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Abstract

Representation learning involves transforming data so that it is useful for solving a
particular supervised learning problem. The aim is to learn a representation function
which maps inputs to some representation space, and an hypothesis which maps the
representation space to targets. It is possible to learn a representation function using
unlabeled data or data from a probability distribution other than that of the main
problem of interest, which is helpful if labeled data is scarce. This approach has been
successfully applied in practice, for example through pre-trained neural networks in
computer vision and word embeddings in natural language processing. This thesis
explores when it is possible to learn representations that are provably useful.

We consider learning a representation function from unlabeled data, and pro-
pose an approach to identifying conditions where this technique will be useful for a
subsequent supervised learning task. The approach requires shared structure in the
labeled and unlabeled distributions, as well as a compatible representation function
class and hypothesis class. We provide an example where representation learning
can exploit cluster structure present in the data.

We also consider learning a representation function from a source task distribu-
tion and re-using it on a target task of interest, and again propose conditions where
this approach will be successful. In this case the conditions depend on shared struc-
ture between source and target task distributions. We provide an example involving
the transfer of weights in a two-layer feedforward neural network.

Representation learning can be applied to another topic of interest: fairness in
machine learning. The issue of fairness arises when machine learning systems make
or provide advice on decisions about people. A common approach to defining fair-
ness is measuring differences in decisions made by an algorithm for one demographic
group compared to another. One approach to preventing discrimination against par-
ticular groups is to learn a representation of the data from which it is not possible for
an adversary to determine an individual’s group membership, but which preserves
other useful information. We quantify the costs and benefits of such an approach
with respect to several possible fairness definitions. We also examine the relation-
ships between different definitions of fairness and show cases where they cannot
simultaneously be satisfied.

We explore the use of representation learning for fairness through two case stud-
ies: predicting domestic violence recidivism while avoiding discrimination on the
basis of race, and predicting student outcomes at university while avoiding discrim-
ination on the basis of gender. Our case studies reveal both the utility of fair repre-
sentation learning and the trade-offs between accuracy and the definitions of fairness
considered.
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Chapter 1

Introduction

Representation learning is a technique at the core of many of the most successful
machine learning systems. But what is it, and why does it work? And what is its
connection to a topic of increasing importance: fairness in machine learning? We
provide an introduction to these questions, including a high-level review of prior
work, leaving more detailed literature reviews to the relevant chapters.

1.1 Representations

Data is a representation of something in the world. However, there is more than one
way to represent a particular thing. We face a succession of choices about how to rep-
resent the thing, including selecting what to measure, how to measure it and to what
level of precision, and how to store and organize those measurements. The tension
between the seemingly objective existence of the thing, and the subjective nature of its
representation, has long been discussed in fields such as philosophy [Floridi, 2010],
linguistics [Saussure, 2011], cultural studies [Gitelman, 2013] and physics [Wheeler,
1990].

Consider the case that the something is the opinions of a group of people. These
opinions might be measured via a survey, with the responses stored in a spreadsheet.
The spreadsheet – a matrix whose cells contain the responses of each individual to
each survey question – is data representing the respondents’ opinions. We might
use the data to produce a summary table aggregating average opinion across sev-
eral questions. This summary table is another representation of the respondents’
opinions.

Which representation is better, the spreadsheet or the summary table? A human
might find the summary table easier to interpret and hence more useful for gaining
a high-level understanding of respondents’ opinions. The spreadsheet has some
advantages, however: it contains all the information in the summary table, plus
more. One could reconstruct the summary table from the spreadsheet, but going in
the other direction would be impossible.

This example gives us an intuition that there is no general answer to the question
‘what makes a good representation?’. When we change the way data is represented,
we don’t add any new information and we may well destroy some. This idea has

1



2 Introduction

been formalized in the data processing inequality (Theorem 2.8.1 of [Cover and Thomas,
2012]). We might be tempted to conclude that moving from one representation to
another never helps. And yet, if we have in mind a particular purpose, changing the
way that the data is represented can be very helpful. We must recognize this paradox
if we want to understand representations.

1.2 Learning Representations

A representation is the result of applying a function f – which we refer to as a
representation function – to an input variable X, yielding a new variable Z := f (X). We
refer to Z as a representation variable. It is useful to assume that the data is drawn
from a probability distribution over X and target variable Y, which we refer to as µXY.
Hence, the application of the representation function to this distribution results in an
induced distribution µZY. Typically we would like to learn an hypothesis mapping X
to Y, which is known as supervised learning, and we hope that the introduction of the
intermediate representation Z helps to achieve this.1

In machine learning, the representation function is often handcrafted, a process
known as feature extraction or feature engineering. This approach allows a domain ex-
pert – or someone with statistical training – to incorporate their knowledge into the
representation, prior to handing over the data to a learning algorithm. A disadvan-
tage of this approach is that it provides no performance guarantees and requires a
custom implementation for each new problem.

Representation learning – also known as feature learning – involves automatically
learning such a representation function from data [Bengio et al., 2013]. As we shall
see, representation learning is intimately connected to several machine learning tech-
niques, including deep learning, unsupervised learning, transfer learning, manifold
learning and kernel learning.

Deep learning – the dominant paradigm in machine learning in recent years – can
be seen as a type of representation learning [Goodfellow et al., 2016]. An example is a
feedforward neural network, which learns successive layers of representations. Each
node in a layer is constructed using a weighted sum of nodes in the previous layer,
which is passed through a fixed activation function. The target is predicted using a
weighted sum of nodes in the penultimate layer. The weights are learned by mini-
mizing some loss function over a training set. Some neural network architectures can
be interpreted as probabilistic models, such as deep belief networks [Hinton et al.,
2006], with the hidden units acting as latent variables. In general, from a probabilistic
perspective, representation learning is equivalent to learning a relationship between
observed and latent variables.

There has been considerable research on using deep learning techniques to learn
representations from unlabeled data – an approach known as unsupervised representa-

1In this chapter we introduce common notation widely used in the thesis, where it helps to clarify
our discussion. Each subsequent chapter also contains a complete description of relevant notation.
While notation is mostly consistent across the thesis, where a symbol has a different meaning in a
particular chapter this is explained at the beginning of the chapter.
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tion learning – or data which has been labeled for another task – an approach known
as transfer representation learning [Bengio, 2012]. These techniques are of interest since
often these types of data are abundant, while labeled data for the task of interest is
scarce. For example, the weights in a neural network may be trained to reconstruct
unlabeled examples provided as inputs, then re-used for a supervised learning task, a
technique which is known as pre-training and is used in computer vision [Hinton and
Salakhutdinov, 2006]. A popular class of methods for learning re-usable representa-
tions from unlabeled images is known as ‘self-supervision’, which involves learning
neural network weights from tasks which do not require human-created class la-
bels, such as predicting the position of an image patch [Doersch et al., 2015] or the
pixels of a missing image patch [Pathak et al., 2016]. Another example is learning
vector representations of words by training a neural network to predict word co-
occurence, then re-using the vector representations for a supervised learning task, a
technique which is known as word embeddings and is used in natural language pro-
cessing [Mikolov et al., 2013]. In some cases the learned representation function is
made publicly available, allowing others to re-use it. Hence, representation learning
can be seen as a mechanism to modularize supervised learning.

Manifold learning is another important approach to unsupervised representation
learning, which involves transforming the input data to a lower-dimensional space.
This is motivated by computational efficiency, and the objective of exploiting struc-
ture present in the unlabeled data. Feature selection – where certain dimensions are
discarded – is a simple type of dimensionality reduction. Principal components anal-
ysis (PCA) is a linear manifold learning technique for learning a lower-dimensional
subspace on which to project the input data. A number of non-linear manifold learn-
ing techniques have been developed which build upon PCA, by learning a lower-
dimensional representation optimizing the preservation of pairwise distances be-
tween points in the sample [Bengio et al., 2004]. A variant on manifold learning in-
volves learning sparse representations – which can be of higher dimensionality than
the input data but may be more efficient to work with, since fewer dimensions are
required to describe each data point – via techniques such as clustering and sparse
coding [Olshausen and Field, 1996].

Methods for learning kernel functions can be seen as another approach to rep-
resentation learning. Kernel methods involve using a kernel function k(x, x′) which
has the property that k(x, x′) = f (x) · f (x′), where f is a representation function into
some high (possibly infinite) dimensional space, x and x′ are input samples, and ·
denotes the dot product. Hence, learning k is equivalent to learning f . While often
the kernel is learned using labeled data [Ong et al., 2005], other techniques involve
unsupervised kernel learning [Zhuang et al., 2011]. Kernel methods are motivated by
the fact that using k may be more computationally efficient than explicitly computing
f if the dimensionality of f (x) is large.

Representation learning can be used to solve machine learning problems across a
wide variety of data types. Representations of entities can be learned from data de-
scribing relationships between entities. For example, singular value decomposition
can be used to extract representations of words and documents in natural language
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Input space X Representation space Z Target space Y

Representation
function f Hypothesis g

Hypothesis h

Figure 1.1: Using an intermediate representation in prediction. We may obtain a
mapping from input space X to target space Y can via an hypothesis h : X → Y . An
alternative is via an intermediate representation space Z , a representation function

f : X → Z , an hypothesis g : Z → Y and the function composition g ◦ f .

processing [Deerwester et al., 1990], or of users and products in recommender sys-
tems [Sarwar et al., 2000]. Representation learning is used to analyze time series data
[Keogh and Pazzani, 1998], to enable the integration of images and text via shared
embeddings [Socher et al., 2013], and in the sequence-to-sequence models used in
machine translation systems [Sutskever et al., 2014]. With the rise of automated ma-
chine learning systems [Feurer et al., 2015] – where there is no human in the loop
anywhere in the system’s design – the value of representation learning continues to
grow.

1.3 Provably Useful Representations

We would like to be able to prove that a representation is useful. To do so, we must
define ‘useful’: what we will be using the representation for? Can we move beyond
informal descriptions – such as the intuition that representing an image by edges and
image segments may be more useful than raw pixels since they provide a higher level
abstraction of its contents – to a formal description of the value of a representation?

To make progress, we focus on understanding when a representation is useful for
prediction.2 Let X , Y and Z be input, target and representation spaces correspond-
ing to the variables X, Y and Z respectively. In supervised learning we learn an
hypothesis h : X → Y which makes predictions of the target variable using the input
variable. Alternatively, consider transforming the input via a representation function
f : X → Z , then learning an hypothesis g : Z → Y which makes predictions of
the target variable using this representation. The final form of such a function may
be written g ◦ f , where ◦ denotes function composition. These two approaches to
mapping X to Y are shown in Figure 1.1.

2A useful distinction can be made between the predictive and explanatory power of mathematical
models [Shmueli, 2010]. While we focus on representation learning in the context of prediction, it may
be possible to formalize its usefulness for explanation as well.
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It is straightforward to see that for any given f , the class of hypotheses that may
be written g ◦ f is a subset of the set all hypotheses mapping X to Y . Hence, the best
hypothesis using the representation will be no better, and possibly worse, than the
best hypothesis using the input data. Should we conclude that all representations
are useless?

Past theoretical results have examined cases when we are not too much worse
off using a representation instead of the original input. For example, if it is possi-
ble to approximately reconstruct the input from the representation, and the target
function is not too sensitive to small changes in its inputs, then accuracy predict-
ing the target will not be too much worse using the representation rather than the
input [Van Rooyen and Williamson, 2015]. The field of information theory has de-
scribed the trade-off between the compactness and fidelity of data encoding [Cover
and Thomas, 2012]. For example, the Johnson-Lindenstrauss lemma shows that it is
possible to compress a finite set of high dimensional points to a low dimensional rep-
resentation while bounding the distortion in pointwise Euclidean distances [Johnson
and Lindenstrauss, 1984]. Reduced computational complexity might be one reason
to use a different representation, even if there is a cost in terms of accuracy. However,
we are interested in whether representation learning can also be useful for improving
the accuracy of supervised learning.

One approach is to compare the original hypothesis class H from which h is
drawn, to the hypothesis class G from which g is drawn. The representation function
f may be useful if for some g ∈ G, the function g ◦ f more accurately predicts the
target variable than any hypothesis in H. In other words, f is considered to be useful
insofar as it compensates for the defects of H, and a representation function class
F is useful if it contains such an f . For example, in a feedforward neural network,
the uppermost layer is linear; the representations learned in the lower layers apply
non-linear transformations to the data which cannot be learned at the uppermost
layer. With sufficiently many hidden units, feedforward neural networks with a
single hidden layer are universal function approximators [Hornik, 1991], while linear
models are not. A representation is not useful in isolation; it is useful as a module in
a pipeline whose other modules have limitations. This thesis attempts to formalize
this intuition, with a focus on unsupervised and transfer representation learning.

Statistical learning theory is a tool that can be used to prove when representation
learning is useful. This approach describes conditions under which learning a task
from a particular representation requires fewer labeled data points than learning the
task from the original inputs. Past works have shown specific cases of this for rep-
resentations learned from unlabeled data [Arora and Risteski, 2017] or several other
tasks [Balcan et al., 2015]. However, strong assumptions on the data-generating dis-
tribution are often required: for example, in [Arora and Risteski, 2017] it is assumed
that the task labels are generated by a linear separator over a finite representation
space, and in [Balcan et al., 2015] that the task labels are generated by a linear separa-
tor over a low dimensional subspace of the input space. This thesis further develops
the statistical learning theory approach to understanding the value of representations
learned from unlabeled data and from other tasks.
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1.4 Applications to Fairness

We know from the data processing inequality that a representation function can de-
stroy but not create information. Are there cases where this is a feature, not a bug?
In the context of fairness in machine learning, the answer is yes. An increasingly
important research topic is the design of systems which make or provide advice on
decisions about people – such as whether to grant someone a loan, or whether to
release someone on bail – which accurately predict some target variable, but do not
discriminate against particular groups. Group membership is described by the sen-
sitive variable S, which along with X and Y can be used to construct the distribution
µXYS. The task of learning a mapping from X to Y, without discriminating too much
on the basis of S, is known as fair supervised learning [Madras et al., 2018].

One approach to ensuring that decisions do not discriminate against particular
groups is changing the way that the data is represented to the system, removing
information about S [Zemel et al., 2013]. This approach, known as fair representation
learning, is not as simple as removing the column specifying group membership,
since it may be possible to infer an individual’s group membership based on the
other columns – a phenomenon known as redundant encoding [Dwork et al., 2012].
Methods have been developed to solve this problem, such as using a neural network
to learn a representation from which a separate adversary neural network cannot
predict individuals’ group membership [Edwards and Storkey, 2016]. We investigate
applying these methods in two settings of interest: predicting domestic violence
recidivism and predicting student outcomes at university.

We arrive at another paradox: if we want our decisions to be both accurate and
fair, why not simply trade off these objectives in a joint optimization [Menon and
Williamson, 2018] instead of using representation learning? Once again, representa-
tion learning narrows the hypothesis space and hence cannot offer us better perfor-
mance than using the original data. However, we retain the benefit of modularization
– with fairness taken care of at the representation learning stage, we are free to use
whatever learner we like on the representation, knowing that the resulting decisions
will not discriminate on the basis of group membership. This is particularly valuable
from a governance and regulatory perspective. Supposing that the decision-maker is
not trusted to be fair, the fairness of their decisions is nevertheless guaranteed by the
representation that they access. Representation learning is a means of ensuring fair-
ness by keeping the group membership of individuals private. This thesis provides
a novel formalization of the costs and benefits of using fair representation learning
relative to alternative approaches to fair supervised learning.

To apply representation learning to fairness, we need to define what it means to
be fair. While this is a deep question, researchers have proposed several quantitative
definitions which are useful in the context of fairness in machine learning [Mitchell
and Shadlen, 2018]. We focus on those that consider differences in decisions made for
different groups, known as parity metrics. Not only are there multiple definitions of
fairness, but it is possible to show that some of them are in conflict [Kleinberg et al.,
2017b]. We investigate this issue and contribute new results about such conflicts,
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focusing on the relationship between two common parity metrics: equalized odds and
equalized outcomes.

1.5 Contributions of this Thesis

The major contributions of the thesis are to:

• identify conditions under which unsupervised representation learning is prov-
ably useful (Part I, Chapter 2)

• identify conditions under which transfer representation learning is provably
useful (Part I, Chapter 3)

• formalize the problem of fair representation learning and quantify the costs
and benefits of using a given representation (Part II, Chapter 4)

• quantify the relationship between two common notions of fairness, equalized
odds and equalized outcomes (Part II, Chapter 5)

• demonstrate the use and performance of fair representation learning in the
contexts of predicting recidivism (Part III, Chapter 6) and student outcomes at
university (Part III, Chapter 7).

Another way to understand the contributions of the thesis is through the sev-
eral problem settings which we consider, as summarized in Figure 1.2. We compare
supervised learning (a) to unsupervised representation learning (b) and transfer rep-
resentation learning (c) (see Part I). We compare fair supervised learning (d) – which
adds the sensitive variable S encoding group membership to the standard supervised
learning problem – to fair representation learning (e) (see Part II). We also explore
case studies of fair representation learning (e) (see Part III).

1.6 Structure of this Thesis

This thesis is structured in three parts. Part I presents a theoretical approach to un-
derstanding when learning and re-using representations is useful. Part II considers
the application of representation learning to fairness and the challenges of conflict-
ing definitions of fairness. Part III introduces two case studies – one about predict-
ing recidivism in a criminal justice context and the other about predicting student
outcomes at university – which incorporate fair representation learning, and are of
interest in their own right.

In Part I, we first provide a theoretical analysis of when unsupervised repre-
sentation learning is useful in Chapter 2. We describe an approach to identifying
sufficient conditions for unsupervised representation learning to provide a benefit,
and give an example of these conditions where cluster structure is present in the
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(a) Supervised learning (Chapters 2 and 3)

Distribution µXY

Hypothesis
class H

Hypothesis h

(b) Unsupervised representation learning + supervised learning (Chapter 2)

Distribution µX

Representation
function class F

Representation
function f

Distribution µXY

Representation f

Induced dis-
tribution µZY

Hypothesis
class G

Hypothesis g

(c) Transfer representation learning + supervised learning (Chapter 3)

Distribution µ′XY

Representation
function class F

Representation
function f

Distribution µXY

Representation
function f

Induced dis-
tribution µZY

Hypothesis
class G

Hypothesis g

(d) Fair supervised learning (Chapter 4)

Distribution µXYS

Hypothesis
class H

Hypothesis h

(e) Fair representation learning + supervised learning (Chapter 4)

Distribution µXYS

Representation
function class F

Representation
function f

Distribution µXYS

Representation
function f

Induced dis-
tribution µZY

Hypothesis
class G

Hypothesis g

Figure 1.2: Summary of problem settings considered in this thesis and the chapters
where they are introduced. The diagram includes functions and function classes

(red), and probability distributions (blue). The notation is described in the text.
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data. We subsequently provide a theoretical analysis of when transferring represen-
tations from a source to a target task is useful in Chapter 3. Given a fixed number of
target task samples, under certain conditions the target task risk can be more tightly
upper bounded using a transferred representation function compared to learning the
target task from scratch. We consider the case where the transferred representation
function is fixed, and the case where it is fine-tuned on the target task. We show
examples of our risk bounds using feedforward neural networks. The theorems on
unsupervised and transfer representation learning we present in Chapters 2 and 3
are all novel results.

In Part II, we first provide an analysis of the costs and benefits of fair represen-
tation learning in Chapter 4. We show that fair representation learning incurs a cost
compared to optimally trading off fairness and accuracy. We quantify the benefit of
fair representation learning by showing that any subsequent use of a particular rep-
resentation will not be too unfair. We also show that a novel regulatory model with
desirable characteristics is made possible by this approach. In Chapter 5, we describe
the limits imposed on fair representation learning – or indeed on any algorithm – by
competing definitions of fairness. We examine the relationship between equalized
odds – where the true positive rates and false positive rates of an algorithm are the
same across groups – and equalized outcomes – where the difference in predicted
outcomes between groups is less than the difference observed in the training data.
We show that under realistic assumptions, equalized odds implies partially equalized
outcomes.

In Part III we present two case studies. In Chapter 6 we analyze recidivism
prediction in the criminal justice system, and implications for fairness across racial
groups. In Chapter 7 we examine predicting student outcomes at university, and
consequences for the fair provision of academic support across genders. While we
analyze specific aspects of the two problem settings in some detail, we also explore
the common need to incorporate fairness into algorithm design and examine the
suitability of representation learning for this purpose. In both cases we find there is
a trade-off between maximizing absolute utility and equalizing the relative utility of
different groups.

1.7 Research Outputs Produced during PhD Candidature

During the course of the PhD, a range of outputs have been produced, as summa-
rized in Table 1.1. Collaborators are shown for these outputs where applicable, and
the corresponding chapters include some work contributed by these collaborators.
However, Daniel McNamara was the lead researcher and first author for all work
included in this thesis. He has also delivered number of research talks based on the
work in this thesis, as summarized in Table 1.2.
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Table 1.1: Accepted peer-reviewed papers based on work in this thesis.

Output

Related
Chapter

Papers in Conference Proceedings
“Risk Bounds for Transferring Representations With and Without Fine-
Tuning”. Daniel McNamara and Maria-Florina Balcan. International Con-
ference on Machine Learning, 2017.

3

“Costs and Benefits of Fair Representation Learning”. Daniel McNamara,
Cheng Soon Ong and Robert C. Williamson. AAAI/ACM Conference on Artifi-
cial Intelligence, Ethics, and Society, 2019.

4

“Equalized Odds Implies Partially Equalized Outcomes Under Realistic As-
sumptions”. Daniel McNamara. AAAI/ACM Conference on Artificial Intelli-
gence, Ethics, and Society, 2019.

5

Book Chapters
“Trade-offs in Algorithmic Risk Assessment: an Australian Domestic Vio-
lence Case Study”. Daniel McNamara, Timothy Graham, Ellen Broad and
Cheng Soon Ong. Theory on Demand #29: Good Data, pp. 96-116, 2019.

6

Workshop Papers
“Risk Bounds for Transferring Representations With and Without Fine-
Tuning”. Daniel McNamara and Maria-Florina Balcan. Principled Ap-
proaches to Deep Learning Workshop at International Conference on Machine
Learning, 2017.

