, many input 

acoustical variables are evaluated, e.g. 15 cepstral coefficients extracted from only a small 

number of the population sample. Since the outputs of MVLR are not well-calibrated, we 

need a calibration method for speech evidence.  

 

3.6 Logistic regression calibration  

Following on from §3.5, the uncalibrated LRs, called scores and abbreviated as s, are to 

be converted into true LRs by the logistic-regression line in a logged odd space using 

Equation 3, where the weights (𝛼 and 𝛽) are usually obtained from scores based on an 

independent set of data (Morrison, 2013, p. 184). In other words, the s for the test set are 

calibrated by monotonically shifting (by amount 𝛼) and scaling (by amount 𝛽) in a logged 

odd space using the weights from other speech samples, rather than those used for test 

comparisons, which are pooled together as background data. 
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log(LR) = 𝜶 + 𝜷𝒔  

Equation 3 (reproduced from Morrison, 2013, p. 184) 

In this equation, 𝛼  is the Y intercept (where the line crosses the Y axis at x = 0), 𝛽 is the 

slope of the line (how steep the line is) and s is the scores. The scores will be perfectly 

calibrated when the equation line is log(LR) = 0 + 1 x 𝑠 (Morrison, 2013, p. 184), as the 

line perfectly crosses the Y axis at x = 0. Let us imagine a scenario where the scores are 

not perfectly calibrated and conversion into LRs is necessary. Suppose that the training 

data were shifted to the left, thus the straight line in a logged odd space is shifted one unit 

to the left (ibid.). To convert a score into a log LR, the equation line then becomes log(LR) 

= 1 + 1 x 𝑠. Imagine another scenario where the within-group variance of the data is 

increased (ibid.) by a factor of 4, and the slope of the line has quartered. In order to convert 

such a score into a log LR, the equation line becomes log(LR) = 0 + 0.25 x s. Once we 

calibrate these scores into LRs, we need another step to assess the accuracy of such LR 

outputs. Before I go further, I will break the flow of my discussion to explain why logistic 

regression in a logged odds space is preferred over the Gaussian models for calibrating 

the scores into LRs. 

 

3.7 Why logistic regression is better than the Gaussian models 

This section explains why logistic regression is preferred over Gaussian models. The 

reason is that logistics regression is discriminative: it models the boundary between same-

speaker and different-speaker comparisons (Morrison, 2013, pp. 184-185). That is, 

logistic regression models can be shifted by amount 𝛼 and scaled by amount 𝛽 as a 

function of a straight line, as shown in Equation 3 (ibid.). In contrast, Gaussian models 

are generative: they model the distribution for each of the same-speaker and different-

speaker comparisons (ibid., pp. 182-183). Adding a very high score of 10 in the training 

data, which is known to be from the same speaker, will move the Gaussian model for 

same-speaker scores to the right (ibid., pp. 184-185). The variances for both SS and DS 

Gaussians will increase as well (ibid.). Logistic regression is the model least affected by 

such extremely high training data (s =10), which is far from the boundary (ibid.). This 

being the case, logistic-regression calibration, particularly the FoCal toolkit (Brümmer & 

du Preez, 2006), is used in the current thesis to convert the scores into LRs. 
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To show the performance of the calibration process, let us look at the Tippett plot of the 

15 Hertz-scaled DCTs of /ʨh/ - [ʨhai HL] in Figure 15. 

 

Figure 15: Tippett plot of the 15 Hertz-scaled DCTs of /ʨh/ [ʨhai HL].  

The (red) curves rising to the right represent the cumulative proportion of the SS (same 

speaker) comparisons, with the log10LRs equal to or less than the value indicated on the x-

axis, while the (blue) curves rising to the left represent the cumulative proportion of the DS 

(different speaker) comparisons, with the log10LRs equal to or greater than the value 

indicated on the x-axis. Dotted lines and solid lines represent the uncalibrated and calibrated 

SS and DS Log10LRs, respectively. 

In Figure 15, the most misleading Log10LRs for SS and DS comparisons (dotted lines; 

outside the range of the x-axis) were –13.99 and 5.04, respectively. After calibration, 

these were significantly reduced to –1.51 and 1.23 (marked by the red and navy blue 

circles). If a forensic expert presented the uncalibrated results to a court, such a 

misleading DSLR of 5.04 would inevitably lead the court to give undue weight to the 

voice evidence and this might lead to the conviction of a suspect as guilty, based on this 

voice evidence alone. Not only the magnitude of the misleading LRs was reduced, the 

magnitude of the correct SSLRs was also reduced from 4.67 (which previously suggests 

“very strong” support for the SS hypothesis) to 1.17 (suggesting “limited” support for the 

SS hypothesis). So far, we observe that the calibration process reduces the strength of 

evidence or the magnitude of both correct and incorrect LRs. 

 

3.8 Metric for assessing the validity (accuracy) of MVLR  

Accuracy is defined as the closeness of a given magnitude to its true value (Morrison, 

2011, p. 92). As previously mentioned, the EER is the binary metric used to assess the 
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misprediction rate of the FVC system. The EER% metric indicates that the percentage of 

correct FVC predictions (LR > e) and incorrect FVC predictions (LR < e), where e is a 

threshold for SS comparisons that were wrongly discriminated as coming from different 

speakers and DS comparisons that were wrongly discriminated as coming from the same 

speakers (Rose, 2002, p. 13), are equal. However, since EER is based on a binary decision 

(correct vs. not correct), and it does not consider the actual magnitude of LRs (including 

both factual and counterfactual LRs) or calibration performance (Enzinger, 2009, p. 51), 

other metrics such as Cllr, which has been recently proposed in LR-based speaker 

recognition systems (Brümmer & du Preez, 2006), are selected to assess the system 

performance in the current thesis. To begin with, Cllr attaches cost to the LR scale 

(Morrison, 2011, p. 94) and the FVC system, which yields smaller Cllr and has better 

accuracy than the FVC system, which yields greater Cllr (ibid.).  

Before I explain how to assess in detail the accuracy of the LR outputs, the concept of Cllr 

proposed by DeGroot and Fienberg (1983) in the form of a weather forecast, needs to be 

reviewed. When a forecaster makes a weather prediction for a given location during a 

specified time interval of the day, i.e. that it will or will not rain tomorrow (ibid.), the 

accuracy of such competing hypotheses is assessed by the strictly proper scoring rules, 

which can be thought of as cost functions: assigning penalty to the confidence level given 

to a particular hypothesis or the posterior probability (Brümmer & du Preez, 2006). These 

strictly proper scoring rules are optimized based on 1) “the probabilistic value of the 

forecast” and 2) “the true hypothesis which actually occurred” (Ramos-Castro, Gonzalez-

Rodriguez, & Ortega-Garcia, 2006, p. 3). That is, if a forecaster states with high 

probability that it will rain tomorrow (probabilistic value), but it turns out that it does not 

actually rain (true hypothesis), a high cost is given to such a prediction and vice versa 

(ibid.). Thus, it is this probabilistic value, and how far it deviates from the true hypothesis, 

that optimizes the strictly proper scoring rules. Since Cllr is actually the strictly proper 

scoring rules in FVC (Brümmer & du Preez, 2006), it is chosen as a metric to assess the 

validity of the FVC system in the current work. One of the great benefits of Cllr, among 

others, is that it can separately assess the discrimination power of LRs through 

discrimination loss (Cllr
min) and the calibration (i.e. how far the individual LRs deviate 

from the truly occurring LRs, given that we know each LR value is from the same or from 

different speakers) through calibration loss (Cllr
cal). As such, a well-calibrating system, 
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Cllr
cal, is smaller than Cllr

min (Ishihara, 2017, p. 189). In the current thesis, the FoCal 

Toolkit (Brümmer, 2007) is used to computationally evaluate the Cllr values.  

Let us now discuss the Cllr formula by looking at Equation 4.   

Cllr = 
𝟏

𝟐
(

𝟏

𝑵𝒔𝒔
∑ 𝐥𝐨𝐠𝟐 (𝟏 +

𝟏

𝑳𝑹𝒔𝒔𝒊
) +  

𝟏

𝑵𝒅𝒔
∑ 𝐥𝐨𝐠𝟐( 𝟏 + 𝑳𝑹𝒅𝒔𝒋)𝑵𝒅𝒔

𝒋=𝟏
𝑵𝒔𝒔
𝒊=𝟏 ) 

Equation 4: Cllr equation by Brümmer and du Preez (2006) 

In this equation, LRss is a likelihood ratio for same-speaker comparison, LRds is a 

likelihood ratio for different-speaker comparison, Nds = number of different-speaker 

comparisons, Nss = number of same-speaker comparisons. 

Equation 4 simply takes the mean of all the SSLRs (as shown on the left side within the 

outer brackets) and the means of all DSLRs (as shown on the right side within the outer 

brackets). Thus, Cllr is the mean of these two means. Cllr was formulated to severely 

penalize misleading LRs according to the degree of deviation from unity (Rose, 2013a, 

p. 101). Suppose we get a DSLR of 1500 (which is known to be a counterfactual analysis). 

This needs to be penalized to a degree that will depend on the magnitude of the derived 

counterfactual LR (ibid.). Thus, with log2(1+1500) ≅  10.55, one would be 1500 times 

more likely to get a difference between the suspect and offender samples, assuming that 

they had come from the same speaker (although they are in fact from different people) 

(ibid.). This, then, means that a value of 10.55 gives a high contribution to the average of 

all the different-speaker LRs and the overall Cllr values (ibid.). It should be noted that Cllr 

does not reward correct LRs, even though such correct LRs are high (ibid.). In other 

words, LRs with higher magnitude in support of a contrary-to-fact hypothesis will be 

attached with higher cost and vice versa (Gonzalez-Rodriguez et al., 2007, p. 1).  

 

3.9 Logistic regression fusion 

In this section, I discuss the final concept needed to understand the experiments conducted 

in this thesis, i.e. logistic regression fusion. Logistic regression fusion is employed in the 

current work to combine the parallel sets of scores from different FVC systems. Different 

FVC systems can be 1) the automatic vs. traditional FVC systems and 2) the different 

acoustical-phonetic systems, e.g. the system that extracts F0 from different vowels, or the 
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system that extracts the formant and F0 values from the same vowel (Morrison, 2013, p. 

174). In this study, LRs obtained from the best performing parameters will be fused.  

The procedure of logistic regression fusion is the same as that of logistic regression 

calibration. To explain this further, we firstly train the model using the training scores, 

which are known to be the results (scores) of SS and DS comparisons using the 

background data. The fusion and calibration weights were obtained in a cross-validated 

manner from the resultant scores. This means that in order to fuse and calibrate the scores 

into true LRs, the other scores were pooled together as training data for estimating the 

calibration weight.  

For Fusion, the only requirement is that “each system must produce a score for each 

training comparison and for each test comparison” (Morrison, 2013, p. 189). The test 

scores of the different linguistic-phonetic parameters can then be fused and calibrated 

using the compatible training scores from each FVC system, where the linear regression 

fusion takes correlation into account (ibid.). Ideally, the test and training data should be 

independent of each other in order to avoid over-estimation of FVC performance 

(Kinoshita & Ishihara, 2014, p. 202) 

Notably, fusion does not ensure the best performance when the high-performance LRs 

are fused (Franco-Pedroso et al., 2012, p. 188). This is because an LR from, e.g., the 

spectra of a nasal /m/ might be highly correlated with another LR from the spectra of a 

fricative /s/ as they are produced by the same vocal tract for each speaker to be fused. 

This means, more or less the same end results might be achieved, as there may be no 

complementary parameters. In our case, cepstral coefficients from the best performing 

linguistic segments /m, n/ from 57 speakers (as opposed to 60 speakers, due to poor 

recording condition and mispronunciation of the speakers) will be fused using Equation 

5.  

log(LR) = 𝜶 + 𝜷𝟏𝒔𝟏 + 𝜷𝟐𝒔𝟐 + ⋯ + 𝜷𝒏𝒔𝒏   

Equation 5 (reproduced from Morrison, 2013, p. 189) 

In this equation, s1, s2, …, sn are the scores from the first to nth FVC systems, and 𝛽1,

𝛽2, … , 𝛽𝑛 are the logistic-regression-coefficient weights according to the training scores 

for scaling. The logistic-regression-coefficient weights for shifting are α. 
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The output of the fusion is thus the linear weighting of scores from multiple systems, 

which is actually the calibrated LRs (ibid., p. 187). 

 

3.10 Summary 

This chapter has firstly presented the MVLR formula, which is used to calculate the 

strength of voice evidence (LR) in the current thesis. It subsequently described the current 

protocol for speech database collection for Standard Thai FVC. The speech database is 

not only meant for the current experiments, but will also help instigate further FVC 

research in Thailand. Next, the calibration process used to convert the scores into LRs 

was explained, and this was followed by discussion of the Cllr metric used to test the 

accuracy of the LR outputs. Lastly, I explained the fusion of the FVC systems obtained 

from various acoustical segments using logistic regression. 
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Chapter 4 

Pilot FVC studies using Standard Thai diphthongs   

 

4.1 Introduction 

This chapter reviews the three pilot studies I extracted from natural but controlled speech 

in 2013, which tested the FVC performance of the formant trajectories and tonal F0 of 

Standard Thai diphthongs. The purpose of these preliminary studies, which were 

conducted separately from those reported in Chapters 5-7, was to explore the 

discriminatory power of the formant trajectories and tonal F0 of Standard Thai 

diphthongs. All speech samples in these three pilot studies were selected from the speech 

corpus collected for use in the current thesis (see Chapter 3). The first study tested the 

performance of the F-patterns (F1-F4) of the Standard Thai diphthongs [i:aw], [ɯ:a] and 

[u:a] from 15 native speakers, randomly selected from the corpus. The second study tested 

the F2 trajectories of the diphthongs [o:i] and [ə:i] from 54 native speakers. In the third 

study, the tonal F0 values of the diphthongs [ai] and [u:a] were extracted from 54 speakers 

and then used in the experiment. Since these three preliminary studies were conducted 

separately from the rest of the thesis (Chapters 5-7), the original Tippett plots presented 

at the 21st International Congress on Acoustics in 2013 are used to display the results. 

They use different conventions from those found in the subsequent chapters. 

 

4.2 Pilot study on the Standard Thai diphthongs [i:aw], [ɯ:a] and [u:a]   

The first pilot study (Pingjai, Ishihara, & Sidwell, 2013) was published in the Proceedings 

of Meetings on Acoustics ICA2013 (Vol. 19, No. 1, p. 060043) and was titled: A 

Likelihood Ratio-based forensic voice comparison using formant trajectories of Thai 

diphthongs. I, the first author, conducted this research under the supervision of the second, 

while the third gave some advice. Before presenting the FVC results using Tippett plots, 

I will comment on the extracted parameters and the number of informants tested.  

4.2.1 Parameters and informants 

The F1-F4 trajectories of the diphthongs [i:aw], [ɯ:a] and [u:a] were extracted from the 

randomly selected 15 male native speakers of Standard Thai in the corpus (see §3.4) by 

the Praat sound program (Boersma & Weenink, 2003). The coefficients of the cubic 

http://www.icacommission.org/
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polynomials that were fitted to the F1-F4 trajectories of [i:aw], [ɯ:a] and [u:a] were used 

as parameters. It should be noted that the samples of [i:a] were taken from occurrences in 

spontaneous speech of [li:aw H], “to turn left/right”. Since approximant [w] in [li:aw] 

phonetically behaves like a vowel (no air turbulence in the air stream; cf. Ladefoged & 

Johnson, 2014), the acoustical values of [i:aw] were extracted instead of [i:a]. These three 

vocalic targets involved in [i:aw] were expected to exhibit greater between- to within-

speaker variation as opposed to those of [ɯ:a] and [u:a], which have two vocalic targets. 

The diphthongs [ɯ:a] and [u:a], on the other hand, were taken from the read-out speech 

embedded in the words [phɯ:aʔ HL] ‘in order to’ and [su:an L] ‘part/portion’, 

respectively. Three different sets of formants were experimented on in the first pilot 

study: [F1, F2, F3], [F2, F3, F4], [F2, F3]. 

4.2.2 Results  

This section presents the experimental results in terms of Tippett plots. Discussion 

follows. Only the best performing parameters are presented.  

Figures 16 to 18 show the Tippett plots of [i:aw], [ɯ:a], and [u:a] when their cubic 

polynomials fitted to [F2, F3, F4] were used as parameters. The (dotted green and solid 

red) curves rising to the right represent the cumulative proportion of the SS comparisons, 

with the log10LRs equal to or less than the value indicated on the x-axis, while the 

(dotted light blue and solid navy blue) curves rising to the left represent the cumulative 

proportion of the DS comparisons with the log10LRs equal to or greater than the value 

indicated on the x-axis. Solid lines represent the uncalibrated SSLog10LRs and 

DSLog10LRs, while dotted lines represent the calibrated SSLog10LRs and DSLog10LRs 

(a leave-one-out cross-validation; see §3.6 on the difference between calibrated and 

uncalibrated LRs). Before proceeding to the discussion on how to read the results using 

conventional Tippett plots, the reader is recommended to go back to §2.4 (on how to 

translate Log10LRs into their verbal equivalents as proposed by Champod and Evett, 

2000, p. 240) and §3.5 (on how to interpret the results using the Tippett plots). 

Figure 16 (overleaf) shows that all SS comparisons were correctly discriminated. The 

best calibrated consistent-with-fact SSLog10LRs obtained were SSLog10LRs ≤ 3 (dotted 

green line), suggesting “moderately strong” support for the same-speaker hypothesis. For 

DS comparisons, ca. 70% had calibrated consistent-with-fact DSlog10LRs ≤  –4  (dotted 
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Figure 16: Tippett plot of [i:aw] - [li:aw H] when [F2, F3, F4] were fitted with cubic 

polynomials (reproduced from Pingjai et al., 2013). 

The (green and red) curves rising to the right represent the cumulative proportion of the SS 

(same speaker) comparisons, with the log10LRs equal to or less than the value indicated on the 

x-axis, while the (navy blue and light blue) curves rising to the left represent the cumulative 

proportion of the DS (different speaker) comparisons, with the log10LRs equal to or greater than 

the value indicated on the x-axis. Dotted lines and solid lines represent the calibrated and 

uncalibrated SS and DS Log10LRs, respectively. 

light blue line), suggesting “very strong” support for the defense hypothesis. The Cllr 

value for the segment [i:aw] - [li:aw H], when its [F2, F3, F4] were parameterized, was 

low at 0.03. 

The results of [ɯ:a] - [phɯ:aʔ HL], when its [F2, F3, F4] were used as parameters, are 

presented in Figure 17 (overleaf). Figure 17 reveals that ca. 5% of the calibrated SS 

comparisons (dotted green line) were incorrectly discriminated as coming from different 

speakers. The best calibrated consistent-with-fact SSlog10LRs obtained were SSlog10LRs 

≤  2, suggesting “moderate” support for the same-speaker hypothesis. For DS 

comparisons, ca. 93% had calibrated consistent-with-fact DSlog10LRs ≤  −4, suggesting 

“very strong” evidence in support of the defense hypothesis. The Cllr = 0.04 for [ɯ:a] - 

[phɯ:aʔ HL] is marginally higher than that of [i:aw], which is Cllr = 0.03. 

The results of [u:a] - [su:an L] when its [F2, F3, F4] were used as parameters are presented 

in Figure 18 (overleaf). The Cllr value was lowest at 0.02 when its [F2, F3, F4] were used 

as parameters. About 5% of SS comparisons (dotted green line) were wrongly 

discriminated as coming from different speakers and the best calibrated consistent-with- 

fact SSLog10LRs obtained were SSLog10LRs ≤ 2, suggesting “moderate” support for the 
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Figure 17: Tippett plot of [ɯ:a] - [phɯ:aʔ HL] when [F2, F3, F4] were fitted with cubic 

polynomials (reproduced from Pingjai et al., 2013).  

The (green and red) curves rising to the right represent the cumulative proportion of the SS 

(same speaker) comparisons, with the log10LRs equal to or less than the value indicated on the 

x-axis, while the (navy blue and light blue) curves rising to the left represent the cumulative 

proportion of the DS (different speaker) comparisons, with the log10LRs equal to or greater 

than the value indicated on the x-axis. Dotted lines and solid lines represent the calibrated and 

uncalibrated SS and DS Log10LRs, respectively. 

 

Figure 18: Tippett plot of [u:a] - [su:an L] when [F2, F3, F4] were fitted with cubic 

polynomials (reproduced from Pingjai et al., 2013).  

The (green and red) curves rising to the right represent the cumulative proportion of the SS 

(same speaker) comparisons, with the log10LRs equal to or less than the value indicated on the 

x-axis, while the (navy blue and light blue) curves rising to the left represent the cumulative 

proportion of the DS (different speaker) comparisons, with the log10LRs equal to or greater 

than the value indicated on the x-axis. Dotted lines and solid lines represent the calibrated and 

uncalibrated SS and DS Log10LRs, respectively. 
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same-speaker hypothesis. For DS comparisons, ca. 90% of [u:a] - [su:an L] gave 

calibrated consistent-with-fact DSlog10LRs ≤  −4, suggesting “very strong” evidence in 

support of the defense hypothesis.   

All in all, with [F2, F3, F4], [i:aw], [ɯ:a] and [u:a] performed comparatively well in terms 

of Cllr. Specifically, the tested linguistic-phonetic parameters can be ranked in terms of 

Cllr values from low to high as [u:a] (Cllr = 0.02), [i:aw] (Cllr = 0.03), [ɯ:a] (Cllr = 0.04), 

respectively. Moreover, we observe that such Cllr values are marginally different. The 

underlying reason for [ɯ:a] to perform worst in terms of Cllr might be the articulatory 

movements it involves as compared to those of the other two vowels. As for [ɯ:a], two 

vocalic targets (a high central unrounded vowel [ɯ:] and a low central unrounded vowel 

[a]) are involved, but the tongue moves from high to low in central position without lip 

rounding. This is in contrast to the other two vowels, [u:a] and [i:aw], where the first 

vocalic target of [u:a] and [i:aw] (a high back rounded vowel [u:] and high front 

unrounded vowel [i:]) moves to a low central target [a], providing more space for the 

tongue to canvas in the vocal tract. Although [i:aw] ranked second in terms of Cllr, a 

magnitude of calibrated SSlog10LRs ≤ 3 was obtained, which is larger than for the other 

two segments, [ɯ:a] and [u:a] (calibrated SSlog10LRs ≤ 2). Greater magnitude in terms 

of calibrated SSLog10LRs in the case of [i:aw] might be due to the fact that the vowel-

like “w” adds more individualizing information to the performance of [i:a] alone. That is, 

the triphthong [i:aw] might be pronounced with greater lip-rounding. Thus, different 

degrees of lip rounding (labialization) have presumably contributed to the higher 

individualizing information gained for [i:aw]. All in all, we can conclude that Standard 

Thai diphthongs were generally amenable to FVC. 

 

4.3 Pilot study on the Standard Thai diphthongs [o:i] and [ə:i] 

The second pilot study tested the FVC performance of the diphthongs [o:i] and [ə:i] 

embedded in the words [do:i M] ‘by, with’ and [khə:i M] ‘used to’, respectively. These 

speech samples were extracted from a reading task.  

4.3.1 Parameters and informants 

The (linear, quadratic, cubic) polynomials fitted to the F2 trajectories of the diphthongs 

[o:i] - [do:i M] and [ə:i] - [khə:i M] were obtained from 54 male native speakers. Since 
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low F1 values of the high vowels /i:, ɪ, u/ are usually compromised by a telephone band-

pass effect (Künzel, 2001, p. 89) and higher formants (F3) can also be affected by a 

mobile phone transmission channel (Rose et al., 2006, p. 331), only the F2 trajectories of 

the diphthongs [o:i] - [do:i M] and [ə:i] - [khə:i M] were chosen to simulate realistic 

conditions in FVC in this second pilot study. The duration of the F2 trajectories was also 

used as an additional parameter in order to see the improvement of FVC performance. 

4.3.2 Results 

This section adopts the same convention as the previous one for the presentation of 

experimental results. The Tippett plots of the best performing parameters are presented 

first. Discussion follows.  

Figure 19 shows that the F2-trajectories of [o:i] - [do:i M] performed best when its cubic 

polynomials (where duration was not included) were used as parameters. 

  
Figure 19: Tippett plot of [o:i M] - [do:i M] when its F2 trajectory was fitted by cubic 

polynomials.  

The (red) curves rising to the right represent the cumulative proportion of the SS (same speaker) 

comparisons, with the log10LRs equal to or less than the value indicated on the x-axis, while the 

(blue) curves rising to the left represent the cumulative proportion of the DS (different 

speaker) comparisons, with the log10LRs equal to or greater than the value indicated on the x-

axis. Dotted lines and solid lines represent the uncalibrated and calibrated SS and DS Log10LRs, 

respectively. 

Interestingly, adding the duration for [o:i] - [do:i M] did not improve the performance as 

the Cllr value was marginally higher at 0.66 (as opposed to 0.64 when duration was not 

Cllr = 0.64 
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included). Setting the log10LR = 0 as the threshold, ca. 75% of SS comparisons were 

correctly discriminated with calibrated consistent-with-fact SSlog10LRs ≤ 2, suggesting 

“moderate” support for the SS hypothesis. For DS comparisons, only ca. 2% had 

calibrated consistent-with-fact DSlog10LRs ≤ −4, suggesting “very strong” support for 

the defense hypothesis.  

The best results of [ə:i] - [khə:i M] when its F2 trajectory was fitted by cubic polynomials 

are presented in the Tippett plot in Figure 20.  

 

Figure 20: Tippett plot of [ə:i] - [khə:i M] when its F2 trajectory fitted by cubic polynomials 

plus duration were parameterized.  

The (red) curves rising to the right represent the cumulative proportion of the SS (same 

speaker) comparisons, with the log10LRs equal to or less than the value indicated on the x-axis, 

while the (blue) curves rising to the left represent the cumulative proportion of the DS 

(different speaker) comparisons, with the log10LRs equal to or greater than the value indicated 

on the x-axis. Dotted lines and solid lines represent the uncalibrated and calibrated SS and DS 

Log10LRs, respectively. 

Figure 20 shows that the F2 trajectory of [ə:i] - [khə:i M] performed best when cubic 

polynomials plus duration were parameterized, as a lower Cllr = 0.67 was obtained, as 

opposed to Cllr = 0.78 when only the F2 trajectory of [ə:i] - [khə:i M] (duration was not 

included) was parameterized. Setting the log10LR = 0 as the threshold, ca. 90% of the SS 

comparisons were correctly discriminated as being from the same speakers. For DS 

comparisons, ca. 5% had calibrated consistent-with-fact DSlog10LRs ≤ −4, suggesting 

“very strong” support for the defense hypothesis. As can be observed from Figures 19 

Cllr = 0.67 
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and 20, the magnitude of the calibrated consistent-with-fact SSLog10LRs is very similar 

between [o:i] - [do:i M] and [ə:i] - [khə:i M], i.e. SSlog10LRs ≤ 2. On the other hand, the 

magnitude of the contrary-to-fact SSLRs is greater for [ə:i] - [khə:i M] than for [o:i] - [do:i  

M]. That is, the strongest contrary-to-fact SSlog10LR = –5.9 was obtained for [ə:i] - [khə:i 

M] while it was a contrary-to-fact SSlog10LR = –0.3 for [o:i] - [do:i M]. Such a strong 

contrary-to-fact SSlog10LR contributed to a higher Cllr = 0.67 for [ə:i] than for [o:i], where 

it is Cllr = 0.64. 

 

4.4 Pilot study on Standard Thai diphthongs [ai] and [u:a]  

A third pilot study tested the FVC performance of the F0 extracted from the diphthongs 

[ai] - [ʨhai HL] ‘yes’ and [u:a] - [ru:am HL] ‘to share, to participate’, using a reading 

task. 

4.4.1 Parameters and informants 

The (linear, quadratic, cubic) polynomials were fitted to the falling F0 contours of [ai] - 

[ʨhai HL] and [u:a] - [ru:am HL]. There were 54 male speakers for [ai] and 30 speakers 

for [u:a]. 

4.4.2 Results 

This section presents experimental results in terms of Tippett plots of the best performing 

parameters. 

Figure 21 (overleaf) shows that all SS comparisons were correctly discriminated for [ai] 

- [ʨhai HL] when its F0 contour was fitted by the quadratic polynomials. This suggests 

that the second order polynomials sufficiently approximated the falling F0 contour of [ai] 

- [ʨhai HL], while the third order contour might be overfitted. A Cllr = 0.39, which is 

considered relatively low, was obtained.  For DS comparisons, ca. 28% were wrongly 

discriminated as coming from the same speakers and ca. 20% had calibrated consistent-

with-fact DSlog10LRs ≤ -4, suggesting “very strong” support for the defense hypothesis.  

The plot in Figure 22 (overleaf) indicates that the F0 contour of the diphthong [u:a] - 

[ru:am HL] performed best with linear polynomials (straight line). This is unexpected, as 

the literature suggests that a high-falling tone trajectory is likely to be best captured by 
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Figure 21: Tippett plot of [ai] - [ʨhai HL] when its F0 contour was fitted by quadratic 

polynomials.  
The (red) curves rising to the right represent the cumulative proportion of the SS (same speaker) 

comparisons, with the log10LRs equal to or less than the value indicated on the x-axis, while the 

(blue) curves rising to the left represent the cumulative proportion of the DS (different speaker) 

comparisons, with the log10LRs equal to or greater than the value indicated on the x-axis. Dotted 

lines and solid lines represent the uncalibrated and calibrated SS and DS Log10LRs, 

respectively. 

 

Figure 22: Tippett plot of [u:a] - [ru:am HL] when its F0 contour was fitted by linear 

regression.  

The (red) curves rising to the right represent the cumulative proportion of the SS (same speaker) 

comparisons, with the log10LRs equal to or less than the value indicated on the x-axis, while the 

(blue) curves rising to the left represent the cumulative proportion of the DS (different speaker) 

comparisons, with the log10LRs equal to or greater than the value indicated on the x-axis. Dotted 

lines and solid lines represent the uncalibrated and calibrated SS and DS Log10LRs, 

respectively. 

Cllr = 0.39 

Cllr = 0.51 
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higher order (quadratic and cubic) polynomials, which can approximate the “U” and “S” 

shaped trajectory (Morrison, 2008, pp. 252-255). The results suggest that a high-falling 

(HL) tone trajectory of [u:a] - [ru:am HL] cannot be assumed for the diphthong [u:a] - 

[ru:am HL]. This finding also suggests that the vowel [a] in such a long diphthong [u:a] 

has undergone vowel reduction (Abramson, 1962, p. 76), resulting in [u:ə], which is best 

captured by a regression line rather than with higher order polynomials. With regards to 

SS comparisons, calibrated consistent-with-fact log10LRs ≤ 2 were obtained for [u:a] - 

[ru:am HL], suggesting “moderate” support for the SS hypothesis. For DS comparisons, 

ca. 30% had calibrated consistent-with-fact DSlog10LRs ≤ -4, suggesting “very strong” 

support for the defense hypothesis.   

The results in Figures 21 and 22 show similar trends in terms of the strength of evidence 

(calibrated consistent-with-fact SSlog10LRs ≤ 2), except that all the same-speaker speech 

samples of [ai] - [ʨhai HL] were correctly discriminated when their F0 contours were 

fitted by quadratic polynomials. Moreover, the magnitude of the contrary-to-fact DSLR 

was larger for [u:a] than for [ai]. In terms of Cllr, [ai] - [ʨhai HL] performed better than 

[u:a] - [ru:am HL] as it yielded a lower Cllr = 0.39 as compared to a Cllr = 0.51. 

Based on the three pilot studies, we see that the formant trajectories of the Standard Thai 

(phonetic) diphthongs [i:aw], [ɯ:a], [u:a], [o:i], [ə:i] and the tonal F0 of [ai] and [u:a] 

contain promising speaker-specific information. Further investigation into other Standard 

Thai diphthongs is thus warranted to see if similar results would be obtained, and which 

diphthong performs better than the other in terms of Cllr and log10LR magnitude. I 

therefore decided to investigate the FVC performance of the formant trajectories (F1-F3) 

and tonal F0 of the Standard Thai diphthongs [ɔi] - [nɔi L] and [ai] - [mai HL], as we shall 

see in subsequent chapters. 

 

4.5 Summary 

So far, we have shown that the formant trajectories of the Standard Thai (phonetic) 

diphthongs [i:aw], [ɯ:a], [u:a], [o:i], [ə:i] and tonal F0 contours of Standard Thai 

(phonetic) diphthongs [ai] and [u:a] are generally amenable to Standard Thai FVC. This 

is the best result in terms of Cllr value, when as low a level as 0.02 was obtained when 

F2-F4 of [u:a] were parameterized with cubic polynomials. Moreover, all SS comparisons 
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were correctly discriminated for [i:aw] with a low Cllr = 0.03. With regards to the tonal 

F0 contours fitted by polynomials, the lowest Cllr = 0.39 was obtained when F0 contours 

of [ai] - [ʨhai HL] were parameterized with quadratic polynomials. All SS comparisons 

were also correctly discriminated for [ai] - [ʨhai HL]. Given these promising results, the 

first through third formant trajectories (F1-F3) (as opposed to only F2) and the tonal F0 

contours of the Standard Thai diphthongs [ɔi] - [nɔi L] and [ai] - [mai HL] will be tested 

further in the current work. 
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Chapter 5 

Results of the spectral moments of /s/ and cepstral                       

coefficients (CCs) of /s, ʨh, n, m/  

 

5.1 Introduction 

This chapter reports on the strength of voice evidence (LR) of a spectrum extracted from 

the midpoint of the linguistic-phonetic target segment /s/ using a statistical analysis of 

mean, variance, skew, kurtosis (i.e. the spectral moments) tested in ANOVA and MVLRs, 

respectively. Apart from the spectral moments, cepstral coefficients (CCs) extracted from 

the segments /s, ʨh, n, m/ will also be tested in MVLRs. Thus, this chapter is divided into 

three main parts. The first part discusses the segmentation criteria used to locate the 

starting and end points of the target segments. The second part reviews the basic 

knowledge of spectrum and the statistical concepts of spectral moments (mean, variance, 

skew, kurtosis). Then, the results of spectral moments tested in ANOVA are first 

presented as a preliminary analysis before those of MVLR. In the third part I report the 

MVLR results of cepstral coefficients (CCs) based on the Cllr, Log10LR and EER values, 

in both Hertz and Bark scales. Discussion follows. 

 

5.2 Segmentation criteria 

The criteria used to annotate the Standard Thai segments /s, ʨh, n, m/ are presented in this 

section. I also give brief background information about the reasons why these particular 

segments were chosen for the current work. As mentioned in Chapter 2, the study 

conducted by Kavanagh (2012) showed that the fricative /s/ had promising discriminatory 

power in (British) English. Moreover, the English fricative /s/ had a lower Cllr = 0.88 than 

the fricative /f/, whose Cllr = 0.97 (as reported in the ASR research undertaken by Franco-

Pedroso et al., 2012, which tested many English phonemes produced by male speakers of 

the NIST-SRE datasets using GMM-UBM). Additionally, FVC research by Rose 

(2013a), who based his study on cepstral spectra extracted from the Japanese alveolo-

palatal fricative [ɕ] (which is similar to the English palato-alveolar fricative /ʃ/), 

anticipates promising results, especially when GMM-UBM and MVLR are fused (Cllr = 

0.26; EER = 74%). To elaborate, half of the DS comparisons were smaller than 
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DSlog10LR = –2 in the MVLR system. In contrast, half the DS comparisons were smaller 

than DSlog10LR = –1 in the GMM-UBM system. The largest counterfactual DSlog10LR 

= 2 was obtained for MVLRs but DSlog10LR = 5 was obtained for GMM-UBM, which is 

undesirable as, from a legal perspective, an expert would wish to avoid convicting an 

innocent person on the basis of such speech evidence alone (ibid., p. 5902). This 

contradicts the results of SS comparisons where GMM-UBM outperformed MVLR in its 

magnitude, i.e. about 25% of SS comparisons had log10LR ≥ 3. Rose (2011) concluded 

that LRs obtained from the Japanese alveolo-palatal fricative [ɕ] are likely to be of use in 

FVC, provided that they are combined with the LRs from other segments. Based on the 

above findings, it is prudent to search for speaker specificity that might be contained in 

the Standard Thai voiceless fricative /s/.  

Given the above, I was aware how important it would be to make sure that all of the target 

segments experimented on in the current work, /s, ʨh, n, m/, are extracted from the same 

phonological environments to assure their comparability. Having said that, I am also 

aware that the choice of these Standard Thai segments will mean the results obtained 

might be different from those of previous studies in the FVC literature; this is because the 

individualizing information contained might be language-specific.  

In §§5.2.1 to 5.2.5, I describe the criteria used to locate the target segments /s, ʨh, n, m/, 

respectively. 

5.2.1 Segmentation of /s/ 

The fricative /s/ was extracted from the word [sa:m LH] used in the sequence  

[thuk˺ ͜  thuk˺  sa: m  ʔ:͜  thit]  

                                                         every        three   week 

                                                         “every three weeks” 

The word [sa:m LH] ‘three’ was chosen because it is a numeral, and as such it is 

frequently used in everyday conversation. Additionally, in this sequence /s/ occurs after 

a voiceless unaspirated stop /k˺/, which makes it easier to segment since it has clear 

boundaries, as shown in the spectrogram in Figure 23 (overleaf). The segmentation of /s/ 

involved the simultaneous consultation of the audio -speech waveform and its  
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Figure 23: Label tier (top), waveform (middle), and spectrogram (bottom) of the phrase “every 

three weeks”, with overlaid formants. The section highlighted in grey in the label tier shows the 

target segment /s/. 

spectrograms. The beginning of /s/ is located at the point where the aperiodic noise first 

appeared in its spectrograms and the waveforms. The fricative offset was clearly defined 

at the endpoint of the frication noise and simultaneously at the beginning of a periodicity 

of the following vowel /a:/. However, there are instances where a voiceless stop /k/ was 

released after a vowel /u/ - [thuk], as shown in Figure 24. 

 

Figure 24: Label tier (top), waveform (middle), and spectrogram (bottom) of the phrase “every 

three weeks”, with overlaid formants. The section highlighted in grey in the label tier shows the 

target segment /s/. 

Figure 24 shows a label tier, a waveform, and a spectrogram of the phrase “every three 

weeks”, with overlaid formants. It shows an instance where a voiceless stop /k/ is released 

after a vowel /u/ in [thuk]. The annotation criterion for the starting point of /s/ was 
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subsequently changed so that it would come after a released stop, as indicated in the first 

vertical green line in Figure 24. As is well known, the fricative energy utilized by a 

participant is expected to range from ca. 2000-8000 Hz or higher (Stevens, 2000). 

However, in forensically realistic conditions, /s/ energy reaching above 4000 Hz might 

not be recorded by the equipment due to the telephone band-pass filter (Byrne & Foulkes, 

2007). It is therefore prudent to operate with two frequency bands: 500-4000 Hz and 500-

8000 Hz, to test such realistic telephone-transmission conditions (Kavanagh, 2012); a 

lower band-pass of 500 Hz is found to be particularly advisable for the same reasons.  

5.2.2 Segmentation of /tɕh/  

The Standard Thai affricate /tɕh/ was extracted from the word [tɕhai HL] ‘yes’, used in the 

following sentence frame: 

“phrɔʔ[H] mai[HL]  tɕhai[HL] na:[HL]͜   thi:[HL] ʔa [L]͜   rai [mid]  sak [L]͜   nɔi [L]”    

because       no             yes                  duty               what                any     particle         

The above sentence can be translated in English as “This is because we do not have any 

responsibility”. The highlighted /m, ʨh, n/ are the target segments and the underlined 

words represent stress. The acoustical properties of the target [ʨh] - [ʨhai HL], excerpted 

from the above sentence frame, are shown in Figure 25, where the target segment [ʨhai 

HL] is marked as [chai HL], as in the EMU speech database system (Cassidy, 1999).  

 

Figure 25: Label tier (top), waveform (middle), and spectrogram (bottom) of part of the 

sentence frame “This is because we do not have any responsibility”, with overlaid formant 

tracking values. The section highlighted in grey in the label tier shows the target segment /tɕh/. 
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An affricate can be defined as a sequence consisting of a stop plus a fricative (Turk, Nakai, 

& Sugahara, 2006). However, such an abrupt change in the amplitude of /tɕh/ cannot be 

clearly observed, since the duration of the stop part is too short. As such, the onset of [tɕh] 

was indicated by the start of an aperiodic waveform at a 2000-8000 Hz frequency and by 

aperiodic energy, as marked by the first vertical green line above. The offsets of [tɕh] were 

then marked at the cessation of the aperiodic waveform in conjunction with the F2 onset 

of the following vowel.    

5.2.3 Segmentation of /n/ - [nɔi L] 

Before going into the segmentation criteria of the target segment /n/ - [nɔi L], which is 

one of the particles most commonly used in spoken Standard Thai language, let us briefly 

discuss the usage of this sentence-final particle. Its primary function is as an “action-

inducement utterance”, hence its use in commands, invitations and suggestions (Cooke, 

1989). According to Cooke (1989, p. 3), Standard Thai particles can occur in sentence-

final position in sequences of up to six particles, whereas they are less likely to occur in 

a word-medial position. In addition, there are at least four particles that signal questions, 

three that signal commands, and half a dozen that are used for conversational or 

situational responses, more than half a dozen that signal speaker-addressee relationships, 

and some for other types of information (ibid., p. 2). These different particles can have 

their variants in terms of shades of meaning and form (ibid., p. 2). Having said that, the 

function of [nɔi L], selected in this thesis, is to soften commands and requests and it occurs 

sentence-finally. Some examples are given below.   

1.    khɔ [LH] na:m [H] nɔi [L] IPA  

       bring water please word-by-word gloss 

       “Bring me some water, please” meaning 

2.    pai[M] klai [M]͜  klai [M] nɔi [L] IPA 

       go far           far please word-by-word gloss 

       “Go away from me, please”  meaning 

All the [nɔi L] samples used in this experiment were extracted from the following 

sentence frame, which was previously mentioned: 
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“phrɔʔ[H] mai[HL]  chai[HL] na:[HL]͜   thi:[HL] ʔa [L]͜   rai [mid]  sak [L]͜   nɔi [L]”    

because       no             yes                  duty               what                any     particle         

The acoustical properties of the target /n/ - [nɔi L], excerpted from the above sentence 

frame, are shown in Figure 26. The target segment [nɔi L] was marked as [n2oy].  

 

 

Figure 26: Label tier (top), waveform (middle), and spectrogram (bottom) of part of the 

sentence frame “This is because we do not have any responsibility”, with overlaid formant 

tracking values. The section highlighted in grey in the label tier shows the target segment /n/. 

Since all [nɔi L] samples extracted for this experiment occur sentence-finally, as marked 

by the green oval, more duration is guaranteed, as it is well known that sentence-final 

words are normally stressed in Standard Thai (cf. Abramson,1962; Naksakul, 1998). This 

is confirmed by the duration of at least 117.40 msec and a maximum of 459.91 msec for 

the vowel [ɔi] - [nɔi L] in this experiment (the tonal F0 and formant trajectory of [ɔi] will 

also be experimented on, as we shall see later). The segmentation criteria of /n/ - [nɔi L] 

are explained below. 

Nasals are acoustically described as having 1) lower amplitude relative to the adjacent 

vowels; 2) stronger energy in the low frequency range as opposed to high frequencies; 

and 3) a very low F1 in the frequency range between 250-300 Hz for male speakers 

(Mannell, 2009). In Figure 27 (overleaf), since the target /n/ - [nɔi L] is preceded by a 

short pause after a released stop [k] - [sak L] (as marked by the red oval), its starting point  
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Figure 27: Label tier (top), waveform (middle), and spectrogram (bottom) of a target segment 

/n/ - [nɔi L].  

Red dots represent the first formant frequencies (F1), yellow dots represent the second formant 

frequencies (F2), green dots and blue dots represent the third and fourth formant frequencies (F3 

and F4), respectively. Note: [ɔi] is labeled as [oy]. 

was identified as the point where the vertical dark band spectrogram was observed after 

the short pause (as indicated by the first vertical green line). In this regard, we can also 

observe that anti-resonances occurred in the frequency ranges of ca. 1300 Hz and 1800 

Hz, respectively (as marked by red arrows). The end point of /n/ was marked at the point 

of release of the oral closure, as indicated by the increased amplitude, which was marked 

by the second vertical green line. 

5.2.4 Segmentation of /n/ - [na: HL] 

In this section, I describe the segmentation of the second nasal /n/. I decided to experiment 

with this second /n/, extracted from the word [na: HL͜ thi: HL], in order to see if /n/, when 

followed by the vowel [a:], yielded different results from /n/ followed by a diphthong [ɔi]. 

These two [n]s will shed light on whether different phonological contexts yield different 

FVC results. Figure 28 (overleaf) shows a label tier, a waveform, and a spectrogram of 

the alveolar nasal [n] extracted from the word [na: HL͜ thi: HL].  
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Figure 28: Label tier (top), waveform (middle), and spectrogram (bottom) of the target segment 

/n/ - [na: HL͜ thi: HL].  

Red dots represent the first formant frequencies (F1), yellow dots represent the second formant 

frequencies (F2), green dots and blue dots represent the third and fourth formant frequencies (F3 

and F4), respectively. Note: [a:] is labeled as [aa]. 

The onset and offset of the segment [n] - [na: HL͜ thi: HL], as indicated by the vertical 

green lines, are fairly straightforward due to the formant frequencies that are clearly 

attenuated by the nasal anti-resonant frequencies occurring between ca. 1400 Hz and 2300 

Hz (as indicated by the red arrows).  

5.2.5 Segmentation of /m/ - [mai HL] ‘no’ 

Figure 29 (overleaf) shows the segmentation of the target segment [m] - [mai HL]. The 

vowel /ai/ is labeled as [aai]. We can see that for this experiment, where /m/ - [mai HL] 

was preceded by a glottal stop [ʔ] - phrɔʔ [H] (cf. §5.2.2), it is slightly difficult to identify 

the starting point of /m/. However, the starting point of the bilabial nasal /m/ - [mai HL] 

was placed at the point where the anti-resonances were observed. In this case, the first 

anti-resonance occurred at ca. 500 Hz and the second anti-resonance was at ca. 1500 Hz, 

as indicated by the red arrows. The endpoint was located once the F2 onset of the 

following vowel [ai] was clearly observed in the vertical dark band spectrogram 

(indicated by the second vertical green line).  
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Figure 29: Label tier (top), waveform (middle), and spectrogram (bottom) of the target segment 

/m/ - [mai HL].  

Red dots represent the first formant frequencies (F1), yellow dots represent the second formant 

frequencies (F2), green dots and blue dots represent the third and fourth formant frequencies (F3 

and F4), respectively. 

5.3 Spectral mean, variance, skew, kurtosis (spectral moments)  

In this section, I introduce the basic concepts of spectral mean, variance, skew, and 

kurtosis. As previously mentioned (see Chapter 1), I will, for convenience, call these 

statistical measures the four spectral moments (specmomentsm), where mean is m = 1, 

variance is m = 2, skew is m = 3, and kurtosis is m = 4. These abbreviations will be 

interchangeably used throughout this thesis. As explained by Forrest, Weismer, 

Milenkovic, and Dougall (1988), the purpose of using these spectral moments for 

analyzing speech spectra is to reduce the spectral information into a smaller number of 

parameters. In this study, the four spectral moments are computationally calculated using 

the following formula: 

specmomentsm =
∑ ʄ(𝒙−𝒌)𝒎

∑ ʄ
  

Formula 1 (taken from Harrington, 2010, p. 298) 

In this formula, ʄ is the extracted spectral data, x is the frequency at which the spectral 

data was extracted, k = 0 for m = 1; k = specmoments1 when m = 2, 3 and 4 (Harrington, 
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2010, p. 298). For illustrative purposes, I will use spectral data measured at the midpoint 

of the target segment /s/ from one of the study’s informants, Speaker 8, Session 1, as 

shown in Table 14.  

Frequency in Hz 

(sampled at 16 kHz) 

   Spectral data  

  (dB values) 

500 

531.25 

562.5 

593.75 

625 

656.25 

687.5 

718.75 

750 

781.25 

812.5 

843.75 

875 

906.25 

: 

: 

: 

4000 
 

26 

25 

21 

22 

10 

18 

20 

21 

20 

20 

19 

10 

15 

13 

                            : 

                            : 

                            :  

             2             2 

 

Table 14: Frequencies and their corresponding spectral data extracted at the midpoint of the 

token /s/ spoken by Speaker 8, Session 1. 

Table 14 shows the excerpted data of frequencies and their corresponding spectral values 

from Speaker 8, Session 1. The sampling points are at 31.25 msec intervals but rounded 

to the nearest integer from 500 Hz up to 4000 Hz. Thus, the mean (m1) can be put into a 

formula as follows. 

    Mean =    
26(500−0)1 +25(531−0)1+ 21(562−0)1 +...+2(4000−0)1

25+25+ 21+⋯+2
  = 2302 

From the above, the mean (m1) is 2302, which means that the spectral energy exerted by 

Speaker 8, Session 1, is concentrated at around 2302 Hz.  

Let us now move on to the variance (m2), which shows the ranges of spectral mean 

values. To calculate variance, I change the value of m = 1 to m = 2 and k = mean (m1) 

(Harrington, 2010, p. 298) in the formula shown below. 

    Variance = 
26(500−2302)2 +25(531−2302)2+...+2(4000−2302)2

26+⋯+ 25+⋯+2
 = 1162990 
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Thus, the variance (m2) is 11629890 Hz. It needs to be noted that we will get high values 

of variance if the spectra are more diffuse instead of being concentrated at a certain 

frequency (ibid.). 

To calculate skew (m3), a value 3 is assigned to m and a mean (m1) is assigned to k as 

shown below. 

    Skew = 
26(500−2302)3 +25(531−2302)3+ ...+2(4000−2302)3

26+25+⋯+2
 = 509067010 

The above derived value has to be divided by a variance (m2) raised to the power of 1.5 

(Harrington, 2010, p. 298). As such, skew (m3) is 
509067010

1162990(𝑚2)^1.5
  = 0.4058925. This skew 

value is positive, i.e. the energy is not symmetrical around the mean but there are more 

values or tail on the left of the distribution (ibid.). In other words, the spectral energy is 

concentrated in the low frequency range. Note that mean (m1), which is 2302 (Hz), is 

correlated with skew (m3) (ibid.).  

To calculate kurtosis (m4), the value of 4 is assigned to m and a mean (m1) is assigned to 

k (Harrington, 2010, p. 298). Furthermore, the derived value needs to be divided by the 

square of variance (m2) and subtracted by 3 (to normalize the distribution) (ibid.). As 

such, kurtosis can be put into a formula as follows. 

    Kurtosis    =  

26(500−2302)4 +25(531−2302)4+ ...+2(4000−2302)4

26+25+⋯+2

(1162990)2−3
  = –1.3091892 

The negative value indicates that the spectrum is flat without clear peaks (ibid.). 

  

5.4 Results of the spectral moments of /s/ 

In this section I report the results for the Standard Thai alveolar fricative /s/ when its 

spectral moments were parameterized. §5.4.1 shows the distribution of the spectral mean, 

variance, skew, and kurtosis of /s/, using histograms. The corresponding ANOVA results 

are presented in §5.4.2. Finally (§§5.4.3 and 5.4.4), I will present and discuss the MVLR 

and DCT results.  
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5.4.1 Distribution of the spectral moments using histograms 

Figure 30 shows the histograms of the mean, variance, skew and kurtosis of the Standard 

Thai alveolar fricative /s/. They each show a similar shape with near-normal, slightly 

right-skewed distribution (more values can be observed on the left) (Bertsekas & 

Tsitsiklis, 2002). This means that the peaks of the spectral mean, variance, skew and 

kurtosis are slightly off the center of the distribution (ibid.), which suggests that the 

overall distribution of the /s/ spectrum is close to normal and worth further analysis with 

kernel density distribution, which can handle the non-normally distributed data. 

 

Figure 30: Histograms of the spectral mean, variance, skew, and kurtosis of /s/ uttered by 56 

speakers. 
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5.4.2 ANOVA results 

A mean (obtained from five repeats for each speaker/session, i.e. 56 speakers x 2 sessions) 

of the mean, variance, skew and kurtosis was statistically compared using ANOVA in 

GenStat (Payne, 2009). The reason to initially run these results in ANOVA was to observe 

their discriminatory power and judge if these spectral parameters are worth calculating 

LRs for in the MVLR. As previously mentioned, /s/ energy below 500 Hz and above 4000 

Hz might not be available due to the telephone band-pass filter in forensically realistic 

conditions. It is therefore prudent to divide the experiment into two frequency bands, 500-

4000 and 500-8000 Hz (Kavanagh, 2012). Table 15 shows the results; p-values at the 

level < 0.05 indicate a significant difference between speakers and/or sessions.  

Variate Factor(s) 500-4000 Hz 500-8000 Hz 

p-values p-values 

Mean speaker <.001 <.001 

session 0.646 0.315 

speaker x session <.001 <.001 

Variance 

 

 

speaker <.001 <.001 

session 0.013 0.431 

speaker x session <.001 <.001 

Skew 

 

speaker <.001 <.001 

session 0.461 0.303 

speaker x session <.001 <.001 

Kurtosis 

 

speaker <.001 <.001 

session 0.411 0.692 

speaker x session <.001 <.001 

Table 15: ANOVA results for speaker and/or session (N = 56 in 4000 and 8000 Hz) on each 

spectral moment calculated from /s/. Blue text indicates significant p values at the level < .05. 

Table 15 shows that all spectral moments are significant for the speaker factor, i.e. there 

are significant p values at level .001 in both band-pass filters (500-4000 Hz, 500-8000 

Hz). Likewise, when speaker plus session was included as a factor to compare the mean 

for each of the spectral moments, we get the same results. Yet, the spectral moments are 

not statistically significant for session. This implies that the within-speaker differences 

between the two sessions are not significant. For illustrative purposes, I therefore 
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employed the Bonferroni test to observe where the significance lies between speaker pairs 

using the spectral skew (m3) from the 500-4000 Hz filter. Results are shown in Table 16. 

 

 

 

Table 16: Bonferroni’s pairwise comparisons for a skew (m3) of /s/ 

The first column of the left and right sections in Table 16 shows the excerpted data where 

the skews of Speaker 1 and Speaker 2 were compared with those of the other 55 speakers. 

The right column indicates significant p values at level < .05. We can infer from the above 

results that Speaker 1 significantly differs from the other seven speakers (i.e. speakers 2, 
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14, 19, 23, 28, 45, 46) when a skew was parameterized within the 500-4000 Hz frequency 

range. Similarly, the skew (m3) of Speaker 2 is found to be statistically different from 

that of another 49 speakers (i.e. all 55 speakers except speakers 14, 19, 23, 28, 45, 46). 

Based on the findings above, we can say that Speaker 1 is perhaps very typical (in terms 

of skew value), but Speaker 2 is not. From the auditory impression, the speech samples 

of the alveolar fricative /s/ uttered by 54 informants, all of whom are young male 

university students (aged 22 years old), sound similar enough to make it difficult to 

distinguish them by auditory analysis alone. Having said that, speech samples of the other 

two informants, who are in their 50s, sound dissimilar to the rest of the population. That 

is, the alveolar fricative /s/ seems to be carefully articulated, resulting in a clear and longer 

frication noise in the case of these two informants. This might be due to idiosyncratic 

factors: the older generation typically tends to speak in a clear manner with low speech 

tempo. Overall, the differences found between speakers (cf. Table 15) is statistically 

significant when each of the mean, variance, skew, and kurtosis was parameterized in 

ANOVAs. As such, it is worth including all these spectral moments of /s/ in an MVLR 

calculation. 

5.4.3 MVLR results 

Table 17 (overleaf) shows the MVLR results according to calibrated Log10LR, Cllr, and 

EER values. I will first discuss the overall results with reference to this table. Detailed 

discussion about the proportion and magnitude of calibrated Log10LRs, Cllr and EER 

values will follow, with reference to the Tippett plots shown below. 

The results in Table 17 are presented according to the possible combination (from two to 

four) of the parameters mean, variance, skew, and kurtosis in the 500-4000 Hz and 500-

8000 Hz filters. The parameters were combined as shown in the leftmost column of Table 

17 to test if different numbers of parameters yield different results and to ascertain which 

parameters perform better. Since calibration is an important aspect of the performance of 

an LR-based FVC system, comparing such uncalibrated and calibrated LRs is crucial to 

subsequently point out the derived magnitude of Cllr values that are useful for subsequent 

ranking of the FVC performance for each parameter. Generally, in Table 17, many of the 

highest calibrated consistent-with-fact SSlog10LRs only provide “limited support” for the 

prosecution hypothesis that the speech samples were more likely to be from the same 
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 4000 Hz 8000 Hz 

Parameters Calibrated 

LOG10LR 

Cllr EER Calibrated 

LOG10LR 

Cllr EER 

SS DS SS DS  

Mean,Variance,Skew,Kurtosis ≤ 0.41 ≥ −3.23 0.83 39% ≤ 0.35 ≥ −4.04 0.85 42% 

Mean,Variance,Kurtosis ≤  0.32 ≥ −3.20 0.86 45% ≤ 0.27 ≥ −3.84 0.86 42% 

Mean,Variance,Skew ≤  0.45 ≥ −2.90 0.84 40% ≤ 0.37 ≥ −5.54 0.85 44% 

Variance,Skew,Kurtosis ≤  0.27 ≥ −3.13 0.87 44% ≤ 0.33 ≥  −3.77 0.86 42% 

Mean,Skew,Kurtosis ≤  0.32 ≥ −3.30 0.87 45% ≤ 0.45 ≥ −4.84 0.85 39% 

Mean,Variance ≤  0.33  ≥ −2.92 0.87 43% ≤  0.28 ≥ −5.09 0.87 44% 

Mean,Skew ≤ 0.53  ≥ −3.87 0.87 43% ≤ 0.30 ≥ −2.80 0.92 50% 

Mean,Kurtosis ≤  0.23 ≥ −2.83 0.89 51% ≤ 0.38 ≥ −4.61 0.87 43% 

Variance,Skew ≤  0.30  ≥ −2.57 0.88 45% ≤ 0.28 ≥ −4.13 0.89 49% 

Variance,Kurtosis ≤  0.28 ≥ −1.95 0.88 50% ≤ 0.35 ≥ −4.08 0.85 45% 

Skew,Kurtosis ≤  0.23 ≥ −2.86 0.91 51% ≤ 0.36 ≥ −4.88 0.86 44% 

Table 17: Log10LR, Cllr, and EER values of the fricative spectra /s/ according to the combined 

parameters (leftmost column) measured at the temporal midpoint of the fricative /s/ from 56 

speakers, in 500-4000 Hz as well as 500-8000 Hz conditions. The values highlighted in blue and 

red show the best and worst Log10LR, Cllr, and EER values, respectively. 

speaker than from different speakers. For DS comparisons, the best calibrated consistent-

with-fact DSlog10LR = –5.54 suggest “very strong” support for the defense hypothesis 

that the samples were more likely to be from different speakers than from the same 

speaker.  

With respect to the 500-4000 Hz filter, the lowest Cllr = 0.83 was obtained when all four 

spectral features (mean, variance, skew, and kurtosis) were parameterized. The highest 

Cllr = 0.91 was obtained when skew plus kurtosis were used. Table 17 shows a general 

trend in the obtainment of the Cllr values: those with two parameters yielded higher Cllr 

(as compared to those with three or four parameters). From this, we can say that the results 

deteriorated as the number of parameters decreased. With respect to the 500-8000 Hz 

filter, the smallest Cllr = 0.85 was obtained when 1) all four spectral moments; 2) mean, 

variance, skew; 3) mean, skew, kurtosis; and 4) variance and kurtosis were trialed. The 

highest Cllr = 0.92 was obtained when mean plus skew were parameterized. The findings 

in the 500-8000 Hz filter agree with those in the 500-4000 Hz filter range: all four spectral 

parameters should be parameterized if the spectral features are to be of use in FVC, as 
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any combination of two parameters yields worse Cllr results (except for Variance and 

Kurtosis using a 500-8000 Hz filter) than combination involving three or four parameters.  