3

“Performance Guarantees for Transferring Representations”. Daniel McNa-
mara and Maria-Florina Balcan. Workshop Track at International Conference
on Learning Representations, 2017.

3
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Table 1.2: Other research outputs based on work in this thesis.

Output Related
Chapter

Technical Papers
“A Modular Theory of Feature Learning”. Daniel McNamara, Cheng Soon
Ong and Robert C. Williamson. arXiv:1611.03125, 2016.

2

“Using Cohort Analysis and Predictive Modelling to Inform Targeted Student
Support”. Daniel McNamara, Robert C. Williamson and Leone Nurbasari.
Australasian Association for Institutional Research Forum, 2018.

7

Posters at Student Symposiums
“Learning Features to Provably Improve Task Performance”. Australian Joint
Conference on Artificial Intelligence Student Symposium, 2015.

2

“Algorithmic Stereotypes: Implications for Fairness of Generalizing from
Past Data”. AAAI/ACM Conference on Artificial Intelligence, Ethics, and Soci-
ety Student Track, 2019.

5

“Learning Features to Improve the Performance of Machine Learning Algo-
rithms”. Fulbright Scholar Presentation, 2016.

2

Talks
“Risk Bounds for Transferring Representations With and Without Fine-
Tuning”. Representation Learning Workshop, Simons Institute for the Theory
of Computing, University of California Berkeley, 2017.

3

“Carnegie Mellon University Research Visit Summary". Carnegie Mellon
University, 2017.

3

“Performance Guarantees for Transferring Representations”. Microsoft, 2017. 3
“Risk Bounds for Transferring Representations With and Without Fine-
Tuning”. Canon Information Systems Research Australia, 2017.

3

“Risk Bounds for Transferring Representations With and Without Fine-
Tuning”. CSIRO Data61, 2017.

3

“Teaching Machines to Play Fair”. Australian National University Machine
Learning Retreat, 2018.

4

“Teaching Machines to Play Fair”. Australian Fulbright Alumni Association
Conference, 2017.

4

“Teaching Machines to Play Fair”. School of Regulation and Global Gover-
nance, Australian National University, 2017.

4

“Algorithmic Stereotypes”. Ethical Algorithms Symposium, The University
of Sydney, 2019 (forthcoming).

5

“Algorithmic Stereotypes”. AI, ML and Friends, Australian National Univer-
sity, 2018.

5

“Using Cohort Analysis and Predictive Modelling to Inform Targeted Student
Support”. Academic Quality Assurance Committee, Australian National Uni-
versity, 2018.

7

“Using Cohort Analysis and Predictive Modelling to Inform Targeted Student
Support”. Planning and Performance Measurement Division, Australian Na-
tional University, 2018.

7
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Chapter 2

Unsupervised Representation
Learning to Provably Improve Task
Performance

2.1 Introduction

Representation learning techniques using unlabeled data are common in the field of
machine learning [LeCun et al., 2015]. For example, they have been used to achieve
empirical advances in areas such as computer vision [Hinton and Salakhutdinov,
2006] and natural language processing [Mikolov et al., 2013]. However, there are
few theoretical results concerning when such techniques offer a benefit relative to
standard supervised learning.

This chapter describes an approach to identifying sufficient conditions under
which unsupervised representation learning provably improves task performance.
This approach ‘factorizes’ the problem into finding separate conditions which apply
to the unlabeled distribution, the labeled distribution, the representation function
class, and the hypothesis class used for prediction. We provide an example where it
is possible to determine whether these conditions are met, using an unlabeled data
sample, analysis of the proposed representation function class and hypothesis class,
and suitable assumptions about shared structure between the unlabeled and labeled
distributions.

The novelty of this work is its generality beyond any single representation learn-
ing technique and its theoretical rather than empirical approach. Furthermore, we
demonstrate the importance of considering the subsequent task for which the repre-
sentation will be used, including the hypothesis class and loss function, in the defini-
tion of what makes a ‘good’ representation. We show that unsupervised representa-
tion learning is useful when it induces an hypothesis class containing an hypothesis
with lower risk than any hypothesis in the original hypothesis class.

There are two other important features of the work worth calling out. First, we
analyze a processing pipeline, not just a single step. The use of sequential pipelines is
common in practice, but rarely addressed theoretically. Our approach is novel in this
regard. Second, we analyze the problem via the risk gap between using unsupervised

15
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Risk
gap ∆R

Risk
R(g ◦ f )

Hypothesis
g ◦ f Risk R(h) Hypothesis

h
Hypothesis

class H

E

Labeled
distribu-
tion µXY

E

Labeled
sample

SXY

Hypothesis
class G

D

Labeled
distribu-
tion µXY

B

Representation

function f

Unlabeled
distribu-
tion µX

A

Representation

function

class F

C

Labeled
sample

SZY

Unlabeled
sample SX

Unsupervised representation learning + supervised learning Supervised learning

Figure 2.1: Measuring the effect of unsupervised representation learning (see Section
2.3 for details). The red path (left) shows unsupervised representation learning +
supervised learning, the blue path (right) shows supervised learning, and the risk
gap measures the difference between the risks of the two paths. The arrows indicate
dependencies. Source nodes are shown with a black border and are annotated with

corresponding conditions from Table 2.1.

representation learning and directly solving the problem with supervised learning.
This is in contrast to the common approach in statistical learning theory of comparing
the risk upper bounds or sample complexity of learners (e.g. [Balcan and Blum,
2010]). Our approach is illustrated in Figure 2.1.

The remainder of the chapter is structured as follows. In Section 2.2 we briefly
review existing applied and theoretical approaches to unsupervised representation
learning. In Section 2.3 we mathematically formalize the task of unsupervised rep-
resentation learning, develop objectives describing what it means for unsupervised
representation learning to be successful, and present an approach to verifying when
these objectives are achievable. In Section 2.4, we instantiate this approach through
an example involving exploiting cluster structure in unlabeled data to solve a super-
vised learning problem.

2.2 Background

Many representation learning techniques have been developed, including those us-
ing unlabeled data. Collectively they have achieved considerable empirical success
[Bengio et al., 2013], but provide few theoretical guarantees concerning their effect
on task performance [Sutskever et al., 2015]. While the details of these techniques are
not important for the current work, we give a few examples to motivate our analysis,
and describe some previous theoretical approaches to unsupervised representation
learning.

Low dimensional manifold embeddings are a popular class of unsupervised rep-
resentation learning techniques, motivated by the desire for computational efficiency.
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Principal components analysis (PCA) – where the data is projected onto the lower di-
mensional space which minimizes reconstruction error – is a well-known technique
of this kind. Variants which involve optimizing the preservation of pairwise distances
between points include Isomap, Laplacian eigenmaps and local linear embedding
[Mohri et al., 2012]. Clustering can also be seen as a manifold-based approach to un-
supervised representation learning. Theoretical results concerning manifold learning
have typically focused on what kinds of embeddings are possible while preserving
information in the original data. For example, it is possible to compress a finite
set of high dimensional points to a low dimensional representation while bounding
the distortion in pointwise Euclidean distances [Johnson and Lindenstrauss, 1984].
However, in general there are no guarantees that using manifold embeddings will
improve the performance of a subsequent learner.

Empirical results in the field of deep learning have shown the power of learning
multiple levels of representations. Unsupervised pre-training techniques such as the
autoencoder – where unlabeled data is used to learn weights in a neural network,
which are then re-used for a supervised learning task – were important in initial
deep learning advances [Hinton and Salakhutdinov, 2006]. The effect of unsuper-
vised pre-training has been studied empirically [Erhan et al., 2010], with benefits
observed in terms of both reduced training set error and improved generalization.
While attempts have been made to theorize unsupervised representation learning
in studies such as Saxe et al. [2014] — which concluded that a certain kind of ran-
dom initialization could achieve the same condition as unsupervised pre-training —
mostly experimental results have outpaced theory. Such techniques often learn rep-
resentations in a higher dimension than the original inputs, which make the data
more linearly separable.

Despite these advances, theoretical results about the value of representations have
tended to be pessimistic. It is straightforward to show that a representation function
can never decrease the risk of the optimal classifier. This is because for any given rep-
resentation function, the set of hypotheses composed with the representation func-
tion is a subset of all possible hypotheses mapping inputs to targets. A result in a
similar spirit is the data processing inequality (Theorem 2.8.1 of [Cover and Thomas,
2012]): given random variables X, Y and Z, if Z is conditionally independent of Y
given X (i.e. Y → X → Z is a Markov chain), then I(Z, Y) ≤ I(X, Y), where I is
mutual information. In particular, if representation variable Z is constructed from
input variable X, then this conditional independence property is satisfied with re-
spect to target variable Y. This result formalizes the intuition that changing the way
input data is represented cannot increase the amount of information about the target
variable it contains.

A recent work, published after the submission of this thesis, proved that unsu-
pervised representation learning can be useful in a particular problem setting [Arora
et al., 2019]. This work considers ‘contrastive’ unsupervised representation learning,
which involves drawing related pairs of unlabeled samples – such as co-occurring
pairs of words in word2vec – and learning a representation function such that the
representations of related samples are similar, while the representations of unrelated
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samples are dissimilar. This work showed that if the related pairs are from a com-
mon latent class among several possible latent classes, then the performance of a
representation function on the unsupervised task is indicative of the performance of
a linear classifier applied to the induced representation on a supervised classifica-
tion task over the same set of latent classes. The result relies on a detailed set of
assumptions about the relationship between the unsupervised task used for repre-
sentation learning, and the supervised task on which the representation function will
be re-used.

2.3 When Unsupervised Representation Learning is Provably
Useful

Our goal is to determine under what conditions unsupervised representation learn-
ing enhances the performance of a subsequent supervised learner. This objective is
pertinent to a range of common machine learning scenarios. Do the features learned
by an autoencoder enhance the performance of a linear classifier compared to using
the original inputs? Does a particular kernel function outperform a linear kernel
when used with an hypothesis class of linear separators (recalling that kernel func-
tions implicitly specify a representation space)? Do vector representations of words
outperform one-hot unigram representations for natural language processing tasks?

As a step towards our goal, we first formalize the problem setting. We provide a
comparison to a previous formalization of semi-supervised learning. We then state
the objectives of unsupervised representation learning, and a high-level approach to
determining the conditions under which these objectives are met.

2.3.1 Problem Setting

Let X and Y be input and target spaces respectively. Let X and Y be input and target
random variables respectively. Let µXY be a probability distribution over X ×Y and
µX be its marginal distribution over X . Let p(·) refer to the probability that a point
drawn from µXY satisfies some condition, and let p(x) := p(X = x). Let SXY be
a sample drawn from µXY and let SX be a sample drawn from µX. Let H be an
hypothesis class whose elements are of type h : X → Y .

Let Z be the representation space. Let F be a representation function class whose
elements are of type f : X → Z . In unsupervised representation learning, we use F
and SX and learn some f ∈ F. Let the representation variable Z := f (X). Let G be
an hypothesis class whose elements are of type g : Z → Y .

Let l : Y × Y → R+ be a loss function. Let the risk of some h ∈ H be

R(h) := EX,Y∼µXY [l(h(X), Y)].

Similarly, let the risk of hypothesis g ∈ G using the representation function f ∈ F be

R(g ◦ f ) := EX,Y∼µXY [l(g( f (X)), Y)].
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Semi-supervised learning Unsupervised representation learning

H

Hs

h∗

H
G ◦ f

h∗

Figure 2.2: Relationship between semi-supervised learning proposed as formalized
in [Balcan and Blum, 2010] (left) and unsupervised representation learning (right).
In semi-supervised learning, unlabeled data is used to prune the hypothesis class H
to the subset Hs ⊂ H. In unsupervised representation learning, unlabeled data is
used to discover f and the hypothesis class changes to G ◦ f . In both cases we hope

that the target function h∗ is within our new hypothesis class.

We are interested in computing and comparing these two quantities. Of particular
interest are the cases where G and H are the same, or are related to each other
through a straightforward change of type signature. For example, G and H are both
the classes of linear separators for their respective input types.

2.3.2 Comparison to Semi-Supervised Learning

Semi-supervised learning involves using unlabeled data to help supplement scarce
labeled data in a supervised learning problem. By this broad definition, unsuper-
vised representation learning can be considered a kind of semi-supervised learning.
However, previous formal analysis of semi-supervised learning from the perspective
of statistical learning theory proposed by Balcan and Blum [2010] has used a some-
what narrower definition of semi-supervised learning. In this case, unsupervised
representation learning as we describe it is conceptually different. The differences
between the two approaches are shown in Figure 2.2.

In semi-supervised learning, we aim to prune H to some Hs ⊂ H using only
unlabeled data. Supposing that there is some target function h∗ ∈ H we are trying to
learn, we also wish to ensure that h∗ ∈ Hs. The smaller hypothesis class may make
learning a subsequent supervised task more straightforward and enable a tighter
generalization error bound [Balcan and Blum, 2010]. However, if the target function
lies outside the original hypothesis class, semi-supervised learning will not help to
discover it.

In unsupervised representation learning, the hypothesis class changes and hence
it is possible to learn hypotheses not included in the original hypothesis class. We
learn some f ∈ F from unlabeled data, and then consider all hypotheses of the form
g ◦ f for some g ∈ G, where ◦ denotes function composition. Our new hypothesis
class is denoted by G ◦ f . In this case, we hope that h∗ ∈ G ◦ f . This is particularly
useful when h∗ 6∈ H.
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2.3.3 Objectives of Unsupervised Representation Learning

We introduce a set of objectives of unsupervised representation learning. While these
objectives are intuitive, our formalization is novel. They help us to precisely answer
the question: when is unsupervised representation learning guaranteed to be useful?
Once we have described these objectives, we describe conditions under which they
can be achieved.

We would like to show that using a representation function learned from an
unlabeled sample guarantees that the risk of some hypothesis in our hypothesis class
using this representation is not too large, as shown in Objective 2.1.

Objective 2.1 (Risk upper bound for unsupervised representation learning + super-
vised learning). Fix µXY, F, G and l. Draw an unlabeled sample SX from µX. Find some
f ∈ F and ε

f
max depending upon SX, which with probability at least 1− δ over samples SX

satisfies

min
g∈G

R(g ◦ f ) ≤ ε
f
max. (2.1)

We would also like to guarantee that we cannot achieve a small risk using the
original hypothesis class, as shown in Objective 2.2. We may not want to bother with
unsupervised representation learning if the task is solvable using H.1

Objective 2.2 (Risk lower bound for supervised learning). Fix µXY, H and l. Draw a
labeled sample SXY from µXY. Find some εmin depending upon SXY, which with probability
at least 1− δ over samples SXY satisfies

min
h∈H

R(h) ≥ εmin. (2.2)

Finally, we would like to show that we can achieve smaller risk using unsuper-
vised representation learning compared to the original hypothesis class. In formaliz-
ing this objective, it is useful to first define a risk gap.

Definition 2.3 (Risk gap). Fix µXY, F, G, H and l. Let the risk gap of some representation
function f be

∆R( f ) := min
h∈H

R(h)−min
g∈G

R(g ◦ f ).

We now formalize what it means for unsupervised representation learning to be
useful in Objective 2.4.

Objective 2.4 (Positive risk gap). Fix µXY, F, G, H and l. Draw an unlabeled sample SX

from µX and draw a labeled sample SXY from µXY. Find some f ∈ F and ε
f
max depending

upon SX and some εmin depending upon SXY, which with probability at least 1− 2δ over
pairs of samples SX and SXY satisfies

∆R( f ) ≥ εmin − ε
f
max > 0. (2.3)

1It is possible that working with H is disadvantageous for computational and/or sample complexity
reasons. However, in this chapter we focus on comparing the minimum risk achievable using G ◦ f
versus using H.
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2.3.4 Approach to Verifying that the Objectives are Achieved

Our approach to understanding unsupervised representation learning is to search
for combinations of F, G, H, µXY and l for which we can verify that Objectives 2.1,
2.2 and 2.4 are met.

Objective 2.1 can be verified empirically by drawing an unlabeled sample, using it
to find some f ∈ F, then drawing a labeled sample, using it to find some g ∈ G, esti-
mating R(g ◦ f ) and hence upper bounding min

g∈G
R(g ◦ f ). However, this does not give

us any insight into why risk can be upper bounded for unsupervised representation
learning.

We propose an alternative approach, which involves identifying and verifying
four conditions that are sufficient for Objective 2.1 to hold. We write these conditions
as A(µX), B(µXY), C(F) and D(G), since they depend on the unlabeled distribution
µX, the labeled distribution µXY, the representation function class F, and the hy-
pothesis class G respectively (see Section 2.4 for an example). We would like to be
able to verify that the conditions hold with high probability using a sample of µX,
assumptions about the relationship between µX and µXY, and analysis of F and G.
In this way we ‘factorize’ the problem of when the risk of unsupervised represen-
tation learning is upper bounded into several modular components. This provides
more insight on the problem and helps us to determine whether to deploy unsuper-
vised representation learning in problem settings where we can verify whether these
conditions hold.

Objective 2.2 can be verified empirically by drawing a labeled sample, running
empirical minimization over H on the sample, and using a generalization error
bound to lower bound min

h∈H
R(h) with high probability. We introduce this as a separate

condition E(µXY, H), noting that in this case it does not appear possible to ‘factorize’
the problem any further. We observe that if we satisfy Objectives 2.1 and 2.2 and
ε

f
max < εmin, by the union bound we also satisfy Objective 2.4.

Our approach to identifying conditions which verify Objectives 2.1 and 2.2 is
summarized in Table 2.1. We provide an informal description of each condition, an
example (developed further in Section 2.4) and our suggested approach to verify-
ing whether the condition holds. We motivate our conditions by noting that each
independent aspect of the prediction context (the source nodes in Figure 2.1) is as-
sociated with a condition. Thus, although we do not formally demonstrate that the
conditions are necessary for unsupervised representation learning to be useful, it ap-
pears unlikely that the conditions can be reduced further. A(µX), B(µXY), C(F) and
D(G) and E(µXY, H) can be viewed as “meta-conditions”, since their precise defini-
tion depends on the particular problem setting. It appears unlikely that there exist
more specific, problem-independent conditions for successful unsupervised repre-
sentation learning given the problem-dependence of Objectives 2.1, 2.2 and 2.4.



22 Unsupervised Representation Learning to Provably Improve Task Performance

Table 2.1: Approach to identifying sufficient conditions for the achievement of Ob-
jectives 2.1 and 2.2.

Condition Description Example Verification

Objective 2.1: Risk upper bound for unsupervised representation learning + supervised learning

A(µX) Marginal distribution
has some structure

Data lies in clusters
(Definition 2.5)

Analysis of unlabeled
sample

B(µXY) Joint distribution shares
marginal distribution
structure

Points within clusters
share labels (Defini-
tion 2.6)

Assumption (in prin-
ciple could be verified
on a labeled sample)

C(F) Learned representation
exploits marginal distri-
bution structure

Cluster regions are
mapped to distinct
points by some rep-
resentation function
(Definition 2.7)

Analysis of F

D(G) Hypothesis class can ex-
ploit learned represen-
tation

All possible labelings
of distinct points are
separable by the hy-
pothesis class (Defini-
tion 2.8)

Analysis of G

Objective 2.2: Risk lower bound for supervised learning

E(µXY, H) Hypothesis class per-
forms poorly on original
inputs

Inputs not separable
by the hypothesis
class (Definition 2.11)

Analysis of perfor-
mance of H on a
labeled sample
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Figure 2.3: Cluster example considered in Section 2.4. For visualization purposes we
set X = R2 and Z = R4. The conditional probabilities p(Y = 1|X = x) (left – higher
values are red and lower values are blue) obey the cluster assumption, i.e. regions
where the unlabeled density p(X = x) is higher (Xi, boundaries shown in dashed
lines) tend to have common labels. Points from the unlabeled sample SX are shown as
black dots, which are used to construct approximate cluster regions (X̂i, boundaries
shown in solid lines) from the set of axis-aligned rectangles. The representation
function class F maps each X̂i ⊂ X to a fixed point zi ∈ Z . The hypothesis classes G
and H are the sets of linear separators over X and Z respectively. We can find some
f ∈ F from the unlabeled sample, for which there exists some g ∈ G such that g ◦ f
approximately separates positive and negative labeled points. Conversely, all linear

separators h ∈ H perform poorly.

2.4 Cluster Example

We consider an example where we use cluster structure present in the data to solve a
classification problem that is not linearly separable. The example is inspired by for-
malizations of the cluster assumption proposed in past works Rigollet [2007]; Singh
et al. [2009], although our work is novel because it analyzes the relationship be-
tween the cluster assumption and unsupervised representation learning. We define
conditions A(µX), B(µXY), C(F) and D(G) and show that together they imply that
Objective 2.1 is achieved. We also show that these conditions can be established with
high probability using a sample of µX, assumptions about µXY, and analysis of F and
G. Furthermore, we define a condition E(µXY, H)and verify it using labeled data to
show that Objective 2.2 is achieved.

The example assumes the unlabeled distribution is concentrated in clusters, which
share structure with the labeled distribution. We assume X is a Euclidean space,
Y ∈ {0, 1} and l is the 0/1 loss:
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l(ŷ, y) :=

{
0 if y = ŷ

1 if y 6= ŷ.

We give a visualization of the example in Figure 2.3.

2.4.1 Defining the conditions A(µX), B(µXY), C(F) and D(G)

We provide definitions of each of A(µX), B(µXY), C(F) and D(G). This is a first step
towards understanding their relationship to successful unsupervised representation
learning.

Condition A(µX) requires that almost all of the probability mass of µX lies in k̂
non-overlapping high density regions, i.e. informally this means that the data lies in
clusters. We will show in Section 2.4.3 how to verify this using an unlabeled sample
SX.

Definition 2.5 (Condition A(µX): data lies in clusters). Let k̂ be a positive integer and
let εA and τ be non-negative constants. Suppose ∃X̂ s ⊆ X such that

X̂ s = X̂1 ∪ · · · ∪ X̂k̂ (2.4)

where ∀i ∈ {1, . . . , k̂}, X̂i is a connected set, X̂i ∩ X̂j = ∅ if i 6= j and X̂0 := X \ X̂ s,

∀x ∈ X̂ s, p(x) ≥ τ (2.5)

and ∫
x∈X̂0

p(x)dx ≤ εA. (2.6)

Condition B(µXY) requires that there is some low-risk hypothesis whose pre-
dictions are constant within regions of high density, or in other words that points
within clusters tend to share labels. This is an example of shared structure between
the marginal and joint distributions. While in principle we may verify this condition
using labeled data, in practice it is likely to be treated as an assumption; since veri-
fication appears as difficult as solving the supervised learning problem, if this were
possible unsupervised representation learning may not be useful.