I now discuss in more detail the proportion and magnitude of the LRs. The Tippett plots 

with two or three parameters are presented in Figures 32 and 33. Those in Figure 31 reflect 

parameterization of all four parameters in the 500-4000 and 500-8000 Hz band-pass 

filters.  

 

Figure 31: Tippett plots for SS and DS comparisons when mean, variance, skew and kurtosis 

were parameterized in the 500-4000 Hz (left) and 500-8000 Hz (right) band-pass filters. 

The (red) curves rising to the right represent the cumulative proportion of the SS (same speaker) 

comparisons, with the log10LRs equal to or less than the value indicated on the x-axis, while 

the (blue) curves rising to the left represent the cumulative proportion of the DS (different 

speaker) comparisons, with the log10LRs equal to or greater than the value indicated on the x-

axis. Dotted lines and solid lines represent the uncalibrated and calibrated SS and DS Log10LRs, 

respectively. 

In the case of the Tippett plot of the 500-4000 Hz filter in Figure 31.1, the Cllr = 0.83 was 

obtained when mean, variance, skew and kurtosis were all parameterized. The worst 

uncalibrated contrary-to-fact SSlog10LR (for SS comparisons) and DSlog10LR (for DS 

comparisons) were SSlog10LR = –7.09 and DSlog10LR = 1.63. After calibration, these 

were significantly reduced to SSlog10LR = –1.25 and DSlog10LR = 0.45. In the 500-8000 

Hz filter (Figure 31.2), on the other hand, the highest uncalibrated contrary-to-fact 

SSlog10LR = –16.11 and the Cllr = 0.85 were obtained. The uncalibrated SSLog10LRs and 

DSLog10LRs (dotted red and blue lines) were significantly reduced in magnitude after 

calibration (solid lines). Specifically, ca. 78% of DS comparisons (dotted blue line) had 
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Log10LRs ≤  –4, but after calibration one of these had DSlog10LRs less than –4 

(DSlog10LR = –4.04). Likewise, ca. 60% of uncalibrated SSLRs (dotted red line) had 

log10LR ≤ 2. This was reduced to only log10LR ≤ 0.35 after calibration. Based on these 

findings, we can conclude that when all four spectral parameters are used, the results 

obtained from the 500-4000 Hz filter are better in terms of a lower Cllr and smaller 

misleading SSLRs. However, the correct LRs are also weakened.  

Figure 32 reproduces the Tippett plots that show the results obtained when two or three 

spectral parameters were combined in the 500-4000 Hz filters. It shows that the overall 

results for the 500-4000 Hz filter were not promising as the Cllr values were relatively 

high, between 0.83 and 0.91. However, if we compare these Cllr values with those of 

the English /s/, which had a Cllr = 0.88 in Franco-Pedroso et al. (2012), the Standard Thai 

fricative /s/ still performed in roughly the same manner as the English /s/. Having said  

 

Figure 32 (continued overleaf) 



 
126 

 

Figure 32 (continued): Tippett plots for SS and DS comparisons when two or three of the four 

parameters (as indicated on top of each of the plots) were combined in a 500-4000 Hz band-pass 

filter. 

The (red) curves rising to the right represent the cumulative proportion of the SS (same speaker) 

comparisons, with the log10LRs equal to or less than the value indicated on the x-axis, while the 

(blue) curves rising to the left represent the cumulative proportion of the DS (different speaker) 

comparisons, with the log10LRs equal to or greater than the value indicated on the x-axis. Dotted 

lines and solid lines represent the uncalibrated and calibrated SS and DS Log10LRs, respectively. 
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that, we cannot directly compare results obtained here with those obtained previously. 

This is because the different Cllr obtained might be attributed to many different factors, 

e.g. the contrasting number of speakers trialed or different recording room conditions or 

different equipment (e.g. type of microphones).  

Figure 33 reproduces the Tippett plots that show the results obtained when two or three 

spectral parameters were combined in the 500-8000 Hz filters.  

 

Figure 33 (continued overleaf) 
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Figure 33 (continued): Tippett plots for SS and DS comparisons when two or three of the four 

parameters (as indicated on top of each of the plots) were combined in a 500-8000 Hz band-pass 

filter.  

The (red) curves rising to the right represent the cumulative proportion of the SS (same speaker) 

comparisons, with the log10LRs equal to or less than the value indicated on the x-axis, while the 

(blue) curves rising to the left represent the cumulative proportion of the DS (different speaker) 

comparisons, with the log10LRs equal to or greater than the value indicated on the x-axis. Dotted 

lines and solid lines represent the uncalibrated and calibrated SS and DS Log10LRs, 

respectively. 

Judging by Figure 33, worse results were obtained compared to the other filter. That is, 

the largest misleading uncalibrated SSlog10LR = –16.11 was obtained when all four 

spectral parameters were parameterized. The largest misleading DSlog10LR = 3.58 was 

also yielded when mean, variance and kurtosis were used (vs the misleading DSlog10LR 

= 2.02 in the 500-4000 Hz with mean + kurtosis parameters). Another observation with 

respect to this filter (500-8000 Hz) is that there is a trade-off between Cllr values and the 

contrary-to-fact SSLog10LRs obtained. That is, when the former was low, the latter got 

high, e.g. Variance + Kurtosis had the lowest Cllr = 0.85 but highest misleading 

SSlog10LR = –15.64. Comparing the proportion of DSlog10LRs with those in the 500-

4000 Hz filter, a similar result was found: 80% of uncalibrated DSlog10LRs were less 
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than –4. However, this proportion shrunk to 1% after calibration. Likewise, the magnitude 

of all calibrated SSLog10LRs obtained was less than 0.5, suggesting that this evidence, 

either in support of a SS hypothesis or DS hypothesis, would not be useful. Such a 

conservative manner of LRs might result from the extreme misleading scores, e.g. 

SSlog10LR = –15.64 (Variance + Kurtosis) obtained for /s/. That is, the logistic-

regression-calibration weights calculated from such extreme misleading scores might 

cause an extensive scaling for logistic-regression-calibration (Ishihara, 2017, p. 191). To 

better deal with these outliers or extrapolation errors, the normalized Bayes error-rate 

(NBE) (Vergeer, van Es, de Jongh, Alberink, & Stoel, 2016) should be trialed in future 

work to limit the sensible minimum and maximum scores in the LR systems. 

So far, we can see that the overall results of the spectral mean, variance, skew, and 

kurtosis of /s/ were not very promising (highest Cllr at 0.92). This being the case, I 

continued my search for the underlying factors that might contribute to such a modest 

performance of the Standard Thai /s/. To do so, I plotted the means and ranges for each 

of the four spectral parameters obtained from a 500-4000 Hz filter in order to see the ratio 

of within- to between-speaker variation obtained. Figures 34 to 37 show the means and 

ranges of spectral mean, variance, skew, and kurtosis, respectively, plotted for each of the 

56 speakers. The vertical blue lines represent the spectral ranges of session 1, whereas the 

red lines represent the spectral ranges of session 2. A circle plotted in the middle of each 

vertical line represents the mean spectral value for that session for a given speaker. 

 

Figure 34: The means (circles) and ranges of spectral mean. 
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Figure 35: The means (circles) and ranges of spectral variance. 

 

 

Figure 36: The means (circles) and ranges of spectral skew. 
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Figure 37: The means (circles) and ranges of spectral kurtosis. 

Judging visually by the ranges above, we observe that the spectral values obtained from 

between-speaker variation overlap (in the y-axis) within a certain range for each of the 

parameters. An example is the mean values in Figure 34, which are clustered in a 

frequency range between 2000 Hz and 2300 Hz. Likewise, the within-speaker variation 

shows large ranges. An example is the complete separation between sessions (complete 

separation of blue and red lines) in Speakers 2, 9, 19, 24, and 51 for a spectral mean in  

Figure 34 (although ANOVA results showed that such between-session variation was not 

statistically significant). Thus, there is a large range found within speakers, which make 

the between-speaker differences less significant. Based on these findings, I found out that 

the spectral moments of /s/ performed only in a conservative manner. This being the case, 

a decision was made to further test FVC performance of the fricative /s/ using DCT 

parameterization. If the DCTs worked better than the spectral moments for /s/, I would 

then apply the DCT parameterization technique to other consonants. Moreover, since the 

marginal difference between the best Cllr = 0.83 vs Cllr = 0.85 (together with the same 

EER = 39% ) were obtained for the 500-4000 Hz and 500-8000 Hz filter bands for spectral 

moments of /s/, I decided to test the FVC performance of the DCTs extracted from a 

single 500-8000 frequency band, as we shall see below.  



 
132 

 

5.4.4 DCT results 

The number of speakers tested for each of the target segments /s, ʨh, n, m/ is slightly 

different, as some tokens were mispronounced by some of the informants. Low 

amplitudes, due to poor recording, were also found. Mispronounced target segments and 

poorly recorded low amplitude segments were discarded (I shall illustrate this further in 

Chapters 6-7).  

5.4.4.1 Fricative /s/ extracted from the word [sa:m LH] ‘three’ 

As before, the results of the calibrated Log10LR, Cllr and EER values for the fricative 

/s/, when its 15 and 20 DCTs were parameterized in both Hertz and Bark scales, in the 

500-8000 Hz filter, are tabulated first. This is followed by a presentation of the best and 

worst results using the Tippett plots in Figures 38 and 39. 56 speakers were tested. 

 

Parameters 

 

Hertz Bark  

Calibrated 

LOG10LR 

Cllr EER Calibrated 

LOG10LR 

Cllr EER 

SS DS SS DS 

/s/  15 coeffs ≤ 0.96 ≥ −6.9 0.75 19 ≤ 1.10 ≥ −8.70 0.70 19 

/s/  20 coeffs ≤ 0.93 ≥ −6.83 0.77 23 ≤ 1.07 ≥ −7.62 0.72 20 

Table 18: Calibrated Log10LR, Cllr, and EER of the fricative /s/ - [sa:m LH] when its 15 DCTs 

and 20 DCTs were parameterized in both Hertz and Bark scales, in the 500-8000 Hz filter. The 

best Cllr and EER values are highlighted in blue; the worst are shown in red. 

Table 18 shows that when a spectrum of /s/ was measured at the midpoint in a Bark scale 

and its 15 DCTs were tested, we get the lowest Cllr = 0.70 and the lowest EER = 19%. 

However, when 20 Hertz-scaled DCTs were parameterized, the Cllr got worse at 0.77, 

with the highest EER of 23. When we compare these results with those from the spectral 

moments (Cllr = 0.83-0.92), DCTs performed better than spectral moments (although the 

magnitude of LRs was comparatively the same, i.e. SSLog10LRs ≤ 1).  

I will now look in more detail at the proportion and magnitude of Log10LRs using the 

Tippett plots of the 15 Bark-scaled DCTs of /s/ - [sa:m LH] (Figure 38).   
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Figure 38: Tippett plot of the best performing parameter, 15 Bark-scaled DCTs of /s/ - [sa:m 

LH].  

The (red) curves rising to the right represent the cumulative proportion of the SS (same speaker) 

comparisons, with the log10LRs equal to or less than the value indicated on the x-axis, while the 

(blue) curves rising to the left represent the cumulative proportion of the DS (different speaker) 

comparisons, with the log10LRs equal to or greater than the value indicated on the x-axis. Dotted 

lines and solid lines represent the uncalibrated and calibrated SS and DS Log10LRs, 

respectively.  

With 15 Bark-scaled DCTs, the highest misleading SSLog10LR obtained was SSLog10LR 

= –16.80. After calibration, this was reduced to SSLog10LR = –2.63. The largest 

consistent-with-fact SSLR, which was formerly SSLog10LR = 3.71, was reduced to 

SSLog10LR = 1.10 after calibration. With respect to DS comparisons, the highly 

misleading DSLog10LR = 3.20 was reduced to DSLog10LR = 1.03. Similarly, 70% of 

uncalibrated DSLRs were less than –4 but this were reduced to only ca. 1% after 

calibration. Based on these results, there is a trade-off between the magnitude and 

proportion of the contrary-to-fact LRs and the correct ones. That is, the misleading 

DSLRs and SSLRs were significantly reduced both in magnitude and proportion, but 

interestingly the magnitude and proportion of the correct DSLRs and SSLRs were 

reduced in the same way. 

As discussed in §5.4.2, the speech samples of the alveolar fricative /s/ uttered by 54 of 

the informants, all of whom are young males (aged 22 years old), sound dissimilar to 

those of the other two informants, who are in their 50s. The auditory impression is that 

the more senior informants pronounce the alveolar fricative /s/ in a clear manner, resulting 

Cllr = 0.70 
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in a clear and longer fricative duration. Such small between-speaker differences observed 

in the pronunciation of the fricative /s/ for the two informants who are in their 50s might 

contribute to the resultant calibrated SSLog10LR = 1.10, which can only provide “limited” 

support for the same-speaker hypothesis and only 1% of calibrated DSLog10LR ≤ –4 give 

“very strong” support for the DS hypothesis.   

I will now describe the worst results for the fricative /s/, which were obtained when the 

20 Hz-scaled DCTs were parameterized (Figure 39). 

 

Figure 39: Tippett plot of the worst performing parameter, 20 Hertz-scaled DCTs of /s/ - [sa:m 

LH].  

The (red) curves rising to the right represent the cumulative proportion of the SS (same speaker) 

comparisons, with the log10LRs equal to or less than the value indicated on the x-axis, while the 

(blue) curves rising to the left represent the cumulative proportion of the DS (different speaker) 

comparisons, with the log10LRs equal to or greater than the value indicated on the x-axis. Dotted 

lines and solid lines represent the uncalibrated and calibrated SS and DS Log10LRs, 

respectively.  

The largest misleading SSlog10LR = –19.97 was reduced to only SSlog10LR = –2.31 after 

calibration. We also observe that the strongest uncalibrated correct SSlog10LR = 4.08 

(suggesting “very strong” evidence in support of the same-speaker hypothesis) was 

reduced to only SSlog10LR = 0.93, which suggests “useless” speech evidence in support 

of both SS and DS hypotheses. For DS comparisons, the same results were obtained as 

with the previous parameter (15 Bark-scaled DCTs): the magnitude and proportion was 

DSlog10LR ≤ –4, mostly reduced to 1% after calibration. 

Cllr = 0.77 
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From the above, we can see that using the DCT coefficients fitted to a spectrum (extracted 

from the midpoint) of the consonants /s/ yields better results (Cllr values between 0.70 and 

0.77) than those of the spectral mean, variance, skew and kurtosis (Cllr values between 

0.83 and 0.92). This being the case, I decided to search for the individualizing information 

that might be found in the segments /ʨh, n, m/; I did this by using their DCT coefficients 

extracted from the midpoint. The corresponding results are reported below. 

5.4.4.2 Affricate /tɕh/ extracted from the word [tɕhai HL] ‘yes’ 

In this section I show the results of the Standard Thai affricate /tɕh/ - [tɕhai HL] when its 

15 and 20 DCTs were parameterized in both Hertz and Bark scales in the 500-8000 Hz 

filter. Calibrated Log10LR, Cllr, and EER values are presented in Table 19 followed by 

the Tippett plots of the best and worst performing parameters. 57 speakers were tested. 

 

Parameters 

 

Hertz Bark  

Calibrated 

LOG10LR 

Cllr EER Calibrated 

LOG10LR 

Cllr EER 

SS DS SS DS 

/ʨh/  15 coeffs ≤ 1.17 ≥ −9.28 0.71 22 ≤ 1.39 ≥ −10.11 0.68 20 

/ʨh/  20 coeffs ≤  1.36 ≥ −10.04 0.66 19 ≤ 1.46 ≥ −11.62 0.63 19 

Table 19: Calibrated Log10LR, Cllr, and EER of the affricate /tɕh/ - [tɕhai HL] when its 15 DCTs 

and 20 DCTs were parameterized in both Hertz and Bark scales, respectively. The best Cllr and 

EER values are highlighted in blue; the worst are shown in red. 

Table 19 shows the results of the Standard Thai affricate /tɕh/ extracted from the word 

[tɕhai HL] ‘yes’. For the best results, the lowest Cllr = 0.63 and EER = 19% were obtained 

when 20 Bark-scaled DCTs were tested. The worst results were obtained with the highest 

Cllr = 0.71 and highest EER = 22% when 15 DCTs were parameterized in a Hertz scale. 

So far, we have observed that none of the experimental settings yield the greatest 

consistent-with-fact SSLRs, which exceed log10LR = 2.  

Figures 40 and 41 show the best and worst performing Tippett plots for /ʨh/ - [ʨhai HL] 

based on Cllr and EER values. 
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Figure 40: Tippett plot of the best performing parameter, 20 Bark-scaled DCTs of /tɕh/ - [tɕh ai HL].  

The (red) curves rising to the right represent the cumulative proportion of the SS (same speaker) 

comparisons with the log10LRs equal to or less than the value indicated on the x-axis, while the 

(blue) curves rising to the left represent the cumulative proportion of the DS (different speaker) 

comparisons, with the log10LRs equal to or greater than the value indicated on the x-axis. Dotted 

lines and solid lines represent the uncalibrated and calibrated SS and DS Log10LRs, 

respectively.  

Figure 40 shows the Tippett plot when 20 Bark-scaled DCTs were parameterized. The 

highest uncalibrated contrary-to-fact SSLog10LR and DSLog10LR obtained were –13.94 

and = 4.58, respectively. After calibration, these were reduced to SSLog10LR = –1.97 and 

DSLog10LR = 1.41. Not only was the magnitude of Log10LR reduced but also its 

proportion; ca. 73% of DSLog10LRs ≤  – 4 was reduced to 2% after calibration. The 

strongest correct SSLR and DSLR, which were formerly SSLog10LR = 4.92 and 

DSLog10LR = –42.05, were significantly reduced to SSLog10LR = 1.46 and DSLog10LR 

= –11.62, respectively. The EER obtained for 20 Bark-scaled DCTs of /tɕh/ was 19%.  

With the 15 Hertz-scaled DCT parameter in Figure 41 (overleaf), the worst contrary-to-

fact Log10LRs for SS and DS comparisons were SSLog10LR = –13.99 and DSLog10LR = 

5.04, respectively. These were significantly reduced to SSLog10LR = –1.51 and 

DSLog10LR = 1.23 after calibration. The magnitude of correct SSLRs was reduced from 

SSLog10LR = 4.67 (which suggests “very strong” support for the SS hypothesis) to 

SSLog10LR = 1.17 (which suggests “limited” support for the SS hypothesis). Similarly, 

ca. 77% of correct DSLRs ≤ −4 was reduced to 1% after calibration. Comparing the best 

and worst results in terms of Cllr and EER values in this 500-8000 filter band, we see that 

the best parameter, which was the 20 Bark-scaled DCTs, gave a lower Cllr = 0.63 and 

Cllr = 0.63 
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Figure 41: Tippett plot of the worst performing parameter, 15 Hertz-scaled DCTs of /tɕh/ - [tɕh 

ai HL].  

The (red) curves rising to the right represent the cumulative proportion of the SS (same speaker) 

comparisons, with the log10LRs equal to or less than the value indicated on the x-axis, while the 

(blue) curves rising to the left represent the cumulative proportion of the DS (different speaker) 

comparisons, with the log10LRs equal to or greater than the value indicated on the x-axis. Dotted 

lines and solid lines represent the uncalibrated and calibrated SS and DS Log10LRs, 

respectively.  

EER = 19%, although many of the SS comparisons had the same SSlog10LR ≤ 2 and ca. 

1% of the DS comparisons had DSlog10LR ≤  −4. 

5.4.4.3 Nasal /n/ extracted from the particle [nɔi L] 

In this section I show the results of using DCTs extracted from the midpoint of a nasal 

consonant /n/ - [nɔi L]. [nɔi L] is a Thai particle put at the end of a request to lessen an 

imperative statement. 55 speakers were tested. 

 

Parameters 

 

Hertz Bark  

Calibrated 

LOG10LR 

Cllr EER Calibrated 

LOG10LR 

Cllr EER 

SS DS SS DS 

/n/  15 coeffs ≤ 1.79 ≥ −12.99 0.54 19 ≤ 1.78 ≥ −11.98 0.56 20 

/n/  20 coeffs ≤ 1.76 ≥ −12.45 0.54 18 ≤  1.75 ≥ −10.51 0.58 20 

Table 20: Calibrated Log10LR, Cllr, and EER of the nasal /n/ - [nɔi L] when its 15 DCTs and 20 

DCTs were parameterized in both Hertz and Bark scales, respectively. The best Cllr and EER 

values are highlighted in blue; the worst are shown in red. 

Cllr = 0.71 
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Table 20 shows that, in general terms, the best SSlog10LRs ≤ 2 were obtained, which 

indicates “moderate” support for the prosecution hypothesis that the speech samples are 

more likely to be from the same speaker than from different speakers. In contrast, for DS 

comparisons, the best DSlog10LRs ≤  –4 suggest “very strong” support for the defense 

hypothesis that the speech samples are more likely to be from different speakers than 

from the same speaker. We also see in Table 20 that, when 20 Hertz-scaled DCTs were 

parameterized, the lowest Cllr derived is 0.54 with an EER of 18. Roughly the same results 

were obtained, Cllr = 0.54 and EER = 19%, with 15 Hertz-scaled DCTs. However, Cllr and 

EER are higher on the Bark scale: a Cllr of 0.56 and 0.58 and an EER = 20% when 15 and 

20 Bark-scaled DCTs were parameterized, respectively. 

The Tippett plots of the best and worst performing parameters of /n/ - [nɔi L], based on 

its Cllr and EER values, are shown in Figures 42 and 43.   

 

Figure 42: Tippett plot of the best performing parameter, 20 Hertz-scaled DCTs of /n/ - [nɔi L]. 

 The (red) curves rising to the right represent the cumulative proportion of the SS (same 

speaker) comparisons, with the log10LRs equal to or less than the value indicated on the x-axis, 

while the (blue) curves rising to the left represent the cumulative proportion of the DS (different 

speaker) comparisons, with the log10LRs equal to or greater than the value indicated on the x-

axis. Dotted lines and solid lines represent the uncalibrated and calibrated SS and DS Log10LRs, 

respectively. 

Apart from having a lower Cllr = 0.54 than those of the fricatives /s/ and /ʨh/, as previously 

shown, the Tippett plot of the best performing parameter (20 Hertz-scaled DCTs) for the 

nasal /n/ - [nɔi L] (Figure 42) also shows the largest magnitude of the calibrated 

consistent-with-fact SSLog10LR = 1.76 (consistent-with-fact uncalibrated Log10LR = 

Cllr = 0.54 
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5.74). After calibration, about 8% of DS comparisons had Log10LR ≤  −4, which 

suggests “very strong” support for the different-speaker hypothesis. The EER for the 20 

Hertz-scaled DCTs of /n/ - [nɔi L] was 18%.   

Using 20 Bark-scaled DCTs extracted from /n/ - [nɔi L] (Figure 43), a marginally higher 

Cllr = 0.58 was obtained than in the case of 20 Hz-scaled DCTs (Cllr = 0.54). After 

calibration, ca. 4% of DSLRs had DSlog10LRs ≤  −4. The largest calibrated consistent-

with-fact SSLR obtained was SSlog10LR = 1.75 (SSLog10LR = 6.70 before calibration). 

Although this was the worst performing parameter, it yielded only a marginally higher 

EER = 20% than the best performing parameter for /n/ - [nɔi L], which was 18%.  

 

Figure 43: Tippett plot of the worst performing parameter, 20 Bark-scaled DCTs of /n/ - [nɔi 

L].  

The (red) curves rising to the right represent the cumulative proportion of the SS (same speaker) 

comparisons, with the log10LRs equal to or less than the value indicated on the x-axis, while the 

(blue) curves rising to the left represent the cumulative proportion of the DS (different speaker) 

comparisons, with the log10LRs equal to or greater than the value indicated on the x-axis. Dotted 

lines and solid lines represent the uncalibrated and calibrated SS and DS Log10LRs, 

respectively. 

5.4.4.4 Nasal /n/ extracted from the word [na: HL thi: HL] ‘duty’ 

In this section, I look at another instance of /n/ - [na: HL], embedded in the word [na: HL 

thi: HL] ‘duty’. I then compare the FVC performance of the two /n/s. 55 speakers were 

tested. 

Cllr = 0.58 
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Parameters 

 

Hertz Bark  

Calibrated 

LOG10LR 

Cllr EER Calibrated 

LOG10LR 

Cllr EER 

SS DS SS DS 

/n/  15 coeffs ≤ 2.40 ≥ −14.57 0.49 18 ≤ 1.99 ≥ −15.15 0.47 15 

/n/  20 coeffs ≤ 1.73 ≥ −12.71 0.50 13 ≤1.87 ≥ −10.97 0.51 18 

Table 21: Calibrated Log10LR, Cllr, and EER of the nasal /n/ - [na: HL] when its 15 DCTs and 

20 DCTs were parameterized in both Hertz and Bark scales, respectively. The best Cllr and EER 

values are highlighted in blue; the worst are shown in red. 

Table 21 shows that the best results were obtained when 15 Bark-scaled DCTs were 

parameterized: the lowest Cllr = 0.47 and an EER = 15%. These are the best results 

obtained so far when compared to those of the previous target segments /s/ - [sa:m LH], 

/ʨh/ - [ʨhai HL/, and /n/ - [nɔi L]. The worst results were obtained when 20 Bark-scaled 

DCTs were used as parameters: the highest Cllr = 0.51 and an EER = 18%. However, 

using 15 and 20 DCTs in a Hertz scale produced marginally higher Cllr values of 0.49 and 

0.50, respectively. The best calibrated consistent-with-fact SSlog10LR = 2.40 was 

obtained when 15 DCTs in a Hertz scale were parameterized. The worst Cllr = 0.51 and 

an EER = 18 obtained for this experimental setting are better than those of the best 

performing parameters of the previous target segments, /s/ - [sa:m LH] (Cllr = 0.70 and 

EER = 19), /ʨh/ - [ʨhai HL] (Cllr = 0.63 and EER = 19), and /n/ - [nɔi L] (Cllr = 0.54 and 

EER = 18). 

The Tippett plots of the best and worst performing parameters of /n/ - [na: HL], based on 

the Cllr and EER values, are presented in Figures 44 and 45 (overleaf).  

Figure 44 shows that, apart from the lowest Cllr = 0.47, the best calibrated consistent-

with-fact SSlog10LR = 1.99 was obtained when 15 Bark-scaled DCTs of /n/ - [na: HL] 

were parameterized (compared to those of the previous target segments, /s/ - [sa:m LH], 

/ʨh/ - [ʨhai HL/, and /n/ - [nɔi L]); ca. 14% of DS comparisons had calibrated consistent- 

with-fact DSLog10LRs less than –4. These results of Cllr, the magnitude and proportion 

of calibrated SSLog10LRs and DSLog10LRs, are the best obtained so far.  

The worst Cllr = 0.51 was obtained for /n/ - [na: HL] when its 20 Bark-scaled DCTs were 

parameterized (Figure 45). The largest calibrated consistent-with-fact SSlog10LR = 1.87 
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Figure 44: Tippett plot of the best performing parameter, 15 Bark-scaled DCTs of /n/ - [na: HL].  

The (red) curves rising to the right represent the cumulative proportion of the SS (same speaker) 

comparisons, with the log10LRs equal to or less than the value indicated on the x-axis, while the 

(blue) curves rising to the left represent the cumulative proportion of the DS (different speaker) 

comparisons, with the log10LRs equal to or greater than the value indicated on the x-axis. Dotted 

lines and solid lines represent the uncalibrated and calibrated SS and DS Log10LRs, 

respectively. 

 

Figure 45: Tippett plot of the worst performing parameter, 20 Bark-scaled DCTs of /n/ - [na: HL].  

The (red) curves rising to the right represent the cumulative proportion of the SS (same speaker) 

comparisons, with the log10LRs equal to or less than the value indicated on the x-axis, while the 

(blue) curves rising to the left represent the cumulative proportion of the DS (different speaker) 

comparisons, with the log10LRs equal to or greater than the value indicated on the x-axis. Dotted 

lines and solid lines represent the uncalibrated and calibrated SS and DS Log10LRs, 

respectively. 

Cllr = 0.47 

Cllr = 0.51 
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was obtained with this parameter and ca. 11% of DS comparisons had calibrated 

consistent-with-fact DSlog10LRs ≤  −4 (which is marginally smaller than for the 15 

Bark-scaled DCTs parameter).  

Given the best Tippett plots of /n/ - [nɔi L] and /n/ - [na: HL] in Figures 42 and 44, we 

see that /n/ - [na: HL] outperforms /n/ - [nɔi L], showing a lower Cllr = 0.47, as opposed 

to the 0.54 that was obtained for /n/ - [nɔi L]. Additionally, the largest calibrated 

consistent-with-fact SSLog10LR = 1.99 obtained for /n/ - [na: HL] was marginally 

stronger than for /n/ - [nɔi L] (calibrated consistent-with-fact SSLog10LR = 1.76). The 

underlying reason why /n/ - [na: HL] outperforms /n/ - [nɔi L] in terms of Cllr might be 

that a contour tone of /n/ - [na: HL] potentially provides more space for the speakers to 

exhibit their individualizing information than the level tone of /n/ - [nɔi L]. In addition, 

more jaw opening for [a:] - [na: HL] as for /ɔi/ - [nɔi L] might contribute to a better 

performance of /n/ - [na: HL] than of /n/ - [nɔi L]. 

5.4.4.5 Nasal /m/ extracted from the word [mai HL] ‘no’ 

Table 22 shows that relatively good results were obtained when both the 20 Hertz- and 

20 Bark-scaled DCTs of the nasal /m/ - [mai HL] were parameterized, as the Cllr values 

obtained were 0.47 and 0.49, respectively. 57 speakers were tested. 

 

Parameters 

 

Hertz Bark  

Calibrated 

LOG10LR 

Cllr EER Calibrated 

LOG10LR 

Cllr EER 

SS DS SS DS 

/m/  15 coeffs ≤ 1.73 ≥ −13.84 0.53 13 ≤ 1.72 ≥ –13.95 0.54 14 

/m/  20 coeffs ≤ 1.87 ≥ −15.14 0.47 14 ≤ 1.96 ≥ −15.61 0.49 13 

Table 22: Calibrated Log10LR, Cllr, and EER of the nasal /m/ - [mai HL] when its 15 DCTs and 

20 DCTs were parameterized in both Hertz and Bark scales, respectively. The best Cllr and EER 

values are highlighted in blue; the worst are shown in red. 

Using fewer DCTs had a negative effect, as was evident from the higher Cllr values of 

0.53 and 0.54 when 15 DCTs (as opposed to 20 DCTs), in both Hertz and Bark scales, 

were parameterized. Figures 46 and 47 (overleaf) show the Tippett plots of the best and 

worst performing parameters based on the Cllr and EER values of /m/ extracted from the 

word [mai HL] ‘no’. 



 
143 

 

As shown in Figure 46, the greatest (calibrated) strength of evidence obtained for SS 

comparisons was SSLog10LR = 1.87; for DS comparisons it was DSLog10LR = –15.14, 

of which ca. 10% had DSLog10LRs ≤  −4. The lowest levels obtained for Cllr = 0.47 and 

EER = 14% were acceptably low and were obtained with this set of parameters.   

 

Figure 46: Tippett plot of the best performing parameter, 20 Hertz-scaled DCTs of /m/ - [mai 

HL].  

The (red) curves rising to the right represent the cumulative proportion of the SS (same speaker) 

comparisons, with the log10LRs equal to or less than the value indicated on the x-axis, while the 

(blue) curves rising to the left represent the cumulative proportion of the DS (different speaker) 

comparisons, with the log10LRs equal to or greater than the value indicated on the x-axis. Dotted 

lines and solid lines represent the uncalibrated and calibrated SS and DS Log10LRs, 

respectively.  

Figure 47 (overleaf) shows that a marginally higher Cllr = 0.54 was obtained with 15 

DCTs extracted in a Bark scale for /m/ - [mai HL]. The largest SSLR obtained was 

SSlog10LR = 1.72 (providing “limited” support for a SS hypothesis) and only ca. 8% of 

DS comparisons had DSLog10LRs ≤ − 4.  

So far we see that, using the DCTs extracted from the midpoint of /s, ʨh, n, m/, the Cllr 

values obtained range from 0.47 for /n, m/ to 0.77 for /s/. With reference to Table 23 

(§5.5), we see a general trend emerging from the findings. Table 23 ranks the linguistic-

phonetic segments experimented on in terms of their Cllr and EER values (from low to 

high) with their corresponding acoustical parameters. 

 

Cllr = 0.47 
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Figure 47: Tippett plot of the worst performing parameter, 15 Bark-scaled DCTs of /m/ - [mai 

HL].  

The best Cllr and EER values are highlighted in blue; the worst are shown in red.  
The (red) curves rising to the right represent the cumulative proportion of the SS (same speaker) 

comparisons, with the log10LRs equal to or less than the value indicated on the x-axis, while the 

(blue) curves rising to the left represent the cumulative proportion of the DS (different speaker) 

comparisons, with the log10LRs equal to or greater than the value indicated on the x-axis. Dotted 

lines and solid lines represent the uncalibrated and calibrated SS and DS Log10LRs, 

respectively. 

5.5 Overall comparisons and discussions 

The best results of using the DCT coefficients fitted to a spectrum are summarized in 

Table 23. As expected, nasals performed the best, with the lowest Cllr = 0.47 for /n/ - [na: 

HL] in a Hertz scale. This finding agrees with what is reported in Amino et al. (2006), 

who investigated the level of speaker individuality found in the nine Japanese consonants 

/t, d, s, z, ɾ, j, m, n, ɲ/. They found that nasals performed the best (cf. §2.21). However, I 

cannot directly compare the results obtained in the current thesis with these from previous 

studies, due to different experimental settings, e.g. different numbers of speakers (5 

speakers for Japanese vs 57 speakers for Standard Thai) and the statistical techniques 

used (F-ratio metric for Japanese vs MVLR for Standard Thai). The Standard Thai 

affricate /ʨh/ (Cllr = 0.63, EER = 19%) performed better than the English affricate /ʧ/ (Cllr 

= 0.98 and EER = 44%) as reported in Franco-Pedroso et al. (2012). If we compare the 

results of the Standard Thai fricative /s/ (Cllr = 0.70, EER = 19%) with those of previous 

FVC experiments, the Standard Thai fricative /s/ performed much worse than the English 

/s/ (lowest Cllr = 0.55 and EER = 17%) (cf. Kavanagh, 2012).  

Cllr = 0.54 
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I now turn to a detailed discussion of the best performing parameter for each of the target 

segments. The overall results shown in Table 23 confirm that the nasals /n, m/ perform 

better (lowest Cllr = 0.47, largest consistent-with-fact SSLog10LR = 2.40, ca. 14% of DS 

comparisons ≤ –4). 

Linguistic-

phonetic segments 
Cllr EER 

Acoustical 

parameters 

/n/ -  [na: HL] 0.47 15 15 Hertz-scaled DCTs 

/m/ - [mai HL] 0.47 14 20 Hertz-scaled DCTs 

/n/ - [nɔi L] 0.54 18 20 Hertz-scaled DCTs 

/ʨh/ - [ʨhai HL] 0.63 19 20 Hertz-scaled DCTs 

/s/ - [sa:m LH] 0.70 19 15 Hertz-scaled DCTs 

Table 23: Ranking order of the linguistic-phonetic segments experimented on in terms of their 

Cllr and EER values (from low to high) with their corresponding acoustical parameters. 

The best Cllr values for each of the parameters trialed can be ranked in order from low to 

high as shown in Table 23. The nasals /n, m/ performed the best (Cllr = 0.47), the affricate 

/tɕh/ performed marginally worse than the nasals (Cllr = 0.54) and the fricative /s/ 

performed the worst (Cllr = 0.70). In addition, the findings show that when the DCTs are 

parameterized in a Hertz scale they outperform those in a Bark scale. This implies that 

warping the spectral information in a perception scale might not be beneficial for 

extracting individualizing information in Standard Thai. Additionally, if a nasal /n/ is to 

be of use in Standard Thai FVC, /n/ should be extracted from a word such as [na: HL], 

instead of a particle such as [nɔi L].  

 

5.6 Summary 

In this chapter I first presented the segmentation procedure of the Standard Thai /s, ʨh, n, 

m/. Then the spectral moments (mean, variance, skew, and kurtosis) of /s/ were 

statistically analyzed using ANOVA, then MVLR. Although the ANOVA outputs gave 

significant results for the spectral moments of /s/ (p < 0.05), the derived FVC values 

showed only “limited support” at best for SS comparisons, with the highest Cllr = 0.92. 

Additionally, only 1% of the calibrated consistent-with-fact DSLog10LR was below –4. 

This means that the magnitude of such derived LRs was fairly weak. As such, the DCTs 
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for /s/ were further experimented on to see if the DCT parameters perform better than the 

spectral moments. The results showed that the DCTs performed better than the spectral 

moments on the basis of Cllr and EER values with the greatest calibrated consistent-with-

fact SSLog10LR ≤ 2.40. Thus, I decided to use the DCT based parameters for the other 

segments of Standard Thai /ʨh, n, m/.   
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Chapter 6 

Results of the formant trajectories of the diphthongs [ɔi] - [nɔi 

L] and [ai] - [mai HL] 

 

6.1 Introduction 

This chapter first presents the FVC results when the F2 trajectory and F1-F3 trajectories 

of the diphthongs [ɔi] - [nɔi L] and [ai] - [mai HL] were parameterized by cubic 

polynomials. After explaining the underlying reasons why these diphthongs were chosen, 

I show how to annotate such phonetic targets and explain how to correct the 

corresponding formant tracking errors. Regarding the results of the F2 trajectory, Cllr = 

0.67 and Cllr = 0.69 were obtained for [ɔi] - [nɔi L] and [ai] - [mai HL], respectively. 

However, the FVC performance significantly improved when F1 and F3 trajectories were 

added in addition to F2, resulting in the lowest Cllr = 0.42 for [ɔi] - [nɔi L] and Cllr = 0.49 

for [ai] - [mai HL]. 

 

6.2 Why were the F2 trajectories of the diphthongs [ɔi] - [nɔi L]  

       and [ai] - [mai HL] experimented on? 

It is well known that the measurement of F1 is quite often subject to different transmission 

channels (Künzel, 2001). It is therefore generally assumed that F1 should be excluded 

from FVC analyses. This is because the intrinsically low F1 values of the high vowels /i:, 

ɪ, u/ are shifted upwards by the telephone effect, which might result in a faulty F2 

measurement (Künzel, 2001, p. 89). Byrne and Foulkes (2007) also examined the effect 

of mobile-telephone transmission on first through third formant values (F1, F2, F3), 

which were measured at the temporary stable midpoint of the vowels. They found that 

the mean F1 values were 29% higher in telephone conditions than they were in speech 

recorded using a direct high-quality microphone. Chen, Shen, Campbell, and Schwartz 

(2009) also empirically tested the effect of mobile and landline conditions on formants 

from fully automatic formant measurements and F2 values were found to be lower in 

mobile conditions. However, Byrne and Foulkes (2007) suggested that F2 and F3 can still 

be used in FVC. 
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In the first experiment on the diphthongs [ɔi] - [nɔi L] and [ai] - [mai HL], only the F2 

trajectories were tested (followed by the F1-F3 trajectories of the diphthongs [ɔi] - [nɔi 

L] and [ai] - [mai HL]). This is because F2 is most robust. As previously mentioned, in 

forensically realistic conditions, F1 values (of high and possibly mid vowels) are usually 

compromised by a telephone’s band-pass, as is also the case for F3, especially when the 

telephone transmission is very bad (Rose et al., 2006, p. 331). Because of this 

compromise, only the F2 trajectory was chosen for the first experiment to simulate 

forensically realistic conditions. There are two reasons for choosing these particular two 

diphthongs. First, the diphthongs [ɔi] and [ai], traversed a large part of acoustical vowel 

space, so they were expected to exhibit greater between- to within-speaker variation. 

Specifically, /ɔ/ is a low-mid back vowel and /i/ is a high front vowel, thus these two 

vocalic targets provide more space for speakers to exhibit their variation, due to much 

movement in the vocal tract. Therefore, more individualizing information can be gained 

from this wide articulatory movement, which might further contain more speaker-specific 

information useful for FVC. Similarly, the diphthong [ai] is also interesting as it involves 

two widely separated articulatory targets, i.e. a low central vowel [a] and a high front 

vowel [i]. Second, since [ɔi] occurs in a sentence-final position, more duration is 

guaranteed because it tends to be stressed (as previously mentioned in §5.2.3, the duration 

of [n] - [nɔi L] was at least 117.40 ms and a maximum was 459.91 ms for this experiment). 

 

6.3 Informants   

All speech samples of [ɔi] - [nɔi L] and [ai] - [mai HL] were extracted from 30 speakers. 

 

6.4 Segmentation  

In what follows, I visually explain how I segmented the target diphthongs [ɔi] - [nɔi L] 

(§6.4.1) and [ai] - [mai HL] (§6.4.2), using the displays of the EMU speech database 

system (Cassidy, 1999).  

6.4.1 Formant trajectories of [ɔi] - [nɔi L] 

As mentioned previously, all the [ɔi] - [nɔi L] samples used in this experiment were 

extracted from the following sentence frame: 
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“phrɔʔ[H] mai[HL]  ʨhai[HL] na:[HL]͜   thi:[HL] ʔa [L]͜   rai [mid]  sak [L]͜   nɔi [L]”    

because       no             yes                  duty               what                any     particle         

This sentence can be translated into English as “This is because we do not have any 

responsibility”. The highlighted /ɔi/ is the target segment and the underlined words 

represent stress. Figure 48 reproduces the displays of the EMU speech database system 

(Cassidy, 1999) for the diphthong [ɔi] - [nɔi L]; it shows a label tier, a waveform, and a 

spectrogram with the corresponding formant tracking values. 

 

Figure 48: Label tier (top), waveform (middle), and spectrogram (bottom) of [ɔi] - [nɔi L], with 

the corresponding formant frequencies tracking. Red, yellow, green, and blue dots represent F1, 

F2, F3, and F4, respectively.  

Note: [ɔi] is labeled as [oi]. 

A diphthong is defined as “two vocalic targets in a single syllable” (Rose, 2002, p. 241). 

As can be seen in Figure 48, the articulatory movement of [ɔi] nicely reflects the changing 

F-patterns (F1-F4) as the tongue moves smoothly from one target to another. The first 

target of /ɔ/ is realized as a low-mid back rounded vowel and the second target /i/ as a 

high front unrounded vowel. The beginning of the first target [ɔ] was located at the F2 

vowel onset, as indicated by a clear dark band spectrogram (the first vertical green line). 

For [ɔ], we observe that F1 is high and is close to F2, indicating a back vowel (Rose, 

2002, p. 241). Additionally, F1 is fairly constant and F2 is continuously increasing to 

converge with F3 throughout [ɔ]. Regarding the second diphthongal target /i/, F1 is a bit 

lower and F2 is higher than in the case of /ɔ/, indicating a high front vowel (ibid.). The 

offset of /i/ was thus located at the point where F2 reaches its maximum frequency as 
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indicated by the second vertical green line. The corresponding acoustical properties of 

the target segment [ai] - [mai HL] are presented in Figure 49.  

6.4.2 Formant trajectoires of [ai] - [mai HL]  

Figure 49 reproduces the displays of the EMU speech database system (Cassidy, 1999) 

for the diphthong [ai] - [mai HL]; it shows a label tier, a waveform, and a spectrogram 

with the corresponding formant tracking values. 

 

Figure 49: Label tier (top), waveform (middle), and spectrogram (bottom) of [ai] - [mai HL] 

with the corresponding formant frequencies tracking. Red, yellow, green, and blue dots 

represent F1, F2, F3, and F4, respectively. 

The diphthong [ai] involves a low central vowel /a/ and a high front vowel /i/. The first 

vocalic target /a/ is phonetically realized as a short half-open vowel [ɐ], as it is influenced 

by the height of the second vocalic target /i/ (Rose, 2002, pp. 241-242). We also observe 

that the F2 and F3 of this /a/ are not static but increasing as the tongue is moving for the 

next high front vowel /i/ (ibid.). As such, the beginning point of a diphthong [ai] was 

marked at F2 onset, where there was a sudden change in F-patterns between /m/ and /a/ 

as indicated by the first vertical green line in Figure 49. In other words, the starting point 

was located at the earliest point right after the low amplitude of the preceding /m/. The 

offset was marked when the F2 of /i/ has reached its maximum frequency in conjunction 

with the beginning of the frication noise of the following affricate /ʨh/, as indicated by 

the second vertical green line. Notable in Figure 49 is the individualizing variation in the 

segment following the [ai] vowel. As clearly seen in the third panel of Figure 49, an 
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alveolar affricate /ʨh/ is realized as the fricative alveolar /s/. This is interesting as it is 

auditorily perceived as an affricate by the researcher. 

6.4.3 Formant tracking errors and manual correction 

This section presents the formant tracking errors and corresponding manual corrections 

of the diphthong [ɔi] - [nɔi L]. Figure 50 shows the formant tracking errors while Figure51 

shows how such formant tracking errors were manually corrected.  

 

Figure 50: Label tier (top), waveform (middle), and spectrogram (bottom) of [ɔi] - [nɔi L] with 

the corresponding formant tracking containing some errors (in the last one-third).  

Note: [nɔi] is labeled as [n2oy]. 

Figure 50 shows that manual correction of [ɔi]’s formant tracking was needed as some 

errors were observed during the last one-third of this particular token (as indicated by the 

red circle). That is, some blue, green, yellow, and red dots, which represent F4 to F1, 

respectively, had shifted downwards from their correct formant tracking position. Figure 

51 shows how such errors were corrected. 
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Figure 51: Label tier (top), waveform (middle), and spectrogram (bottom) of [ɔi] - [nɔi L] with 

the corresponding formant tracking after manual correction.  

Note: [nɔi] is labeled as [n2oy]. 

We observe from Figure 51 that, during the last one-third of this token, red, yellow, green 

and blue dots that represent F1 to F4, respectively, were manually shifted upwards. That 

is, red dots were shifted to the place where the yellow dots used to be. The same technique 

was applied to correct F2-F3. In contrast, it is not easy to correct F4 values, in this case 

because the highest (horizontal) dark band spectrogram is not easily observed. As such, 

F4 errors were manually shifted upwards using the preceding F4 values as the clues (F4 

was not tested in the current experiment).  

We now move on to the diphthong [ai], showing how to correct its formant trajectories. 

Figure 52 (overleaf) shows a label tier, a waveform, and a spectrogram of [ai] - [mai HL] 

with the corresponding formant tracking containing some errors. There were F-pattern 

tracking errors throughout the [ai] token. Again, some F4-F2 values (blue, green, and 

yellow dots) had shifted downwards especially towards the end of their trajectories. In 

contrast, fewer errors of F1 (red dots) were observed at the beginning portion. As such, 

the formant trajectory values were manually corrected as shown in Figure 53. 
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Figure 52: Label tier (top), waveform (middle), and spectrogram (bottom) of [ai] - [mai HL] 

with the corresponding formant tracking containing some errors.  

Note: [ai] is labeled as [aai]. 

 

Figure 53: Label tier (top), waveform (middle), and spectrogram (bottom) of [ai] - [mai HL] 

with the corresponding formant tracking after manual correction.  

Note: [ai] is labeled as [aai]. 
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Figure 53 shows the formant trajectories of [ai] after some errors were manually 

corrected. As previously discussed for [ɔi], higher formant values were used as clues in 

correcting those of lower formants. That is, some erroneous red dots at the beginning of 

F1 were manually placed at positions where F2 values were formerly tracked by the EMU 

speech database system (Cassidy, 1999). This same technique was also applied to F2 and 

F3. Regarding F4, the highest (horizontal) dark band spectrogram was used to track F4 

values (although F4 was not tested in the current experiment).  

6.4.4 Discarding of poor recording speech samples 

Some tokens of [ɔi] - [nɔi L] and [ai] - [mai HL] were excluded from the experiment 

because of low amplitude caused by poor recording quality. This might be the result of a 

poorly placed clipping microphone below the informants’ chin and/or the mal-functioning 

Roland® UA-25EX USB Audio Capture card itself. The formant tracking errors triggered 

by low amplitude are shown in Figure 54, where the [ɔi] diphthong of one of our 

informants, Speaker 9, is used as an example. As discussed in §6.2, forensic recording 

conditions are notoriously bad and F2 is able to be extracted from very bad quality 

recordings, thus only the F2 trajectories will be tested in addition to the F1-F3 trajectories.  

 

Figure 54: Label tier (top), waveform (middle), and spectrogram (bottom) of [ɔi] - [nɔi L] 

containing many formant tracking errors.  

Note: [nɔi] is labeled as [n2oy]. 
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Figure 54 clearly shows multiple errors in formant tracking, making it very difficult to 

identify the onset and offset of this particular token of [ɔi]. For this reason, tokens of this 

kind with extremely bad F-pattern tracking were discarded in the current experiment. 

6.4.5 Formant trajectories of the diphthong [ɔi]  

This section shows the formant trajectories (F1-F3) of the diphthongs [ɔi] - [nɔi L] plotted 

against the normalized duration in 100 msec. Figure 55 shows the F1-F3 trajectories of 

[ɔi] - [nɔi L] for Speaker 1. Plots of F1-F3 trajectories for all 30 speakers can be found in 

Appendix B.  

 

Figure 55: Speaker 1’s F1-F3 trajectories of the diphthong [ɔi] - [nɔi L] plotted against 

normalized duration (100 msec). 

S stands for session (1-2) and R stands for repeat (1-5). F1 is presented in green for session1 and 

yellow for session 2, F2 is presented in red for session 1 and orange for session 2, and F3 is 

presented in blue for session 1 and black for session 2. Note: /ɔi/ is labeled as /oi/. 

Since it is crucial to make sure at the outset that the input data for the MVLR formula, 

i.e. the formant trajectories, are properly extracted, F1-F3 values are plotted accordingly. 

Thus, Figure 55 exhibits the ten trajectories (2 sessions x 5 repeats) for each of F1, F2 

and F3, extracted from the diphthong [ɔi] - [nɔi L] uttered by Speaker 1. F1 trajectories 

(green and yellow) show relatively good consistency within the frequency range of ca. 

500-800 Hz. F2-F3 trajectories, on the other hand, exhibit greater within-speaker 

variation, i.e. the concave shape of F2 (red and orange) varies a lot after 40 msec while 
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that of F3 (black and blue) exhibits much within-variation at the onsets and offsets. In 

Figure 56, between-speaker variation is illustrated for [ɔi] - [nɔi L] by means of the F1-

F3 trajectories uttered by Speakers 1 and 9.   

 

Figure 56: Speaker 1 and Speaker 9’s F1-F3 trajectories of the diphthong [ɔi] - [nɔi L] plotted 

against normalized duration (100 msec).  

S stands for session (1-2) and R stands for repeat (1-5). F1 is presented in green for session 1 

and yellow for session 2, F2 is presented in red for session 1 and orange for session 2, and F3 is 

presented in blue for session 1 and black for session 2. Note: /ɔi/ is labeled as /oi/. 

Figure 56 shows the F1-F3 trajectories of the diphthong [ɔi] - [nɔi L] uttered by Speaker 

1 (left) and Speaker 9 (right). The F1 trajectories (green and yellow) of Speakers 1 and 9 

show a relatively similar straight line within the frequency range of ca. 500-800 Hz. The 

F2 trajectories (red and orange) also show a similar concave contour although Speaker 1 

shows the F2 offset at a higher frequency of ca. 2500 Hz. In the case of the F3 trajectories 

(black and blue), on the other hand, much between-speaker variation is observed. That is, 

F3 trajectories show a convex shape for Speaker 1 but are relatively straight for Speaker 

9. In §6.4.6, the cubic polynomial curve fitting is presented for [ɔi] - [nɔi L]. 

6.4.6 Polynomial curve fitting (cubic polynomials) 

In the current thesis, I approximate formant trajectories using a cubic polynomial function 

of the type ax3 + bx2 + cx + d, where a, b, c, and d are the coefficients and x is the time. 

The cubic polynomials can approximate the formant trajectory with an 'S' shaped 

trajectory, while lower order polynomials such as quadratic can only approximate the 'U' 

shaped trajectory and the linear polynomials can approximate only a straight line 

(Morrison, 2008, pp. 252-255). The cubic polynomials are selected in the current thesis 

as they adequately represent the formant trajectories of the current experimental data of 
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[ɔi] - [nɔi L], whose complex shape is either 'U' or 'S' (see §6.4.5 for the F1-F3 trajectory 

plots). As such, cubic polynomials fitted to the formant trajectories in normalized duration 

(100 msec) were used as parameters. The use of cubic polynomials fitted to normalized 

duration of the formant trajectories was justified by the results obtained in previous FVC 

studies (see §2.23.2), in which cubic polynomials fitted to equalized duration performed 

better than quadratic polynomials fitted to absolute duration (Morrison & Kinoshita, 

2008; Morrison & Kondaurova, 2009). Moreover, the pilot study of Standard Thai 

diphthongs [i:aw], [ɯ:a] and [u:a] presented in §4.1 also confirmed that, when cubic 

polynomials were used, the best results of Cllr = 0.02-0.04 were obtained. Figure 57 is an 

example of a cubic polynomial curve fitting, in which the F2 trajectory values of [ɔi] - 

[nɔi L] are plotted together with its polynomial fitting of ( 0.000531)x3 + 0.155159x2 + 

(–15.291889)x + 1539.427481. All F1-F3 trajectories of [ɔi] - [nɔi L] plotted together 

with cubic polynomials can be found in Appendix C.  

 

Figure 57: F2 trajectory values of [ɔi] - [nɔi L] (black dots), plotted together with its cubic 

polynomial curve fitting (dotted red line) of (0.000531)x3 + 0.155159x2 + (–15.291889)x + 

1539.427481. 

Figure 57 shows the F2 trajectory (black dots) of [ɔi] - [nɔi L], which is relatively well-

fitted by the cubic polynomials (dotted red line). Trying to fit such an F2 trajectory with 

fourth order polynomials might come at the risk of overfitting what is essentially 

imprecise raw data. After the F2 trajectory values were extracted by the EMU speech 

database system, the formant trajectories of this particular token [ɔi] - [nɔi L] could be 
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parameterized as [0.000531, 0.155159, –15.291889, 1539.427481] and used as input for 

MVLR calculation. The formant trajectories of [ai] - [mai HL], together with its curve 

fitting, are presented in §6.4.7. 

6.4.7 Formant trajectories of the diphthong [ai] - [mai HL] 

This section shows the formant trajectories (F1-F3) of the diphthong [ai] - [mai HL] 

plotted against normalized duration (100 msec). Plots of the F1-F3 trajectory of [ai] - [mai 

HL] for all 30 speakers can be found in Appendix D. 

 

Figure 58: Speaker 1’s F1-F3 trajectories of the diphthong [ai] - [mai HL] plotted against the 

normalized duration (100 msec).  

S stands for session (1-2) and R stands for repeat (1-5). F1 is presented in green for session 1 

and yellow for session 2, F2 is presented in red for session 1 and orange for session 2, and F3 is 

presented in blue for session 1 and black for session 2. 

Figure 58 exhibits the ten trajectories (2 sessions x 5 repeats) for each of F1, F2 and F3 

extracted from the diphthong [ai] - [mai HL] uttered by Speaker 1. The F1-F3 formant 

trajectories have considerably consistent contours. However, F1 (green vs yellow) and F2 

(red vs orange) trajectories exhibit less between-session variation than the F3 (black and 

blue) trajectory. To illustrate between-speaker variation, Speaker 1 and Speaker 9’s F1-

F3 trajectories of the diphthong [ai] - [mai HL] are shown in Figure 59 (overleaf). 
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Figure 59: Speaker 1 and Speaker 9’s F1-F3 trajectories of the diphthong [ai] - [mai HL] 

plotted against normalized duration (100 msec).  

S stands for session (1-2) and R stands for repeat (1-5). F1 is presented in green for session 1 

and yellow for session 2, F2 is presented in red for session 1 and orange for session 2, and F3 is 

presented in blue for session 1 and black for session 2. 

Figure 59 shows Speaker 1 and Speaker 9’s F1-F3 trajectories of the diphthong [ai] - [mai 

HL] plotted against normalized duration (100 msec). The F1 trajectories of Speaker 9 

show marginally less between-session than those of Speaker 1 within ca. 500-800 Hz. F2 

trajectories occupy a higher frequency range (ca. 1400-2200 Hz) for Speaker 1 than for 

Speaker 9 (ca. 1100-1800 Hz). Moreover, the F3 trajectories of Speaker 9, except a token 

from session 2 repeat 1 (black solid line), exhibit a slight ‘S’ shape in a lower frequency 

(ca. 1900-2800 Hz), while those of Speaker 1 show a slightly convex shape in a higher 

frequency range (ca. 2300-3000 Hz). 

6.4.8 Polynomial curve fitting of the diphthong [ai] - [mai HL]  

This section shows how well cubic polynomials fitted the F2 trajectory of [ai] - [mai HL]. 

Duration was normalized to 100 msec. All F1-F3 trajectories of [ai] - [mai HL] plotted 

together with cubic polynomials can be found in Appendix E. 

Figure 60 (overleaf) exemplifies a cubic polynomial curve fitting in which the formant 

trajectory of [ai] - [mai HL] is plotted together with its polynomial fitting of 

(–0.000854)x3 + (–0.023227)x2 + (16.052403)x + 1589.501831. We can see in Figure 60 

that the cubic polynomials (dotted red line) fit fairly well to the F2 trajectory (black dots). 

§§6.5 and 6.6 present the results of 1) the F2 trajectory of [ɔi] - [nɔi L] and [ai] - [mai 

HL] and 2) the F1-F3 trajectories of [ɔi] - [nɔi L] and [ai] - [mai HL] in terms of Log10LR, 
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Figure 60: F2 trajectory values (black dots) of the diphthong [ai] - [mai HL] plotted together 

with its cubic polynomial fitting (dotted red line) of (–0.000854)x3 + (–0.023227)x2 + 

(16.052403)x + 1589.501831. 

Cllr and EER values, respectively. Tippett plots will then be presented followed by 

discussion and comparison with the results of the pilot studies presented in Chapter 4. 

  

6.5 Experimental results: F2 trajectory of diphthongs [ɔi] - [nɔi L] and  

      [ai] - [mai] 

This section first tabulates the results of Log10LR, Cllr and EER when cubic polynomials 

fitted to F2 trajectories of the diphthongs [ɔi] - [nɔi L] and [ai] - [mai HL] were 

parameterized. Then, a Tippett plot will be presented and this will be followed by 

discussion. 

 

Diphthongs 

 

Cubic Polynomials(F2) 

Calibrated 

LOG10LR 

Cllr EER 

SS DS 

[ɔi] - [nɔi L] ≤ 1.01  ≥ −9.96 0.69 19 

[ai] - [mai HL] ≤ 1.38    ≥ −19.91 0.67 17 

Table 24: Calibrated Log10LR, Cllr, and EER values when cubic polynomial coefficients from 

the diphthongs [ɔi] - [nɔi L] and [ai] - [mai HL] were parameterized, respectively. 
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Table 24 shows that the magnitude of the strongest consistent-with-fact SSLog10LR for 

both [ɔi] - [nɔi L] and [ai] - [mai HL] only moderately supports the SS hypothesis. As for 

[ɔi], the magnitude of its SSLRs is fairly weak; all of them are smaller than the strongest 

consistent-with-fact SSLog10LR = 1.01. The diphthong [ai] - [ai HL] shows a similar 

trend in that the largest SSLog10LR = 1.38 was obtained, suggesting only “moderate” 

support for the SS hypothesis. For DSLRs, better results, log10LR ≤  −4, which strongly 

support the DS hypothesis, were obtained for both [ɔi] - [nɔi L] and [ai] - [mai HL]. We 

will look closely at the magnitude of LR values using Tippett plots in Figures 61 and 62.  