Definition 2.6 (Condition B(µXY): points within clusters share labels). Let k be a
positive integer, let εB a non-negative constant and let τ be the non-negative constant from
Definition 2.5. Suppose ∃X s ⊆ X , h∗ : X → Y such that

X s = X1 ∪ · · · ∪ Xk (2.7)

where min
xi∈Xi ,xj∈Xj

‖xi − xj‖2 > 0 if i 6= j and X0 := X \ X s,

∀x ∈ X0, p(x) < τ, (2.8)
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∀i ∈ {1, . . . , k}, ∀x, x′ ∈ Xi, h∗(x) = h∗(x′) (2.9)

and

R(h∗) ≤ εB. (2.10)

Condition C(F) requires that there is some representation function f ∈ F which
maps each region X̂i to a particular distinct point. We will show in Section 2.4.4 an
example of where it is possible to verify that this condition holds by inspecting F.

Definition 2.7 (Condition C(F): cluster regions mapped to distinct points by some
representation function). Let k̂ be the positive integer and X̂i be the regions from Definition
2.5. Let z0, . . . , zk̂ ∈ Z , where zi 6= zj if i 6= j. Suppose there is some f ∈ F such that

∀i ∈ {0, . . . , k̂}, f (x) = zi, if x ∈ X̂i. (2.11)

Condition D(G) requires that there is some hypothesis g ∈ G which is capable of
labeling a particular set of k̂ + 1 points. We will show in Section 2.4.4 an example of
where it is possible to verify that this condition holds by inspecting G.

Definition 2.8 (Condition D(G): all possible labelings of distinct points are separable
by the hypothesis class). Let k̂ be the positive integer from Definition 2.5. Let z0, . . . , zk̂ be
the set of points from Definition 2.7. Let h : z0 ∪ · · · ∪ zk̂ → {0, 1} be a labeling function.
Suppose that for any labeling function h, ∃g ∈ G such that

∀i ∈ 0, . . . , k̂, g(zi) = h(zi). (2.12)

2.4.2 Using Conditions A(µX), B(µXY), C(F) and D(G) to Verify that Ob-
jective 2.1 is Satisfied

We wish to verify that Objective 2.1 is satisfied. In Theorem 2.9, we show that this
is possible in the case where A(µX), B(µXY), C(F) and D(G) hold. The result shows
that we can find conditions under which we may upper bound the risk of using
unsupervised representation learning.

Theorem 2.9 (Objective 2.1 is satisfied assuming conditions hold). Suppose conditions
A(µX), B(µXY), C(F) and D(G) hold. Let εA be the constant from Definition 2.5, εB be the
constant from Definition 2.6 and f be the representation function from Definition 2.7. Then

min
g′∈G

R(g′ ◦ f ) ≤ εA + εB.

Proof. First we show that

∀i ∈ {1, . . . , k̂}, ∃j ∈ {1, . . . , k} such that X̂i ⊆ Xj. (2.13)

Recall that ∀i ∈ {1, . . . , k̂}, ∀x ∈ X̂ i, p(x) ≥ τ by (2.5) and that ∀x ∈ X0, p(x) < τ

by (2.8). Therefore ∀i ∈ {1, . . . , k̂}, X̂i cannot intersect X0.
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Also recall that ∀i ∈ {1, . . . , k̂}, X̂i is a connected set by (2.4). Furthermore, recall
that min

xi∈Xi ,xj∈Xj
‖xi − xj‖2 > 0 if i 6= j by (2.7), which implies that any connected set

intersecting both Xi and Xj must contain a point in X0.
Since ∀i ∈ {1, . . . , k̂}, X̂i cannot intersect X0 nor intersect both Xi and Xj, we

conclude that ∃j ∈ {1, . . . , k} such that X̂i ⊆ Xj.
Combining (2.9) and (2.13), we have ∀i ∈ {1, . . . , k̂}, h∗ is constant on X̂i. Let

h(x) :=

{
h∗(x) if x ∈ X̂ s

0 if x ∈ X̂0.
(2.14)

Therefore ∀i ∈ {0, . . . , k̂}, h is constant on X̂i. From (2.11), ∀i ∈ {0, . . . , k̂}, X̂i is
mapped by f to zi. By (2.12), ∃g ∈ G matching any labeling of z0, . . . , zk̂. Combining
these facts about h, f and G, we have ∃g ∈ G such that g( f (x)) = h(x).

We now complete the proof.

min
g′∈G

R(g′ ◦ f )

≤R(h) since we showed that it is possible to se-
lect f ∈ F and g ∈ G such that h = g ◦ f

≤
∫

x:h(x) 6=h∗(x)

p(x)dx + R(h∗) by basic probability

≤
∫

x∈X̂0

p(x)dx + R(h∗) by (2.14)

≤εA + R(h∗) by (2.6)

≤εA + εB. by (2.10)

2.4.3 Verifying Condition A(µX)

We consider the task of establishing that Condition A(µX) holds with high proba-
bility from an unlabeled sample SX of m points. This includes verifying that (2.5)
holds. With a finite sample, this is not possible without further assumptions since
we cannot expect to sample every point x ∈ X̂ s. However, verification is possible if
we introduce a smoothness assumption on µX.

Furthermore, we suppose that from SX it is possible to find a high probability
lower bound on the probability mass contained in each of X̂1, . . . , X̂k̂. We subse-
quently discuss approaches to achieving this.

We observe that verifying Condition A(µX) requires fixing X̂1, . . . , X̂k̂ ⊆ X . Each
X̂i may be learned using an unlabeled sample and a set of candidate regions, as is
discussed further below. Once X̂1, . . . , X̂k̂ and the representation function class F are
fixed, then some representation function f satisfying (2.11) in Definition 2.7 can be
identified.
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Theorem 2.10 (Verifying condition A(µX)). Let k̂ be a positive integer.

Let X̂1, . . . , X̂k̂ ⊆ X , where ∀i ∈ {1, . . . , k̂}, X̂i is a connected set and X̂i ∩ X̂j = ∅ if
i 6= j. Let X̂ s := X̂1 ∪ · · · ∪ X̂k̂ and X̂0 := X \ X̂ s. For each i ∈ {1, . . . , k̂}, let

V̂i :=
∫

x∈X̂i

dx (volume) and

dmax
i := max

x,x′∈X̂i

‖x− x′‖2 (maximum distance between two points).

Suppose for each region there is some constant P̂min
i such that with probability at least

1− k̂
δ ,

∫
x∈X̂i

p(x)dx ≥ P̂min
i . (2.15)

Let

τ := min
i∈{1,...,k̂}

P̂min
i

V̂i
− λdmax

i (2.16)

and

εA := 1− ∑
i∈{1,...,k̂}

P̂min
i . (2.17)

Suppose that there is some non-negative constant λ such that

∀x, x′ ∈ X , |p(x)− p(x′)| ≤ λ‖x− x′‖2. (2.18)

Then with probability at least 1− δ, Condition A(µX) holds.

Proof. To satisfy Condition A(µX), we must satisfy (2.4), (2.5) and (2.6). Observe that
we satisfied (2.4) in our definition of X̂1, . . . , X̂k̂.

By the union bound, (2.15) holds ∀i ∈ {1, . . . , k̂} with probability at least 1− δ.
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In that case, ∀i ∈ {1, . . . , k̂},

min
x∈X̂i

p(x)

≥ max
x∈X̂i

p(x)− λdmax
i by (2.18)

≥ 1
V̂i

∫
x∈X̂i

p(x)dx− λdmax
i the maximum of p(x) is at least the average of p(x)

≥ P̂min
i

V̂i
− λdmax

i by (2.15)

≥ τ by (2.16).

We have shown that (2.5) holds.
Furthermore,∫

x∈X̂0

p(x)dx

= 1− ∑
i∈{1,...,k̂}

∫
x∈X̂i

p(x)dx by the definition of X̂0

≤ 1− ∑
i∈{1,...,k̂}

P̂min
i by (2.15)

= εA by (2.17).

We have shown that (2.6) holds.

We would like to find some P̂min
i such that with probability at least 1− δ

k̂
over

m unlabeled points drawn from µXY, (2.15) holds. We achieve this using the follow-
ing definition, which is motivated by a straightforward application of Hoeffding’s
inequality [Hoeffding, 1963]:

P̂min
i :=

1
m ∑

x∈SX

1(x ∈ X̂i)−

√
log k̂

δ

2m
. (2.19)

We may apply (2.19) to the case where X̂i is fixed – for example, if we had found
X̂i using some unlabeled sample separate to SX. However, we are also interested in
the case where we estimate X̂i from SX. In this case, from several candidate choices
of X̂i construct the hypothesis class Ĥi := {ĥi : ĥi(x) = 1(x ∈ X̂i)}. Let VC(Ĥi) be
the VC-dimension of Ĥi. For example, if the candidates X̂i are the set of axis-aligned
hyper-rectangles in Rk̂, then VC(Ĥi) = 2k̂ [Ben-David and Borbely, 2008]. Using a
standard VC-dimension based bound on generalization error [Mohri et al., 2012], we
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have for all ĥi ∈ Ĥi simultaneously, with probability at least 1− δ
k̂
, (2.15) holds for

P̂min
i :=

1
m ∑

x∈SX

1(x ∈ X̂i)− 2

√
2VC(Ĥi) log(2em/VC(Ĥi)) + 2 log(4k̂/δ)

m
, (2.20)

where e is Euler’s number.

2.4.4 Verifying that C(F) and D(G) are Satisfied

We provide an example where it is possible to establish that both C(F) and D(G)
hold by inspecting F and G.

Let Z := Rk̂. ∀i ∈ {0, . . . , k̂} let zi := [zi1, . . . , zik̂] ∈ Z and

zij :=

{
1 if i = j,
0 otherwise.

(2.21)

Suppose we choose each of X̂1, . . . , X̂k̂ from a fixed class of regions, for example
the class of axis-aligned hyper-rectangles. This also determines the remaining area
outside the regions, X̂0. Suppose that X̂i ∩ X̂j = ∅ if i 6= j. Let F be the set of
functions f : X → Z which satisfy

f (x) = zi, if x ∈ X̂i

for some choice of X̂0, . . . , X̂k̂. Hence (2.11) holds and C(F) is satisfied.
Furthermore, let G be the set of functions g : Z → {0, 1} which satisfy

g(z) = 1(w · z ≥ 0) (2.22)

for some choice of w ∈ Rk̂. Then (2.12) holds and hence D(G) is satisfied. This is due
to the property of linear separators that for any labeling of the points z0, . . . , zk̂ from
(2.21), there is some linear separator matching this labeling [Abu-Mostafa, 2012].

2.4.5 Defining and Verifying E(µXY, H) to show that Objective 2.2 is Sat-
isfied

We define the condition E(µXY, H) for our clustering example. It is straightforward
to observe that if this condition is satisfied, then Objective 2.2 is achieved.

Definition 2.11 (Condition E(µXY, H): hypothesis class performs poorly on inputs).
Fix µXY, H and l. Let εmin be a non-negative constant. With probability at least 1− δ over
samples SXY of µXY, suppose

min
h∈H

R(h) ≥ εmin.

It would appear that to verify this condition we require access to a labeled sam-
ple SXY of µXY. The verification is possible when we may conduct empirical risk
minimization over H, for example when this minimization is convex.
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Theorem 2.12 (Verifying Condition E(µXY, H)). Fix µXY and H. Let SXY be a sample of
m points from µXY. For some h ∈ H, let its empirical risk be

R̂(h) :=
1
m ∑
{x,y}∈SXY

1(h(x) 6= y).

Let VC(H) be the VC-dimension of H. Then with probability at least 1− δ over samples
SXY, Condition E(µXY, H) holds for

εmin := min
h∈H

R̂(h)− 2

√
2VC(H) log(2em/VC(H)) + 2 log(4/δ)

m
.

Proof. With probability at least 1− δ, for all hypotheses h ∈ H simultaneously,

R(h)

≥ R̂(h)− 2

√
2VC(H) log(2em/VC(H)) + 2 log(4/δ)

m
[Mohri et al., 2012], p. 48

≥ min
h∈H

R̂(h)− 2

√
2VC(H) log(2em/VC(H)) + 2 log(4/δ)

m
= εmin. by the definition of εmin

2.5 Conclusion

We have developed an approach to determining when unsupervised representation
learning provably improves task performance. We have abstracted away from partic-
ular unsupervised representation learning techniques, instead considering the prob-
lem more generally. First, we formally defined the objectives of unsupervised rep-
resentation learning. We then proposed an approach to guaranteeing that these ob-
jectives are achieved via a set of sufficient conditions, which depend separately on
structure in the unlabeled distribution, shared structure in the labeled distribution,
and properties of the representation function class and the hypothesis class which
consumes the representation.

Our results require all of these elements to be present in order to show that unsu-
pervised representation learning will be successful. If the structure in the unlabeled
distribution is not shared in the labeled distribution, it may not be useful. If the rep-
resentation function class cannot adequately exploit the structure in the unlabeled
distribution, once again that structure may not be useful. And if the hypothesis class
cannot exploit the structure captured by the representation function, it may not be
able to learn effectively (e.g. a linearly separable representation may not be useful
if the subsequent hypothesis class is not the class of linear separators). Finally, if
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the problem is easy for the original hypothesis class and input data, unsupervised
representation learning may not be necessary. Hence, unsupervised representation
learning relies on an intricate set of relationships between the different components
of the problem setting in order to be successful.

We demonstrated the feasibility of our approach with an example based on the
cluster assumption. In this example, we proposed methods to verify that unsuper-
vised representation learning will be successful, both in cases where the unlabeled
distribution is known (Theorem 2.9) and where it must be approximated from an
unlabeled sample (Theorem 2.10). We also proposed a method to verify that super-
vised learning with the original data would be unsuccessful (Theorem 2.12). Com-
bined, these may allow us to establish that there is a positive risk gap induced by
unsupervised representation learning compared to solving the problem from scratch
with supervised learning. Our methods gave us more insight into why unsuper-
vised representation learning is useful in some cases, rather than simply relying on
trial-and-error tests of particular techniques on particular problem settings.

We have seen that in order to prove that unsupervised representation learning
helps, it is necessary to theoretically show several different claims. While feasible for
the example we considered, extension to more complex situations and model classes
such as multi-layer neural networks will be challenging. It will involve formally
identifying instantiations of each of the proposed conditions, which are at present
unknown. Nevertheless, we have developed the first complete theoretical analysis of
when unsupervised representation learning is useful. We cannot rule out a simpler
theory that is easier to apply to wider class of models, but such a theory remains
elusive.

One approach to using unlabeled data is to construct an ‘artificial’ task from the
data, such as reconstructing an image or predicting which words will frequently
co-occur. A neural network is trained to make predictions on this task, and the
weights in the network are then transferred for use on a subsequent task [Hinton and
Salakhutdinov, 2006; Mikolov et al., 2013]. This kind of unsupervised representation
learning can be seen as a special case of transfer learning, where a representation
function is learned on a source task and re-used on a target task. We explore this
situation further in Chapter 3.
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Chapter 3

Risk Bounds for Transferring
Representations With and Without
Fine-Tuning

3.1 Introduction

A widely used machine learning technique is the transfer of a representation func-
tion learned from a source task, for which labeled data is abundant, to a target task,
for which labeled data is scarce [Pan and Yang, 2010; Bengio, 2012]. This may be ef-
fective if both tasks can be learned using a common representation function mapping
inputs to a representation space, followed by a task-specific hypothesis acting on the
representation space drawn from a common hypothesis class. For example:

• features learned from an image of a human face to predict age may also be
useful for predicting gender

• word embeddings learned to predict word contexts may also be useful for part
of speech tagging

• features learned from financial data to predict loan default may also be useful
for predicting insurance fraud.

Source and target task learning are often conducted by two separate organizations.
The organization that conducts representation learning on the source task may have
greater access to data, computational and human resources relative to the organiza-
tion that wishes to learn the target task. Examples are the Google word2vec package
[Mikolov et al., 2013], and downloadable pre-trained neural networks,1 which were
created by leading research groups and have been re-used by a range of organiza-
tions. Under this ‘representation-as-a-service’ model, a user may expect to access the
representation function itself, as well as information about its performance on the
source task data on which it was trained. We aim to convert this into a guarantee

1See http://code.google.com/archive/p/word2vec, http://caffe.berkeleyvision.org/model_zoo and
http://vlfeat.org/matconvnet/pretrained for examples.
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Learn representation
function from

scratch

Transfer representation
function without

fine-tuning

Transfer representation
function with

fine-tuning

F

f
f̂

f

F F

F̂

f
f̂

Figure 3.1: A comparison of approaches to learning a representation function f on a
target task, where the search space in each case is the shaded area. Learning from
scratch, we search a representation function class F. Without fine-tuning, we fix a
representation function f̂ learned from the source task. With fine-tuning, we narrow

the search to F̂ ⊆ F near f̂ , which still contains f .

of the usefulness of the representation function on other tasks, a guarantee which
is known in advance without the effort or cost of testing the representation function
on the target task(s). Our analysis also covers the case where the source task is
constructed from unlabeled data, as in neural network unsupervised pre-training.

We consider two approaches to transferring a representation function learned
from a source task to a target task, as shown in Figure 3.1. We may either treat
the representation function as fixed, or we may narrow the class of representation
functions considered on the target task, which we refer to as fine-tuning. The fixed
option may be attractive when very little labeled target task data is available and
hence overfitting is a strong concern, while the advantage of fine-tuning is relatively
greater hypothesis class expressiveness.

Let X ,Y and known as the input and target spaces respectively, and let X and
Y be corresponding random variables. We focus on the binary classification setting
where Y = {−1, 1}. Let Z be a set known as the representation space. Let F be a
representation function class, where f : X → Z for f ∈ F. Given a representation
function f , let Z := f (X) be the corresponding representation random variable. Let
G be an hypothesis class acting on the representation space, where g : Z → Y for
g ∈ G. Let the hypothesis class

H := {h : ∃ f ∈ F, g ∈ G such that h = g ◦ f }.
For target task T, let µXY be its joint distribution over X and Y and µX be its

marginal distribution over X . Given a representation function f , let µZY be the
induced joint distribution over Z and Y and let µZ be the induced marginal distri-
bution over Z . Similarly, for source task S, let µ′XY be its joint distribution and µ′X be
its marginal distribution, and let µ′ZY and µ′Z be the joint and marginal distributions
induced by f respectively.

For some distribution µ let p(·) be the probability that a point sampled from the
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distribution satisfies some condition. Let pS(·) be the probability of an event under
distribution µ′XY and pT(·) be the probability of an event under distribution µXY.

Let l be a loss function Y × Y → R+. For an hypothesis h : X → Y , let its risks
on S and T be

RS(h) := EX,Y∼µ′XY
[l(h(X), Y)]

and
RT(h) := EX,Y∼µXY [l(h(X), Y)]

respectively. Let R̂S(h) and R̂T(h) be the corresponding empirical (i.e. training set
distribution) risks. We focus on the case where l is the 0/1 loss:

l(ŷ, y) :=

{
0 if y = ŷ
1 if y 6= ŷ.

(3.1)

Let mS be the number of samples available for task S and mT be the number of
samples available for task T. Let VC(·) be the VC-dimension of an hypothesis class.

The remainder of the chapter is structured as follows. In Section 3.2 we summa-
rize related work. In Sections 3.3 and 3.4 we analyze the cases where the transferred
representation function is fixed and fine-tuned respectively. In Section 3.5 we apply
the results and use them to motivate and test a practical approach to weight transfer
in neural networks. We conclude in Section 3.6, and present lemmas used in the
proofs of our theorems in Section 3.7.

3.2 Background

Empirical studies have shown the success of transferring representation functions
between tasks [Donahue et al., 2014; Hoffman et al., 2014; Girshick et al., 2014; Socher
et al., 2013; Bansal et al., 2014]. Word embeddings learned on a source task have been
shown to perform better than unigram features on target tasks such as part of speech
tagging, and comparably or better than embeddings fine-tuned on the target task
[Qu et al., 2015]. Yosinski et al. [2014] learned neural network weights using half
of the ImageNet classes, and then learned the other classes with a neural network
initialized with these weights, finding a benefit compared to random initialization
only with target task fine-tuning. The transfer of representation functions, both with
and without fine-tuning, is widely and successfully used.

Previous work on domain adaptation [Ben-David et al., 2010; Mansour et al., 2009;
Germain et al., 2013] has considered learning an hypothesis h on S and re-using it on
T, bounding RT(h) using RS(h) (measured with labeled source data) and some notion
of similarity between µX and µ′X (measured with additional unlabeled target data).
Such results motivate a joint optimization using labeled source and unlabeled target
data [Ganin et al., 2016; Long et al., 2015] to learn separate mappings fS, fT : X → Z ,
as well as an hypothesis g : Z → Y learned from the source labels which can be
re-used on T. This approach assumes that if fS applied to µ′X and fT applied to µX
induce similar marginal distributions over Z , then some g can be found such that
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g ◦ fS and g ◦ fT are accurate hypothesis for tasks S and T respectively. We consider an
alternative situation where there is some common representation function f : X → Z
and two separate task-specific hypotheses gS, gT : Z → Y such that gS ◦ f and gT ◦ f
are accurate hypotheses for tasks S and T respectively. We consider estimating f
using a labelled sample from S and then estimating gT from a small amount of
labeled target data. Given the widespread use of ‘downloadable’ representations,
where f and gT are learned separately and there is no joint optimization over source
and target data, this is a realistic setting.

Work on lifelong learning relates the past performance of a representation func-
tion over many tasks to its expected future performance. For a representation func-
tion f ∈ F we construct G ◦ f := {g ◦ f : g ∈ G}. Suppose there is a distribution over
tasks, known as an environment. Assume several tasks from this environment have
been sampled, and that for each task some hypothesis in G ◦ f has been selected and
its empirical risk evaluated. Previous work has provided bounds on the difference
between the average empirical risk and the expected risk of the best hypothesis in
G ◦ f for a new task drawn from the environment. Such bounds have been given
by measuring the complexity of F and G using covering numbers [Baxter, 2000], a
variant of the growth function [Galanti et al., 2016], and a distribution-dependent
measure known as Gaussian complexity [Maurer et al., 2016]. All of these bounds
rely on known past performance on a large number of tasks.2 In practice, however,
representation functions such as neural network weights or word embeddings are
often learned using only a single source task, which is the setting we consider.