 

Figure 61: Tippett plot of [ɔi]’s second formant (F2) trajectory when cubic polynomials were 

parameterized.  

The (red) curves rising to the right represent the cumulative proportion of the SS (same speaker) 

comparisons, with the log10LRs equal to or less than the value indicated on the x-axis, while 

those rising to the left (blue curves) represent the cumulative proportion of the DS (different 

speaker) comparisons, with the log10LRs equal to or greater than the value indicated on the x-

axis. Dotted lines and solid lines represent the uncalibrated and calibrated SS and DS Log10LRs, 

respectively.  

Figure 61 shows that, when [ɔi]’s F2 trajectory was parameterized with cubic 

polynomials, a Cllr value = 0.69 and an EER = 19% were obtained. After calibration, the 

magnitude of the misleading SSLog10LR = –5.74 and DSLog10LR = 1.78 was reduced to 

Cllr = 0.69 
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SSLog10LR = –3.03 and DSLog10LR = 0.89. The largest calibrated SSLog10LR = 1.01 

was obtained, suggesting only “moderate” support for the SS hypothesis. For DS 

comparisons, ca. 6% had DSLog10LRs ≤  −4, suggesting “very strong” support for the 

defense hypothesis.  

A Tippett plot of [ai]’s second formant (F2) trajectory when its cubic polynomials were 

parameterized is shown in Figure 62.  

 

Figure 62: Tippett plot of [ai]’s second formant (F2) trajectory when cubic polynomials were 

parameterized.  

The (red) curves rising to the right represent the cumulative proportion of the SS (same speaker) 

comparisons, with the log10LRs equal to or less than the value indicated on the x-axis, while the 

(blue) curves rising to the left represent the cumulative proportion of the DS (different speaker) 

comparisons, with the log10LRs equal to or greater than the value indicated on the x-axis. Dotted 

lines and solid lines represent the uncalibrated and calibrated SS and DS Log10LRs, 

respectively.  

We see in Figure 62 that, when the F2 trajectory of [ai] - [mai HL] was parameterized by 

cubic polynomials, marginally lower Cllr = 0.67 and EER = 17% (as opposed to Cllr = 0.69 

and EER = 19% for [ɔi] - [nɔi L]) were obtained. All SS comparisons for [ai]’s F2 

trajectory gave (consistent-with-fact) SSLRs smaller than SSLog10LR = 1.38, suggesting 

“moderate support” for the SS hypothesis. For DS comparisons, 10% gave calibrated 

Cllr = 0.67 
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consistent-with-fact DSlog10LRs ≤  −4 , showing “very strong” support for the DS 

hypothesis when the F2 trajectory of [ai] - [mai HL] was parameterized by cubic 

polynomials. 

 

6.6 Experimental results: F1-F3 trajectories of diphthongs [ɔi] - [nɔi L]  

      and [ai] - [mai HL] 

This section, where Log10LR, Cllr and EER values of cubic polynomials fitted to F1-F3 

trajectories of the diphthongs [ɔi] - [nɔi L] and [ai] - [mai HL] are parameterized, adopts 

the same convention as the previous one.  

 

Diphthongs 

 

Cubic polynomials (F1-F3) 

Calibrated 

LOG10LR 

Cllr EER 

SS DS 

[ɔi] - [nɔi L] ≤ 1.91 ≥ −15.96 0.42 10 

[ai] - [mai HL] ≤ 1.84 ≥ −25.06 0.49 18 

Table 25: Calibrated Log10LR, Cllr, and EER values when cubic polynomial coefficients of the 

diphthongs [ɔi] - [nɔi L] and [ai] - [mai HL] were parameterized, respectively. 

Table 25 shows a substantially lower Cllr = 0.42 and Cllr = 0.49 for the diphthongs [ɔi] - 

[nɔi L] and [ai] - [mai HL] when the cubic polynomials of their F1-F3 trajectories (as 

opposed to only the F2 trajectory) were parameterized. Not only the Cllr values were lower 

but also the EER values. EER = 10% and EER = 18% were obtained for the diphthongs 

[ɔi] - [nɔi L] and [ai] - [mai HL], respectively. These findings suggest that the F1 and F3 

trajectories add much individualizing information to the F2 trajectory and substantially 

improve FVC performance. In forensically realistic conditions, where F1 and F3 might 

be compromised by a telephone band-pass filter, using only the F2 trajectory might be of 

forensic use given that its LRs are combined with those of other linguistic-acoustical 

segments.  

We will look closely at the magnitude of LR values using Tippett plots in Figures 63 and 

64. 
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Figure 63: Tippett plot of [ɔi]’s F1-F3 trajectories when cubic polynomials were parameterized.  

The (red) curves rising to the right represent the cumulative proportion of the SS (same speaker) 

comparisons, with the log10LRs equal to or less than the value indicated on the x-axis, while the 

(blue) curves rising to the left represent the cumulative proportion of the DS (different speaker) 

comparisons, with the log10LRs equal to or greater than the value indicated on the x-axis. Dotted 

lines and solid lines represent the uncalibrated and calibrated SS and DS Log10LRs, 

respectively.  

Figure 63 reveals that, in comparison with the results of [ɔi] - [nɔi L] using only the F2 

trajectory as parameter, we get a better consistent-with-fact SSlog10LR = 1.91 when cubic 

polynomials fitted to the F1-F3 trajectories of [ɔi] - [nɔi L] are parameterized. For DS 

comparisons, ca. 20% had calibrated consistent-with-fact DSlog10LRs ≤  −4 when F1-

F3 trajectories of [ɔi] - [nɔi L] were parameterized as compared to only ca. 6% using just 

the F2 trajectory. 

Similarly, Figure 64 (overleaf) reveals that, in comparison to the results obtained for [ɔi] 

- [nɔi L], when only the F2 trajectory was parameterized by cubic polynomials (Cllr = 

0.67 and EER = 17%), we obtained a substantially lower Cllr = 0.49 but a marginally 

higher EER = 18% for [ai] - [mai HL], where all F1-F3 trajectories were parameterized 

by cubic polynomials. After calibration, the largest consistent-with-fact SSlog10LR = 3.36 

was reduced in magnitude to SSlog10LR = 1.84, suggesting only “moderate” support for 

Cllr = 0.42 
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Figure 64: Tippett plot of [ai]’s F1-F3 trajectory when cubic polynomials were parameterized.  

The (red) curves rising to the right represent the cumulative proportion of the SS (same speaker) 

comparisons, with the log10LRs equal to or less than the value indicated on the x-axis, while the 

(blue) curves rising to the left represent the cumulative proportion of the DS (different speaker) 

comparisons, with the log10LRs equal to or greater than the value indicated on the x-axis. Dotted 

lines and solid lines represent the uncalibrated and calibrated SS and DS Log10LRs, 

respectively. 

the SS hypothesis. For DS comparisons, ca. 20% had calibrated consistent-with-fact 

DSlog10LRs ≤  −4, suggesting “very strong” support for the defense hypothesis.  

 

6.7 Discussion 

We have observed, on the basis of Log10LR, Cllr and EER values, that, for the same target 

diphthongs [ɔi] - [nɔi L] and [ai] - [mai HL], FVC performance of the F1-F3 trajectories, 

which were parameterized by cubic polynomials, is superior to that of the F2 trajectory 

used on its own. In the case of [ɔi] - [nɔi L], the best SSlog10LR = 1.91, DSlog10LRs ≤

 −4 (20% of DS comparisons), Cllr = 0.42 and EER = 10% were obtained when F1-F3 

trajectories were parameterized by cubic polynomials. A similar trend was observed for 

[ai] - [mai HL], with the best SSlog10LR = 1.84, Cllr = 0.49 and EER = 18% when F1-F3 

Cllr = 0.49 
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trajectories were parameterized as opposed to SSLog10LR = 1.38, Cllr = 0.67 and EER = 

17% for [ai] - [mai HL] when only the F2 trajectory was parameterized. The first possible 

reason why the formant trajectories of [ɔi] - [nɔi L] outperformed those of [ai] - [mai HL] 

might be that the diphthong [ɔi] - [nɔi L] provided more acoustical vowel space for a 

speaker to exhibit greater individualizing information. That is, [ɔi] - [nɔi L] involves a 

mid-low back vowel [ɔ] and a high front vowel [i], whereas the diphthong [ai] involves a 

low central vowel [a] and a high front vowel [i]. The second possible reason for a better 

performance of [ɔi] - [nɔi L] might be that a longer duration of at least 117.40 msec and 

a maximum of 459.91 msec were parameterized for [ɔi] - [nɔi L].  

The reason why an F1-F3 trajectory outperforms an F2 trajectory may be in part related 

to the additional individuating information gained from the articulatory movement 

reflected in F1, which inversely correlates with vowel height (Nolan, 1983; Rose, 2002). 

In addition, as Ladefoged and Johnson (2014, p. 207) stated, higher frequency formants 

“are not uniquely determined for each speaker, but they certainly are indicative of a 

person’s voice quality”. Thus, F3 potentially added much individualizing information due 

to a speaker’s voice quality reflected in F3. 

 

6.8 Summary 

In this chapter I have presented the FVC results when 1) the F2 trajectory and 2) the F1-

F3 trajectories of the diphthongs [ɔi] - [nɔi L] and [ai] - [mai HL], fitted by cubic 

polynomials, were parameterized. The findings show that the results of the F1-F3 

trajectories outperform those of the F2 trajectory in terms of Log10LR, Cllr and EER 

values. The best Cllr and EER values of [ɔi] - [nɔi L] were marginally lower than those of 

[ai] - [mai HL] (Cllr = 0.42 vs Cllr = 0.49, EER = 10% vs EER = 18%) when F1-F3 

trajectories were parameterized. The magnitude of the consistent-with-fact SSLRs is 

fairly weak, in that the strongest consistent-with-fact SSLog10LR = 1.91 for [ɔi] - [nɔi L] 

and SSLog10LR = 1.84 for [ai] - [mai HL] were obtained, both of which provide only 

“moderate” support for the correct SS hypothesis. In contrast, the best consistent-with-

fact DSLRs obtained were DSlog10LRs ≤  −4 for both [ɔi] - [nɔi L] and [ai] - [mai HL], 

suggesting “very strong” support for the defense hypothesis. 
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Chapter 7 

Results of the fundamental frequency (F0): Long-term F0 

(LTF0) and tonal F0 

 

7.1 Introduction 

This chapter presents the FVC results using long-term fundamental frequency (LTF0) and 

tonal F0 as parameters. I first present the methodology I have used to show how the LTF0 

(six LTF0 distribution parameters and the percentile-based technique) and tonal F0 were 

extracted and parameterized. The results are then presented and discussed on the basis of 

log10LRs, Cllr values and Tippett plots. I conclude this chapter with comments regarding 

the parameterization of LTF0 in real casework.  

 

7.2 Long-term fundamental frequency (LTF0) 

Before we go further, the reader is encouraged to go back to §2.18.4 and §2.18.5; in these 

sections I outlined the rationale behind the use of LTF0 and I reviewed the relevant 

literature. To remind the reader, the current experiment aims to exploit the F0 features 

not only from the tonal F0 but also from the distribution of long-term fundamental 

frequency (LTF0). As such, the six LTF0 distribution parameters that relate to the shape 

of the F0 distribution were tested. They include: 1) mean; 2) standard deviation (SD); 3) 

skew; 4) kurtosis; 5) modal F0; and 6) modal density. As previously mentioned (§2.22.4), 

the first four measures of LTF0 (mean, SD, skew, and kurtosis) are essentially the four 

moments. The last two measures are the mode (the most often occurring value) of F0 and 

F0’s kernel probability density (area under such F0 values), respectively. That is, the 

mean is defined as the average energy concentration and SD is how spread-out the energy 

is (Jongman et al., 2000, p. 1253). Skew is a symmetrical indicator for the energy 

distribution (ibid.). Kurtosis is an indicator of energy peakedness (ibid.). Modal density 

refers to the area where the modes are clustered around the mean. When modal density is 

clustered around the mean with larger standard deviation (SD), the distribution will be 

larger than a modal density with the same mean but lower standard deviation. If the modal 

density has a platykurtic distribution (plateau-like distribution), the modes are clustered 

around the edges (as opposed to the mean) of the distribution (Alderman, 2005, pp. 28-
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33). In the current experiment, the modal F0 and its density values were estimated using 

the KernSmooth library (Wand & Jones, 1994) in R (Ihaka & Gentleman, 1996). The 

appropriate kernel density bandwidth was selected using the dpik function in KernSmooth 

library (Sheather & Jones, 1991; Wand & Jones, 1994). 

7.2.1 Data extraction 

LTF0 values were extracted from spontaneous speech, collected by means of a fax task, 

and 53 speakers of Standard Thai were included in this experiment. As such, 53 SS 

comparisons and 1,378 DS comparisons were possible. As mentioned in §2.22.4, a one-

minute long speech was chosen for testing LTF0 in Standard Thai. Before each of the 60-

second speech samples was selected for FVC experimentation, it was visually judged to 

contain roughly the same number of utterances (u) separated by pauses as shown in Figure 

65. Using EMU in counting a one-minute long speech does not help much when dealing 

with a lot of silence during the conversation. Visual judgement is therefore the best 

strategy, given that all utterances are further measured by EMU to ensure they are of 

approximately one-minute duration. Pauses were defined to be at grammatical junctures 

or semantically determined (Eisler, 1968, p. 13). Figure 65 shows a screenshot of the 

EMU used to cut up a one-minute utterance into the smaller chunks (u) by pauses.  

 

Figure 65: Label tier, speech waveforms, and F0 tracking. Each u in the label tier represents an 

utterance of speech samples used to extract LTF0. 

In Figure 65, all cut-up utterances are labeled as u. F0 values of these utterances were 

then measured every 10 msec with a window length of 0.0075 by EMU and modeled 

using the LTF0 parameters
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7.2.2 Standard Thai LTF0 distribution plots 

In order to observe more closely the distribution of Standard Thai LTF0, the charts in 

Figure 66 show the sample LTF0 distributions from four different informants, elicited 

during two different sessions. The first session is plotted in blue and the second in red.  

 

Figure 66: LTF0 distribution plots extracted from Speakers 1-4. Blue and red curves represent 

the first and second recording sessions, respectively.  

All the LTF0 distributions plotted in Figure 66 are more or less unimodal. For the first 

session (blue) of Figure 66.1, an additional peak is observed on the left. This bimodal 

distribution is “found to be very common due to creaky phonation” (Kinoshita & Ishihara, 

2010, p. 50). As for the second session (red) of Figure 66.1, there is a clear mode that 

exists around the F0 of 100 Hz. Despite the similarity in the general shape of the LTF0 

distribution between sessions, such additional peak (blue), as shown in Figure 66.1, will 

shift the values of the six LTF0 parameters significantly and hence produce different 

values (Kinoshita & Ishihara, 2010, p. 50). Moreover, small changes within each 
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distribution curve can also be observed, especially those in Figure 66.2 and Figure 66.4. 

Based on these dynamic variations, we can conclude that the percentile-based technique 

should also be used to capture such dynamic variations of the LTF0 distribution. Since 

the 10% percentile measure was found to be the most effective technique for capturing 

the LTF0 distribution in Kinoshita and Ishihara (2010, p. 53), the 10% percentile 

technique will also be tested in the current thesis. In sum, not only the six LTF0 

parameters of LTF0 will be tested, but also the 10% percentile technique. 

 

7.3 Experimental results when using LTF0 

This section and the following present the results of using LTF0 and the 10% percentile 

technique on the basis of Log10LR, Cllr and EER, respectively. The Tippett plots will then 

be presented accordingly. The six LTF0 measures were split into three patterns to see to 

what extent the modal F0 + modal density parameters improve the experimental results 

obtained on the basis of the four spectral moments, i.e. to determine which combinations 

work well and which perform more poorly. Table 26 shows the MVLR results when using 

as parameters: 1) all six LTF0-based features (the spectral moments, modal F0, and modal 

density); 2) the spectral moments by themselves; and 3) mode plus modal density.  

All LTF0-based features The four spectral moments  Modal F0 and density 

Calibrated 

LOG10LR 

Cllr EER 

 

Calibrated 

LOG10LR 

Cllr EER Calibrated 

LOG10LR 

Cllr EER 

SS DS SS DS SS DS 

≤ 1.06 ≥ −11.01 0.74 28% ≤ 1.18 ≥ −12.02 0.75 27% ≤ 1.01 ≥ −15.17 0.74 25% 

Table 26: Log10LR, Cllr, and EER values when mean, SD, skew, kurtosis, modal F0, and modal 

density were combined according to different patterns. 

Table 26 shows that the three sets of parameters performed at the same level since their 

calibrated Log10LRs, Cllr and EER values were comparatively similar. All three sets 

produced largest consistent-with-fact SSlog10LRs ≤ 2 and DSlog10LRs ≥ −16. The 

highest Cllr = 0.75 was obtained for the four moments, but it was only marginally higher 

than that of the other patterns: Cllr = 0.74 for the six LTF0-based features and for the 

modal F0 and modal density, respectively. EER values of 25%, 27% and 28% were 

obtained for the modal F0 and modal density, the four moments and the six LTF0-based 

features. These comparatively similar results suggest that the six LTF0-based features 
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were actually so closely correlated that separating them did not produce significantly 

different results. The Tippett plots and summary tables in §§7.3.1 to 7.3.3 reflect results 

achieved following the parameterization of 1) all six LTF0-based features; 2) the four 

spectral moments (mean, standard deviation, skew, kurtosis); and 3) mode and modal 

density. Each plot and table is followed by discussion.  

7.3.1 LTF0: all six features 

The Tippett plot in Figure 67 shows system performance subject to the parameterization 

of all six LTF0 features (mean, SD, skew, kurtosis, modal F0 and modal density). Table 

27 summarizes the strongest consistent-with-fact and contrary-to-fact SSLRs and DSLRs 

with reference to Standard Thai. 

  

Figure 67: Tippett plot of LTF0 when all six LTF0 features (mean, SD, skew, kurtosis, modal 

F0 and modal density) were parameterized.  

The (red) curves rising to the right represent the cumulative proportion of the SS (same speaker) 

comparisons, with the log10LRs equal to or less than the value indicated on the x-axis, while the 

(blue) curves rising to the left represent the cumulative proportion of the DS (different speaker) 

comparisons, with the log10LRs equal to or greater than the value indicated on the x-axis. Dotted 

lines and solid lines represent the uncalibrated and calibrated SS and DS Log10LRs, 

respectively. 

Cllr = 0.74 
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Standard Thai Consistent-with-fact/ 

Contrary-to-fact SSLR 

Consistent-with-fact/ 

Contrary-to-fact DSLR 

Uncalibrated 2.94/–3.15 –37.7/4.36 

Calibrated  1.06/–0.86 –11.01/1.49 

Table 27: Largest consistent-with-fact/contrary-to-fact SSLRs and DSLRs of Standard Thai 

when all six LTF0 features were parameterized. 

As shown in Figure 67 and Table 27, the largest uncalibrated consistent-with-fact and 

contrary-to-fact SSLog10LR values (solid and dotted red lines, respectively) were 

SSlog10LR = 2.94 and SSlog10LR = –3.15. After calibration, the former was reduced to 

SSlog10LR = 1.06, suggesting “limited” support for the SS hypothesis. The latter was 

reduced substantially to SSlog10LR = –0.86. For DS comparisons, the magnitude of the 

largest uncalibrated contrary-to-fact DSlog10LR = 4.36 was substantially reduced to 

DSlog10LR = 1.49 after calibration. Moreover, 7% of the calibrated DSLRs (solid blue 

line) were greater than –4, which suggests “very strong” support for the defense 

hypothesis. The magnitude of the consistent-with-fact DSLRs is much greater than that 

of the SSLRs.  

7.3.2 LTF0: the four spectral moments 

The results achieved when using the four spectral moments (mean, standard deviation, 

skew, kurtosis) as parameters are shown in Figure 68 and Table 28 (overleaf).  

Figure 68 and Table 28 reveal that using only mean, standard deviation, skew, and 

kurtosis as parameters yielded a slightly worse Cllr value of 0.75 as compared to 0.74 in 

the previous experiment (where all six LTF0 features were used). After calibration, the 

magnitude of Log10LRs was reduced in both SS and DS comparisons. For example, the 

largest uncalibrated consistent-with-fact SSLog10LR = 2.79 shrunk to SSLog10LR = 1.18, 

suggesting “limited” support for the SS hypothesis; the largest uncalibrated consistent-

with-fact DSLog10LR = –32.85 shrunk to SSLog10LR = –12.02, suggesting “very strong” 

support for the defense hypothesis. The largest contrary-to-fact SSlog10LR = –3.26 and 

DSlog10LR = 4.81 were substantially reduced to SSlog10LR = –1.33 and DSlog10LR = 

1.94. 

 



 
173 

 

 

 

Figure 68: Tippett plot of LTF0 when the four spectral moments (mean, standard deviation, 

skew, kurtosis) were parameterized.  

The (red) curves rising to the right represent the cumulative proportion of the SS (same speaker) 

comparisons, with the log10LRs equal to or less than the value indicated on the x-axis, while the 

(blue) curves rising to the left represent the cumulative proportion of the DS (different speaker) 

comparisons, with the log10LRs equal to or greater than the value indicated on the x-axis. Dotted 

lines and solid lines represent the uncalibrated and calibrated SS and DS Log10LRs, 

respectively.  

 

Standard Thai Consistent-with-fact/ 

Contrary-to-fact SSLR 
Consistent-with-fact/ 

Contrary-to-fact DSLR 

Uncalibrated 2.79 / –3.26 –32.85 / 4.81 

Calibrated  1.18 / –1.33 –12.02 / 1.94 

Table 28: Largest consistent-with-fact/contrary-to-fact SSLRs and DSLRs of Standard Thai 

when the four spectral moments (mean, SD, skew, kurtosis) were parameterized. 

Cllr = 0.75 
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7.3.3 LTF0: model F0 and modal density 

The Tippett plot in Figure 69 shows system performance subject to the parameterization 

of modal F0 and model density. Table 29 summarizes the strongest consistent-with-fact 

and contrary-to-fact SSLRs and DSLRs with reference to Standard Thai.  

  

Figure 69: Tippett plot of LTF0 when modal F0 and model density were parameterized. 

 The (red) curves rising to the right represent the cumulative proportion of the SS (same 

speaker) comparisons, with the log10LRs equal to or less than the value indicated on the x-axis, 

while the (blue) curves rising to the left represent the cumulative proportion of the DS (different 

speaker) comparisons, with the log10LRs equal to or greater than the value indicated on the x-

axis. Dotted lines and solid lines represent the uncalibrated and calibrated SS and DS Log10LRs, 

respectively.  

Standard Thai Consistent-with-fact/ 

Contrary-to-fact SSLR 
Consistent-with-fact/ 

Contrary-to-fact DSLR 

Uncalibrated 1.46 / –1.53 –22.94 /1.83 

Calibrated  1.01 / –1.17 –15.17 / 1.26 

Table 29: Largest consistent-with-fact/contrary-to-fact SSLRs and DSLRs of Standard Thai 

when modal F0 and model density were parameterized. 

Cllr = 0.74 
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Figure  69 and Table 29 show that, after calibration, the magnitude of log10LR values was 

not reduced as much as in the case of the two previous experiments. For instance, the 

uncalibrated contrary-to-fact SSlog10LR = –1.53 was reduced to SSlog10LR = –1.17 and 

the uncalibrated contrary-to-fact DSlog10LR = 1.83 to DSlog10LR = 1.26. These relatively 

well-calibrated LRs reflected in a lower Cllr
cal (calibration loss) of 0.078, as compared to 

Cllr
cal = 0.095 for the six LTF0 features and Cllr

cal = 0.104 for the four moments (mean, 

SD, skew and kurtosis) (see §3.8 on calibration loss). Notably, when modal F0, as 

opposed to mean F0, was included in the experiment, better results in terms of calibration 

loss were obtained. This is confirmed by the findings in Hudson et al. (2007). These 

showed that mode (as opposed to mean) should be a truer indicator for capturing the 

characteristics of LTF0 distribution as the mean of means has been “pulled up” by higher 

F0 values (ibid.). Thus, in the current experiment, mode rather than mean is considered 

as better able to capture LTF0 distribution, which might further result in low calibration 

loss when modal F0 and modal density are parameterized. However, the Cllr in this 

experiment was still high, at 0.74, which might be due in part to a weak magnitude of the 

consistent-with-fact LRs, resulting in higher penalties. Given the results that I have just 

described, Standard Thai LTF0 distribution is generally amenable to FVC provided that 

such LTF0 features are combined with other linguistic-acoustical segments. §7.4 presents 

the results of using the 10% percentile technique in modeling the dynamic variations of 

the LTF0 distribution.   

 

7.4 Experimental results when using the 10% percentile technique 

As shown in §7.2.2, dynamic variations were observed in Standard Thai LTF0 

distribution plots, which further prompts us to use the 10% percentile technique for 

capturing such dynamic characteristics of LTF0 distribution. In the current thesis, the 

distribution of F0 values extracted from a long stretch of speech were modeled by the 

binned kernel density function using a bkde command with an appropriate bandwidth set 

by the dpik function of the R’s Kern Smooth library (Sheather & Jones, 1991; Wand & 

Jones, 1994). A bkde function was run in R (Ihaka & Gentleman, 1996) to calculate the 

density value and the Hz for each of the 10 percentiles. Figure 70 (overleaf) shows the 

Tippett plot of LTF0 when its distribution was captured by the 10% percentiles and 

parameterized in a Hertz scale. The corresponding largest consistent-with-fact/contrary-

to-fact SSLRs and DSLRs are shown in Table 30. 
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Surprisingly, using the percentile-based technique in a Hertz scale did not improve the 

results, over those of the six LTF0-based features, as was expected from the results shown 

in the literature. That is, the 10% percentiles technique yielded the highest Cllr = 0.89 and 

highest EER = 30% when compared to those of the previous LTF0 experiments. This 

 

 

Figure 70: Tippett plot of LTF0 when its distribution was captured by the 10% percentiles and 

parameterized in a Hertz scale.  

The (red) curves rising to the right represent the cumulative proportion of the SS (same speaker) 

comparisons, with the log10LRs equal to or less than the value indicated on the x-axis, while the 

(blue) curves rising to the left represent the cumulative proportion of the DS (different speaker) 

comparisons, with the log10LRs equal to or greater than the value indicated on the x-axis. Dotted 

lines and solid lines represent the uncalibrated and calibrated SS and DS Log10LRs, 

respectively.  

Standard Thai Consistent-with-fact/ 

Contrary-to-fact SSLR 
Consistent-with-fact/ 

Contrary-to-fact DSLR 

Uncalibrated –2.80 / 1.75 –16.39 / 1.65 

Calibrated  0.67 / –0.87 –5.03 / 0.65 

Table 30: Largest consistent-with-fact/contrary-to-fact SSLRs and DSLRs of Standard Thai 

LTF0 when their distribution was captured by the 10% percentiles and parameterized in a Hertz 

scale.  

Cllr = 0.89 
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contradicts what we found in the literature, where percentile-based techniques were 

proved to better capture the distribution and to provide greater detail (cf. Kinoshita & 

Ishihara, 2010). Additionally, for the experimental setting discussed in this section, the 

largest consistent-with-fact SSlog10LR obtained was SSlog10LR = 0.67, suggesting only 

“limited support” for the SS hypothesis. Moreover, only ca. 7% had DSlog10LRs ≤  −4, 

suggesting “very strong” support for the defense hypothesis. Thus, the results of LTF0 in 

Standard Thai were worse than those reported for Japanese, where the percentile-based 

techniques outperformed the base-line 6 LTF0 measures (ibid.).  

In §7.5, we look at the results achieved by exploiting tonal F0 for [ɔi] - [nɔi L] and [ai] - 

[mai HL].  

 

7.5 Tonal F0 of [ɔi] - [nɔi L] and [ai] - [mai HL] 

As mentioned in §4.4, where the linear, quadratic and cubic polynomials fitted to the 

falling F0 contours of [ai] - [ʨhai HL] were experimented with using MVLR, we achieved 

the best results when quadratic polynomials were parameterized. That is, all SS 

comparisons were correctly discriminated with the lowest Cllr = 0.39. For DS 

comparisons, ca. 28% were wrongly discriminated as coming from the same speakers and 

ca. 20% had DSlog10LRs ≤  -4, suggesting “very strong” support for the defense 

hypothesis. It was also concluded from these findings that the quadratic polynomial 

sufficiently approximated the falling F0 contour of [ai] - [ʨhai HL], while the cubic 

polynomial might be overfitted. This being the case, it is prudent to conduct a further 

experiment on tonal F0 extracted from the diphthongs [ɔi] - [nɔi L] and [ai] - [mai HL]. 

Before we go further, the reader is encouraged to refer to §6.2, where the rationale for 

choosing these particular segments is given. Briefly, [ɔi] - [nɔi L] has been chosen as this 

particular diphthong potentially provides more acoustical vowel space for informants to 

exhibit difference in articulation due to the two different vocalic targets that are involved, 

i.e. /ɔ/, which is a low-mid back vowel, and /i/, a high front vowel. Moreover, more 

duration is guaranteed with [ɔi] - [nɔi L], where the final words tend to be stressed in this 

sentence-final position (Abramson, 1962; Naksakul, 1998). This assertion is supported 

by the fact that the duration of [n] - [nɔi L] was at least 117.40 msec and the maximum 

was 459.91 msec for this experiment. As for [ai] - [mai HL], although it has a high-falling 

contour similar to that of [ai] - [ʨhai HL], as previously shown in §4.3, it is prudent to 



 
178 

 

test if the same falling contour, preceded by a different consonant from this commonly 

used word [ai] - [mai HL] ‘no’, performs better or worse than its counterpart [ai] - [ʨhai 

HL] ‘yes’. The reader is also encouraged to go back to §6.4.1 and §6.4.2 for information 

on how the starting and end points of these target segments were located. In Emu labeler, 

a minimum F0 was pre-set to 50 Hz before all F0 values were extracted by an emu.query 

command in EMU-R (Cassidy, 1999), as shown in the following sections. 

7.5.1 F0 tracking of [ɔi] - [nɔi L] 

Figure 71 shows a label tier, a waveform, an overlaid F0 tracking and a spectrogram of 

[ɔi] - [nɔi L]. 

 

Figure 71: Label tier (top), waveform and overlaid F0 tracking (middle), and spectrogram 

(bottom) for the target segment [ɔi] - [nɔi L]. The highlighted section in the label tier shows the 

target segment.  

Note: [ɔi] is labeled as [oi]. 

Although low tones can be grouped with static tones (Abramson, 1962; Naksakul, 1998), 

it is evident from Figure 71 that a low tone shows a slightly falling contour along its entire 

time-course (from its onset at ca. 131 Hz to its offset at ca. 100 Hz). Since the figure is 

maximized for the sake of a visual inspection of F0 tracking, the x-axis, which indicates 

the time in msec, could not be included.  

The following EMU labeler shows a display of the high-falling tones of [ai] - [mai HL]. 
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7.5.2 F0 tracking of [ai] - [mai HL] 

Figure 72 shows a label tier, a waveform, an overlaid F0 tracking and a spectrogram of 

[ai] - [mai HL]. It can be seen that the EMU speech database system is able to pick up the 

high-falling tone (red dots under the highlighted segment [ai]) relatively well.  

 

Figure 72: Label tier (top), waveform and overlaid F0 tracking (middle), and spectrogram 

(bottom) for the target segment [ai]. The highlighted section in the label tier shows the target 

segment. 

However, as shown in Figure 73 (overleaf) for [ɔi] - [nɔi L], there are some instances 

where the tonal F0 values were not well tracked. A low tone of the target segment [ɔi] - 

[nɔi L] was not well tracked by the EMU speech database (as marked by the navy blue 

circle): some red dots in the middle of [ɔi] - [nɔi L]’s entire timecourse dropped down to 

0 Hz. Therefore, a manual correction was performed, as shown in Figure 74.  

The last panel of Figure 74 shows F0 tracking after a manual correction was performed 

for [ɔi] - [nɔi L]. F0 tracking errors were manually corrected to be in approximately the 

same frequency range as that of the points preceding and following the F0 drops.  

In §§7.5.3 and 7.5.4, the F0 values are plotted in a normalized duration (100 msec) so that 

the within-speaker and between-speaker variation of F0 contours for [ɔi] - [nɔi L] and [ai] 

- [mai HL] can be more clearly observed. 
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Figure 73: Label tier (top), waveform and overlaid formant tracking (middle), and F0 tracking 

(bottom) for the target segment [ɔi] - [nɔi L]. The highlighted section in the label tier shows the 

target segment. There are some F0 tracking errors in the middle of [ɔi].  

Note: [ɔi] is labeled as [oi]. 

 

Figure 74: Label tier (top), waveform and overlaid formant tracking (middle), and F0 tracking 

after manual correction (bottom) for the target segment [ɔi] - [nɔi L]. The highlighted section in 

the label tier shows the target segment. 

Note: [ɔi] is labeled as [oi]. 
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7.5.3 F0 contours of [ɔi] - [nɔi L] 

 

Figure 75: F0 contours of the diphthong [ɔi] - [nɔi L] plotted against normalized duration (100 

msec) for Speakers 1 and 9. F0 contours (2 sessions x 5 repeats) are represented in green for 

session 1 and red for session 2.  

Note: [ɔi] is labeled as [oi]. 

Figure 75 reveals that the F0 contours of [ɔi] - [nɔi L] for both Speakers 1 and 9 show 

less within-speaker variation (as the green vs yellow lines overlap). However, Speaker 9 

shows a marginal session-to-session difference during the first 20 msec. As for between-

speaker variation, Speaker 1 exhibits his F0 contours within a marginally higher 

frequency range of ca. 90 Hz to ca. 125 Hz than Speaker 9 (between ca. 80 Hz and ca. 

125 Hz). F0 contours of the diphthong [ɔi] - [nɔi L] plotted against normalized duration 

(100 msec) for all 30 speakers can be found in Appendix F.  

The sample plots of the extracted F0 values of the diphthong [ai] - [mai HL] are shown 

in §7.5.4. 

7.5.4 F0 contours of [ai] - [mai L] 

In Figure 76 (overleaf), much between-session variation is observed for Speaker 1, as all 

repeats of session 1 (green) are clearly separated from those of session 2 (red). As for 

between-speaker variation, Speaker 1 exhibits his contours within a higher frequency (ca. 

150-200 Hz) than Speaker 9 (ca. 120-150 Hz). F0 contours of the diphthong [ai] - [mai 

HL] plotted against normalized duration (100 msec) for all 30 speakers can be found in 

Appendix H. 
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Figure 76: F0 contours of the diphthong [ai] - [mai HL] plotted against normalized duration 

(100 msec) for Speakers 1 and 9. F0 contours (2 sessions x 5 repeats) are represented in green 

for session 1 and red for session 2. 

The sample F0 contours of the diphthongs [ɔi] - [nɔi L] and [ai] - [mai HL], plotted 

together with a quadratic polynomial curve fitting, are shown in §§7.5.5 and 7.5.6.  

7.5.5 Polynomial curve fitting of tonal F0 for [ɔi] - [nɔi L]  

Figure 77 shows the F0 contour typical of the diphthong [ɔi] - [nɔi L], which (in linguistic 

terms) has low tone. Phonetically, this [ɔi] - [nɔi L] is not realized as such. Rather, a 

slightly falling contour is evident. Figure 77 is thus an example of a quadratic polynomial 

curve fitting in which the F0 contour of [ɔi] - [nɔi L] is plotted together with its 

polynomial fitting of 00.004838x2 + (–1.476583)x + 223.981113. As discussed in §4.3, 

 

Figure 77: F0 values (black dots) of the diphthong [ɔi] - [nɔi L] plotted together with its 

quadratic polynomial curve fitting (dotted red line) in normalized duration (100 msec). 
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the best results were obtained when a quadratic polynomial was used to approximate the 

falling F0 contour of [ai] - [ʨhai HL], while a cubic polynomial might be overfitted. This 

being the case, a quadratic polynomial was judged to sufficiently approximate a low tone 

of [ɔi] - [nɔi L]. F0 values of the diphthong [ɔi] - [nɔi L] for all 30 speakers, plotted 

together with its quadratic polynomial curve fitting, can be found in Appendix G. 

A typical contour for a high-falling tone, as in [ai] - [mai HL], is shown in §7.5.6. 

7.5.6 Polynomial curve fitting of tonal F0 for [ai] - [mai HL] 

Figure  78 shows a high-falling contour typical of the diphthong [ai] - [mai HL]. 

 

Figure 78: F0 values (black dots) of the diphthong [ai] - [mai HL] plotted together with its 

quadratic polynomial curve fitting (dotted red line) in normalized duration (100 msec). 

This is an example of a quadratic polynomial curve fitting in which the high-falling 

trajectory of [ai] - [mai HL] is plotted together with its polynomial fitting of 0.000233x2 

+ (–0.035758)x + 163.815018. F0 values of the diphthong [ai] - [mai L] for all 30 

speakers, plotted together with its quadratic polynomial curve fitting, can be found in 

Appendix I. §7.7 discusses the results of using this quadratic polynomial fitted to the F0 

contours of the diphthongs [ɔi] - [nɔi L] and [ai] - [mai HL] on the basis of Log10LR, Cllr 

and EER, respectively. A Tippett plot will then be presented, and discussion will follow. 

 

7.6 Informants 

All F0 contours of [ɔi] - [nɔi L] and [ai] - [mai HL] were extracted from 30 speakers. As 

such, 30 SS comparisons and 435 DS comparisons were possible. 
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7.7 Experimental results when using tonal F0  

Table 31 shows the results of calibrated Log10LR, Cllr and EER values when a quadratic 

polynomial was fitted to the F0 contours of [ɔi] - [nɔi L] and [ai] - [mai HL].  

 

Tonal F0 

 

Quadratic 

Calibrated  

LOG10LR 

Cllr EER 

SS DS 

[ɔi] - [nɔi L] ≤ 1.88 ≥ −53.98 0.52 18 

[ai] - [mai HL] ≤ 0.45 ≥ −10.64 0.93 33 

Table 31: Calibrated Log10LR, Cllr, and EER values when a quadratic polynomial was fitted to 

the F0 contours of [ɔi] - [nɔi L] and [ai] - [mai HL], respectively. 

Table 31 illustrates that much better Cllr = 0.52 and EER = 18 were obtained when the 

tonal F0 values of the diphthong [ɔi] - [nɔi L] were parameterized (in the case of [ai] - 

[mai HL], the values were Cllr = 0.93 and EER = 33). For SS comparisons, all calibrated 

consistent-with-fate SSLRs only “moderately” support the same-speaker hypothesis, with 

Log10LRs ≤ 2 for both [ɔi] - [nɔi L] and [ai] - [mai HL]. With respect to the DSLRs, there 

was “very strong” support for the DS hypothesis: log10LR ≤  −4 was obtained for the F0 

contours in both diphthongs.  

In §§7.7.1 and 7.7.2, I take a closer look at the magnitude of LR values using Tippett 

plots. The Tippett plots shown reflect the use of a quadratic polynomial to model the F0 

contour of the diphthongs [ɔi] - [nɔi L] and [ai] - [mai HL].  

7.7.1 The Tippett plot of [ɔi] - [nɔi L]   

Figure 79 shows the Tippett plot of [ɔi] - [nɔi L] obtained when its tonal F0 contours were 

parameterized by a quadratic polynomial. It can be seen that the majority of SS 

comparisons (ca. 98%) had calibrated consistent-with-fact SSlog10LRs ≤  1 and the 

largest SSlog10LR obtained was SSlog10LR = 1.88, suggesting only “limited” support for 

the SS hypothesis. After calibration, the contrary-to-fact SSlog10LR = –4.23 was reduced 

to SSlog10LR = –1.51. Approximately 30% of DS comparisons gave calibrated 

consistent-with-fact DSlog10LRs ≤  −4, suggesting “very strong” support for the defense 

hypothesis, whereas ca. 20% of DS comparisons were wrongly discriminated. After 

calibration, the contrary-to-fact DSlog10LR = 2.73 was reduced to DSlog10LR = 1.51.  
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Figure 79: Tippett plot of [ɔi] - [nɔi L] when its tonal F0 contours were parameterized by a 

quadratic polynomial.  

The (red) curves rising to the right represent the cumulative proportion of the SS (same speaker) 

comparisons, with the log10LRs equal to or less than the value indicated on the x-axis, while the 

(blue) curves rising to the left represent the cumulative proportion of the DS (different speaker) 

comparisons, with the log10LRs equal to or greater than the value indicated on the x-axis. Dotted 

lines and solid lines represent the uncalibrated and calibrated SS and DS Log10LRs, 

respectively. 

7.7.2 The Tippett plot of [ai] - [mai HL] 

Figure 80 shows the Tippett plot of [ai] - [mai HL] when its F0 contours, fitted by a 

quadratic polynomial, were parameterized. As can be seen in Figure 80, the F0 contours 

extracted from the diphthong [ai] - [mai HL] did not perform well because the Cllr = 0.93 

and EER = 33% that were obtained were considered relatively high. These high values 

may have resulted from the largest contrary-to-fact SSlog10LR = –15.30 and DSlog10LR 

= 2.98. Both were substantially reduced, after calibration, to SSlog10LR = –4.21 and 

DSlog10LR = 0.59. For DS comparisons, only 10% had calibrated consistent-with-fact 

Log10LRs ≤  −4, suggesting “very strong” support for the defense hypothesis. Having 

said that, if the log10LR = 0 is set to the threshold, 50% of DS comparisons were wrongly 

discriminated as coming from the same speaker. Based on the above findings, when the 

tonal F0 values of [ɔi] - [nɔi L] and [ai] - [mai HL] were used as parameters, the strength  

Cllr = 0.52 



 
186 

 

 

Figure 80: Tippett plot of [ai] - [mai HL] when its tonal F0 contours were parameterized by a 

quadratic polynomial.  

The (red) curves rising to the right represent the cumulative proportion of the SS (same speaker) 

comparisons, with the log10LRs equal to or less than the value indicated on the x-axis, while the 

(blue) curves rising to the left represent the cumulative proportion of the DS (different speaker) 

comparisons, with the log10LRs equal to or greater than the value indicated on the x-axis. Dotted 

lines and solid lines represent the uncalibrated and calibrated SS and DS Log10LRs, 

respectively. 

of voice evidence was not that great: the largest consistent-with-fact SSLog10LR = 1.88 

and SSLog10LR = 0.45 were obtained for [ɔi] - [nɔi L] and [ai] - [mai HL], respectively. 

Moreover, the Cllr  = 0.93 was very high for [ai] as compared to Cllr = 0.52 for [ɔi] - [nɔi 

L]. In comparison to the results of the F0 contour obtained for [ai]- [ʨhai HL] and reported 

in §4.3 (where all SS comparisons of [ai] - [ʨhai HL] were correctly discriminated with 

the lowest Cllr = 0.39), the tonal F0 results of [ai] - [mai HL] revealed much worse 

calibrated Log10LR, Cllr, and EER values. The possible underlying reasons accounting for 

this bad FVC performance of [ai] - [mai HL] are twofold. First, a smaller number of 

speakers (30 speakers) was tested for [ai] - [mai HL] as opposed to 54 speakers for [ai] - 

[ʨhai HL]. Second, [ai] - [mai HL] did not show much dynamic F0 contour (cf. Appendix 

H) typical for a high-falling tone, which might be the result of [ai] - [mai HL] undergoing 

a vowel reduction (Abramson, 1962, p. 76). 

Cllr = 0.93 
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7.8 Summary 

In this chapter, I first illustrated how the LTF0 distribution of Standard Thai was 

parameterized using various parameters. They are 1) the six LTF0-based parameters 

(mean, SD, skew, kurtosis, modal F0, modal density) with three experimental settings (all 

six parameters, the four spectral moments, and modal F0 + modal density) and 2) the 10% 

percentile parameters measured in a Hertz scale. The results show that none of the six 

LTF0-based parameters performed well because of a Cllr = 0.74, with the largest 

calibrated consistent-with-fact SSLog10LR = 1.06 suggesting only “limited” support for 

the SS hypothesis. The findings of LTF0 of Standard Thai were then discussed in relation 

to those of Japanese. When the LTF0 distribution was captured by the 10% percentile 

technique in a Hertz scale, even higher Cllr = 0.89 and smaller calibrated consistent-with-

fact SSLog10LR = 0.49 were obtained. This is surprising since the available literature had 

led us to expect that the use of the 10% percentile technique would improve the results. 

Subsequently, I presented the results using tonal F0 extracted from the diphthongs [ɔi] - 

[nɔi L] and [ai] - [mai HL]. Based on all these findings, tonal F0 would be more interesting 

than LTF0 in Standard Thai as the deriving Cllr obtained for [ɔi] - [nɔi L] was lowest at 

0.52 with the largest calibrated consistent-with-fact SSLog10LR = 1.88. However, both 

LTF0 and tonal F0 in Standard Thai are still generally amenable to FVC. A better 

performance of LTF0 and tonal F0 might be achieved if they are combined with other 

linguistic-phonetic segments to give better overall strength of voice evidence.  
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Chapter 8 

Conclusions and recommendations for future research 

 

8.1 Introduction 

In this chapter I first answer the two research questions addressed in this thesis. Then, all 

experimental findings are summarized. Finally, ideas for future research based on the 

findings of the current work will be proposed.  

 

8.2 Answers to the research questions 

As mentioned in §1.8, this research addressed two specific questions.   

The first question was to examine to what extent the acoustical parameters extracted from 

the linguistic-phonetic segments of /s/, /ʨh/, /n/, /m/ perform in Standard Thai FVC. It 

was proposed to model the spectrum extracted from the consonants /s/, /ʨh/, /n/, /m/ in 

two different ways: by means of the so-called spectral moments, on the one hand, and by 

means of the coefficients of the discrete cosine transform (DCTs), on the other. The use 

of two different parameterization techniques would allow us to compare what 

parameterization technique performs better. 

The findings reveal that the derived FVC values for the spectral moments /s/ show only 

“limited” support at best for SS comparisons with the highest Cllr = 0.92. Additionally, 

only ca. 1% of calibrated DSLR was less than –4, suggesting “very strong” support for 

the defense hypothesis. This means that the magnitude of such derived LRs was relatively 

weak. The DCTs for /s/ were therefore further experimented on to see if DCT parameters 

perform better than the spectral moments. The results show that the DCTs outperformed 

spectral moments on the basis of Cllr and EER values with SSLog10LR ≤ 2. Summarizing 

the experiments, the lowest Cllr = 0.47 was obtained for /n/ - [na: HL] and /m/ - [mai HL] 

while the affricate /tɕh/ - [ʨhai HL] performed marginally worse than the nasals (Cllr = 

0.54); the fricative /s/ - [sa:m LH] performed the worst (Cllr = 0.70). The above findings 

confirm that the nasals /m, n/ contain more speaker-specificity than the fricative /s/ and 

affricate /tɕh/, as reflected in a greater magnitude of calibrated consistent-with-fact SSLR 
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(Log10LR = 1.99 for /n/ - [na: HL] and Log10LR = 1.87 for /m/ - [mai HL]) and lower Cllr 

values (Cllr = 0.47 for /m/ - [mai HL] and Cllr = 0.47 for /n/ - [na: HL]).  

The first pilot study on the formant trajectories of the Standard Thai diphthongs [i:aw], 

[ɯ:a] and [u:a] showed that they can be ranked in terms of Cllr values from low to high 

as [u:a] (Cllr = 0.02), [i:aw] (Cllr = 0.03), [ɯ:a] (Cllr = 0.04), respectively, when their cubic 

polynomials fitted to [F2, F3, F4] were parameterized. Interestingly, all SS comparisons 

of [i:aw] were correctly discriminated and the best calibrated consistent-with-fact 

SSLog10LRs obtained for [i:aw] were SSLog10LRs ≤ 3, suggesting “moderately strong” 

support for the same-speaker hypothesis. As for [ɯ:a] and [u:a], the best calibrated 

consistent-with-fact SSLog10LRs obtained for both [ɯ:a] and [u:a] were SSLog10LRs ≤ 

2, suggesting “moderate” support for the same-speaker hypothesis. However, at least ca. 

90% of [ɯ:a] and [u:a] had DSlog10LRs ≤  −4 (as compared to ca. 70% for [i:aw]), 

suggesting “very strong” evidence in support of the defense hypothesis. 

The second pilot study on the F2 trajectories of [o:i] - [do:i M] and [ə:i] - [khə:i M] found 

that [o:i] - [do:i M] performed best with a Cllr of 0.64 when its cubic polynomials (duration 

was not included) were parameterized. In contrast, [ə:i] - [khə:i M] performed best when 

its cubic polynomials plus duration were parameterized as lower Cllr = 0.67 was obtained 

(as opposed to Cllr = 0.78 when duration was not included). The best calibrated consistent-

with-fact SSLog10LRs obtained were SSLog10LRs ≤ 2 for both [o:i] and [ə:i], suggesting 

“moderate” support for the SS hypothesis. For DS comparisons, only ca. 2% of [o:i] and 

ca. 5% of [ə:i] had DSlog10LRs ≤ −4, suggesting “very strong” support for the defense 

hypothesis. 

The third pilot study on the tonal F0 contours of [ai] - [ʨhai HL] and [u:a] - [ru:am HL] 

fitted by (linear, quadratic and cubic) polynomials, the best Cllr = 0.39 was obtained when 

F0 contours of [ai] - [ʨhai HL] were parameterized with quadratic polynomials. 

Moreover, all SS comparisons were correctly discriminated for [ai] - [ʨhai HL]. 

Regarding [u:a] - [ru:am HL], the best Cllr = 0.51, which is higher than that of [ai] - [ʨhai 

HL], was obtained when linear polynomials were parameterized. However, for DS 

comparisons, a higher proportion (30%) of [u:a] - [ru:am HL] had calibrated consistent-

with-fact DSlog10LRs ≤ −4, suggesting “very strong” support for the defense hypothesis, 

as compared to 20% in the case of [ai] - [ʨhai HL].   
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Findings related to the formant trajectories of the diphthongs [ɔi] - [nɔi L]  and [ai] - [mai 

HL], when the F2 trajectory and F1-F3 trajectories, fitted by cubic polynomials, were 

parameterized in turn, showed that the results of F1-F3 trajectories outperformed those of 

the F2 trajectory on the basis of calibrated Log10LR, Cllr and EER values. That is, the best 

Cllr and EER values of [ɔi] - [nɔi L] were marginally lower than those of [ai] - [mai HL] 

(Cllr = 0.42 and EER = 10% vs Cllr = 0.49 and EER = 18%) when F1-F3 trajectories were 

parameterized. This is not surprising as F1 and F3 were expected to add more 

individualizing information (compared to exclusive use of the F2 trajectory) in the FVC 

experiment. However, the magnitude of the consistent-with-fact SSLRs was relatively 

weak. That is, the strongest consistent-with-fact SSLog10LR for [ɔi] - [nɔi L] and for [ai] 

- [mai HL] obtained were SSLog10LR = 1.91 and SSLog10LR = 1.84, respectively, both 

of which provided only “moderate” support for the SS hypothesis. In contrast, consistent-

with-fact DSLRs obtained were log10LR ≤ –4 for both [ɔi] - [nɔi L] (ca. 6% of DS 

comparisons) and [ai] - [mai HL] (ca. 10% DS comparisons), suggesting “very strong” 

support for the defense hypothesis.  

With regards to LTF0 and tonal F0, the results showed that none of the six LTF0 

parameters performed well because the smallest Cllr values = 0.74 with the largest 

calibrated consistent-with-fact SSLog10LR = 1.06 (suggesting only “limited” support for 

the SS hypothesis) were obtained. When the LTF0 distribution was captured by the 10% 

percentile technique in a Hertz scale, an even higher Cllr = 0.89 and smaller calibrated 

consistent-with-fact SSLog10LR = 0.49 were obtained. This is surprising, because the use 

of the 10% percentile technique did not improve these results, as the literature had led us 

to expect. The underlying reason for this is unclear. In contrast, the use of tonal F0 

extracted from the diphthongs [ɔi] - [nɔi L] and [ai] - [mai HL] yielded better results (as 

compared to LTF0) because the derived Cllr  obtained for [ɔi] - [nɔi L] was lowest at 0.52 

with the largest calibrated consistent-with-fact SSLog10LR = 1.88, suggesting “moderate” 

support for the SS hypothesis. For DS comparisons, ca. 30% of [ɔi] - [nɔi L] had log10LR 

≤  −4, suggesting “very strong” support for the defense hypothesis, as opposed to ca. 

10% of [ai] - [mai HL]. Although we might have expected a falling contour of [ai] - [mai 

HL] to outperform a level tone of [ɔi] - [nɔi L], a better performance of [ɔi] - [nɔi L] was 

obtained, which might be due to the fact that more duration (between 117.40 msec and a 

459.91 msec) was involved. As such, more individualizing information might be picked 

up from such a longer duration. Based on the results gathered, we can conclude that 
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Standard Thai acoustical parameters are generally amenable to Forensic Voice 

Comparison.  

The performance of all parameters is summarized below on the basis of Cllr and LR 

values.  

1. The fricative /s/ performed better when its DCTs were parameterized as 

opposed to the spectral moments. 

2. The nasals /n, m/ performed better than the fricative /s/ and the affricate /tɕh / 

when their DCTs were parameterized. 

3. All F1-F3 trajectories outperformed the F2 trajectory for both diphthongs 

[ɔi] and [ai]. 

4.   The F1-F3 trajectories of the diphthong [ɔi] outperformed those of [ai].  

5.   Tonal F0 performed better than LTF0. 

I will now answer the second research question addressed in this thesis.  

The second question was: through an interpretation of the fusion results, and adding to 

research findings pursued in the current work, how can such tested linguistic-phonetic 

segments be profitably combined? As previously mentioned, the number of speakers 

tested was different from one experiment to the next and since the numbers and order of 

speakers being fused and calibrated need to be the same, the segments of only a few 

parameters, namely the DCTs of /n/ - [na: HL] and /n/ - [nɔi L], were fused. Before we 

go any further, the reader is encouraged to go back to §3.9, which details the basic concept 

of fusion. The reader will recall that LRs were obtained in a leave-one-out manner, i.e. 

the test set of speech samples were excluded from the reference set. As such, the weights 

were calculated from the LR-like scores obtained in all the available data, except for a 

test pair of speakers used to monotonically shift and scale the scores in the test set to 

derive a true LR; this was achieved using the logistic regression technique by FoCal 

Toolkit (Brümmer, 2007). Figure 81 shows the Tippett plot when the best performing 

parameter (15 Hertz-scaled DCTs) of /n/ - [na: HL] and the best performing parameter 

(20 Hertz-scaled DCTs) of /n/ - [nɔi L] were fused.  
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Figure 81: Tippett plot for the fused and calibrated LRs for /n/ - [na: HL] and /n/ - [nɔi L]. 

The (blue) curve rising to the right represents the cumulative proportion of the SS (same 

speaker) comparisons, with the log10LRs equal to or less than the value indicated on the x-axis, 

while the (red) curve rising to the left represents the cumulative proportion of the DS (different 

speaker) comparisons, with the log10LRs equal to or greater than the value indicated on the x-

axis. 

Figure 81 shows that the results were significantly improved in terms of Cllr, EER and LR 

values. That is, lower Cllr = 0.40 and lower EER = 10% values were obtained when the 

best performing parameter (15 Hertz-scaled DCTs) of /n/ - [na: HL] and the best 

performing parameter (20 Hertz-scaled DCTs) of /n/ - [nɔi L] were fused (as compared 

to Cllr = 0.47 and EER = 15% of the best-performing parameter of /n/ - [na: HL] alone). 

Moreover, the largest calibrated consistent-with-fact SSLog10LR obtained was 

SSLog10LR = 2.53, suggesting “moderately strong” support for the SS hypothesis. 

Regarding DS comparisons, ca. 25% yielded Log10LR ≤  −4, suggesting “very strong” 

support for the DS hypothesis. The greatest consistent-with-fact DSlog10LR obtained was 

DSlog10LR = –17.72. In general, it was found that fusion of the two target segments of 

/n/ - [na: HL] and /n/ - [nɔi L] significantly improved the results in terms of Cllr, EER and 

LR values. This suggests that the LRs from these two /n/s have a “sufficiently small 

correlation coefficient” (Franco-Pedroso et al., 2012), otherwise they would not 

contribute to better Cllr, EER and LR values. Moreover, the DCTs of /n/ - [na: HL] and 

/n/ - [nɔi L] may indeed carry complementary individualizing information.  

 

Cllr = 0.40 
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8.3 Future research 

There are many further steps that might be taken with regard to the current work. We 

could possibly fuse all acoustical parameters obtained from the same speakers in the 

current thesis to see the overall results. Other possible steps are listed below.  

8.3.1 Speech corpus 

Since the current work only dealt with speech samples from male informants, those of 

females should be included in future in order to see how such speech samples perform in 

Standard Thai FVC. Likewise, the different dialects of the Northern, Northeastern and 

Southern Thai people should be trialed. As has been discussed in §§2.11-2.13, apart from 

Standard Thai, which is used as an official language to communicate nationwide, other 

major dialects are spoken in different areas of Thailand. Such major dialects are 

traditionally and geographically grouped as 1) the Lanna Thai or Northern Thai dialect; 

2) the Isaan or Northeastern Thai dialect; and 3) the Pak Tai or Southern Thai dialect. As 

pointed out by Rose (2002, p. 333), little FVC research has been conducted using speech 

samples from speakers who are bilingual (in the broadest sense of speaking either two 

languages or two dialects). More insight into cross-linguistic FVC is needed for us to see 

to what extent they preserve the linguistic differences across such differing dialectal 

speech samples, which Rose (2002, p. 333) further suggests will depend on how well a 

speaker can command different dialects or languages. Since the Northern, Northeastern, 

Southern, and Standard Thai dialects “differ more in phonology and vocabulary than they 

do in grammar” (Tienmee, 1992, p. 229), it would be prudent to test to what extent these 

differences have been preserved cross-linguistically and which phonological features are 

distinctive to which dialects; such information might be of use forensically, at least for 

approximating a suspect’s linguistic community. In addition, there are still many FVC 

research opportunities awaiting to be conducted in Standard Thai itself, for example, with 

speech samples obtained from mismatched conversational situations, speaking styles and 

emotional states. As speech segments do not occur in isolation but always in 

continuous/connected speech, coarticulation is another interesting area in Standard Thai 

FVC research. This is because neighboring segments may exert a degree of articulatory 

adaptation upon one another that might be unique to some individuals.    
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8.3.2 Parameters 

Apart from the linguistic-phonetic parameters explored in this thesis, more parameters 

should be tested. Possible interesting acoustical features to explore are shown below. 

8.3.2.1 Voice onset time (VOT) of a stop /kh/ 

Based on an acoustical analysis of voice onset time (VOT) of Standard Thai stops (three-

way contrast), Gandour (1985) found that the distributions of VOT (minimum, maximum, 

range, mean and standard deviation) exhibited non-overlapping distribution patterns 

between speakers (speech samples were recorded from five speakers in a single session). 

Such large between-speaker variation (although from only a small number of speakers) 

has shown a potential for further FVC analysis. Based on the findings of Gandour (1985), 

VOT of a stop /kh/ embedded in the words [khrʌp H] and [khaʔ L] is appealing for future 

research, to test how well distributions of VOT can potentially discriminate between-

speaker speech samples in Standard Thai FVC. There are several reasons why the words 

[khrʌp H] and [khaʔ L] are particularly interesting. First, they are Standard Thai particles, 

which are usually put at the end of a sentence to show a polite way of speaking (Slayden, 

2009); because of their sentence-final position, more duration is guaranteed (Abramson, 

1962; Naksakul, 1998). Second, since these particles, [khrʌp H] and [khaʔ L], are also 

used simply to say “yes” in response to a question (ibid.), they are commonly found in 

everyday conversation. Third, the particles [khrʌp H] and [khaʔ L] reflect the sex of the 

speaker. Males use [khrʌp H] while females use [khaʔ L] to show their biological sex, 

which will make it easier for an FVC expert to approximate the speaker’s biological sex. 