3.3 Representation Function Fixed by Source Task

Suppose samples from source task S are abundant, samples from target task T are
scarce, and there exist some f , gS, gT such that gS ◦ f and gT ◦ f are accurate hypothe-
ses for tasks S and T respectively. A natural approach to leveraging the source data
is to learn ĝS ◦ f̂ ∈ H using data from task S, from which we assume we may recover
f̂ ∈ F, then perform empirical risk minimization over G ◦ f̂ := {g ◦ f̂ : g ∈ G} on
T yielding ĝT ◦ f̂ . While in general we cannot recover f̂ with knowledge of ĝS ◦ f̂
alone, in the case of feedforward neural networks which we focus on, knowing the
weights learned on S is sufficient for recovering f̂ .

Theorem 3.1 upper-bounds RT(ĝT ◦ f̂ ) using four terms:

1. a function ω measuring a transferrability property obtained analytically from
the problem setting;

2Pentina and Lampert [2014] extend this analysis to stochastic hypotheses (i.e. distributions over
deterministic hypotheses), where for each task we learn a posterior given a prior and training data.
The quality of the prior affects the learner’s performance. The study proposes using source tasks to
learn a ‘hyperposterior’, a distribution over priors which is sampled to give a prior for each task. Such
a hyperposterior may focus the learner on a representation function shared across tasks. The study
gives a PAC-Bayes bound on the expected risk of using a hyperposterior to learn a new task drawn
from the environment, in terms of the average empirical risk obtained using the hyperposterior to learn
the source tasks.
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2. the source task empirical risk R̂S(ĝS ◦ f̂ );

3. the generalization error of an hypothesis in H learned from mS samples; and

4. the generalization error of an hypothesis in G learned from mT samples.

Note that we do not settle for bounding RT(ĝT ◦ f̂ ) in terms of R̂T(ĝT ◦ f̂ ), which
may be large.

Theorem 3.1. Let ω : R → R be a non-decreasing function. Suppose µXY, µ′XY, f̂ and G
have the property that

∀ĝS ∈ G, min
g∈G

RT(g ◦ f̂ ) ≤ ω(RS(ĝS ◦ f̂ )). (3.2)

Let ĝT := arg min
g∈G

R̂T(g ◦ f̂ ). Then with probability at least 1− δ over pairs of training

sets for tasks S and T,

RT(ĝT ◦ f̂ ) ≤ ω(R̂S(ĝS ◦ f̂ ) + 2

√
2VC(H) log(2emS/VC(H)) + 2 log(8/δ)

mS
)

+ 4

√
2VC(G) log(2emT/VC(G)) + 2 log(8/δ)

mT
.

Proof. Let g∗T := arg min
g∈G

RT(g ◦ f̂ ). With probability at least 1− δ,

RT(ĝT ◦ f̂ )

≤ R̂T(ĝT ◦ f̂ ) + 2

√
2VC(G) log(2emT/VC(G)) + 2 log(8/δ)

mT
(3.3)

≤ R̂T(g∗T ◦ f̂ ) + 2

√
2VC(G) log(2emT/VC(G)) + 2 log(8/δ)

mT
(3.4)

≤ RT(g∗T ◦ f̂ ) + 4

√
2VC(G) log(2emT/VC(G)) + 2 log(8/δ)

mT
(3.5)

≤ ω(RS(ĝS ◦ f̂ )) + 4

√
2VC(G) log(2emT/VC(G)) + 2 log(8/δ)

mT
(3.6)

≤ ω(R̂S(ĝS ◦ f̂ ) + 2

√
2VC(H) log(2emS/VC(H)) + 2 log(8/δ)

mS
)

+ 4

√
2VC(G) log(2emT/VC(G)) + 2 log(8/δ)

mT
.

(3.7)
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Using m training points and an hypothesis class of VC-dimension VC(·), with
probability at least 1− δ, for all hypotheses h ∈ H simultaneously, the risk R(h) and
empirical risk R̂(h) satisfy

|R(h)− R̂(h)| ≤ 2

√
2VC(·) log(2em/VC(·)) + 2 log(4/δ)

m
(3.8)

[Mohri et al., 2012]. Applying (3.8) to G yields (3.3) and (3.5) with probability at least
1− δ

2 . Applying (3.8) to H, and using the fact that ω is non-decreasing, yields (3.7)
with probability at least 1− δ

2 . (3.4) holds by the definition of ĝT and (3.6) follows
from the assumption (3.2). Applying the union bound achieves the result.

While we refer to ω in a general form, we give an example in Section 3.3.1 and
expect that others exist. We define ω by relating RS(ĝS ◦ f̂ ) to min

g∈G
RT(g ◦ f̂ ), since we

expect this may be feasible analytically as in our example in Section 3.3.1. However,
because we only observe R̂S(ĝS ◦ f̂ ), in Theorem 3.1 we use this to bound RS(ĝS ◦ f̂ )
and then apply ω.

It is instructive to compare Theorem 3.1 to a standard VC-dimension based bound
on the target task risk of an hypothesis h drawn from H learned using mT training
points [Mohri et al., 2012]: with probability at least 1− δ, for all hypotheses h simul-
taneously,

RT(h) ≤ R̂T(h) + 2

√
2VC(H) log(2emT/VC(H)) + 2 log(4/δ)

mT
. (3.9)

We conclude that if ω(R) = O(R); R̂S(ĝS ◦ f̂ ) is a small constant; mS � mT,
i.e. labeled source task data is abundant while labeled target task data is scarce; and
VC(H)� VC(G), i.e. transferring the representation function f̂ simplifies target task
learning by virtue of the smaller hypothesis space it induces compared to searching
F; then consequently, the VC-dimension-based upper bound on target task risk is
smaller by transferring f̂ from S compared to learning T from scratch using H.

We observe that a smaller upper bound on risk does not imply smaller risk;
indeed, since G ◦ f̂ ⊆ H, it follows that

min
h∈H

RT(h) ≤ min
g∈G

RT(ĝ ◦ f̂ )

and hence we may ‘get lucky’ and find a low risk hypothesis h learning just with
samples from task T. In this case we may not be able to verify that the hypothesis is
low risk, however, given the scarcity of samples from T and the expressiveness of H.
Conversely, transferring f̂ from S and applying Theorem 3.1, we may more tightly
bound target task risk with high probability. We observe that Theorem 3.1 can be
used to select source task S given several options by picking the task corresponding
to the lowest risk upper bound.
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Learn T
from scratch

Learn ĝS ◦ f̂
on S

f̂

ĝS

Transfer f̂ from S,
learn ĝT on T

f̂

ĝT

Figure 3.2: Neural network example learning T from scratch (left) and with weights
transferred from S (right). Thin blue and thick red lines show weights trained on S
and T respectively. Under certain assumptions, weight transfer yields low risk on T.

3.3.1 Neural Network Example with Fixed Representation

In Theorem 3.5, we give an example of the property required by Theorem 3.1, which
is specific to a particular problem setting. We consider a feedforward neural network
with a single hidden layer (see Figure 3.2). We propose transferring the lower-level
weights (corresponding to f̂ ) learned on S, so that only the upper-level weights (cor-
responding to G) have to be learned on T. We want to show f̂ is also useful for T,
i.e. that for some g ∈ G we have small RT(g ◦ f̂ ).

We introduce several assumptions required to show Theorem 3.5. Assumption 3.4
requires that some lower-level weights perform well on both tasks, which is clearly
a necessary condition for the specific f̂ we are transferring to perform well on both
tasks. Our other two assumptions together guarantee that a point x ∈ X for which
f̂ (x) contributes to the risk on T cannot be ‘hidden’ from the risk of using f̂ on S,
either through low magnitude upper-level weights (prevented by Assumption 3.2) or
low µ′X(x) (prevented by Assumption 3.3). Hence RS(ĝS ◦ f̂ ) reliably indicates the
usefulness of f̂ on T.

Assumption 3.2 (Restricted class of feedforward neural networks). Let X = Rn,
Z = Rk and a : R→ R be a fixed activation function satisfying

a(−x) = −a(x), (3.10)

i.e. a is an odd function (examples include tanh, sign and identity). Let

F := { f : X → Z : f (x) = [a(w1 · x), . . . , a(wk · x)], wi ∈ Rn for 1 ≤ i ≤ k} (3.11)

and
G := {g : Z → Y : g(z) = sign(v · z), v ∈ {−1, 1}k}, (3.12)

where the symbol · denotes the dot product.
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Assumption 3.3 (Relative rotation invariance between source and target unlabeled
distributions). Let ŵi ∈ Rn for 1 ≤ i ≤ k and let f̂ ∈ F be defined as

f̂ (x) := [a(ŵ1 · x), . . . , a(ŵk · x)]. (3.13)

Suppose there exist finite nonzero constants c, α1, · · · , αk and β1, · · · , βk such that

‖wi‖ = ‖αiŵi − βiwi‖, (3.14)

wi · (αiŵi − βiwi) = 0, (3.15)

the 2k× n matrix

M :=


w1

α1ŵ1 − β1w1
...

wk
αkŵk − βkwk

 (3.16)

is full rank,3 and

∀x1, x2 ∈ X such that ‖Mx1‖ = ‖Mx2‖, µX(x1) ≤ cµ′X(x2), (3.17)

which we call relative rotation invariance and implies µ′X and µX have the same support.4

Assumption 3.4 (Shared representation exists). Suppose there exist some

f ∈ F : f (x) := [a(w1 · x), . . . , a(wk · x)],
gS ∈ G : gS(z) := sign(vS · z),
gT ∈ G : gT(z) := sign(vT · z),
ε ≥ 0

such that
max[RS(gS ◦ f ), RT(gT ◦ f )] ≤ ε. (3.18)

We now state the target task risk bound for transferring representations in our
neural network example.

3To see that this condition is necessary, consider the following example where M is not full rank.
Let n = 4, k = 2, y = sign(x1) under µ′XY and y = sign(x2) under µXY . For f (x) = [x1 + x2, x1 − x2],
gS(z) = sign(z1 + z2) and gT(z) = sign(z1 − z2), we have RS(gS ◦ f ) = RT(gT ◦ f ) = 0. On S we
learn f̂ (x) = [x1 + x3, x1 − x3] and ĝS(z) = sign(z1 + z2), so that RS(ĝS ◦ f̂ ) = 0, but in general
min
g∈G

RT(g ◦ f̂ ) > 0 since f̂ ignores x2.

4If M is an orthogonal matrix then ∀x1, x2 ∈ X such that ‖x1‖ = ‖x2‖, µX(x1) ≤ cµ′X(x2). For
example, this equation is satisfied if µX and µ′X are spherical Gaussians. Note that a zero-mean multi-
variate Gaussian distribution can be converted to a spherical Gaussian by the whitening transformation
x → Λ−1/2UT x, where the columns of U and entries of the diagonal matrix Λ are the eigenvectors and
eigenvalues of the distribution’s covariance matrix respectively.
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Theorem 3.5. Suppose F and G satisfy Assumption 3.2; F, G, µXY, µ′XY and ε satisfy
Assumption 3.4; and f̂ , µX, µ′X and c satisfy Assumption 3.3. Let ω : R→ R be defined as

ω(R) := cR + ε(1 + c). (3.19)

Then
∀ĝS ∈ G, min

g∈G
RT(g ◦ f̂ ) ≤ ω(RS(ĝS ◦ f̂ )).

Proof. Let gS(z) := sign(vS · z), gT(z) := sign(vT · z), ĝS(z) := sign(v̂S · z) and
ĝT(z) := sign(d ∗ v̂S · z), where d := vS ∗ vT ∈ {−1, 1}k and ∗ is the elementwise
product. It is sufficient to show that

RT(ĝT ◦ f̂ ) ≤ cRS(ĝS ◦ f̂ ) + ε(1 + c).

RT(ĝT ◦ f̂ )

= pT(yd ∗ v̂S · f̂ (x) ≤ 0)

≤ pT(yd ∗ vS · f (x)d ∗ vS · f (x)d ∗ v̂S · f̂ (x) ≤ 0)

≤ pT(yd ∗ vS · f (x) ≤ 0) + pT(d ∗ vS · f (x)d ∗ v̂S · f̂ (x) ≤ 0)

≤ ε + pT(d ∗ vS · f (x)d ∗ v̂S · f̂ (x) ≤ 0) (3.20)

≤ ε + cpS(vS · f (x)v̂S · f̂ (x) ≤ 0) (3.21)

= ε + cpS(yvS · f (x)yv̂S · f̂ (x) ≤ 0)

≤ ε + cpS(yvS · f (x) ≤ 0) + pS(yv̂S · f̂ (x) ≤ 0)

= ε + c[RS(ĝS ◦ f̂ ) + RS(gS ◦ f )]

≤ cRS(ĝS ◦ f̂ ) + ε(1 + c). (3.22)

(3.20) and (3.22) are due to the shared representation assumption (3.18). (3.21) holds
by Lemma 3.11. The remaining lines apply simple rules of probability.

3.4 Representation Function Fine-Tuned on Target Task

Consider learning ĝS ◦ f̂ on S, and then using f̂ and RS(ĝS ◦ f̂ ) to find F̂ ⊆ F, as in
Figure 3.1. Let h̃g◦ f be a stochastic hypothesis (i.e. a distribution over H) associated
with g ◦ f (e.g. g ◦ f is the mode of h̃g◦ f ). We propose learning T with the hypothesis
class

H̃G◦F̂ := {h̃g◦ f : f ∈ F̂, g ∈ G}
and the prior h̃ĝS◦ f̂ . Learning T from scratch we assume that we would instead use

H̃G◦F := {h̃g◦ f : f ∈ F, g ∈ G}
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and some fixed prior h̃0 ∈ H̃G◦F. For some stochastic hypothesis h̃ let its risk on task
T with respect to a loss function l be

RT(h̃) := EX,Y∼µXY ,h∼h̃[l(h(X), Y)],

and let R̂T(h̃) be its risk on the training set distribution of T.
In Theorem 3.6 we show that if F̂ is ‘small enough’ so that all h̃ ∈ H̃G◦F̂ have a

small KL divergence from h̃ĝS◦ f̂ , we may apply a PAC-Bayes bound to the general-
ization error of hypotheses in H̃G◦F̂ involving four terms:

1. a function ω measuring a transferrability property

2. the empirical risk R̂S(ĝS ◦ f̂ )

3. the generalization error of an hypothesis in H learned from mS points, and

4. a weak dependence on mT.

Theorem 3.6. Let ω : R → R be non-decreasing. Suppose given f̂ ∈ F and RS(ĝS ◦ f̂ )
estimated from S, it is possible to construct F̂ ⊆ F with the property

∀h̃ ∈ H̃G◦F̂, KL(h̃||h̃ĝS◦ f̂ ) ≤ ω(RS(ĝS ◦ f̂ )). (3.23)

Then with probability at least 1− δ over pairs of training sets for tasks S and T, ∀h̃ ∈ H̃G◦F̂,

RT(h̃) ≤ R̂T(h̃) +

√√√√ω(R̂S(ĝS ◦ f̂ ) + 2
√

2VC(H) log(2emS/VC(H))+2 log(8/δ)
mS

) + log 2mT/δ

2(mT − 1)
.

Proof. With probability at least 1− δ,

RT(h̃)

≤ R̂T(h̃) +

√
KL(h̃||h̃ĝS◦ f̂ ) + log 2mT/δ

2(mT − 1)
(3.24)

≤ R̂T(h̃) +

√
ω(RS(ĝS ◦ f̂ )) + log 2mT/δ

2(mT − 1)
. (3.25)

(3.24) holds with probability at least 1− δ
2 [Shalev-Shwartz and Ben-David, 2014].

(3.25) holds by the assumption (3.23). Furthermore,

RS(ĝS ◦ f̂ ) ≤ R̂S(ĝS ◦ f̂ ) + 2

√
2VC(H) log(2emS/VC(H)) + 2 log(8/δ)

mS
(3.26)

with probability at least 1− δ
2 due to (3.8). The result follows due to (3.25), (3.26), the

assumption that ω is non-decreasing, and the union bound.
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It is instructive to compare Theorem 3.6 to a standard PAC-Bayes based bound
on the target task risk of a stochastic hypothesis h̃ learned using mT training points
and prior h̃0 [Shalev-Shwartz and Ben-David, 2014]: with probability at least 1− δ,

RT(h̃) ≤ R̂T(h̃) +

√
KL(h̃||h̃0) + log mT/δ

2(mT − 1)
. (3.27)

We conclude that if ω(R) = O(R), R̂S(ĝS ◦ f̂ ) is a small constant, and mS � mT,
we improve on the bound (3.27) applied to choices of h̃ ∈ H̃G◦F for which KL(h̃||h̃0)
is large. Observe that using the restricted deterministic hypothesis class

G ◦ F̂ := {h : ∃ f ∈ F̂, g ∈ G such that h = g ◦ f }

and a VC-dimension-based bound such as (3.8) may not improve on the bound for
H, since possibly VC(G ◦ F̂) = VC(H).

F̂ is useful if it is also ‘large enough’ in the sense that for some small constant
ε ≥ 0,

∃h̃gT◦ f ∈ H̃G◦F̂ such that RT(h̃gT◦ f ) ≤ ε.

The role of ω is to quantify how large the F̂ we search on T must be in order to be
‘large enough’, in terms of RS(ĝS ◦ f̂ ). While in general such an F̂ and ω may not
exist, we give an example where they do in Section 3.4.1.

As with Theorem 3.1, we observe that a smaller upper bound on risk does not
imply smaller risk, and since G ◦ F̂ ⊆ G ◦ F, it follows that

min
h̃∈H̃G◦F

RT(h̃) ≤ min
h̃∈H̃G◦F̂

RT(h̃).

However, by transferring F̂ from S, constructing the hypothesis class H̃G◦F̂ and
applying Theorem 3.6, we may more tightly bound target task risk compared to
learning T from scratch with the hypothesis class H̃G◦F.

3.4.1 Neural Network Example with Fine-Tuning

We transfer and fine-tune weights in a feedforward neural network with one hidden
layer to instantiate the property required by Theorem 3.6. We learn a deterministic
hypothesis of this type on S and obtain k estimated lower-level weight vectors ŵi.
Learning T we now consider only lower-level weights near ŵi, corresponding to F̂.
In Theorem 3.10, we show sufficient conditions under which it is possible to construct
such an F̂ to successfully learn T.

We introduce several assumptions required to show Theorem 3.10. Assumption
3.9 requires some lower-level weights wi perform well on both S and T, which is
clearly a necessary condition for the specific F̂ we are transferring to contain lower-
level weights that perform well on both tasks. We make F̂ ‘large enough’ by using
the risk observed using ŵi on S to provide an upper bound on the angle between
each pair wi and ŵi, as formalized in (3.39), so that we know that searching F̂ will
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include wi. We make F̂ ‘small enough’ by only including lower-level weights with
small angles to ŵi, as formalized in (3.40).

We use a restricted class of feedforward neural networks to learn S, and a stochas-
tic variant of this restricted class to learn T, as described in Assumption 3.7. In
particular, on T we learn a stochastic hypothesis formed by taking a deterministic
network, and adding independent sources of spherical Gaussian noise to the lower-
level weights and sign-flipping noise to the upper-level weights. This choice of net-
work architecture means that the KL divergence between two stochastic hypotheses
is expressed using the angles between their lower-level weights5 and a quantity com-
putable from their upper-level weights.

Assumptions 3.7 and 3.8 together ensure that poor ŵi cannot be ‘hidden’ from
the risk on S, either through low magnitude higher-level weights (prevented by As-
sumption 3.7), or through low µ′X density in the region where using ŵi instead of wi
yields different predictions (prevented by Assumption 3.8). Hence the performance
of ŵi on S is a reliable indicator of the magnitude of the angle between wi and ŵi.

Assumption 3.7 (Restricted class of feedforward neural networks). Let X = Rn and
Z = Rk, where k is odd. Let

F := { f : X → Z : f (x) = [sign(w1 · x), . . . , sign(wk · x)], wi ∈ Rn for 1 ≤ i ≤ k}
(3.28)

Let
G := {g : Z → Y : g(z) = sign(v · z), v ∈ {−1, 1}k}. (3.29)

For some f ∈ F, g ∈ G, let
h̃g◦ f := g′ ◦ f ′

where

f (x) := [sign(w1 · x), . . . , sign(wk · x)],
f ′(x) := [sign(w′1 · x), . . . , sign(w′k · x)],
w′1, . . . , w′k are each drawn independently via w′i ∼ N (wi, σ2 I),

N is the multivariate normal distribution,

I is the n× n identity matrix and

σ ≥ 0 is a constant;

5Assuming that the lower-level weight vectors are of fixed magnitude, which is no loss of model
expressiveness since we use the sign activation function at the hidden layer.
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and

g(z) := sign(v · z),
g′(z) := sign(v′ · z),
v′1, . . . , v′k are each drawn independently via v′i ∼ (2Bern(q)− 1)vi,

Bern is the Bernoulli distribution and

q ∈ [0.5, 1] is a constant.

Assumption 3.8 (Rotation invariance of unlabeled source distribution). Let ŵi ∈ Rn

for 1 ≤ i ≤ k, let θ(wi, ŵi) be the angle between wi and ŵi, and suppose

∀i, ‖ŵi‖ = 1. (3.30)

Let f̂ ∈ F be defined as

f̂ (x) := [sign(ŵ1 · x), . . . , sign(ŵk · x)]. (3.31)

Suppose there exist finite nonzero constants c, α1, · · · , αk and β1, · · · , βk such that

‖wi‖ = ‖αiŵi − βiwi‖, (3.32)

wi · (αiŵi − βiwi) = 0, (3.33)

the 2k× n matrix

M :=


w1

α1ŵ1 − β1w1
...

wk
αkŵk − βkwk

 , (3.34)

and
∀x1, x2 ∈ X such that ‖Mx1‖ = ‖Mx2‖, µ′X(x1) ≤ cµ′X(x2), (3.35)

which we call rotation invariance of µ′X.6

Assumption 3.9 (Shared representation exists). Suppose there exist some

f ∈ F : f (x) := [sign(w1 · x), . . . , sign(wk · x)],
gS ∈ G : gS(z) := sign(vS · z),
gT ∈ G : gT(z) := sign(vT · z),
ε ≥ 0

6If M is an orthogonal matrix then ∀x1, x2 ∈ X such that ‖x1‖ = ‖x2‖, µ′X(x1) ≤ cµ′X(x2). For
example, µ′X is a spherical Gaussian.
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such that
max[RS(gS ◦ f ), RT(h̃gT◦ f )] ≤ ε. (3.36)

We now state the target task risk bound for transferring representations with
fine-tuning in our neural network example.