Having said that, females are allowed to use [khrʌp H] and males are allowed to use [khaʔ 

L] (ibid.). Thus, both usage of [khrʌp H] and [khaʔ L] in Standard Thai (perhaps in 

conjunction with particles used in other dialects), would be worth investigating using 

FVC, as they are commonly found in everyday conversation. 

8.3.2.2 Trill /r/ and liquid /l/  

It would also be interesting to see how the trill /r/ and liquid /l/ perform in Standard Thai 

as they might show idiosyncrasies typically found only in Thai speakers. From the 

sociolinguistic research conducted by Treyakul (1986), it was found 1) that the trills /r/ 

and /-r/ were mostly realized as [r] in the news announcement and passage reading styles 

(formal situations), whereas the lateral /l/ and /-l/ were mostly realized as [l] regardless 
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of stylistic variation; and 2) that the trill /r/ was mostly realized as [l] and the trill [-r] 

deleted (> [∅]) in an informal situation (an interview). 

A more recent linguistic study, which examined the relationship between the social 

variation of /r/ in Thai and /r/ in English in the speech of Bangkok Thai, is by 

Chunsuvimol (1992). First, it was found that /r/ in each of the two languages (Thai and 

English) has four main variants: 1) a tap [ɾ]; 2) an approximant [ɹ]; 3) a lateral [l]; and 4) 

r-lessness [∅]. Whereas the first three variants occurred in both prevocalic positions and 

clusters, the fourth variant occurred in clusters only. Second, female speakers (as opposed 

to males) and speakers whose job was at a higher level, as well as those who had a longer 

background of speaking English, were found to use more prestigious variants ([r] in Thai 

and [ɹ] in English). Such stylistic variation in the pronunciation of /r/ and /l/ might be of 

use for FVC purposes. Suppose that in the prevocalic position, there are 30 words in 

which a trill /r/ could have been articulated as the lateral /l/, but only 12 words where it 

in fact was. In another sample, there may be 40 lateral /l/ words, all except 10 said with a 

trill /r/ (hypercorrection that is defined as “an instance where an individual believes a 

linguistic rule has applied in a case where it has not actually applied” (Beebe, 1974, p. 

355). Forensically, such difference between the incidence of (12/30 =) 40% and (30/40 

=) 75% needs to be evaluated to answer if the 35% difference is more likely to be from 

the same or from different speakers.  

8.3.3 Statistical tools and data extraction techniques 

A better approximation of within- and between-speaker variation may be possible with 

different statistical techniques such as GMM-UBM and Hidden Markov Models. Apart 

from using speech data from a laboratory recording, as in this thesis, speech data obtained 

during transmission channel mismatch (e.g. mobile-to-landline vs landline-to-landline) 

should be undertaken to test the effect of forensically realistic conditions.  

 

8.4 Implications for the forensic academic community 

Based on the results reported, we can say that Standard Thai is generally amenable to 

FVC. The results suggest that 1) the traditional parameters, which are tonal F0 and 

formant trajectories, as opposed to automatic parameters  such as  the spectrum, should 

be used as parameters for Standard Thai FVC; 2) nasal segments seem to be the best 
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candidates, as opposed to affricates and fricatives; 3) longer duration of the target 

segments can ensure that more individualizing information is captured; and 4) distance 

from the microphone when recording speech samples can affect EER values (Campbell, 

2014).   

Although it is too early at this stage to generalize the results obtained in the current thesis 

to the Thai legal context, it is appropriate to say that the results obtained can only be used 

as intelligence in police investigations, not as evidence in courts of law. FVC analyses 

must be conducted with caution and responsibility. Since no consensus has been reached 

for best practice in examining and reporting voice evidence in Thai courts, there should 

be collaboration among analysts and examiners to improve the usability and performance 

of FVC practices in Thailand. Participation in forensic-style evaluations should be 

extended to analysts. Last but not least, the reliability and validity of the approaches 

employed among forensic practitioners in Thailand need to be addressed before 

presenting voice evidence to the courts of law.  

 

8.5 Summary 

In this chapter, I have answered the two research questions. The fusion results of the two 

segments /n/ - [na: HL] and /n/ - [nɔi L] have been reported. Finally, suggestions for 

further FVC research in Standard Thai have been made.   
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Appendix A 

Recording manuals 

 

คู่มือบันทกึเสียง  
Recording manuals  

 

กจิกรรมที ่1 : สนทนาแลกเปลีย่นข้อมูล 
Activity 1: Information-exchange task 

 

ท่านคือผู้พูด A  

You are Speaker A 

ดา้นหลงักระดาษน้ีเป็นเอกสารท่ีส่งมาทางแฟกซ์ แต่เน่ืองจากเคร่ืองรับ-ส่งแฟกซ์มีคุณภาพไม่ดี ใหข้อ้มูลบางส่วน
ในเอกสารน้ีไม่ชดัเจน คู่สนทนาของท่าน (ผูพ้ดู B) ก็ไดรั้บแฟกซ์ฉบบัน้ีเช่นกนั  ซ่ึงแฟกซ์ของผูพ้ดู B อาจมี
คุณภาพชดัเจนกวา่ของท่านหรือไม่ก็ได ้ต่อโทรศพัทไ์ปยงัผูพ้ดู B ตามหมายเลข   2357   จงสอบถามขอ้มูลท่ี
ขาดหายไป  และเขียนขอ้มูลลงบนกระดาษท่ีใหม้าดา้นหลงั  

On the back of this document is a facsimile listing many fresh food products and 

their prices. Unfortunately, the fax is not in good quality, so some information is 

illegible for you but might be legible for your interlocutor (Speaker A). Ring Speaker 

B on ext. 2357 and ask for the information that is obfuscated to you. Then, write 

down that missing information on the same piece of paper provided. 

*หมายเหตุ  โปรดใชส้รรพนามวา่ A แทนตวัท่าน และ B แทนคู่สนทนา                    และวางโทรศพัท์
หลงัจากท ากิจกรรมน้ีเสร็จส้ิน 

*Please identify yourself as A and your interlocutor as B. Please hang up the phone 

after finishing this task. 
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Fax 1A 
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กจิกรรมที ่2 : บอกทศิทาง  
Activity 2: Giving directions 

 

ท่านเป็นผูคุ้น้เคยกบัการเดินทางภายในมหาวทิยาลยัธรรมศาสตร์ รังสิตเป็นอยา่งดี แต่คู่สนทนาของท่านไม่คุน้เคย
กบัการเดินทางภายในมหาวทิยาลยัธรรมศาสตร์ รังสิต ใหท่้านรอรับโทรศพัทจ์ากคู่สนทนา  และตอบค าถาม
เก่ียวกบัเสน้ทางไปยงัตึกต่างๆ  (ตามแผนท่ีท่ีแนบมาดา้นหลงั) 

You are familiar to travelling within Thammasat University (TU), Rangsit campus. 

But your interlocutor is new to TU. Wait for his call and give directions to different 

locations on Rangsit campus by referring to the map below.   
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กจิกรรมที่ 3 : จงอ่านประโยคและค าที่ก าหนดให้ (ให้ท่านอ่านตามความเร็วปกติเหมือนเวลาท่ีท่านพดูโดยทัว่ๆ ไป) 

Activity 3: Read the following sentences and words (at a comfortable speaking rate). 

The vertical lines within sentences indicate the internal pauses. Please mark a short 

pause accordingly. (The rationale in doing this is to make sure that the extracted 

targets are from the same phonological environments). 

 

3.1 อ่านประโยคต่อไปนี ้  

 

1.โดยในระยะแรกแรก| จะมีลกัษณะเปล่ียนจาก| การใชเ้คร่ืองมือแบบง่ายง่าย| มาใชเ้คร่ืองจกัรแทน| 

1. do:i  nai  rá-yá ræ̂k-ræ̂k | ʨà mi: lák-sà-nà plì:an ʨà:k | ka:n ʨhá:i khrɯ̂:aŋ mɯ: 

bæ̀p ŋâ:i ͜ŋâ:i| ma: ʨhá:i khrɯ̂:aŋ ʨàk thæ:n| 

2. นิทรรศการน้ี| จะแสดงให้เห็นวิวฒันาการ| ของเคร่ืองมือเคร่ืองใชใ้นการประกอบอาชีพ| ของคนในภูมิภาคตะวนัตก| ตั้งแต่อดีตถึง
ปัจจุบนั| 

2. ni-thát-sà-ka:n ní:| ʨà sà-dæŋ hâ:i hɛ̌n wí-wát-thá-na-ka:n| khɔ̌ŋ khrɯ̂:aŋ mɯ 

khrɯ̂:aŋ ʨhá:i nai ka:n prà-kɔ̀p ʔ:-ʨhî:p| khɔ̌ŋ khon nai phu:m-mí-phâ:k tà-wan-tòk| 

tâŋ tæ̀ ʔà-dì:t thɯ̌ŋ pàt-ʨù-ban| 

3.สิบเอด็จ านวนบณัฑิต| ท่ีมีความคิดเห็นวา่| วิชาภาษาองักฤษท่ีเคยเรียน| ไม่เพียงพอในการประกอบอาชีพในปัจจุบนั| มีสดัส่วน
ใกลเ้คียงกบัจ านวนบณัฑิต| ท่ีมีความคิดเห็นวา่|  วิชาภาษาองักฤษท่ีเรียนมาเพียงพอ|  

3. sìp-ʔɛ̀t ʨam nu:an ban dìt| thî: mi: khu:am khít hɛ̌n wâ| wí-ʨha: pha-sǎ ʔaŋ-krì:t 

thî: khəj ri:an| mâi phi:aŋ phɔ nai ka:n prà-kɔ̀b ʔ:-ʨhî:p nai pàt-ʨù-ban| mi: sàt-suàn 

klâi-khi:aŋ kàp ʨam nu:an ban dìt| thî: mi: khu:am khít hɛ̌n wâ | wí-ʨha: pha-sǎ ʔaŋ-

krì:t thî: ria:n ma phi:ang phɔ|  

4. เพราะไม่ใช่หนา้ท่ีอะไรสกัหน่อย|   

4. phrɔ́ʔ  mâi ʨhâi nâ: thî: ʔá rai sàk nɔ̀i| 

5. และมีการหมุนเวียนสมาชิก| ในกลุ่มแต่ละกลุ่ม| ทุกทุกสามอาทิตย|์  เพื่อให้ผูเ้รียนมีโอกาสท่ีจะท างาน| ร่วมกบัผูเ้รียนอ่ืนอ่ืน| 

5. lǽʔ mi: ka:n mǔn wi:an sà-ma:-ʨhík| nai klùm tæ̀ làʔ klùm| thúk thúk sǎm ʔa:-thít 

|phɯ̂:aʔ hâ:i phû: ri:an mi: o:-kàt thî: ʨà tham ŋa:n| rû:am kàp phû: ri:an ʔɯ̀n ʔɯ̀n| 
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6.ความกา้วหนา้ในทางเศรษฐกิจ| ท่ีด าเนินไปทุกวนัน้ี| แทจ้ริงนั้น| เป็นลกัษณะปลาใหญ่กินปลาเลก็|  

6. khwu:am kâ:w nâ: nai tha:ŋ sèt-thà-kìt| thî: dam nə:n pai thúk wan  ní:| thǽ ʨɪŋ 

nán| pɛn lák-sà-nà| pla: yài kin pla: lɛ́k| 

7.โดยในระยะแรกแรก| จะมีลกัษณะเปล่ียนจาก| การใชเ้คร่ืองมือแบบง่ายง่าย| มาใชเ้คร่ืองจกัรแทน| 

7. do:i  nai  rá-yá ræ̂k-ræ̂k | ʨà mi: lák-sà-nà plì:an ʨà:k | ka:n ʨhá:i khrɯ̂:aŋ mɯ: 

bæ̀p ŋâ:i ͜ŋâ:i| ma: ʨhá:i khrɯ̂:aŋ ʨàk thæ:n| 

8.นิทรรศการน้ี| จะแสดงให้เห็นวิวฒันาการ| ของเคร่ืองมือเคร่ืองใชใ้นการประกอบอาชีพ| ของคนในภูมิภาคตะวนัตก| ตั้งแต่อดีตถึง
ปัจจุบนั| 

8. ni-thát-sà-ka:n ní:| ʨà sà-dæŋ hâ:i hɛ̌n wí-wát-thá-na-ka:n| khɔ̌ŋ khrɯ̂:aŋ mɯ 

khrɯ̂:aŋ ʨhá:i nai ka:n prà-kɔ̀p ʔ:-ʨhî:p| khɔ̌ŋ khon nai phu:m-mí-phâ:k tà-wan-tòk| 

tâŋ tæ̀ ʔà-dì:t thɯ̌ŋ pàt-ʨù-ban| 

9.สิบเอด็จ านวนบณัฑิต| ท่ีมีความคิดเห็นวา่| วิชาภาษาองักฤษท่ีเคยเรียน| ไม่เพียงพอในการประกอบอาชีพในปัจจุบนั|  มีสดัส่วน
ใกลเ้คียงกบัจ านวนบณัฑิต|  ท่ีมีความคิดเห็นวา่|  วิชาภาษาองักฤษท่ีเรียนมาเพียงพอ|  

9. sìp-ʔɛ̀t ʨam nu:an ban dìt| thî: mi: khu:am khít hɛ̌n wâ| wí-ʨha: pha-sǎ ʔaŋ-krì:t 

thî: khəj ri:an| mâi phi:aŋ phɔ nai ka:n prà-kɔ̀b ʔ:-ʨhî:p nai pàt-ʨù-ban| mi: sàt-suàn 

klâi-khi:aŋ kàp ʨam nu:an ban dìt| thî: mi: khu:am khít hɛ̌n wâ | wí-ʨha: pha-sǎ ʔaŋ-

krì:t thî: ria:n ma phi:ang phɔ|  

10. เพราะไม่ใช่หนา้ท่ีอะไรสกัหน่อย|   

10. phrɔ́ʔ  mâi ʨhâi nâ: thî: ʔá rai sàk nɔ̀i| 

11. และมีการหมุนเวียนสมาชิก| ในกลุ่มแต่ละกลุ่ม| ทุกทุกสามอาทิตย|์ เพื่อให้ผูเ้รียนมีโอกาสท่ีจะท างาน| ร่วมกบัผูเ้รียนอ่ืนอ่ืน| 

11. lǽʔ mi: ka:n mǔn wi:an sà-ma:-ʨhík| nai klùm tæ̀ làʔ klùm| thúk thúk sǎm ʔa:-

thít |phɯ̂:aʔ hâ:i phû: ri:an mi: o:-kàt thî: ʨà tham ŋa:n| rû:am kàp phû: ri:an ʔɯ̀n 

ʔɯ̀n| 

12.ความกา้วหนา้ในทางเศรษฐกิจ| ท่ีด าเนินไปทุกวนัน้ี| แทจ้ริงนั้น| เป็นลกัษณะปลาใหญ่กินปลาเลก็|  

12. khwu:am kâ:w nâ: nai tha:ŋ sèt-thà-kìt| thî: dam nə:n pai thúk wan  ní:| thǽ ʨɪŋ 

nán| pɛn lák-sà-nà| pla: yài kin pla: lɛ́k| 
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13.โดยในระยะแรกแรก| จะมีลกัษณะเปล่ียนจาก| การใชเ้คร่ืองมือแบบง่ายง่าย| มาใชเ้คร่ืองจกัรแทน| 

13. do:i  nai  rá-yá ræ̂k-ræ̂k | ʨà mi: lák-sà-nà plì:an ʨà:k | ka:n ʨhá:i khrɯ̂:aŋ mɯ: 

bæ̀p ŋâ:i ͜ŋâ:i| ma: ʨhá:i khrɯ̂:aŋ ʨàk thæ:n| 

14.นิทรรศการน้ี| จะแสดงให้เห็นวิวฒันาการ| ของเคร่ืองมือเคร่ืองใชใ้นการประกอบอาชีพ| ของคนในภูมิภาคตะวนัตก| ตั้งแต่อดีต
ถึงปัจจุบนั| 

14. ni-thát-sà-ka:n ní:| ʨà sà-dæŋ hâ:i hɛ̌n wí-wát-thá-na-ka:n| khɔ̌ŋ khrɯ̂:aŋ mɯ 

khrɯ̂:aŋ ʨhá:i nai ka:n prà-kɔ̀p ʔ:-ʨhî:p| khɔ̌ŋ khon nai phu:m-mí-phâ:k tà-wan-tòk| 

tâŋ tæ̀ ʔà-dì:t thɯ̌ŋ pàt-ʨù-ban| 

15.สิบเอด็จ านวนบณัฑิต| ท่ีมีความคิดเห็นวา่| วิชาภาษาองักฤษท่ีเคยเรียน| ไม่เพียงพอในการประกอบอาชีพในปัจจุบนั| มีสดัส่วน
ใกลเ้คียงกบัจ านวนบณัฑิต| ท่ีมีความคิดเห็นวา่|  วิชาภาษาองักฤษท่ีเรียนมาเพียงพอ|  

15. sìp-ʔɛ̀t ʨam nu:an ban dìt| thî: mi: khu:am khít hɛ̌n wâ| wí-ʨha: pha-sǎ ʔaŋ-krì:t 

thî: khəj ri:an| mâi phi:aŋ phɔ nai ka:n prà-kɔ̀b ʔ:-ʨhî:p nai pàt-ʨù-ban| mi: sàt-suàn 

klâi-khi:aŋ kàp ʨam nu:an ban dìt| thî: mi: khu:am khít hɛ̌n wâ | wí-ʨha: pha-sǎ ʔaŋ-

krì:t thî: ria:n ma phi:ang phɔ|  

16.เพราะไม่ใช่หนา้ท่ีอะไรสกัหน่อย|   

16. phrɔ́ʔ  mâi ʨhâi nâ: thî: ʔá rai sàk nɔ̀i| 

17. และมีการหมุนเวียนสมาชิก| ในกลุ่มแต่ละกลุ่ม| ทุกทุกสามอาทิตย|์ เพื่อให้ผูเ้รียนมีโอกาสท่ีจะท างาน| ร่วมกบัผูเ้รียนอ่ืนอ่ืน| 

17. lǽʔ mi: ka:n mǔn wi:an sà-ma:-ʨhík| nai klùm tæ̀ làʔ klùm| thúk thúk sǎm ʔa:-

thít |phɯ̂:aʔ hâ:i phû: ri:an mi: o:-kàt thî: ʨà tham ŋa:n| rû:am kàp phû: ri:an ʔɯ̀n 

ʔɯ̀n| 

18.ความกา้วหนา้ในทางเศรษฐกิจ| ท่ีด าเนินไปทุกวนัน้ี| แทจ้ริงนั้น| เป็นลกัษณะปลาใหญ่กินปลาเลก็|  

18. khwu:am kâ:w nâ: nai tha:ŋ sèt-thà-kìt| thî: dam nə:n pai thúk wan  ní:| thǽ ʨɪŋ 

nán| pɛn lák-sà-nà| pla: yài kin pla: lɛ́k| 

19.โดยในระยะแรกแรก| จะมีลกัษณะเปล่ียนจาก| การใชเ้คร่ืองมือแบบง่ายง่าย| มาใชเ้คร่ืองจกัรแทน| 

19. do:i  nai  rá-yá ræ̂k-ræ̂k | ʨà mi: lák-sà-nà plì:an ʨà:k | ka:n ʨhá:i khrɯ̂:aŋ mɯ: 

bæ̀p ŋâ:i ͜ŋâ:i| ma: ʨhá:i khrɯ̂:aŋ ʨàk thæ:n| 
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20. นิทรรศการน้ี| จะแสดงให้เห็นวิวฒันาการ| ของเคร่ืองมือเคร่ืองใชใ้นการประกอบอาชีพ|  ของคนในภูมิภาคตะวนัตก|  ตั้งแต่
อดีตถึงปัจจุบนั| 

20. ni-thát-sà-ka:n ní:| ʨà sà-dæŋ hâ:i hɛ̌n wí-wát-thá-na-ka:n| khɔ̌ŋ khrɯ̂:aŋ mɯ 

khrɯ̂:aŋ ʨhá:i nai ka:n prà-kɔ̀p ʔ:-ʨhî:p| khɔ̌ŋ khon nai phu:m-mí-phâ:k tà-wan-tòk| 

tâŋ tæ̀ ʔà-dì:t thɯ̌ŋ pàt-ʨù-ban| 

21.สิบเอด็จ านวนบณัฑิต| ท่ีมีความคิดเห็นวา่| วิชาภาษาองักฤษท่ีเคยเรียน| ไม่เพียงพอในการประกอบอาชีพในปัจจุบนั|  มีสดัส่วน

ใกลเ้คียงกบัจ านวนบณัฑิต|  ท่ีมีความคิดเห็นวา่|  วิชาภาษาองักฤษท่ีเรียนมาเพียงพอ|  

21. sìp-ʔɛ̀t ʨam nu:an ban dìt| thî: mi: khu:am khít hɛ̌n wâ| wí-ʨha: pha-sǎ ʔaŋ-krì:t 

thî: khəj ri:an| mâi phi:aŋ phɔ nai ka:n prà-kɔ̀b ʔ:-ʨhî:p nai pàt-ʨù-ban| mi: sàt-suàn 

klâi-khi:aŋ kàp ʨam nu:an ban dìt| thî: mi: khu:am khít hɛ̌n wâ | wí-ʨha: pha-sǎ ʔaŋ-

krì:t thî: ria:n ma phi:ang phɔ|  

22. เพราะไม่ใช่หนา้ท่ีอะไรสกัหน่อย|   

22. phrɔ́ʔ  mâi ʨhâi nâ: thî: ʔá rai sàk nɔ̀i| 

23. และมีการหมุนเวียนสมาชิก| ในกลุ่มแต่ละกลุ่ม| ทุกทุกสามอาทิตย|์ เพื่อให้ผูเ้รียนมีโอกาสท่ีจะท างาน|   ร่วมกบัผูเ้รียนอ่ืนอ่ืน| 

23. lǽʔ mi: ka:n mǔn wi:an sà-ma:-ʨhík| nai klùm tæ̀ làʔ klùm| thúk thúk sǎm ʔa:-

thít |phɯ̂:aʔ hâ:i phû: ri:an mi: o:-kàt thî: ʨà tham ŋa:n| rû:am kàp phû: ri:an ʔɯ̀n 

ʔɯ̀n| 

24.ความกา้วหนา้ในทางเศรษฐกิจ| ท่ีด าเนินไปทุกวนัน้ี| แทจ้ริงนั้น| เป็นลกัษณะปลาใหญ่กินปลาเลก็|  

24. khwu:am kâ:w nâ: nai tha:ŋ sèt-thà-kìt| thî: dam nə:n pai thúk wan  ní:| thǽ ʨɪŋ 

nán| pɛn lák-sà-nà| pla: yài kin pla: lɛ́k| 

25.โดยในระยะแรกแรก| จะมีลกัษณะเปล่ียนจาก| การใชเ้คร่ืองมือแบบง่ายง่าย| มาใชเ้คร่ืองจกัรแทน| 

25. do:i  nai  rá-yá ræ̂k-ræ̂k | ʨà mi: lák-sà-nà plì:an ʨà:k | ka:n ʨhá:i khrɯ̂:aŋ mɯ: 

bæ̀p ŋâ:i ͜ŋâ:i| ma: ʨhá:i khrɯ̂:aŋ ʨàk thæ:n| 

26. นิทรรศการน้ี| จะแสดงให้เห็นวิวฒันาการ| ของเคร่ืองมือเคร่ืองใชใ้นการประกอบอาชีพ| ของคนในภูมิภาคตะวนัตก|  ตั้งแต่

อดีตถึงปัจจุบนั| 

26. ni-thát-sà-ka:n ní:| ʨà sà-dæŋ hâ:i hɛ̌n wí-wát-thá-na-ka:n| khɔ̌ŋ khrɯ̂:aŋ mɯ 

khrɯ̂:aŋ ʨhá:i nai ka:n prà-kɔ̀p ʔ:-ʨhî:p| khɔ̌ŋ khon nai phu:m-mí-phâ:k tà-wan-tòk| 

tâŋ tæ̀ ʔà-dì:t thɯ̌ŋ pàt-ʨù-ban| 
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27.สิบเอด็จ านวนบณัฑิต| ท่ีมีความคิดเห็นวา่| วิชาภาษาองักฤษท่ีเคยเรียน| ไม่เพียงพอในการประกอบอาชีพในปัจจุบนั|  มีสดัส่วน

ใกลเ้คียงกบัจ านวนบณัฑิต|  ท่ีมีความคิดเห็นวา่|  วิชาภาษาองักฤษท่ีเรียนมาเพียงพอ|  

27. sìp-ʔɛ̀t ʨam nu:an ban dìt| thî: mi: khu:am khít hɛ̌n wâ| wí-ʨha: pha-sǎ ʔaŋ-krì:t 

thî: khəj ri:an| mâi phi:aŋ phɔ nai ka:n prà-kɔ̀b ʔ:-ʨhî:p nai pàt-ʨù-ban| mi: sàt-suàn 

klâi-khi:aŋ kàp ʨam nu:an ban dìt| thî: mi: khu:am khít hɛ̌n wâ | wí-ʨha: pha-sǎ ʔaŋ-

krì:t thî: ria:n ma phi:ang phɔ|  

28. เพราะไม่ใช่หนา้ท่ีอะไรสกัหน่อย|   

28. phrɔ́ʔ  mâi ʨhâi nâ: thî: ʔá rai sàk nɔ̀i| 

29. และมีการหมุนเวียนสมาชิก| ในกลุ่มแต่ละกลุ่ม| ทุกทุกสามอาทิตย|์ เพื่อให้ผูเ้รียนมีโอกาสท่ีจะท างาน|   ร่วมกบัผูเ้รียนอ่ืนอ่ืน| 

29. lǽʔ mi: ka:n mǔn wi:an sà-ma:-ʨhík| nai klùm tæ̀ làʔ klùm| thúk thúk sǎm ʔa:-

thít |phɯ̂:aʔ hâ:i phû: ri:an mi: o:-kàt thî: ʨà tham ŋa:n| rû:am kàp phû: ri:an ʔɯ̀n 

ʔɯ̀n| 

30.ความกา้วหนา้ในทางเศรษฐกิจ| ท่ีด าเนินไปทุกวนัน้ี| แทจ้ริงนั้น| เป็นลกัษณะปลาใหญ่กินปลาเลก็|  

30. khwu:am kâ:w nâ: nai tha:ŋ sèt-thà-kìt| thî: dam nə:n pai thúk wan  ní:| thǽ ʨɪŋ 

nán| pɛn lák-sà-nà| pla: yài kin pla: lɛ́k| 

31.โดยในระยะแรกแรก| จะมีลกัษณะเปล่ียนจาก| การใชเ้คร่ืองมือแบบง่ายง่าย| มาใชเ้คร่ืองจกัรแทน| 

31. do:i  nai  rá-yá ræ̂k-ræ̂k | ʨà mi: lák-sà-nà plì:an ʨà:k | ka:n ʨhá:i khrɯ̂:aŋ mɯ: 

bæ̀p ŋâ:i ͜ŋâ:i| ma: ʨhá:i khrɯ̂:aŋ ʨàk thæ:n| 

32.นิทรรศการน้ี| จะแสดงให้เห็นวิวฒันาการ| ของเคร่ืองมือเคร่ืองใชใ้นการประกอบอาชีพ| ของคนในภูมิภาคตะวนัตก| ตั้งแต่อดีต

ถึงปัจจุบนั| 

32. ni-thát-sà-ka:n ní:| ʨà sà-dæŋ hâ:i hɛ̌n wí-wát-thá-na-ka:n| khɔ̌ŋ khrɯ̂:aŋ mɯ 

khrɯ̂:aŋ ʨhá:i nai ka:n prà-kɔ̀p ʔ:-ʨhî:p| khɔ̌ŋ khon nai phu:m-mí-phâ:k tà-wan-tòk| 

tâŋ tæ̀ ʔà-dì:t thɯ̌ŋ pàt-ʨù-ban| 

33.สิบเอด็จ านวนบณัฑิต| ท่ีมีความคิดเห็นวา่| วิชาภาษาองักฤษท่ีเคยเรียน| ไม่เพียงพอในการประกอบอาชีพในปัจจุบนั| มีสดัส่วน

ใกลเ้คียงกบัจ านวนบณัฑิต| ท่ีมีความคิดเห็นวา่|  วิชาภาษาองักฤษท่ีเรียนมาเพียงพอ|  

33. sìp-ʔɛ̀t ʨam nu:an ban dìt| thî: mi: khu:am khít hɛ̌n wâ| wí-ʨha: pha-sǎ ʔaŋ-krì:t 

thî: khəj ri:an| mâi phi:aŋ phɔ nai ka:n prà-kɔ̀b ʔ:-ʨhî:p nai pàt-ʨù-ban| mi: sàt-suàn 



 
225 

 

klâi-khi:aŋ kàp ʨam nu:an ban dìt| thî: mi: khu:am khít hɛ̌n wâ | wí-ʨha: pha-sǎ ʔaŋ-

krì:t thî: ria:n ma phi:ang phɔ|  

34. เพราะไม่ใช่หนา้ท่ีอะไรสกัหน่อย|   

34. phrɔ́ʔ  mâi ʨhâi nâ: thî: ʔá rai sàk nɔ̀i| 

35.และมีการหมุนเวียนสมาชิก| ในกลุ่มแต่ละกลุ่ม| ทุกทุกสามอาทิตย|์ เพื่อให้ผูเ้รียนมีโอกาสท่ีจะท างาน| ร่วมกบัผูเ้รียนอ่ืนอ่ืน| 

35. lǽʔ mi: ka:n mǔn wi:an sà-ma:-ʨhík| nai klùm tæ̀ làʔ klùm| thúk thúk sǎm ʔa:-

thít |phɯ̂:aʔ hâ:i phû: ri:an mi: o:-kàt thî: ʨà tham ŋa:n| rû:am kàp phû: ri:an ʔɯ̀n 

ʔɯ̀n| 

36.ความกา้วหนา้ในทางเศรษฐกิจ| ท่ีด าเนินไปทุกวนัน้ี| แทจ้ริงนั้น|  เป็นลกัษณะปลาใหญ่กินปลาเล็ก|  

36. khwu:am kâ:w nâ: nai tha:ŋ sèt-thà-kìt| thî: dam nə:n pai thúk wan  ní:| thǽ ʨɪŋ 

nán| pɛn lák-sà-nà| pla: yài kin pla: lɛ́k| 

 

3.2 อ่านค าต่อไปนี ้ (ห่างกนัประมาณ 2 วนิาที) 

1.    เรียน   เรียน   เรียน   เรียน   เรียน   เรียน [ri:an mid]                 -  V.          “to study”  

2.    ท่ี        ท่ี        ท่ี       ท่ี       ท่ี    ท่ี      [thi: HL]      -  Prep.   “at” 

3.    การ   การ     การ     การ      การ     การ   [ka:n  mid]         -  Prefix   “-ness” 

4.    ใน     ใน     ใน       ใน        ใน      ใน     [nai  mid]             -  Prep    “in” 

5.    ดี       ดี       ดี         ดี           ดี        ดี      [di: mid]            - ADJ      “good” 
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กจิกรรมที่ 1 : สนทนาแลกเปลีย่นข้อมูล 

Activity 1: Information-exchange task 

 

ท่านคือผู้พูด B  

You are Speaker B 

ดา้นหลงักระดาษน้ีเป็นเอกสารท่ีส่งมาทางแฟกซ์ แต่เน่ืองจากเคร่ืองรับ-ส่งแฟกซ์มีคุณภาพไม่ดี      ท าให้ขอ้มูลบางส่วนในเอกสารน้ี
ไม่ชดัเจน คู่สนทนาของท่าน (ผูพ้ดู A) ก็ไดรั้บแฟกซ์ฉบบัน้ีเช่นกนั  ซ่ึงแฟกซ์ของผูพ้ดู A อาจมีคุณภาพชดัเจนกวา่ของท่านหรือไม่
ก็ได ้
ให้ท่านรอรับโทรศพัทจ์ากผูพ้ดู A  ให้สอบถามขอ้มูลท่ีขาดหายไป  และเขียนขอ้มูลลงบนกระดาษท่ีให้มาดา้นหลงั  

On the back of this document is a facsimile listing many fresh food products and 

their prices. Unfortunately, the fax is not in good quality, so some information is 

illegible for you but might be legible for your interlocutor (Speaker A). Wait for a 

call from Speaker A and exchange the information that is obfuscated to you. Then, 

write down the missing information on the same piece of paper provided. 