Theorem 3.10. Suppose F, G, k, q and σ satisfy Assumption 3.7; F, G, µXY, µ′XY and ε

satisfy Assumption 3.9; and f̂ , µ′X and c satisfy Assumption 3.8. Let θmax : R → R be
defined as

θmax(R) := min[π
√

2(k− 1)c(R + ε), π].

Given f̂ and RS(ĝS ◦ f̂ ) estimated from S, let

F̂ := { f ∈ F : ∀i, ‖wi‖ = 1∧ |θ(wi, ŵi)| ≤ θmax(RS(ĝS ◦ f̂ ))} (3.37)

and let ω : R→ R be defined as

ω(R) :=
k

σ2 [1− cos θmax(R)] + k(2q− 1) log2
q

1− q
. (3.38)

Then ∃h̃gT◦ f ∈ H̃G◦F̂ such that

RT(h̃gT◦ f ) ≤ ε (3.39)

and
∀h̃ ∈ H̃G◦F̂, KL(h̃||h̃ĝS◦ f̂ ) ≤ ω(RS(ĝS ◦ f̂ )). (3.40)

Proof of (3.39): ∃h̃gT◦ f ∈ H̃G◦F̂ such that RT(h̃gT◦ f ) ≤ ε.
Recall that wi are the weight vectors for f and ŵi are those for f̂ . Observe that for any
wi such that wi · ŵi < 0, we have −wi · ŵi > 0 and −visign(−wi · x) = visign(wi · x).
Combining this with the assumption (3.36), we conclude ∃ f ∈ F, gS, gT ∈ G such that

∀i, wi · ŵi ≥ 0 (3.41)

and
max[RS(gS ◦ f ), RT(h̃gT◦ f )] ≤ ε.

Let ĝS(z) := sign(v̂S · z). Let µ be a distribution on X satisfying the rotation
invariance property (3.35) for c = 1, and let p(·) denote the probability of an event
under µ. To prove h̃gT◦ f ∈ H̃G◦F̂, by the definition of F̂ from (3.37) and observing that
|θ(wi, ŵi)| ≤ π, it is sufficient to show

∀i, |θ(wi, ŵi)| ≤ π
√

2(k− 1)c(RS(ĝS ◦ f̂ ) + ε). (3.42)

We show (3.42) holds as follows:
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max
i
|θ(wi, ŵi)|

π
√

2(k− 1)

≤ p(vS · f (x)vS · f̂ (x) ≤ 0) (3.43)

≤ p(vS · f (x)v̂S · f̂ (x) ≤ 0) (3.44)

≤ cpS(vS · f (x)v̂S · f̂ (x) ≤ 0) (3.45)

= cpS(yvS · f (x)yv̂S · f̂ (x) ≤ 0) (3.46)

≤ c[pS(yvS · f (x) ≤ 0) + pS(yv̂S · f̂ (x) ≤ 0)] (3.47)

= c[RS(gS ◦ f ) + RS(ĝS ◦ f̂ )] (3.48)

≤ c[ε + RS(ĝS ◦ f̂ )]. (3.49)

(3.43) holds by Lemma 3.12. (3.44) holds by Lemma 3.13, using ∀i, wi · ŵi ≥ 0 as
shown in (3.41). (3.45) uses the rotation invariance of µ′X assumed in (3.35). (3.46)
and (3.47) use basic laws of probability. (3.48) follows from using 0/1 loss, defined
in (3.1). (3.49) uses the assumption RS(gS ◦ f ) ≤ ε as stated in (3.36).

Proof of (3.40): ∀h̃ ∈ H̃G◦F̂, KL(h̃||h̃ĝS◦ f̂ ) ≤ ω(RS(ĝS ◦ f̂ )).
For any h̃g◦ f ∈ H̃G◦F̂,

KL(h̃g◦ f ||h̃ĝS◦ f̂ )

=
k

∑
i=1

KL(N (wi, σ2 I)||N (ŵi, σ2 I)) +
k

∑
i=1

KL((2Bern(q)− 1)vi||(2Bern(q)− 1)(v̂S)i).

(3.50)

This is due to the form of hypotheses h̃g◦ f given in (3.7), and the fact that the
KL divergence of a product distribution is the sum of the KL divergences of its
component distributions. We separately upper bound both terms on the right hand
side of (3.50), and apply the definition of ω(R) from (3.38).

k

∑
i=1

KL(N (wi, σ2 I)||N (ŵi, σ2 I))

=
1

2σ2

k

∑
i=1
‖wi − ŵi‖2 (3.51)

=
1

2σ2

k

∑
i=1

(‖wi‖2 + ‖ŵi‖2 − 2‖wi‖‖ŵi‖ cos |θ(wi, ŵi)|) (3.52)

=
1
σ2

k

∑
i=1

(1− cos |θ(wi, ŵi)|) (3.53)

≤ k
σ2 (1− cos θmax(RS(ĝS ◦ f̂ )). (3.54)
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(3.51) uses the KL divergence of Gaussian distributions. (3.52) uses the law of
cosines. (3.53) is because ∀i, ‖wi‖ = ‖ŵi‖ = 1 by the definition of F̂ in (3.37). (3.54)
follows by the definition of F̂ from (3.37) and the fact that 1− cos θ is non-decreasing
for θ ∈ [0, π].

k

∑
i=1

KL((2Bern(q)− 1)vi||(2Bern(q)− 1)(v̂S)i)

≤ k(q log2
q

1− q
+ (1− q) log2

1− q
q

) (3.55)

= k(2q− 1) log2
q

1− q
. (3.56)

(3.55) uses the KL divergence of Bernoulli distributions. (3.56) is a simplification.

3.5 Applications

We show the utility of the risk bounds, and present a novel technique and experi-
ments motivated by our theorems.

3.5.1 Using the Risk Bounds

The results described yield tighter bounds on risk when transferring representations
from S, compared to learning T from scratch. Examples are shown in Figure 3.3.7

We set δ = 0.05. For the left part of Figure 3.3, we use the example from Section
3.3.1 and set n = 10, k = 5. Learning T from scratch with H, we use the bound (3.8).
The VC-dimension of a network of |E| edges using the sign activation is O(|E| log |E|)
[Shalev-Shwartz and Ben-David, 2014], where in our case |E| = nk + k. We use
VC(H) = |E| log |E| in the chart. Transferring a representation from S to T without
fine-tuning, we consider the limit ε → 0, R̂S(ĝS ◦ f̂ ) → 0, mS → ∞, and hence
ω(·) → 0 by Theorem 3.5. Furthermore, VC(G) ≤ k since G is finite and hence
VC(G) ≤ log2 |G| [Shalev-Shwartz and Ben-David, 2014]. We use the bound from
Theorem 3.1.

For the right part of Figure 3.3, we use the example from Section 3.4.1 and set
σ2 = 1

10 , k = 499, q = 2
3 . Learning T from scratch we use the stochastic hypothesis

class {h̃g◦ f : f ∈ F such that ∀i, ‖wi‖ = 1, g ∈ G} and a prior h̃0 where ∀i, wi = 0 and
v ∈ {−1, 1}k is arbitrary.8 Using (3.50), we have KL(h̃||h̃0) ≤ 10k + k

3 . We apply the
PAC-Bayes bound (3.27). Transferring a representation from S and fine-tuning on T,
we consider the limit ε → 0, R̂S(ĝS ◦ f̂ ) → 0, mS → ∞. We have KL(h̃||h̃ĝS◦ f̂ ) ≤ k

3 by
Theorem 3.10. We use the bound from Theorem 3.6.

7Note that VC-dimension risk bounds are known for being rather loose, while PAC-Bayesian bounds
are tighter and hence yield non-trivial results in higher dimensions with fewer samples.

8This class is as expressive as H̃G◦F but by setting ‖wi‖ = 1 the KL divergence of all hypotheses
from any prior is bounded, allowing a fair comparison to H̃G◦F̂. The choice of h̃0 minimizes worst case
KL divergence to an hypothesis in the class.
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Figure 3.3: Risk bounds compared to learning T from scratch, without fine-tuning
(left) and with fine-tuning (right). The two charts use different parameters (see Sec-

tion 3.5.1).

3.5.2 Fine-Tuning through Regularization

We relax the hard constraint on F̂ from Section 3.4.1 by using a modified loss function,
which we find performs better in practice. Let yi and ŷi be the label and prediction
respectively for the ith training point. In a fully-connected feedforward neural net-
work with l layers of weights, let W(j) be the jth weight matrix, Ŵ(j) be its estimate
from S (excluding weights for bias units in both cases), and ‖·‖2 be the entry-wise
2 norm. A typical loss function (3.57) used for training is composed of the sum of
training set log loss and L2 regularization on the weights.

m

∑
i=1

[−yi log ŷi − (1− yi) log(1− ŷi)] +
λ

2

l

∑
j=1
‖W(j)‖2

2 (3.57)

We replace the regularization penalty with (3.58).9

l

∑
j=1

[
λ1(j)

2
‖W(j) − Ŵ(j)‖2

2 +
λ2(j)

2
‖W(j)‖2

2] (3.58)

This penalizes estimates of W far from the weights learned on S. Since we expect
the tasks to share a low-level representation function (e.g. edge detectors for vision,
word embeddings for text) but be distinct at higher levels (e.g. image components for
vision, topics for text), we set λ1(·) to be a decreasing function, while λ2(·) controls
standard L2 regularization. The technique is novel to our knowledge, although other
approaches to transferring regularization between tasks exist [Evgeniou and Pontil,
2004; Raina et al., 2006; Argyriou et al., 2008; Ghifary et al., 2014].

9Basing our approach on (3.57), we follow the convention that weights connected to bias units are
excluded from the regularization penalty. However, the inclusion of these weights in the ‖W(j) − Ŵ(j)‖
term of (3.58) is a plausible variant.
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3.5.3 Experiments

We experiment on basic image and text classification tasks.10 We show that learning
algorithms motivated by our theoretical results can help to overcome a scarcity of
labeled target task data. Note that we do not replicate the conditions specified in
our theorems, nor do we attempt extensive tuning to achieve state-of-the-art perfor-
mance.

We randomly partition label classes into sets S+ and S−, where |S+| = |S−|.11

We construct T+ by randomly picking from S+ up to γ := |S+∩T+|
|S+| , then randomly

picking from S− such that |T+| = |T−|. We let S be the task of distinguishing between
S+ and S− and T be that of distinguishing T+ and T−. Constructing S+ and T+ as
disjunctions of classes means that the class labels are a perfect representation shared
between S and T.

We compare the accuracy on T of four options:

• learn T from scratch (Base)

• transfer f̂ from S, fine-tune f and train g on T using (3.58) (Fine-tune f̂ )

• transfer f̂ from S and fix, train g on T (Fix f̂ )12

• transfer ĝS ◦ f̂ from S and fix (Fix ĝS ◦ f̂ ).13

We use λ1(1) = λ2(2) = λ := 1,14 λ1(2) = λ2(1) = 0, mT = 500 and the
sigmoid activation function. For MNIST we use raw pixel intensities, a 784× 50× 1
network and mS = 50000. For Newsgroups we use TF-IDF weighted counts of most
frequent words, a 2000× 50× 1 network and mS = 15000. We use conjugate gradient
optimization with 200 iterations.

The results are shown in Table 3.1.15 When the tasks are non-identical, Fine-tune

f̂ is mostly the strongest, but performs better on MNIST than on Newsgroups. Fix

f̂ outperforms Base when γ ≥ 0.8, i.e. when the tasks are similar. While Fix f̂
outperforms Fix ĝS ◦ f̂ when the tasks are non-identical on MNIST, on Newsgroups

there is no evidence of benefit. When the tasks are identical, unsurprisingly Fix ĝS ◦ f̂
is the strongest.

It appears that learning an MNIST digit requires a dense weight vector and so
Ŵ(1) tends to encode single digits, which helps transferrability. However, it appears

10The MNIST and 20 Newsgroups datasets are available at http://yann.lecun.com/exdb/mnist and
http://qwone.com/˜jason/20Newsgroups respectively.

11For MNIST there are 10 label classes and for 20 Newsgroups there are 20. In both cases the classes
are approximately balanced. Note that we ignore the hierarchical structure of the 20 Newsgroups
classes, which likely contributes to the lower accuracies reported for all methods for this dataset relative
to MNIST.

12i.e. logistic regression with L2 regularization and f̂ fixed.
13Used to isolate the benefit of transferring f̂ rather than ĝS ◦ f̂ .
14We explored tuning λ to lift the performance of Base on MNIST, but found that the results did not

materially improve. Potentially λ1(j) and λ2(j) in (3.58) could be tuned with cross validation on the
target task.

15For γ = 1, the tasks are identical. We do not consider γ < 0.5, since that is equivalent to 1− γ with
the definitions of T+ and T− swapped.
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Table 3.1: Evaluation of transferring representations. Entries are the test set accuracy
of the technique (row) for the task (column) averaged over 10 trials, with the best

result for each task bolded.

Technique MNIST, γ = Newsgroups, γ =
0.6 0.8 1 0.6 0.8 1

Base 88.4 87.9 87.9 62.6 63.2 66.1
Fine-tune f̂ 91.9 93.9 95.4 62.3 72.3 83.3
Fix f̂ 87.5 92.3 97.3 52.2 69.6 83.3
Fix ĝS ◦ f̂ 67.4 85.6 98.1 55.5 70.7 83.6

that since we may learn a newsgroup with a sparse weight vector, Ŵ(1) tends to
encode disjunctions of newsgroups which somewhat reduces transferrability. When
transferring representations does work, fine-tuning using the regularization penalty
proposed in (3.58) improves performance.

3.6 Conclusion

We developed sufficient conditions for the successful transfer of representation func-
tions both with and without fine-tuning. This is a step towards a principled expla-
nation of the empirical success achieved by such techniques. A promising direction
for future work is generalizing the neural network architectures considered (e.g. us-
ing multiple hidden layers) and relaxing the distributional assumptions required.
Furthermore, in the fine-tuning case it may be possible to upper bound the target
task generalization error of hypotheses in G ◦ F̂ using another measure such as the
Rademacher complexity of G ◦ F̂, eliminating the need for stochastic hypotheses.

We proposed a novel form of regularization for neural network training moti-
vated by our theoretical results, which penalizes divergence from source task weights
and is stricter for lower-level weights. We validated this technique through applica-
tions to image and text classification. Future directions include experiments on more
challenging tasks using deeper and more tailored network architectures (e.g. convo-
lutional neural networks).

3.7 Appendix

We state and prove lemmas used in the proofs of Theorems 3.5 and 3.10.

Lemma 3.11. Suppose F is a representation function class which satisfies Assumption 3.2.
Let f , f̂ ∈ F, and let v, v̂, d ∈ {−1, 1}k. Suppose f̂ , µX, µ′X and c satisfy Assumption 3.3.
Then

pT(d ∗ v · f (x)d ∗ v̂ · f̂ (x) ≤ 0) ≤ cpS(v · f (x)v̂ · f̂ (x) ≤ 0).
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Proof. Recall the definition of M in (3.16). Suppose there is a map φ : Rn → Rn,
which is invertible, and satisfies

∀x ∈ X , ‖Mx‖ = ‖Mφ(x)‖ (3.59)

and
d ∗ v · f (x)d ∗ v̂ · f̂ (x) = v · f (φ(x))v̂ · f̂ (φ(x)). (3.60)

Then the result follows since µX(x) ≤ cµ′X(φ(x)) by (3.17).
Such a map is

φ(x) := (MT M)−1MT d̃ ∗ (Mx), (3.61)

where d̃ is a vector of length 2k defined as

d̃ := [d1, d1, . . . , dk, dk].

Rearranging (3.61) and using the fact that M is full rank we see that (3.59) is satisfied.
By the definition of M in (3.16) and φ(x) in (3.61), we have ∀i,

wi · φ(x) = diwi · x (3.62)

and
(αiŵi − βiwi) · φ(x) = di(αiŵi − βiwi) · x,

and hence
ŵi · φ(x) = diŵi · x (3.63)

for αi, βi 6= 0.
Therefore we may show (3.60) as follows:

d ∗ v · f (x)d ∗ v̂ · f̂ (x)

= v · d ∗ f (x)v̂ · d ∗ f̂ (x) (3.64)

= v · f (φ(x))v̂ · d ∗ f̂ (φ(x)) (3.65)

= v · f (φ(x))v̂ · f̂ (φ(x)). (3.66)

(3.64) is a property of the elementwise and dot products. For (3.65), apply (3.62) and
the fact that a is an odd function to yield a(wi · φ(x)) = a(diwi · x) = dia(wi · x).
Similarly for (3.66), apply (3.63) and the fact that a is an odd function to conclude
a(ŵi · φ(x)) = a(diŵi · x) = dia(ŵi · x).

Lemma 3.12. Suppose F is a representation function class which satisfies Assumption 3.7.
Let f , f̂ ∈ F and let v ∈ {−1, 1}k. Let µ be a distribution on X , and let p(·) be the
probability of an event under µ. Suppose that ∀i, wi · ŵi ≥ 0, and that f̂ , µ and c = 1 satisfy
Assumption 3.8. Then

max
i
|θ(wi, ŵi)|

π
√

2(k− 1)
≤ p(v · f (x)v · f̂ (x) ≤ 0).
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Proof. For i ∈ {1, · · · , k}, let

v−i := [v1, . . . , vi−1, vi+1, . . . , vk],

fi(x) := sign(wi · x),
f−i(x) := [ f1(x), . . . , fi−1(x), fi+1(x), . . . , fk(x)],

f̂i(x) := sign(ŵi · x) and

f̂−i(x) := [ f̂1(x), . . . , f̂i−1(x), f̂i+1(x), . . . , f̂k(x)].

∀i ∈ {1, · · · , k} we have

p(v · f (x)v · f̂ (x) ≤ 0)

≥ p(v · f (x)v · f̂ (x) < 0)

≥ p(v−i · f−i(x) = 0)p(v · f (x)v · f̂ (x) < 0|v−i · f−i(x) = 0)

= p(v−i · f−i(x) = 0)p(vi fi(x)v−i · f̂−i(x) + fi(x) f̂i(x) < 0|v−i · f−i(x) = 0)

= p(v−i · f−i(x) = 0)[p(vi fi(x)v−i · f̂−i(x) < −1, fi(x) f̂i(x) = 1|v−i · f−i(x) = 0)

+ p(vi fi(x)v−i · f̂−i(x) < 1, fi(x) f̂i(x) = −1|v−i · f−i(x) = 0)]

≥ p(v−i · f−i(x) = 0)[p(vi fi(x)v−i · f̂−i(x) < −1, fi(x) f̂i(x) = −1|v−i · f−i(x) = 0)

+ p(vi fi(x)v−i · f̂−i(x) < 1, fi(x) f̂i(x) = −1|v−i · f−i(x) = 0)] (3.67)

= p(v−i · f−i(x) = 0)[p(vi fi(x)v−i · f̂−i(x) < −1, fi(x) f̂i(x) = −1|v−i · f−i(x) = 0)

+ p(vi fi(x)v−i · f̂−i(x) > −1, fi(x) f̂i(x) = −1|v−i · f−i(x) = 0)] (3.68)

= p(v−i · f−i(x) = 0)p( fi(x) f̂i(x) = −1|v−i · f−i(x) = 0)

= p(v−i · f−i(x) = 0)p( fi(x) f̂i(x) = −1) (3.69)

=

(
k− 1

k−1
2

)
(

1
2
)k−1 |θ(wi, ŵi)|

π
(3.70)

≥ 2k−1√
2(k− 1)

(
1
2
)k−1 |θ(wi, ŵi)|

π
(3.71)

=
|θ(wi, ŵi)|

π
√

2(k− 1)
.

(3.67) follows since µ satisfies the rotation invariance property (3.35) for c = 1
and wi · ŵi ≥ 0. (3.68) and (3.69) use the fact that µ satisfies the rotation invariance
property (3.35) for c = 1. (3.70) uses rotation invariance and the fact that k is odd.
(3.71) is a standard lower bound for the central binomial coefficient. The other lines
use basic simplifications and laws of probability.

Lemma 3.13. Suppose F is a representation function class which satisfies Assumption 3.7.
Let f , f̂ ∈ F and let v, v̂ ∈ {−1, 1}k. Let µ be a distribution on X , and let p(·) be the
probability of an event under µ. Suppose that ∀i, wi · ŵi ≥ 0, and that f̂ , µ and c = 1 satisfy
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Assumption 3.8. Then

p(v · f (x)v · f̂ (x) ≤ 0) ≤ p(v · f (x)v̂ · f̂ (x) ≤ 0).

Proof. Let E[·] := EX∼µ[·]. Let fi(x) := sign(wi · x) and f̂i(x) := sign(ŵi · x). Let
f̃ ∈ {−1, 1}k and

p( f̃ ) := p([ f1(x) f̂1(x), . . . , fk(x) f̂k(x)] = f̃ ).

Let d := v̂ ∗ v ∈ {−1, 1}k and

∆(x) := 1(v · f (x)v̂ · f̂ (x) ≤ 0)− 1(v · f (x)v · f̂ (x) ≤ 0).

Assume v̂ 6= v (if v̂ = v then the lemma clearly holds). Let a( f̃ ) :=
k
∑

i=1
1( f̃i = 1) and

let i∗ := min
i:di=−1

i. Let

F̃ := { f̃ ∈ {−1, 1}k : a( f̃ ) > a(d ∗ f̃ ) ∨ (a( f̃ ) = a(d ∗ f̃ ) ∧ f̃i∗ = 1)}. (3.72)

Let

Φ(a) :=
1

2k−1

bk/2c
∑
b=0

b

∑
j=da/2+b/2−k/4e

(
a
j

)(
k− a
b− j

)
.

The term b counts coordinates where vi f̂i(x) = sign(v · f (x)), while j counts those
where vi fi(x) = sign(v · f (x)) and fi(x) = f̂i(x).

p(v · f (x)v̂ · f̂ (x) ≤ 0)− p(v · f (x)v · f̂ (x) ≤ 0)

= E[1(v · f (x)v̂ · f̂ (x) ≤ 0)]−E[1(v · f (x)v · f̂ (x) ≤ 0)]

= E[∆(x)] (3.73)

= ∑̃
f∈F̃

p( f̃ )E[∆(x)| f̃ ] + p(d ∗ f̃ )E[∆(x)|d ∗ f̃ ] (3.74)

= ∑̃
f∈F̃

[p( f̃ )− p(d ∗ f̃ )]E[∆(x)| f̃ ] (3.75)

= ∑̃
f∈F̃

[p( f̃ )− p(d ∗ f̃ )][p(v · f (x)v · f̂ (x) ≤ 0|d ∗ f̃ )− p(v · f (x)v · f̂ (x) ≤ 0| f̃ )]

(3.76)

= ∑̃
f∈F̃

[p( f̃ )− p(d ∗ f̃ )][Φ(a(d ∗ f̃ ))−Φ(a( f̃ ))] (3.77)

≥ 0. (3.78)

(3.73) uses linearity of expectation. (3.74) uses the law of total expectation and
the definition of F̃ from (3.72).
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(3.75) holds since

E[∆(x)|d ∗ f̃ ]

= ∑
f ′∈{−1,1}k

p( f (x) = f ′|d ∗ f̃ )E[∆(x)|d ∗ f̃ , f (x) = f ′]

= − ∑
f ′∈{−1,1}k

p( f (x) = f ′|d ∗ f̃ )E[∆(x)| f̃ , f (x) = f ′]

= − ∑
f ′∈{−1,1}k

p( f (x) = f ′| f̃ )E[∆(x)| f̃ , f (x) = f ′]

= −E[∆(x)| f̃ ]

due to the fact that µ satisfies the rotation invariance property (3.35) for c = 1.
(3.76) holds by expanding ∆(x), linearity of expectation, and a similar argument

to the one used to show (3.75), yielding

p(v · f (x)v̂ · f̂ (x) ≤ 0| f̃ ) = p(v · f (x)v · f̂ (x) ≤ 0|d ∗ f̃ ).

(3.77) holds because µ satisfies the rotation invariance property (3.35) for c = 1,
and k is odd.

For (3.78), Φ(a(d ∗ f̃ ))− Φ(a( f̃ )) is non-negative since a( f̃ ) ≥ a(d ∗ f̃ ) and Φ is
non-increasing. p( f̃ )− p(d ∗ f̃ ) is also non-negative because µ satisfies the rotation
invariance property (3.35) for c = 1, and ∀i, wi · ŵi ≥ 0.
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Chapter 4

Costs and Benefits of Fair
Representation Learning

4.1 Introduction

Machine learning algorithms are used to make or support decisions in a wide vari-
ety of contexts including financial and judicial risk assessments, applicant screening
for employment, and online ad selection. Concerns about the fairness of these algo-
rithms have arisen as a result [O’Neil, 2017; Barocas and Selbst, 2016; Angwin et al.,
2016; Datta et al., 2015]. Decisions made by machine learning algorithms typically
cannot be controlled or interpreted as straightforwardly as those made by rule-based
systems. Furthermore, artefacts of previous discrimination in an algorithm’s training
data may affect its decisions. Researchers have responded by developing techniques
to incorporate fairness into the design of machine learning algorithms [Barocas et al.,
2018; Zliobaite, 2015; Romei and Ruggieri, 2014]. While these techniques often focus
on achieving group fairness – i.e. not discriminating against particular groups – an-
other important consideration is individual fairness – i.e. giving similar treatment to
individuals who are similar [Dwork et al., 2012].

The problem of fair classification (see Figure 4.1(a)) involves making a decision
(e.g. whether to grant a loan) based on an input (e.g. individual financial and demo-
graphic information) which accurately predicts a target of interest (e.g. loan default),
while at the same time avoiding discrimination on the basis of an individual’s group
membership (e.g. race, gender) encoded in a sensitive variable. A single party, the
data user, is trusted to access the sensitive variable in training and is responsible for
making decisions that appropriately consider accuracy and fairness.

In contrast (see Figure 4.1(b)), the problem of fair representation learning involves
producing a cleaned representation of the input which remains useful for predicting
the target, but suppresses information which could be used to discriminate based on
the sensitive variable. We now assume the data user is not trusted to access the sen-
sitive variable in training, which may be appropriate if the data user could be either
adversarial, i.e. interested in being unfair, or indifferent, i.e. interested only in target
accuracy [Madras et al., 2018]. This problem setting involves three parties: a data
producer who cleans the input data, a data user who makes decisions from the cleaned
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Input X Representation
function f (x) = z Cleaned Z

Sensitive S Target Y

Hypothesis g(z) =
p(Ŷ f = 1|Z = z) Decision Ŷ f

Target Y

Benefit for
disparate impact

Benefit for
statistical parity

Cost for
individual fairness

Cost of mistrust

Costs and benefits

Data producer Data user

Data regulator

(b) Fair representation learning: data user not trusted to access sensitive variable

(a) Fair classification: data user trusted to access sensitive variable
Data user

Decision Ŷ
Hypothesis h(x) =

p(Ŷ = 1|X = x)

Target Y

Input X

Sensitive S

Figure 4.1: Summary of (a) fair classification and (b) fair representation learning,
showing train time data processing for both, and costs and benefits of (b).

data, and a data regulator who oversees fair use of the data. For example, when decid-
ing whether to give an individual a loan, the data producer might be a credit bureau,
the data user a bank and the data regulator a government authority. Even within an
organization, this separation of concerns has the advantage of providing checks and
balances.

As we shall see, the fair representation learning approach offers both costs and
benefits, and may be appropriate in some situations but not others. It is most useful
when the data user is not trusted to achieve fairness. For example, if the data user
has a financial incentive to prioritize decisions based on accurate predictions of the
target variable regardless of fairness constraints, or if data is being publicly released
and the objectives of data users may be diverse and hard to foresee. If there is good
reason to trust a single data user to make decisions that consider both accuracy and
fairness – for example, if the decisions are reported to regulators and violations of
fairness constraints attract enforceable penalties – then alternative approaches to fair
classification (e.g. [Menon and Williamson, 2018]) may be preferable.

4.1.1 Contributions of This Chapter

This chapter offers contributions that are have both scientific and policy significance,
and are technically novel.

Scientific significance: A plethora of methods use fair representation learning [Zemel
et al., 2013; Feldman et al., 2015; Edwards and Storkey, 2016; Louizos et al., 2016;
Johndrow and Lum, 2017; Beutel et al., 2017; Madras et al., 2018] as a technique for
fair classification. Recent work [Menon and Williamson, 2018] has solved in analyti-
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cal form a canonical version of the fair classification problem. Is fair representation
learning then to be relegated to a sub-optimal technique for a problem better solved
through other means? Developing more fair representation learning techniques does
not address this question. Instead, we show that fair representation learning in fact
solves a different problem – i.e. how to guarantee that decisions made by an untrusted
data user can be accurate but will not be unfair – and quantify the costs and benefits
of such representations in terms of fairness and utility. This represents a progression
in our scientific understanding, given that this problem had never previously been
formally posed or analyzed.

Policy significance: Our approach makes possible a governance model involving a
separation of concerns between a data producer, data user and data regulator (pre-
vious work assumes a single trusted data user). The model enables a regulator to
guarantee fairness even if the data user is adversarial. This is an advance in the regu-
lation of algorithmic fairness, given that no alternatives currently exist in the realistic
setting where a data user is not trusted to be fair.

Novel technical results: We formalize the problem of fair representation learning as
distinct from fair classification. By stating the data producer’s optimization problem
in (4.5) and showing that a proxy problem can be solved without access to the target
variable (Theorem 4.6), we derive a principled way to select a fair representation
learning objective function (this is heuristic in prior work).

We present a novel quantification of the costs of using a given representation
(Section 4.4), a topic which had not previously been investigated. We identify costs
both in terms of the accuracy-fairness trade-off (i.e. the cost of mistrust given in closed
form in Theorem 4.8 and bounded without requiring access to the target variable in
Theorem 4.9), and in terms of individual fairness (Theorem 4.13).

We present novel guarantees of the benefits of a given representation (Section
4.5). We do this for two common measures of fairness: statistical parity (Theorem
4.14) and disparate impact (Theorem 4.15), by computing the unfairness of an optimal
adversary. Conditioning on the target variable, our analysis can be also be used to
guarantee quantified versions of two other well-known fairness definitions: equality
of opportunity and equalized odds.

4.1.2 Structure of This Chapter

The remainder of this chapter is structured as follows. We review related work in Sec-
tion 4.2. We present our formalization of the problem of fair representation learning
in Section 4.3. In Sections 4.4 and 4.5 we quantify the costs and benefits respectively
of using a particular representation. In Section 4.6, we present experiments which
demonstrate that our formalization of the fair representation learning problem can
be used in practice, and which illustrate how the costs and benefits we identified can
be estimated and interpreted. We conclude in Section 4.7. In the Appendix (Section
4.8) we provide proofs of our theoretical results (proof sketches are included in the
main text), along with a summary of the problems, costs and benefits we consider,
and examples of the cost of mistrust.
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4.2 Background

We summarize prior works on quantitative definitions of fairness, and techniques for
fair classification and fair representation learning, which are relevant to the theoreti-
cal analysis of fair representation learning presented in this chapter. Chapters 5 and
6 contain further details of existing research on fairness in machine learning related
to the topics covered by those chapters respectively.

4.2.1 Quantitative Definitions of Fairness

Defining fairness is a deep and complex topic considered across several disciplines
such as philosophy, law, politics and psychology (for example, see [Rawls, 1971] for
one influential attempt). In order to assess the effects of algorithms which make or
inform decisions about people’s lives, we require quantitative definitions of fairness.
While the accuracy of an algorithm in predicting the target variable is one potential
aggregate measure of fairness, it is not sufficient for understanding the algorithm’s
impacts on particular groups in the population. Several proposed quantitative def-
initions of fairness formalize the idea of avoiding discrimination on the basis of a
particular kind of group membership, such as race or gender. Three types of defini-
tion have emerged, which we state informally (see [Mitchell and Shadlen, 2018] for
further details):

• Parity: Predictions should be similar for different groups

• Independence: Predictions should be independent of group membership

• Causality: Predictions should not be caused by group membership.

While each of these approaches has its advantages, our analysis focuses on def-
initions based on parity. A predictive model that achieves parity between groups
is mathematically equivalent to one that is independent of group membership (see
p. 43 of [Barocas et al., 2018]). However, (dis)parity may be measured on a continu-
ous scale, unlike an all-or-nothing statement about independence. Unlike causality-
based definitions [Kusner et al., 2017], parity measures can be computed using only
an algorithm’s outputs without the knowledge of its functional form, so that external
auditing can be carried out without the co-operation of the algorithm’s owner. Parity
measures also do not require the selection of variables that are permitted to cause de-
cisions (known as resolving variables [Kilbertus et al., 2017]), which potentially could
include proxies for group membership (e.g. ‘redlining’ where neighborhood is used
a proxy for race). Finally, parity-based measures are arguably the simplest to under-
stand for a lay audience, which is significant given the risk of excluding participants
from non-quantitative backgrounds in debates about fairness [Mitchell and Shadlen,
2018].

Several parity measures compare an algorithm’s average decisions for different
groups, i.e. the expected values of the decision variable conditioned on membership
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of particular groups. For example, we may take the difference between the aver-
age decisions for two groups – known as statistical parity [Calders and Verwer, 2010;
Dwork et al., 2012] – or the ratio of the average decisions for two groups – known
as disparate impact [United States Equal Opportunity Employment Commission, 1978;
Feldman et al., 2015]. We may wish to compute a parity measure only on a popula-
tion subset. If the population subset consists of individuals who are similar according
to some metric, we have individual fairness, also known as avoiding disparate treatment
[Dwork et al., 2012; Mitchell and Shadlen, 2018]. Constructing subsets by condition-
ing on particular values of the target variable yields variants [Hardt et al., 2016] such
as equality of opportunity (conditioning only on the positive class) and equalized odds
(conditioning separately on the positive and negative classes).1

There is no straightforward answer to the question of which subsets to mea-
sure parity on. Conditioning on the target variable is appealing since it allows us
to measure whether an algorithm’s tendency to make prediction errors differs be-
tween groups, an intuitive approach to measuring fairness. However, there are also
some potential disadvantages to conditioning on the target variable. If the training
data labels are collected in a way that is discriminatory towards one group [Barocas
and Selbst, 2016], conditioning on the target variable may not be appropriate [Zafar
et al., 2017a]. Another issue is that the target variable may be affected by a complex
historical process which has disadvantaged one group. For example, in a criminal
justice context the target variable may measure whether an individual reoffended,
and certain groups may have higher reoffence rates in the training data as a result of
long-term structural disadvantage. Decisions which achieve parity between groups
conditioned on the target variable but not overall may reinforce this disadvantage, for
example by justifying higher incarceration rates for some groups compared to oth-
ers. This chapter focuses on parity measures which apply to the whole population
(i.e. statistical parity and disparate impact), but we flag where our results can also
be straightforwardly applied to parity measures conditioned on population subsets
conditioned on the target variable (i.e. approximations of equality of opportunity
and equalized odds).

Several mathematical results have shown that, for a particular set of fairness defi-
nitions, it is impossible for a predictive model to simultaneously satisfy all definitions
in the set [Chouldechova, 2017; Kleinberg et al., 2017b; Lipton et al., 2018; Pleiss et al.,
2017]. Within a particular context, different definitions are aligned to the interests of
particular stakeholders [Nayaranan, 2018]. Furthermore, when predictions are also
measured on their accuracy, the definitions of accuracy and fairness are in general
not aligned [Corbett-Davies et al., 2017; Menon and Williamson, 2018; Corbett-Davies
and Goel, 2018]. We explore the relationships between different measures of fairness,
and between fairness and accuracy, in more detail in Chapter 5.

1Satisfying equalized odds has also previously been referred to as avoiding disparate mistreatment
[Zafar et al., 2017a]. A formal definition of equalized odds is given in Chapter 5.
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4.2.2 Techniques for Fair Classification and Fair Representation Learning

Recent work on quantitative fairness has, in addition to proposing fairness defini-
tions, developed techniques for fair classification. These techniques can be divided
into three categories [Mitchell and Shadlen, 2018]:

• Pre-processing: modify the data that the algorithm learns from, i.e. fair repre-
sentation learning (e.g. [Zemel et al., 2013])

• In-processing: modify the algorithm’s objective function to incorporate a fair-
ness constraint or penalty (e.g. [Menon and Williamson, 2018])2

• Post-processing: modify the predictions produced by the algorithm (e.g. [Hardt
et al., 2016]).

Several techniques have been proposed to achieve fair representation learning.
One approach to fair representation learning is to design the cleaned variable Z such
that the distributions of Z conditioned on different values of the sensitive variable
S are similar [Feldman et al., 2015; Johndrow and Lum, 2017]. In addition to this
requirement, the pre-processing procedure may optimize the independence of Z and
S [Louizos et al., 2016]. Another approach to fair representation learning is to de-
sign Z such that it is maximally informative about the target variable Y, subject to
a constraint that it is uninformative about S [Ghassami et al., 2018]. Adversarial ap-
proaches [Edwards and Storkey, 2016; Beutel et al., 2017; Madras et al., 2018] use a
neural network to learn a representation function such that an adversary network
cannot accurately predict the sensitive variable from the cleaned data. A problem
variant, where the target is also modified and the input is discrete, has been formu-
lated as a convex optimization problem [Calmon et al., 2017].

What existing approaches to fair representation learning typically do not offer
(Theorem 4.1 from [Feldman et al., 2015] is an exception) is a guarantee that all
uses of the cleaned data will be fair, or a quantification of the costs of the cleaning
process. We seek to provide a stronger theoretical foundation for fair representation
learning. This objective is similar in spirit to that of privacy aware learning, which
is concerned with the mathematical trade-off between the privacy and utility of data
[Wainwright et al., 2012]. We also show that fair representation learning in fact
addresses a problem that is distinct from fair classification, which is of interest when
the data user is not trusted to access the sensitive variable.

4.3 Fair Classification vs Fair Representation Learning

We introduce and compare the problems of fair classification and fair representation
learning. This formal comparison is itself novel and is necessary for our subsequent
analysis of the costs and benefits of fair representation learning.

2Several over works have proposed variants of this approach, including: [Donini et al., 2018; Zafar
et al., 2017b,a; Dwork et al., 2018; Bechavod and Ligett, 2017].
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4.3.1 Fair Classification

In fair classification (Figure 4.1(a)), the data user trains on samples of input vari-
able X, target variable Y and sensitive variable S. The samples are drawn from a
distribution over X × Y × S , where X is the set of possible inputs, Y is the set
of possible labels and S is the set of possible sensitive variable values. We fo-
cus on the setting where Y ∈ {0, 1}, corresponding to binary classification, and
S ∈ {0, 1}, corresponding to some common sensitive variable examples such as gen-
der or race. Let πY := p(Y = 1) and πS := p(S = 1) be prior probabilities, and
ηY(x) := p(Y = 1|X = x) and ηS(x) := p(S = 1|X = x) be conditional probabilities,
for the positive classes of Y and S respectively.

The data user learns a stochastic hypothesis h : X → [0, 1] which is used to
construct decision variable Ŷ ∈ {0, 1}, where h(x) := p(Ŷ = 1|X = x). Let µXYSŶ be
the joint distribution of the input, target, sensitive and decision variables.

At test time, the data user makes a decision using a sample of X, which may
contain information about S. The quality of an hypothesis h in predicting Y can be
measured by a risk RY : [0, 1]X → [0, 1], where we prefer hypotheses with a small
value of RY(h). A common choice is the cost-sensitive risk.

Definition 4.1 (Cost-sensitive risk [Elkan, 2001; Zhao et al., 2013; Menon and Williamson,
2018]). The cost-sensitive risk of hypothesis h with respect to Y is

RY(h) := πY(1− cY)p(Ŷ = 0|Y = 1) + (1− πY)cY p(Ŷ = 1|Y = 0)

where cY ∈ [0, 1], p(Ŷ = 0|Y = 1) is known as the false negative rate and p(Ŷ = 1|Y = 0)
as the false positive rate.

We also wish to ensure that the hypothesis we learn is fair. Two common fairness
measures are statistical parity and disparate impact, which compare outcomes for
different sensitive variable groups using their difference and ratio respectively. In
the analysis that follows we focus on the case where statistical parity and disparate
impact are computed on the joint distribution µXYSŶ. However, computing these
measures only on part of the distribution yields other variants of interest, such as
conditioning on Y = 1 for quantified versions of equality of opportunity, or condi-
tioning separately on Y = 1 and Y = 0 for quantified versions of equalized odds.

Definition 4.2 (Statistical parity [Calders and Verwer, 2010; Dwork et al., 2012]). The
statistical parity of an hypothesis h is

SP(h) := p(Ŷ = 1|S = 1)− p(Ŷ = 1|S = 0).

Definition 4.3 (Disparate impact [United States Equal Opportunity Employment
Commission, 1978; Feldman et al., 2015]). The disparate impact of an hypothesis h is

DI(h) :=
p(Ŷ = 1|S = 0)
p(Ŷ = 1|S = 1)

.
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Notice that SP(h) ∈ [−1, 1], with equality of outcome corresponding to 0, while
DI(h) ∈ [0, ∞), with equality of outcome corresponding to 1. In both cases we want
a value that is neither too low nor too high. It has been shown that this is equivalent
to requiring that h and the ‘anti-classifier’ 1− h both have values that are not too low
(see Appendix C of [Menon and Williamson, 2018]).

The fair classification problem then takes the form, for some Rfair ∈ {SP, DI}:

min
h∈H

RY(h) subject to min[Rfair(h), Rfair(1− h)] ≥ τ, (4.1)

where H := [0, 1]X and τ is a constant measuring the required level of fairness. For
DI, τ ∈ [0, ∞), while for SP, τ ∈ [−1, 0] since SP(1− h) = −SP(h).

It has been shown that a constraint on SP or DI of the type in (4.1) is equivalent to
a constraint on a cost sensitive risk with respect to S (see Lemmas 1 and 2 of [Menon
and Williamson, 2018]). Using Definition 4.1, this cost sensitive risk is written as:

RS(h) := πS(1− cS)p(Ŷ = 0|S = 1) + (1− πS)cS p(Ŷ = 1|S = 0), (4.2)

where cS ∈ [0, 1].
It is more convenient to work with an unconstrained variant of the fair classifica-

tion problem:

min
h∈H

[RY(h)− λRS(h)], (4.3)

where λ is a constant (not necessarily non-negative) controlling the trade-off between
accuracy with respect to Y and fairness with respect to S. It has been shown [Menon
and Williamson, 2018] that for some choice of λ, some solution to (4.3) is also a
solution to (4.1).

Definition 4.4 (Optimal fair classification). Let the combined risk

RYS(h) := RY(h)− λRS(h).

Let RYS(h∗) be the value of (4.3) and h∗ be a corresponding hypothesis.

Subsequently we will compare optimal fair classification to the case where we
instead use fair representation learning as an intermediate step in fair classification.

4.3.2 Fair Representation Learning

In fair representation learning (Figure 4.1(b)), the data producer trains on samples of
X, S and Y (we also examine the case where the data producer does not access Y),
and learns the representation function f : X → Z , where Z is the set of possible
cleaned variable values. The data producer samples X and applies f to each sample
to produce cleaned variable Z := f (X). The data producer learns f so that Z is still
useful for predicting Y but suppresses information about S.

Let η
f
Y(z) := p(Y = 1|Z = z) and η

f
S(z) := p(S = 1|Z = z) be conditional

probabilities of the positive classes of Y and S induced by f . The data user trains on
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samples of Z and Y and learns a stochastic hypothesis g : Z → [0, 1], which is used to
construct modified decision variable Ŷ f ∈ {0, 1} where g(z) := p(Ŷ f = 1|Z = z). At
test time, the data producer samples X and passes it through f to produce a sample
of Z, from which the data user makes a decision.