*หมายเหตุ  โปรดใชส้รรพนามว่า  B  แทนตวัท่าน และ A แทนคู่สนทนา 
และวางโทรศพัทห์ลงัจากท ากิจกรรมน้ีเสร็จส้ิน 

*Please identify yourself as B and your interlocutor as A. Please hang up the phone 

after finishing this task. 
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กจิกรรมที่ 2 : บอกทิศทาง  

Activity 2: Giving Directions 

ท่านไม่คุน้เคยกบัการเดินทางภายในมหาวิทยาลยัธรรมศาสตร์  รังสิต ขณะน้ีท่านอยู่ที่ โรงพมิพ์มหาวทิยาลยัธรรมศาสตร์ (ตึกเลขที่ 

9)  ท่านตอ้งการเดินทางไปยงัสถานท่ีต่างๆ ดงัน้ี 

1. สถานีวิทยกุระจายเสียง มหาวิทยาลยัธรรมศาสตร์ (ตึกเลขท่ี 50) 

2. อาคารยมิเนเซียม 2 (ตึกเลขท่ี 37) 

3. สถานีบริการน ้ามนั ป.ต.ท.   (ตึกเลขท่ี 59) 

เน่ืองจากท่านไม่รู้ทางท่ีจะไปยงัสถานท่ีดงักล่าว  ท่านจึงต่อโทรศพัทห์าเพ่ือนตามหมายเลข  2358 เพื่อถามทิศทางไปยงัสถานท่ี

ต่างๆ ขา้งตน้    

จงวาดแผนที่คร่าวๆ ตามค าบอกเล่าลงในกระดาษที่แนบมาด้านหลัง 

Since you are not familiar with the directions in TU, Rangsit campus and now you 

are at Thammasat Univeristy’s printing house (Building No.9), you would like to go 

to the following places.  

1.TU Radio Station (Building No. 50) 

2. Gymnasium 2 (Building No. 37) 

3. PTT gas station (Building No. 59) 

Please call your friend (Speaker A) by dialing ext. 2358 to ask for the directions. 

Please also draw a map of  the above places in the space provided below. 
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กจิกรรมที่ 3 : จงอ่านประโยคและค าที่ก าหนดให้ (ให้ท่านอ่านตามความเร็วปกติเหมือนเวลาท่ีท่านพดูโดยทัว่ๆ ไป) 

Activity 3: Read the following sentences and words (at a comfortable speaking rate). 

The vertical lines within sentences indicate the internal pauses. Please give a short 

pause accordingly. (The rational in doing this is to make sure that the extracted 

targets are from the same phonological environments). 

 

3.1 อ่านประโยคต่อไปนี ้  

1.โดยในระยะแรกแรก| จะมีลกัษณะเปล่ียนจาก| การใชเ้คร่ืองมือแบบง่ายง่าย| มาใชเ้คร่ืองจกัรแทน| 

1. do:i  nai  rá-yá ræ̂k-ræ̂k | ʨà mi: lák-sà-nà plì:an ʨà:k | ka:n ʨhá:i khrɯ̂:aŋ mɯ: 

bæ̀p ŋâ:i ͜ŋâ:i| ma: ʨhá:i khrɯ̂:aŋ ʨàk thæ:n| 

2. นิทรรศการน้ี| จะแสดงให้เห็นวิวฒันาการ| ของเคร่ืองมือเคร่ืองใชใ้นการประกอบอาชีพ| ของคนในภูมิภาคตะวนัตก| ตั้งแต่อดีตถึง
ปัจจุบนั| 

2. ni-thát-sà-ka:n ní:| ʨà sà-dæŋ hâ:i hɛ̌n wí-wát-thá-na-ka:n| khɔ̌ŋ khrɯ̂:aŋ mɯ 

khrɯ̂:aŋ ʨhá:i nai ka:n prà-kɔ̀p ʔ:-ʨhî:p| khɔ̌ŋ khon nai phu:m-mí-phâ:k tà-wan-tòk| 

tâŋ tæ̀ ʔà-dì:t thɯ̌ŋ pàt-ʨù-ban| 

3.สิบเอด็จ านวนบณัฑิต| ท่ีมีความคิดเห็นวา่| วิชาภาษาองักฤษท่ีเคยเรียน| ไม่เพียงพอในการประกอบอาชีพในปัจจุบนั| มีสดัส่วน
ใกลเ้คียงกบัจ านวนบณัฑิต| ท่ีมีความคิดเห็นวา่|  วิชาภาษาองักฤษท่ีเรียนมาเพียงพอ|  

3. sìp-ʔɛ̀t ʨam nu:an ban dìt| thî: mi: khu:am khít hɛ̌n wâ| wí-ʨha: pha-sǎ ʔaŋ-krì:t 

thî: khəj ri:an| mâi phi:aŋ phɔ nai ka:n prà-kɔ̀b ʔ:-ʨhî:p nai pàt-ʨù-ban| mi: sàt-suàn 

klâi-khi:aŋ kàp ʨam nu:an ban dìt| thî: mi: khu:am khít hɛ̌n wâ | wí-ʨha: pha-sǎ ʔaŋ-

krì:t thî: ria:n ma phi:ang phɔ|  

4. เพราะไม่ใช่หนา้ท่ีอะไรสกัหน่อย|   

4. phrɔ́ʔ  mâi ʨhâi nâ: thî: ʔá rai sàk nɔ̀i| 

5. และมีการหมุนเวียนสมาชิก| ในกลุ่มแต่ละกลุ่ม| ทุกทุกสามอาทิตย|์  เพื่อให้ผูเ้รียนมีโอกาสท่ีจะท างาน| ร่วมกบัผูเ้รียนอ่ืนอ่ืน| 

5. lǽʔ mi: ka:n mǔn wi:an sà-ma:-ʨhík| nai klùm tæ̀ làʔ klùm| thúk thúk sǎm ʔa:-thít 

|phɯ̂:aʔ hâ:i phû: ri:an mi: o:-kàt thî: ʨà tham ŋa:n| rû:am kàp phû: ri:an ʔɯ̀n ʔɯ̀n| 
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6.ความกา้วหนา้ในทางเศรษฐกิจ| ท่ีด าเนินไปทุกวนัน้ี| แทจ้ริงนั้น| เป็นลกัษณะปลาใหญ่กินปลาเลก็|  

6. khwu:am kâ:w nâ: nai tha:ŋ sèt-thà-kìt| thî: dam nə:n pai thúk wan  ní:| thǽ ʨɪŋ 

nán| pɛn lák-sà-nà| pla: yài kin pla: lɛ́k| 

7.โดยในระยะแรกแรก| จะมีลกัษณะเปล่ียนจาก| การใชเ้คร่ืองมือแบบง่ายง่าย| มาใชเ้คร่ืองจกัรแทน| 

7. do:i  nai  rá-yá ræ̂k-ræ̂k | ʨà mi: lák-sà-nà plì:an ʨà:k | ka:n ʨhá:i khrɯ̂:aŋ mɯ: 

bæ̀p ŋâ:i ͜ŋâ:i| ma: ʨhá:i khrɯ̂:aŋ ʨàk thæ:n| 

8.นิทรรศการน้ี| จะแสดงให้เห็นวิวฒันาการ| ของเคร่ืองมือเคร่ืองใชใ้นการประกอบอาชีพ| ของคนในภูมิภาคตะวนัตก| ตั้งแต่อดีตถึง
ปัจจุบนั| 

8. ni-thát-sà-ka:n ní:| ʨà sà-dæŋ hâ:i hɛ̌n wí-wát-thá-na-ka:n| khɔ̌ŋ khrɯ̂:aŋ mɯ 

khrɯ̂:aŋ ʨhá:i nai ka:n prà-kɔ̀p ʔ:-ʨhî:p| khɔ̌ŋ khon nai phu:m-mí-phâ:k tà-wan-tòk| 

tâŋ tæ̀ ʔà-dì:t thɯ̌ŋ pàt-ʨù-ban| 

9.สิบเอด็จ านวนบณัฑิต| ท่ีมีความคิดเห็นวา่| วิชาภาษาองักฤษท่ีเคยเรียน| ไม่เพียงพอในการประกอบอาชีพในปัจจุบนั|  มีสดัส่วน
ใกลเ้คียงกบัจ านวนบณัฑิต|  ท่ีมีความคิดเห็นวา่|  วิชาภาษาองักฤษท่ีเรียนมาเพียงพอ|  

9. sìp-ʔɛ̀t ʨam nu:an ban dìt| thî: mi: khu:am khít hɛ̌n wâ| wí-ʨha: pha-sǎ ʔaŋ-krì:t 

thî: khəj ri:an| mâi phi:aŋ phɔ nai ka:n prà-kɔ̀b ʔ:-ʨhî:p nai pàt-ʨù-ban| mi: sàt-suàn 

klâi-khi:aŋ kàp ʨam nu:an ban dìt| thî: mi: khu:am khít hɛ̌n wâ | wí-ʨha: pha-sǎ ʔaŋ-

krì:t thî: ria:n ma phi:ang phɔ|  

10. เพราะไม่ใช่หนา้ท่ีอะไรสกัหน่อย|   

10. phrɔ́ʔ  mâi ʨhâi nâ: thî: ʔá rai sàk nɔ̀i| 

11. และมีการหมุนเวียนสมาชิก| ในกลุ่มแต่ละกลุ่ม| ทุกทุกสามอาทิตย|์ เพื่อให้ผูเ้รียนมีโอกาสท่ีจะท างาน| ร่วมกบัผูเ้รียนอ่ืนอ่ืน| 

11. lǽʔ mi: ka:n mǔn wi:an sà-ma:-ʨhík| nai klùm tæ̀ làʔ klùm| thúk thúk sǎm ʔa:-

thít |phɯ̂:aʔ hâ:i phû: ri:an mi: o:-kàt thî: ʨà tham ŋa:n| rû:am kàp phû: ri:an ʔɯ̀n 

ʔɯ̀n| 

12.ความกา้วหนา้ในทางเศรษฐกิจ| ท่ีด าเนินไปทุกวนัน้ี| แทจ้ริงนั้น| เป็นลกัษณะปลาใหญ่กินปลาเลก็|  

12. khwu:am kâ:w nâ: nai tha:ŋ sèt-thà-kìt| thî: dam nə:n pai thúk wan  ní:| thǽ ʨɪŋ 

nán| pɛn lák-sà-nà| pla: yài kin pla: lɛ́k| 
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13.โดยในระยะแรกแรก| จะมีลกัษณะเปล่ียนจาก| การใชเ้คร่ืองมือแบบง่ายง่าย| มาใชเ้คร่ืองจกัรแทน| 

13. do:i  nai  rá-yá ræ̂k-ræ̂k | ʨà mi: lák-sà-nà plì:an ʨà:k | ka:n ʨhá:i khrɯ̂:aŋ mɯ: 

bæ̀p ŋâ:i ͜ŋâ:i| ma: ʨhá:i khrɯ̂:aŋ ʨàk thæ:n| 

14.นิทรรศการน้ี| จะแสดงให้เห็นวิวฒันาการ| ของเคร่ืองมือเคร่ืองใชใ้นการประกอบอาชีพ| ของคนในภูมิภาคตะวนัตก| ตั้งแต่อดีต
ถึงปัจจุบนั| 

14. ni-thát-sà-ka:n ní:| ʨà sà-dæŋ hâ:i hɛ̌n wí-wát-thá-na-ka:n| khɔ̌ŋ khrɯ̂:aŋ mɯ 

khrɯ̂:aŋ ʨhá:i nai ka:n prà-kɔ̀p ʔ:-ʨhî:p| khɔ̌ŋ khon nai phu:m-mí-phâ:k tà-wan-tòk| 

tâŋ tæ̀ ʔà-dì:t thɯ̌ŋ pàt-ʨù-ban| 

15.สิบเอด็จ านวนบณัฑิต| ท่ีมีความคิดเห็นวา่| วิชาภาษาองักฤษท่ีเคยเรียน| ไม่เพียงพอในการประกอบอาชีพในปัจจุบนั| มีสดัส่วน
ใกลเ้คียงกบัจ านวนบณัฑิต| ท่ีมีความคิดเห็นวา่|  วิชาภาษาองักฤษท่ีเรียนมาเพียงพอ|  

15. sìp-ʔɛ̀t ʨam nu:an ban dìt| thî: mi: khu:am khít hɛ̌n wâ| wí-ʨha: pha-sǎ ʔaŋ-krì:t 

thî: khəj ri:an| mâi phi:aŋ phɔ nai ka:n prà-kɔ̀b ʔ:-ʨhî:p nai pàt-ʨù-ban| mi: sàt-suàn 

klâi-khi:aŋ kàp ʨam nu:an ban dìt| thî: mi: khu:am khít hɛ̌n wâ | wí-ʨha: pha-sǎ ʔaŋ-

krì:t thî: ria:n ma phi:ang phɔ|  

16.เพราะไม่ใช่หนา้ท่ีอะไรสกัหน่อย|   

16. phrɔ́ʔ  mâi ʨhâi nâ: thî: ʔá rai sàk nɔ̀i| 

17. และมีการหมุนเวียนสมาชิก| ในกลุ่มแต่ละกลุ่ม| ทุกทุกสามอาทิตย|์ เพื่อให้ผูเ้รียนมีโอกาสท่ีจะท างาน| ร่วมกบัผูเ้รียนอ่ืนอ่ืน| 

17. lǽʔ mi: ka:n mǔn wi:an sà-ma:-ʨhík| nai klùm tæ̀ làʔ klùm| thúk thúk sǎm ʔa:-

thít |phɯ̂:aʔ hâ:i phû: ri:an mi: o:-kàt thî: ʨà tham ŋa:n| rû:am kàp phû: ri:an ʔɯ̀n 

ʔɯ̀n| 

18.ความกา้วหนา้ในทางเศรษฐกิจ| ท่ีด าเนินไปทุกวนัน้ี| แทจ้ริงนั้น| เป็นลกัษณะปลาใหญ่กินปลาเลก็|  

18. khwu:am kâ:w nâ: nai tha:ŋ sèt-thà-kìt| thî: dam nə:n pai thúk wan  ní:| thǽ ʨɪŋ 

nán| pɛn lák-sà-nà| pla: yài kin pla: lɛ́k| 

19.โดยในระยะแรกแรก| จะมีลกัษณะเปล่ียนจาก| การใชเ้คร่ืองมือแบบง่ายง่าย| มาใชเ้คร่ืองจกัรแทน| 

19. do:i  nai  rá-yá ræ̂k-ræ̂k | ʨà mi: lák-sà-nà plì:an ʨà:k | ka:n ʨhá:i khrɯ̂:aŋ mɯ: 

bæ̀p ŋâ:i ͜ŋâ:i| ma: ʨhá:i khrɯ̂:aŋ ʨàk thæ:n| 
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20. นิทรรศการน้ี| จะแสดงให้เห็นวิวฒันาการ| ของเคร่ืองมือเคร่ืองใชใ้นการประกอบอาชีพ|  ของคนในภูมิภาคตะวนัตก|  ตั้งแต่
อดีตถึงปัจจุบนั| 

20. ni-thát-sà-ka:n ní:| ʨà sà-dæŋ hâ:i hɛ̌n wí-wát-thá-na-ka:n| khɔ̌ŋ khrɯ̂:aŋ mɯ 

khrɯ̂:aŋ ʨhá:i nai ka:n prà-kɔ̀p ʔ:-ʨhî:p| khɔ̌ŋ khon nai phu:m-mí-phâ:k tà-wan-tòk| 

tâŋ tæ̀ ʔà-dì:t thɯ̌ŋ pàt-ʨù-ban| 

21.สิบเอด็จ านวนบณัฑิต| ท่ีมีความคิดเห็นวา่| วิชาภาษาองักฤษท่ีเคยเรียน| ไม่เพียงพอในการประกอบอาชีพในปัจจุบนั|  มีสดัส่วน

ใกลเ้คียงกบัจ านวนบณัฑิต|  ท่ีมีความคิดเห็นวา่|  วิชาภาษาองักฤษท่ีเรียนมาเพียงพอ|  

21. sìp-ʔɛ̀t ʨam nu:an ban dìt| thî: mi: khu:am khít hɛ̌n wâ| wí-ʨha: pha-sǎ ʔaŋ-krì:t 

thî: khəj ri:an| mâi phi:aŋ phɔ nai ka:n prà-kɔ̀b ʔ:-ʨhî:p nai pàt-ʨù-ban| mi: sàt-suàn 

klâi-khi:aŋ kàp ʨam nu:an ban dìt| thî: mi: khu:am khít hɛ̌n wâ | wí-ʨha: pha-sǎ ʔaŋ-

krì:t thî: ria:n ma phi:ang phɔ|  

22. เพราะไม่ใช่หนา้ท่ีอะไรสกัหน่อย|   

22. phrɔ́ʔ  mâi ʨhâi nâ: thî: ʔá rai sàk nɔ̀i| 

23. และมีการหมุนเวียนสมาชิก| ในกลุ่มแต่ละกลุ่ม| ทุกทุกสามอาทิตย|์ เพื่อให้ผูเ้รียนมีโอกาสท่ีจะท างาน|   ร่วมกบัผูเ้รียนอ่ืนอ่ืน| 

23. lǽʔ mi: ka:n mǔn wi:an sà-ma:-ʨhík| nai klùm tæ̀ làʔ klùm| thúk thúk sǎm ʔa:-

thít |phɯ̂:aʔ hâ:i phû: ri:an mi: o:-kàt thî: ʨà tham ŋa:n| rû:am kàp phû: ri:an ʔɯ̀n 

ʔɯ̀n| 

24.ความกา้วหนา้ในทางเศรษฐกิจ| ท่ีด าเนินไปทุกวนัน้ี| แทจ้ริงนั้น| เป็นลกัษณะปลาใหญ่กินปลาเลก็|  

24. khwu:am kâ:w nâ: nai tha:ŋ sèt-thà-kìt| thî: dam nə:n pai thúk wan  ní:| thǽ ʨɪŋ 

nán| pɛn lák-sà-nà| pla: yài kin pla: lɛ́k| 

25.โดยในระยะแรกแรก| จะมีลกัษณะเปล่ียนจาก| การใชเ้คร่ืองมือแบบง่ายง่าย| มาใชเ้คร่ืองจกัรแทน| 

25. do:i  nai  rá-yá ræ̂k-ræ̂k | ʨà mi: lák-sà-nà plì:an ʨà:k | ka:n ʨhá:i khrɯ̂:aŋ mɯ: 

bæ̀p ŋâ:i ͜ŋâ:i| ma: ʨhá:i khrɯ̂:aŋ ʨàk thæ:n| 

26. นิทรรศการน้ี| จะแสดงให้เห็นวิวฒันาการ| ของเคร่ืองมือเคร่ืองใชใ้นการประกอบอาชีพ| ของคนในภูมิภาคตะวนัตก|  ตั้งแต่

อดีตถึงปัจจุบนั| 

26. ni-thát-sà-ka:n ní:| ʨà sà-dæŋ hâ:i hɛ̌n wí-wát-thá-na-ka:n| khɔ̌ŋ khrɯ̂:aŋ mɯ 

khrɯ̂:aŋ ʨhá:i nai ka:n prà-kɔ̀p ʔ:-ʨhî:p| khɔ̌ŋ khon nai phu:m-mí-phâ:k tà-wan-tòk| 

tâŋ tæ̀ ʔà-dì:t thɯ̌ŋ pàt-ʨù-ban| 
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27.สิบเอด็จ านวนบณัฑิต| ท่ีมีความคิดเห็นวา่| วิชาภาษาองักฤษท่ีเคยเรียน| ไม่เพียงพอในการประกอบอาชีพในปัจจุบนั|  มีสดัส่วน

ใกลเ้คียงกบัจ านวนบณัฑิต|  ท่ีมีความคิดเห็นวา่|  วิชาภาษาองักฤษท่ีเรียนมาเพียงพอ|  

27. sìp-ʔɛ̀t ʨam nu:an ban dìt| thî: mi: khu:am khít hɛ̌n wâ| wí-ʨha: pha-sǎ ʔaŋ-krì:t 

thî: khəj ri:an| mâi phi:aŋ phɔ nai ka:n prà-kɔ̀b ʔ:-ʨhî:p nai pàt-ʨù-ban| mi: sàt-suàn 

klâi-khi:aŋ kàp ʨam nu:an ban dìt| thî: mi: khu:am khít hɛ̌n wâ | wí-ʨha: pha-sǎ ʔaŋ-

krì:t thî: ria:n ma phi:ang phɔ|  

28. เพราะไม่ใช่หนา้ท่ีอะไรสกัหน่อย|   

28. phrɔ́ʔ  mâi ʨhâi nâ: thî: ʔá rai sàk nɔ̀i| 

29. และมีการหมุนเวียนสมาชิก| ในกลุ่มแต่ละกลุ่ม| ทุกทุกสามอาทิตย|์ เพื่อให้ผูเ้รียนมีโอกาสท่ีจะท างาน|   ร่วมกบัผูเ้รียนอ่ืนอ่ืน| 

29. lǽʔ mi: ka:n mǔn wi:an sà-ma:-ʨhík| nai klùm tæ̀ làʔ klùm| thúk thúk sǎm ʔa:-

thít |phɯ̂:aʔ hâ:i phû: ri:an mi: o:-kàt thî: ʨà tham ŋa:n| rû:am kàp phû: ri:an ʔɯ̀n 

ʔɯ̀n| 

30.ความกา้วหนา้ในทางเศรษฐกิจ| ท่ีด าเนินไปทุกวนัน้ี| แทจ้ริงนั้น| เป็นลกัษณะปลาใหญ่กินปลาเลก็|  

30. khwu:am kâ:w nâ: nai tha:ŋ sèt-thà-kìt| thî: dam nə:n pai thúk wan  ní:| thǽ ʨɪŋ 

nán| pɛn lák-sà-nà| pla: yài kin pla: lɛ́k| 

31.โดยในระยะแรกแรก| จะมีลกัษณะเปล่ียนจาก| การใชเ้คร่ืองมือแบบง่ายง่าย| มาใชเ้คร่ืองจกัรแทน| 

31. do:i  nai  rá-yá ræ̂k-ræ̂k | ʨà mi: lák-sà-nà plì:an ʨà:k | ka:n ʨhá:i khrɯ̂:aŋ mɯ: 

bæ̀p ŋâ:i ͜ŋâ:i| ma: ʨhá:i khrɯ̂:aŋ ʨàk thæ:n| 

32.นิทรรศการน้ี| จะแสดงให้เห็นวิวฒันาการ| ของเคร่ืองมือเคร่ืองใชใ้นการประกอบอาชีพ| ของคนในภูมิภาคตะวนัตก| ตั้งแต่อดีต

ถึงปัจจุบนั| 

32. ni-thát-sà-ka:n ní:| ʨà sà-dæŋ hâ:i hɛ̌n wí-wát-thá-na-ka:n| khɔ̌ŋ khrɯ̂:aŋ mɯ 

khrɯ̂:aŋ ʨhá:i nai ka:n prà-kɔ̀p ʔ:-ʨhî:p| khɔ̌ŋ khon nai phu:m-mí-phâ:k tà-wan-tòk| 

tâŋ tæ̀ ʔà-dì:t thɯ̌ŋ pàt-ʨù-ban| 

33.สิบเอด็จ านวนบณัฑิต| ท่ีมีความคิดเห็นวา่| วิชาภาษาองักฤษท่ีเคยเรียน| ไม่เพียงพอในการประกอบอาชีพในปัจจุบนั| มีสดัส่วน

ใกลเ้คียงกบัจ านวนบณัฑิต| ท่ีมีความคิดเห็นวา่|  วิชาภาษาองักฤษท่ีเรียนมาเพียงพอ|  

33. sìp-ʔɛ̀t ʨam nu:an ban dìt| thî: mi: khu:am khít hɛ̌n wâ| wí-ʨha: pha-sǎ ʔaŋ-krì:t 

thî: khəj ri:an| mâi phi:aŋ phɔ nai ka:n prà-kɔ̀b ʔ:-ʨhî:p nai pàt-ʨù-ban| mi: sàt-suàn 
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klâi-khi:aŋ kàp ʨam nu:an ban dìt| thî: mi: khu:am khít hɛ̌n wâ | wí-ʨha: pha-sǎ ʔaŋ-

krì:t thî: ria:n ma phi:ang phɔ|  

34. เพราะไม่ใช่หนา้ท่ีอะไรสกัหน่อย|   

34. phrɔ́ʔ  mâi ʨhâi nâ: thî: ʔá rai sàk nɔ̀i| 

35.และมีการหมุนเวียนสมาชิก| ในกลุ่มแต่ละกลุ่ม| ทุกทุกสามอาทิตย|์ เพื่อให้ผูเ้รียนมีโอกาสท่ีจะท างาน| ร่วมกบัผูเ้รียนอ่ืนอ่ืน| 

35. lǽʔ mi: ka:n mǔn wi:an sà-ma:-ʨhík| nai klùm tæ̀ làʔ klùm| thúk thúk sǎm ʔa:-

thít |phɯ̂:aʔ hâ:i phû: ri:an mi: o:-kàt thî: ʨà tham ŋa:n| rû:am kàp phû: ri:an ʔɯ̀n 

ʔɯ̀n| 

36.ความกา้วหนา้ในทางเศรษฐกิจ| ท่ีด าเนินไปทุกวนัน้ี| แทจ้ริงนั้น|  เป็นลกัษณะปลาใหญ่กินปลาเล็ก|  

36. khwu:am kâ:w nâ: nai tha:ŋ sèt-thà-kìt| thî: dam nə:n pai thúk wan  ní:| thǽ ʨɪŋ 

nán| pɛn lák-sà-nà| pla: yài kin pla: lɛ́k| 

 

3.2 อ่านค าต่อไปนี ้ (ห่างกนัประมาณ 2 วนิาที) 

1.    เรียน   เรียน   เรียน   เรียน   เรียน   เรียน [ri:an mid]                -  V.          “to study”  

2.    ท่ี        ท่ี        ท่ี       ท่ี       ท่ี    ท่ี      [thi: HL]     -  Prep.    “at” 

3.    การ   การ     การ     การ      การ     การ   [ka:n  mid]        -  Prefix   “-ness” 

4.    ใน     ใน     ใน       ใน        ใน      ใน     [nai  mid]            -  Prep     “in” 

5.    ดี       ดี       ดี         ดี           ดี        ดี      [di: mid]          - ADJ       “good”
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Appendix B 

F1-F3 values of [ɔi] plotted against a normalized time scale (100 msec)   

 

Note: [ɔi] is labeled as [oi] in the plots. 
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Appendix C 

F1-F3 trajectories of [ɔi] plotted together with cubic polynomials  

 

Note: [ɔi] is labeled as [oi] in the plots. 
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Appendix D 

F1-F3 values of [ai] plotted against a normalized time scale (100 msec) 
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Appendix E 

F1-F3 trajectories of [ai] plotted together with cubic polynomials  
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Appendix F 

Tonal F0 values of [ɔi] plotted against a normalized time scale (100 msec) 

 

Note: [ɔi] is labeled as [oi] in the plots. 
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Appendix G 

Tonal F0 values of [ɔi] plotted together with a quadratic polynomial 

curve fitting  

 

Note: /ɔi/ is labeled as /oi/ in the plots. 
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Appendix H 

Tonal F0 values of [ai] plotted against a normalized time scale (100 msec) 
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Appendix I 

Tonal F0 values of [ai] plotted together with a quadratic polynomial 

curve fitting 
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