When the data user is not trusted, we are interested in constraining how unfair
an adversarial user can be with the cleaned data. As in the fair classification case, this
is equivalent to a constraint on an adversary’s cost-sensitive risk with respect to S.
We are also interested in ensuring that the cleaned data is still useful for predicting
the target. We are therefore interested in the following problem:

min
f∈F

RY(g∗Y ◦ f ) subject to RS(g∗S ◦ f ) ≥ τ, (4.4)

where τ is a constant measuring the required level of fairness, ◦ is function com-
position, g∗Y ∈ arg min

g∈G
RY(g ◦ f ) is an optimal indifferent user of the cleaned data,

g∗S ∈ arg min
g∈G

RS(g ◦ f ) is an optimal adversary using the cleaned data, G := [0, 1]Z

and F := ZX .
It is more convenient to work with the following unconstrained problem variant:

min
f∈F

[RY(g∗Y ◦ f )− λRS(g∗S ◦ f )]. (4.5)

Using the form of the minimum cost-sensitive risk from [Zhao et al., 2013], we
may express the terms in (4.5) as follows:

RY(g∗Y ◦ f ) = EZ[min((1− cY)η
f
Y(Z), cY(1− η

f
Y(Z)))] (4.6)

RS(g∗S ◦ f ) = EZ[min((1− cS)η
f
S(Z), cS(1− η

f
S(Z)))]. (4.7)

Adversarial neural networks have previously been used to estimate g∗Y and g∗S
[Edwards and Storkey, 2016; Beutel et al., 2017; Madras et al., 2018]. We observe that
(4.6) and (4.7) simplify the fair representation learning cost function (4.5) by removing
the two inner minimizations. Of course, there remains the task of estimating the
underlying distribution and computing the outer minimization.

We focus on the case where the data producer learns a representation without
using the target variable, i.e. we use unsupervised representation learning as in
Chapter 2. This allows a single fair representation to be learned that can be used
for multiple tasks. It also covers the situation where the data producer does not
have access to the target variable. For example, Y contains commercially confidential
information (e.g. defaults on a specific type of loan) known to the data user (e.g. a
bank) but not the data producer (e.g. a credit bureau). Furthermore, we focus on
the case Z = X is a Euclidean space, which facilitates our analysis and covers many
practical applications. In this case, we define average reconstruction error and show its
use as a proxy for task performance.
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Definition 4.5 (Average reconstruction error). Suppose Z = X is a Euclidean space. Let
EX‖X− f (X)‖2 be the average reconstruction error of f with respect to X, where ‖·‖2 is the
Euclidean vector norm.

Assuming the data producer does not access the target variable, we propose the
following variant of the fair representation learning problem:

min
f∈F

[EX‖X− f (X)‖2 − λRS(g∗S ◦ f )]. (4.8)

We relate (4.8) and (4.5) as follows. This result allows us to select a principled
objective function for the data producer.

Theorem 4.6 (Fair representation learning without accessing target variable). Suppose
Z = X and we have the Lipschitz condition that for some non-negative constant lY

∀x, x′ ∈ X , |ηY(x)− ηY(x′)| ≤ lY‖x− x′‖2. (4.9)

Then any f ∈ F minimizing

EX‖X− f (X)‖2 − λRS(g∗S ◦ f )

also minimizes an upper bound on

RY(g∗Y ◦ f )− lYλRS(g∗S ◦ f ).

Proof idea. We upper bound RY(g∗Y ◦ f ) − lYλRS(g∗S ◦ f ) by re-expressing the risks
using Lemma 9 from [Menon and Williamson, 2018], and making use of the Lipschitz
condition. We then observe that the f minimizing this upper bound also minimizes
EX‖X− f (X)‖2 − λRS(g∗S ◦ f ). See Section 4.8.2.1 for complete proof.

4.4 Costs of Fair Representation Learning

We identify and quantify two costs of using fair representation learning rather than
entrusting a single trusted data user to make decisions. These costs are incurred
by decision-makers, as well as individuals about whom decisions are made. The
first cost, which we refer to as the cost of mistrust, is the difference in the optimal
fairness-accuracy trade-off available with the cleaned data produced by a represen-
tation function f compared to the original input. This cost is of interest to the data
user – as well as potentially the data regulator. The second cost quantifies the extent
to which individual fairness is violated by using a representation function f , which
is primarily of interest to the data regulator. We show that both of these costs can be
estimated by a data producer without accessing the target variable.
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4.4.1 Cost of Mistrust

Suppose that after cleaning the data with the representation function f , we solve
the following fair classification problem, which is equivalent to (4.3) but using the
cleaned data.

min
g∈G

[RY(g ◦ f )− λRS(g ◦ f )] (4.10)

Definition 4.7 (Cost of mistrust). Let g∗ and h∗ be hypotheses minimizing (4.10) and (4.3)
respectively, where the value of λ is the same in both equations. The cost of mistrust for a
representation function f is defined as

RYS(g∗ ◦ f )− RYS(h∗).

The cost of mistrust is non-negative because f restricts the hypothesis class to a
subset of H. If λ = 0 in (4.10) and (4.3), f may incur a cost for the target accuracy of
the indifferent user, which seems unsurprising. However, for general λ we see that f
may also incur a cost for fair classification. Without access to the sensitive variable S
the data user has no way to estimate RS(g ◦ f ) in (4.10). However, even if they could
somehow guess this quantity, f may create a suboptimal trade-off between fairness
and accuracy compared to the trade-off available to a trusted data user using the
original input. See Section 4.8.3 for examples where the cost of mistrust is either
zero or positive.

We now show in Theorem 4.8 that we can express the cost of mistrust in analytical
form. In our result, we use the expressions

h∗(x) = 1(ηY(x)− cY ≥ λ(ηS(x)− cS)) (4.11)

and
g∗(z) = 1(η f

Y(z)− cY ≥ λ(η
f
S(z)− cS)), (4.12)

obtained from Proposition 4 of [Menon and Williamson, 2018].

Theorem 4.8 (Analytical form of cost of mistrust). The cost of mistrust may be expressed
as

RYS(g∗ ◦ f )− RYS(h∗)

= EX[min(η f
Y( f (X))− cY, λ(η

f
S( f (X))− cS))−min(ηY(X)− cY, λ(ηS(X)− cS))].

(4.13)

The cost of mistrust may be decomposed into accuracy and fairness differences, where the
accuracy difference is

RY(g∗ ◦ f )− RY(h∗) = EX[h∗(X)(ηY(X)− cY)− g∗( f (X))(η
f
Y( f (X))− cY)], (4.14)

and the fairness difference is

RS(g∗ ◦ f )− RS(h∗) = EX[h∗(X)(ηS(X)− cS)− g∗( f (X))(η
f
S( f (X))− cS)], (4.15)
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which are combined in the overall cost of mistrust

RYS(g∗ ◦ f )− RYS(h∗) = RY(g∗ ◦ f )− RY(h∗)− λ(RS(g∗ ◦ f )− RS(h∗)).

Proof idea. We apply Lemma 9 of [Menon and Williamson, 2018] to express each of
RY(g∗ ◦ f ), RY(h∗), RS(g∗ ◦ f ) and RS(h∗). Combining these yields a compact ex-
pression for RYS(g∗ ◦ f )− RYS(h∗). See Section 4.8.2.2 for complete proof.

The expression (4.13) for the cost of mistrust allows us to measure the quality of
the fairness-accuracy trade-off available using f compared to using the original input.
The decomposition reveals that the signs of the accuracy and fairness differences may
vary. However, since the cost of mistrust is non-negative, for a fixed value of RS we
incur a value of RY that is at least as large using f as with the original input.

For intuition about the expression (4.13) for the cost of mistrust in Theorem 4.8,
consider some point z ∈ Z and its preimage Xz := {x ∈ X | f (x) = z}. If for
all x ∈ Xz, we have the same value of 1(ηY(x) − cY ≥ λ(ηS(x) − cS)), then the
expectation conditioned on x ∈ Xz will be zero, otherwise it will be positive. Hence
the cost of mistrust will be small when points mapped to the same value of z tend to
have the same value of 1(ηY(x)− cY ≥ λ(ηS(x)− cS)).

We are interested in situations where the data producer can guarantee that the
cost of mistrust is small without accessing Y. When Z = X and the conditional
distributions ηY(x) and ηS(x) are smooth, the cost of mistrust can be upper bounded
in terms of average reconstruction error. This result, shown in Theorem 4.9, allows
the data producer to bound the cost of mistrust using only X and Z.

Theorem 4.9 (Upper bound on cost of mistrust with smooth conditional distribu-
tions). Suppose Z = X is a Euclidean space and we have the Lipschitz conditions that for
some non-negative constants lY and lS

∀x, x′ ∈ X , |ηY(x)− ηY(x′)| ≤ lY‖x− x′‖2 (4.16)

and
∀x, x′ ∈ X , |ηS(x)− ηS(x′)| ≤ lS‖x− x′‖2. (4.17)

Then
RYS(g∗ ◦ f )− RYS(h∗) ≤ (lY + λlS)EX‖X− f (X)‖2.

Proof idea. We observe that RYS(h∗ ◦ f ) is an upper bound on RYS(g∗ ◦ f ). We use
Lemma 9 of [Menon and Williamson, 2018] to re-express RYS. We then use the
Lipschitz conditions to upper bound RYS(h∗ ◦ f )− RYS(h∗). See Section 4.8.2.3 for
complete proof.

4.4.2 Cost for Individual Fairness

We investigate the cost of using a given representation in terms of individual fairness
[Dwork et al., 2012]. This notion requires that similar decisions should be made for
similar individuals, i.e. decisions are smooth. It is possible that a representation
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function maps points that are nearby in the input space to points that are distant
from each other in the representation space. Therefore, smooth hypotheses may not
be individually fair when applied to the cleaned data. We wish to quantify this cost
for individual fairness by upper bounding the individual unfairness of an arbitrary
smooth hypothesis applied to the cleaned data. We show that it is possible for a data
user to provide this kind of certification to a data regulator by inspecting Z and X.

First, we restate a previous definition of individual fairness.

Definition 4.10 (Individual fairness [Dwork et al., 2012]). Let D and d be subadditive
functions. Hypothesis h is D, d−individually fair if

∀x, x′ ∈ X , D(h(x), h(x′)) ≤ d(x, x′).

We also give a novel quantitative notion of individual unfairness by measuring
the probability that a pair of randomly selected individuals will be treated unfairly
according to Definition 4.10.

Definition 4.11 (Individual unfairness). Hypothesis h has D, d−individual unfairness
with respect to X defined as

IUD,d(h) := p(D(h(x), h(x′)) > d(x, x′)),

where x and x′ are independent random samples of X.

In order to bound the level of individual unfairness induced by a representation,
we introduce the following definition.

Definition 4.12 (Large reconstruction error rate). Suppose Z = X . Let ε be a non-
negative constant. Let p(d(X, f (X)) > ε) be the large reconstruction error rate of f .

In Theorem 4.13 we show that if the large reconstruction error rate is small, then
any hypothesis that is smooth (i.e. individually fair when applied to the original
input) will not be too individually unfair when applied to the cleaned data. We
observe that there is a tension between guaranteeing group fairness, which involves
removing information to protect an adversary from inferring the sensitive variable,
and individual fairness, which requires preserving information from the original
input.

Theorem 4.13 (Upper bound on individual unfairness). Suppose Z = X . Let

dε(x, x′) := d(x, x′) + 2ε

and let h be any individually fair hypothesis. Then the D, dε−individual unfairness of h ◦ f
is upper bounded as follows:

IUD,dε
(h ◦ f ) ≤ 2p(d(X, f (X)) > ε).

Proof idea. Let δ := p(d(X, f (X)) > ε). For randomly drawn x and x′, d(x, f (x)) ≤ ε

and d(x′, f (x′)) ≤ ε with probability at least 1− 2δ by the union bound. If these
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statements hold, by the triangle inequality D(h( f (x), h( f (x′)) ≤ d(x, x′) + 2ε. See
Section 4.8.2.4 for complete proof.

4.5 Benefits of Fair Representation Learning

We quantify the benefits of some representation function f by measuring the dis-
crimination achieved by an optimal adversary using Z, the representation variable
induced by f . We show that a data producer can do this for both statistical parity
and disparate impact. We can compute these two quantities directly for a given f ,
so that unlike in the optimization problems we considered earlier there is no need to
use a cost-sensitive risk. The quantities we obtain can be given to a data regulator to
certify that any use of the cleaned data will not be too unfair. If the data producer
has access to the target variable, these quantities can also be evaluated on subsets of
the data with the same value of the target, to measure quantified versions of equality
of opportunity (conditioning on Y = 1) and equalized odds (conditioning separately
on Y = 1 and Y = 0) [Hardt et al., 2016].

4.5.1 Benefit for Statistical Parity

We certify that any decision using the cleaned data has statistical parity (Defini-
tion 4.2) that is neither too small nor too large. In Theorem 4.14, we show that the
maximum and minimum statistical parity of an adversary using Z can be expressed
in closed form. The maximum and minimum will be closer if the induced condi-
tional probability η

f
S(z) does not deviate too much on average from the prior πS.

If η
f
S(z) = πS everywhere, we have statistical parity of zero, i.e. exact equality of

outcome.

Theorem 4.14 (Statistical parity of optimal adversary). An adversarial user of Z achieves
maximum and minimum statistical parity

max
g∈G

SP(g ◦ f ) = 1−EZ[min(
η

f
S(Z)
πS

,
1− η

f
S(Z)

1− πS
)]

min
g∈G

SP(g ◦ f ) = −1 + EZ[min(
η

f
S(Z)
πS

,
1− η

f
S(Z)

1− πS
)].

Proof idea. Observe that statistical parity is a linear transformation of balanced error
rate. Apply the minimum balanced error rate from Equation 32 of [Zhao et al., 2013].
See Section 4.8.2.5 for complete proof.

4.5.2 Benefit for Disparate Impact

We certify that any decision using the cleaned data has disparate impact (Definition
4.3) that is neither too small nor too large. In Theorem 4.15, we show that the max-
imum and minimum disparate impact of an adversary using Z can be expressed in
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closed form. The maximum and minimum will be closer if the induced conditional
probability η

f
S(z) never deviates too much from the prior πS. If η

f
S(z) = πS every-

where, we have disparate impact of one, i.e. exact equality of outcome. Observe how
disparate impact is more sensitive than statistical parity, since it requires η

f
S(z) to be

close to πS everywhere rather than only in expectation.

Theorem 4.15 (Disparate impact of optimal adversary). Let η
f
S := max

z∈Z
η

f
S(z) and

η
f
S := min

z∈Z
η

f
S(z). An adversarial user of Z achieves maximum and minimum disparate

impact

max
g∈G

DI(g ◦ f ) =
πS(1− η

f
S)

η
f
S(1− πS)

min
g∈G

DI(g ◦ f ) =
πS(1− η

f
S)

η
f
S(1− πS)

.

Proof idea. Re-express DI(g ◦ f ) using the law of total probability, the fact that Ŷ f and
S are conditionally independent given Z, and Bayes’ rule. Using this form we obtain
the maximum and minimum values of DI(g ◦ f ) and the corresponding choices of g.
See Section 4.8.2.6 for complete proof.

4.6 Experiments

We conducted experiments with two objectives in mind. First, to show that the
formalization of the fair representation learning problem we suggested in Section 4.3
can be used in practice. Second, to illustrate how the costs and benefits identified in
Sections 4.4 and 4.5 can be estimated and interpreted without requiring access to the
target variable.

4.6.1 Datasets

We used the UCI Adult and ProPublica recidivism datasets, which are both well-
known in the fair machine learning literature (e.g. [Calmon et al., 2017]).3 We selected
S to be gender for Adult and whether the person is of African-American ethnicity for
ProPublica. Our experiments do not depend on a particular choice of Y. We learn f
using 70% of the data and report results on the remaining 30%.

The Adult dataset contains financial and demographic information compiled
from a census of about 32561 people, and contains 110 input columns once cate-
gorical features are represented as a one-hot encoding. We selected S as gender,
while a possible choice of Y is whether the person’s income is at least $50,000. This
setting is similar to a situation where a financial institution uses an algorithm to
decide whether to grant an individual a loan based on a prediction of their income.

3These datasets are located at https://archive.ics.uci.edu/ml/datasets/adult and
https://github.com/propublica/compas-analysis respectively.
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The ProPublica dataset contains information about 7214 criminal offences com-
mitted in Broward County, Florida and contains 79 input columns once categorical
features are represented as a one-hot encoding. We processed the free text crime
description column by converting it to a categorical variable where descriptions oc-
curring at least 20 times have their own category (covering 82.9% of all offences) and
all other descriptions are marked as ‘other’, and then using a one-hot encoding. We
selected S as whether the person is of African-American ethnicity, while a possible
choice of Y is whether the person reoffended within two years. This setting is similar
to a situation where a court decides whether to grant a defendant a pre-trial release
from custody, based on an algorithmic assessment of the individual’s likelihood of
reoffending.

4.6.2 Method

We approximated (4.8) by estimating f with an encoder neural network, testing sev-
eral values of λ. We used a finite sample to estimate the average reconstruction error
component of the cost function. To estimate the RS(g∗ ◦ f ) component of the cost
function we used the form given by (4.7) with cS = 0.5, trained another evaluator
neural network to estimate η

f
S(z), and used a finite sample to approximate the ex-

pectation. The evaluator is comparable to the ‘adversary’ in [Edwards and Storkey,
2016; Beutel et al., 2017; Madras et al., 2018] since we alternated updating its weights
with those of the encoder. However, the evaluator was used to estimate (4.7) which
was used to evaluate f , rather than its performance directly being used to evaluate
f . This approach is motivated by the fact that (4.7) gives us the performance of the
optimal adversary.

Our training set consisted of N points, where the input and sensitive variable
values for the nth point are given by xn and sn respectively. We estimated f using a
fully-connected encoder neural network with one softplus (softplus(x) := ln(1 + ex))
hidden layer of 100 units and a linear output layer with the same number of units as
the input layer. To approximate (4.8) we updated f to minimize the following cost
function:

1
N

N

∑
n=1
‖xn − f (xn)‖2 −

λ

2N

N

∑
n=1

min[η̃ f
S( f (xn)), 1− η̃

f
S( f (xn))]. (4.18)

We computed η̃
f
S(z) to estimate η

f
S(z) using a fully-connected evaluator neural

network with one softplus hidden layer of 100 units and a single sigmoidal output
unit. The output layer of the encoder, which corresponds to the variable Z, is the
input layer for the evaluator. For the evaluator network we updated η̃

f
S to minimize

the following cost function:

− 1
N

N

∑
n=1

[sn ln η̃
f
S( f (xn)) + (1− sn) ln(1− η̃

f
S( f (xn)))].

We alternated updates of the weights in the encoder and evaluator networks, as
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in adversarial methods [Edwards and Storkey, 2016; Beutel et al., 2017; Madras et al.,
2018]. We used the Adam Optimizer with a learning rate of 0.0001, a batch size of
100 and set the training set epochs to 100. We implemented the model in Python
using the TensorFlow library.

We set the large reconstruction error rate threshold

ε := 0.1× 1
N

N

∑
n=1
‖xn‖2

and set the individual fairness distance function4

d(x, x′) := ‖x− x′‖2.

We evaluated the costs and benefits of a representation function f using the fol-
lowing empirical estimates computed over a test set of N′ points:

EX‖X− f (X)‖2 ≈
1

N′
N′

∑
n=1
‖xn − f (xn)‖2

p(‖X− f (X)‖2 > ε) ≈ 1
N′

N′

∑
n=1

1(‖xn − f (xn)‖2 > ε)

max
g∈G

SP(g ◦ f ) ≈ 1− 1
N′

N′

∑
n=1

min[
η̃

f
S( f (xn))

π̃S
,

1− η̃
f
S( f (xn))

1− π̃S
]

max
g∈G

DI(g ◦ f ) ≈
π̃S(1− η̃ f

S
)

η̃ f
S
(1− π̃S)

where π̃S := 1
N′

N′

∑
n=1

sn and η̃ f
S

:= min
n≤N′

η̃
f
S( f (xn)).

4.6.3 Results

We show our results in Figure 4.2. For several values of λ in (4.18) (shown on the
horizontal axes of the plots), we estimated the costs and benefits of the learned rep-
resentation function f (shown on the vertical axes of the plots). The trends for both
datasets are similar. A subtlety is that we report proxies for the costs motivated by
our theoretical results, which can be estimated by the data user without access to the
target variable.

Recall that we may use average reconstruction error to upper bound the cost of
mistrust (Theorem 4.9) and the large reconstruction error rate to upper bound the

4Euclidean distance is used to illustrate the effect of fair representation learning on individual fair-
ness. However, the relationship between large reconstruction error rate and individual fairness holds
for any choice of subadditive distance function, as shown in Theorem 4.13. See Dwork et al. [2012] for
a discussion of approaches to selecting the individual fairness distance function.
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Costs Benefits

Figure 4.2: Estimates of costs and benefits of fair representation learning on Adult
and ProPublica datasets, varying the parameter λ in (4.18). As λ increases, the
cleaned data differs more from the original input as more information about the
sensitive variable is suppressed. Lower is better on the vertical axes of all plots. See

text for discussion.

cost for individual fairness (Theorem 4.13). Estimates of both of these cost proxies
increase with λ, as the cleaned data becomes more distorted by f .

Furthermore, recall that we have the closed form of an adversary’s maximum
statistical parity (Theorem 4.14) and disparate impact (Theorem 4.15). Estimates of
both of these quantities decline as λ increases, indicating benefits from using f . For
disparate impact we use a log scale on the vertical axis for clarity, and observe that
its empirical estimates appear noisier than those of statistical parity, since it requires
us to estimate the minimum rather than the expectation of η

f
S(z).

Our experiments, when combined with our theoretical results, reveal that the
choice of λ in (4.8) starkly determines the relative costs and benefits of fair represen-
tation learning.

4.7 Conclusion

We have quantified the costs – an inferior fairness-accuracy trade-off and an increase
in individual unfairness – incurred by a given representation. We have also quanti-
fied the benefits – narrower bands of statistical parity and disparate impact achiev-
able by an adversary – of such a representation. The benefits result from restricting
the decisions of adversarial data users, while the costs are due to applying those
same restrictions to other data users. We showed how a data producer can esti-
mate these costs and benefits, even without access to the target variable, to support a
novel three-party governance model entailing a separation of concerns between fair-
ness and accuracy. Future directions of interest include extending our results to finite
samples, stochastic representation functions, multiple sensitive groups and variables,
more general representation spaces, and other fairness definitions.
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4.8 Appendix

We provide a summary of the problems, costs and benefits we consider, complete
proofs of our results, and examples of the cost of mistrust.

4.8.1 Summary of Problems, Costs and Benefits Considered

We summarize the problems we have considered in Table 4.1. In Tables 4.2 and 4.3,
we summarize the costs and benefits respectively of a given representation function
f . In each table we distinguish between cases where access to the target variable Y
is required, and cases where it is not required. Observe that if access to the target
variable is available, the benefits described in Table 4.3 can be computed for specific
subsets of the data based on the target variable (e.g. conditioning on Y = 1 or Y = 0).
Definitions of all terms can be found in the main text.

Table 4.1: Problems
Problem Reference Optimization Problem

Access to target variable required

Fair classification (4.3) min
h∈H

[RY(h)− λRS(h)]

Fair representation learning (4.5) min
f∈F

[RY(g∗Y ◦ f )− λRS(g∗S ◦ f )]

Access to target variable not required

Fair representation learn-
ing without accessing target
variable

(4.8) min
f∈F

[EX‖X− f (X)‖2 − λRS(g∗S ◦ f )]
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Table 4.2: Costs of a representation function f

Cost Reference Analytical Form

Access to target variable required

Cost of mistrust Theorem
4.8

EX[min(η f
Y( f (X))−cY, λ(η

f
S( f (X)) − cS))

−min(ηY(X)− cY, λ(ηS(X)− cS))]

Access to target variable not required

Upper bound on cost of
mistrust using average
reconstruction error

Theorem
4.9

(lY + λlS)EX‖X− f (X)‖2

Upper bound on indi-
vidual unfairness using
large reconstruction er-
ror rate

Theorem
4.13

2p(d(X, f (X)) > ε)

Table 4.3: Benefits of a representation function f

Benefit Reference Analytical Form

Access to target variable not required

Maximum and
minimum statisti-
cal parity

Theorem
4.14

max
g∈G

SP(g ◦ f ) = 1 − EZ[min( η
f
S(Z)
πS

, 1−η
f
S(Z)

1−πS
)]

min
g∈G

SP(g ◦ f ) = −1 + EZ[min( η
f
S(Z)
πS

, 1−η
f
S(Z)

1−πS
)]

Maximum and
minimum dis-
parate impact

Theorem
4.15

max
g∈G

DI(g ◦ f ) =
πS(1−η

f
S)

η
f
S(1−πS)

min
g∈G

DI(g ◦ f ) = πS(1−η
f
S)

η
f
S(1−πS)

4.8.2 Theorem Proofs

We present complete proofs of our theoretical results.

4.8.2.1 Proof of Theorem 4.6 (Fair Representation Learning Without Accessing
Target Variable)

Proof. We derive an upper bound on

RY(g∗Y ◦ f )− lYλRS(g∗S ◦ f ).
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Let h∗Y ∈ arg min
h∈H

RY(h), which takes the form h∗Y(x) = 1(ηY(x) ≥ cY) [Zhao et al.,

2013].

RY(g∗Y ◦ f )− lYλRS(g∗S ◦ f )

≤ RY(h∗Y ◦ f )− lYλRS(g∗S ◦ f )

= RY(h∗Y ◦ f )− RY(h∗Y) + RY(h∗Y)− lYλRS(g∗S ◦ f )

= EX[(cY − ηY(X))h∗Y( f (X))]−EX[(cY − ηY(X))h∗Y(X)] + RY(h∗Y)− lYλRS(g∗S ◦ f )
(4.19)

= EX[(cY − ηY(X))(h∗Y( f (X))− h∗Y(X))] + RY(h∗Y)− lYλRS(g∗S ◦ f ) (4.20)

≤ lYEX‖X− f (X)‖2 + RY(h∗Y)− lYλRS(g∗S ◦ f ). (4.21)

For (4.19) we apply Lemma 9 from [Menon and Williamson, 2018]. For (4.20) we
apply linearity of expectation.

For (4.21), for any x where h∗Y(x) 6= h∗Y( f (x)), there must exist some x′ on the
decision boundary of h∗ such that

cY − ηY(x′) = 0 (4.22)

and

‖x− x′‖2 ≤ ‖x− f (x)‖2. (4.23)

Combining (4.22) and (4.23) with the Lipchitz condition (4.9) yields

cY − ηY(x)

≤ cY − ηY(x′) + lY‖x− x′‖2

≤ lY‖x− f (x)‖2.

Since this is true for every x it is also true in expectation.
We then observe

arg min
f∈F

[lYEX‖X− f (X)‖2 + RY(h∗Y)− lYλRS(g∗S ◦ f )]

= arg min
f∈F

[EX‖X− f (X)‖2 − λRS(g∗S ◦ f )].

4.8.2.2 Proof of Theorem 4.8 (Analytical Form of Cost of Mistrust)

Proof. First we show the analytical expression for the cost of mistrust (4.13). Applying
Proposition 4 of [Menon and Williamson, 2018], we have that (4.11) and (4.12) are
hypotheses h∗ and g∗ corresponding to solutions to (4.3) and (4.10) respectively.
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EX[min(ηY(X)− cY, λ(ηS(X)− cS))] (4.24)

= EX[(1− h∗(X))(ηY(X)− cY)] + λEX[h∗(X)(ηS(X)− cS)] (4.25)

= EX[ηY(X)− cY]−EX[h∗(X)(ηY(X)− cY)] + λEX[h∗(X)(ηS(X)− cS)]

= πY − cY −EX[h∗(X)(ηY(X)− cY)] + λEX[h∗(X)(ηS(X)− cS)]

= πY − cY + RY(h∗)− (1− cY)πY + λEX[h∗(X)(ηS(X)− cS)] (4.26)

= πY − cY + RY(h∗)− (1− cY)πY − λRS(h∗) + λ(1− cS)πS (4.27)

= RY(h∗)− λRS(h∗)− cY(1− πY) + λ(1− cS)πS.

(4.25) follows from the form of h∗ given in (4.11). (4.26) and (4.27) both involve
substitutions using Lemma 9 from [Menon and Williamson, 2018].

Similarly, using the form of g∗ from (4.12) we conclude that

EX[min(η f
Y( f (X))− cY, λ(η

f
S( f (X))− cS))] (4.28)

= EZ[min(η f
Y(Z)− cY, λ(η

f
S(Z)− cS))]

= RY(g∗ ◦ f )− λRS(g∗ ◦ f )− cY(1− πY) + λ(1− cS)πS. (4.29)

The result (4.13) follows by substituting (4.24) from (4.28) and applying linearity
of expectation.

The decomposed form follows from applying Lemma 9 of [Menon and Williamson,
2018] to each of RY(g∗ ◦ f ), RY(h∗), RS(g∗ ◦ f ) and RS(h∗), then applying linearity of
expectation to express RY(g∗ ◦ f )− RY(h∗) as in (4.14) and RS(g∗ ◦ f )− RS(h∗) as in
(4.15).

4.8.2.3 Proof of Theorem 4.9 (Upper Bound on Cost of Mistrust with Smooth
Conditional Distributions)

Proof.

RYS(g∗ ◦ f )− RYS(h∗)

≤ RYS(h∗ ◦ f )− RYS(h∗)

= RY(h∗ ◦ f )− RY(h∗)− λ(RS(h∗ ◦ f )− RS(h∗))

= EX[(cY − ηY(X))(h∗( f (X))− h∗(X))]− λEX[(cS − ηS(X))(h∗( f (X))− h∗(X))]
(4.30)

= EX[(cY − ηY(X)− λ(cS − ηS(X)))(h∗( f (X))− h∗(X))] (4.31)

≤ (lY + λlS)EX‖X− f (X)‖2. (4.32)

(4.30) is by Lemma 9 from [Menon and Williamson, 2018] and linearity of expec-
tation. (4.31) is by linearity of expectation.

For (4.32), using the form of h∗ from (4.11), for any x where h∗(x) 6= h∗( f (x)),
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there must exist some x′ on the decision boundary of h∗ such that

cY − ηY(x′)− λ(cS − ηS(x′)) = 0 (4.33)

and

‖x− x′‖2 ≤ ‖x− f (x)‖2. (4.34)

Combining (4.33) and (4.34) with the Lipchitz conditions (4.16) and (4.17) yields

cY − ηY(x)− λ(cS − ηS(x))

≤ cY − ηY(x′) + lY‖x− x′‖2 − λ(cS − ηS(x′)− lS‖x− x′‖2)

≤ (lY + λlS)‖x− f (x)‖2.

Since this is true for every x it is also true in expectation.

4.8.2.4 Proof of Theorem 4.13 (Upper Bound on Individual Unfairness)

Proof. Let δ := p(d(X, f (X)) > ε). Let h be a D, d−individually fair hypothesis (see
Definition 4.10).

Consider points x and x′ drawn independently at random using the input X.
With probability 1− δ,

d(x, f (x)) ≤ ε. (4.35)

Similarly, with probability 1− δ,

d(x′, f (x′)) ≤ ε. (4.36)

By the union bound, both statements hold with probability at least 1− 2δ. In that
case, the following statements also hold:

D(h( f (x), h( f (x′))

≤ D(h( f (x)), h(x)) + D(h(x), h( f (x′))) (4.37)

≤ ε + D(h(x), h( f (x′))) (4.38)

≤ ε + D(h(x), h(x′)) + D(h(x′), h( f (x′))) (4.39)

≤ 2ε + D(h(x), h(x′)) (4.40)

≤ 2ε + d(x, x′). (4.41)

(4.37) and (4.39) apply the triangle inequality since D is subadditive. (4.38) and
(4.40) hold due to (4.35) and (4.36) respectively, along with Definition 4.10. (4.41)
applies Definition 4.10. Therefore IUD,dε

(h ◦ f ) ≤ 2δ.
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4.8.2.5 Proof of Theorem 4.14 (Statistical Parity of Optimal Adversary)

Proof. Let

BER(h) :=
1
2

p(Ŷ = 0|S = 1) +
1
2

p(Ŷ = 1|S = 0)

be the balanced error rate of an hypothesis h. Observe that SP(h) = 1− 2BER(h) for
all h.

Therefore

max
g∈G

SP(g ◦ f )

= 1− 2min
g∈G

BER(g ◦ f )

= 1−EZ[min(
η

f
S(Z)
πS

,
1− η

f
S(Z)

1− πS
)], (4.42)

where (4.42) uses Equation 32 from [Zhao et al., 2013].

Similarly,

min
g∈G

SP(g ◦ f )

= 1− 2max
g∈G

BER(g ◦ f )

= 1− 2max
g∈G

[1− BER(1− g ◦ f )] (4.43)

= −1 + min
g∈G

BER(1− g ◦ f )

= −1 + min
g∈G

BER(g ◦ f )

= −1 + EZ[min(
η

f
S(Z)
πS

,
1− η

f
S(Z)

1− πS
)],

where for (4.43) we used the fact that BER(h) = 1− BER(1− h) for all h.
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4.8.2.6 Proof of Theorem 4.15 (Disparate Impact of Optimal Adversary)

Proof. Disparate impact can be expressed as follows:

DI(g ◦ f )

=
p(Ŷ f = 1|S = 0)
p(Ŷ f = 1|S = 1)

=

∫
z p(Z = z|S = 0)p(Ŷ f = 1|S = 0, Z = z)dz∫
z p(Z = z|S = 1)p(Ŷ f = 1|S = 1, Z = z)dz

=

∫
z p(Z = z|S = 0)g(z)dz∫
z p(Z = z|S = 1)g(z)dz

(4.44)

=
πS
∫

z p(Z = z)(1− η
f
S(z))g(z)dz

(1− πS)
∫

z p(Z = z)η f
S(z)g(z)dz

(4.45)

=
πSEZ[(1− η

f
S(Z))g(Z)]

(1− πS)EZ[η
f
S(Z)g(Z)]

. (4.46)

For (4.44) we used the fact that Ŷ f and S are conditionally independent given Z.
For (4.45) we used Bayes’ rule.

Recall that η
f
S := max

z∈Z
η

f
S(z) and η

f
S := min

z∈Z
η

f
S(z). Let γ be an arbitrary constant

in the range (0, 1]. Using the form of DI(g ◦ f ) in (4.46), we have:

max
g∈G

DI(g ◦ f ) =
πS(1− η

f
S)

η
f
S(1− πS)

where the maximum is obtained for

g(z) =

{
γ if η

f
S(z) = η

f
S

0 otherwise.

Similarly,

min
g∈G

DI(g ◦ f ) =
πS(1− η

f
S)

η
f
S(1− πS)

where the minimum is obtained for

g(z) =

{
γ if η

f
S(z) = η

f
S

0 otherwise.
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Figure 4.3: Two examples illustrating the cost of mistrust. See text for discussion.

4.8.3 Examples of the Cost of Mistrust

We use examples to demonstrate that the cost of mistrust may be either zero or
positive, as depicted in Figure 4.3.

Let X = Z = {1, 2}, cY = cS = 0.5, p(X = 1) = p(X = 2) = 0.5, λ = 1 in (4.3),
(4.5) and (4.10). In both examples, ηS(1) = 0.6 and ηS(2) = 0.4. In (a) ηY(1) = 0.7
and ηY(2) = 0.9, while in (b) ηY(1) = 0.3 and ηY(2) = 0.5. While setting f to map
all points to a constant is a crude example, it suffices for our illustration. In (a) the
cost of mistrust is 0, while in (b) it is 0.05. This is because in (a), h∗ predicts the same
value for the two points combined by f and is hence unaffected by f , while in (b), h∗

predicts different values and is hence affected by f .
We compare the representation function f (x) = 2 to the identity representation

function f I(x) = x, which makes our analysis sufficiently general to cover all choices
of representation function with this distribution. First we show that in both examples
f is a solution to (4.5). In (a), we may show

RY(g∗Y ◦ f ) = RY(g∗Y ◦ f I) = 0.1
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by applying (4.6). However, by applying (4.7) we may show RS(g∗S ◦ f ) = 0.25, while
RS(g∗S ◦ f I) = 0.2. Similarly in (b),

RY(g∗Y ◦ f ) = RY(g∗Y ◦ f I) = 0.2,

while RS(g∗S ◦ f ) = 0.25 and RS(g∗S ◦ f I) = 0.2.
Now we compute the cost of mistrust for both cases by applying Theorem 4.8. In

(a),

RYS(g∗ ◦ f )− RYS(h∗) = (1× 0)− (0.5× 0.1 + 0.5×−0.1) = 0− 0 = 0.

In (b),

RYS(g∗ ◦ f )− RYS(h∗) = (1×−0.1)− (0.5×−0.2 + 0.5×−0.1) = 0.05.

Thus we observe that it is straightforward to construct examples where the cost
of mistrust is both zero as well as those where the cost of mistrust is positive.

The examples in Figure 4.3 can be used as intuition for interpreting the expression
for the cost of mistrust in Theorem 4.8. For some point z ∈ Z , define its preimage

Xz := {x ∈ X | f (x) = z}.

If for all x ∈ Xz, we have the same value of

1(ηY(x)− cY ≥ λ(ηS(x)− cS)),

as in (a), then the expectation (4.13) conditioned on x ∈ Xz will be zero. Otherwise,
as in (b), the conditional expectation will be positive.
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Chapter 5

Equalized Odds Implies Partially
Equalized Outcomes Under
Realistic Assumptions

5.1 Introduction

Definitions of fairness – and conflicts between them – are an important topic in recent
quantitative fairness literature [Barocas et al., 2018]. Such definitions often involve
avoiding discrimination on the basis of a particular kind of group membership, such
as race or gender. In a particular situation, different definitions may be invoked by
different stakeholders [Nayaranan, 2018].

The controversy created by the COMPAS recidivism prediction system showed
this in practice. The system provided risk assessments about the likelihood that in-
dividuals would reoffend within a fixed period, in order to inform decisions in the
criminal justice system such as whether to grant pre-trial release [Northpointe Inc.,
2012]. The news organization ProPublica tested the system on past data containing
both risk assessments and observed reoffences. ProPublica claimed that COMPAS
was unfair towards African-Americans based on analysis showing that among ob-
served non-reoffenders, African-Americans were more likely to be marked high risk
than whites, and among observed reoffenders, whites were more likely to be marked
low risk than African-Americans [Angwin et al., 2016] – i.e. the algorithm violated
equalized odds (see Definition 5.1). The COMPAS response was that the algorithm was
not unfair because among those marked high risk, African-Americans were not less
likely to reoffend than whites [Dieterich et al., 2016] – i.e. the algorithm satisfied
test-fairness (see Definition 2.1 of [Chouldechova, 2017]).

Subsequently it was shown that no algorithm can simultaneously satisfy both
equalized odds and test-fairness under realistic assumptions [Chouldechova, 2017].
A similar result was shown in the more general setting of continuous rather than
binary risk scores [Kleinberg et al., 2017b], replacing test-fairness with a related con-
cept known as calibration (see Definition 5.10). Our work generalizes this latter re-
sult by exploring the relationship between equalized outcomes (see Definition 5.2) and
equalized odds, as summarized in Table 5.1.
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Table 5.1: Summary of main definitions and results.
Definitions
Equalized Odds
True positive rates same for each group
False positive rates same for each group
Partially Equalized Outcomes
Predicted difference between groups less than
observed difference between groups
Calibration
Predicted probability equals observed probability for each
group and each probability value

Results
Existing
Equalized Odds =⇒ Not Calibration [Kleinberg et al., 2017b]
New
Equalized Odds =⇒ Partially Equalized Outcomes
Partially Equalized Outcomes =⇒ Not Calibration

We saw in Chapter 4 that judging the success of fair representation learning crit-
ically depends upon our choice of fairness definition. This chapter shows that con-
flicts between such definitions provide hard limits on what can be achieved by fair
representation learning, or indeed by any technique which aims to achieve fairness
in machine learning.

5.1.1 Motivation for Equalized Odds

We motivate equalized odds, which we define formally in Definition 5.1, using recidi-
vism prediction as a running example (see Section 5.6.2 for a more extended dis-
cussion). Among observed non-reoffenders, we may want to ensure that those from
one group are not marked higher risk on average than those from another group, i.e.
our false positive rates for both groups are equal. This has been dubbed equality of
opportunity [Hardt et al., 2016]. If we also ensure that among observed reoffenders,
those from one group are not marked higher risk on average than those from another
group, we have equalized odds [Hardt et al., 2016], i.e. our true positive rates for both
groups are also equal.1 It has been observed that in order to make the relative util-
ity of different groups more equal, absolute utility may be reduced [Corbett-Davies
and Goel, 2018; Corbett-Davies et al., 2017; Menon and Williamson, 2018]. However,
equalized odds has some intuitive appeal as a fairness measure since it ensures that
incorrect predictions do not disproportionately impact any group.

1Equality of true positive rates between groups is equivalent to equality of false negative rates
between groups.
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5.1.2 The Debate about Equalized Outcomes

Equality of outcomes between groups is a well-known fairness criterion [Phillips,
2004]. As we saw in Chapter 4, it can be mathematically formalized through concepts
such as statistical parity [Calders and Verwer, 2010; Dwork et al., 2012], avoiding dis-
parate impact [United States Equal Opportunity Employment Commission, 1978; Feld-
man et al., 2015], and achieving independence between outcomes and group member-
ship [Barocas et al., 2018]. These technical definitions have prompted debate about
whether they are suitable measures of fairness.

A critique of equalized outcomes is that if the observed rates (e.g. of recidivism)
are different across the two groups in the training data, then an algorithm that reflects
this difference is not ‘unfair’ but is rather a reflection of real underlying differences
[Hardt et al., 2016; Zafar et al., 2017a]. The argument goes: surely we would not
want to label ‘unfair’ a prediction algorithm which is perfectly accurate! The job of
the algorithm is to predict the world as it is; changing the world is out of scope.

However, not equalizing outcomes across groups creates the risk of discrimina-
tion in situations where the data collection process systematically disadvantages one
group [Barocas and Selbst, 2016; Zafar et al., 2017a; O’Neil, 2017]. For example, in-
creased policing of particular populations based on pre-existing risk assessments can
distort trends in reoffence data. Equalized outcomes may help algorithms to avoid
perpetuating this structural inequality. More generally, the question of whether re-
distribution should be used to reduce inequality is at the core of the left-right political
divide [Jaeger, 2008]. As such, the debate on equalized outcomes is unlikely to be
definitively won or lost by either side.

5.1.3 Contribution of this Chapter

The core contribution of this chapter is to formalize and quantify the relationship
between equalized odds and equalized outcomes, two important but seemingly dis-
tinct notions of fairness. We quantify the extent to which outcomes are equalized in
an intuitive way, via a comparison between the predicted and observed differences
between groups (Section 5.2). We prove that if we want to satisfy equalized odds, we
must partially equalize outcomes – even if we only want approximately equalized
odds (Section 5.3). In addition, we generalize a well-known existing result about the
incompatibility of equalized odds and a different fairness measure known as cali-
bration [Kleinberg et al., 2017b], using a simpler proof technique (Section 5.4). Our
conclusion (Section 5.5) highlights why we should accept the reality that algorithmic
decisions are imperfect when defining measures of fairness. Our technical results
can be interpreted as an example of the problem of group-to-individual inference
[Fisher et al., 2018]: learning from trends across groups may lead to incorrect infer-
ences about individuals, and those incorrect inferences may disproportionately affect
certain groups.
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5.2 Problem Formalization

We mathematically formalize the setting we have informally described above. Let
X , Y and S be sets corresponding to the input variable X, target variable Y and
sensitive variable S respectively. The sensitive variable encodes some form of group
membership. We focus on the case where S = {0, 1} (e.g. race coded as 1 for
African-American or 0 for non African-American) and Y = {0, 1} (e.g. ground truth
of whether the person reoffended). The choice of X is arbitrary in our analysis (e.g.
a person’s criminal record expressed as a real-valued vector). Let h : X × S → [0, 1]
be a stochastic hypothesis, which can also be interpreted as a scoring function.2 Let
decision variable Ŷ be constructed such that p(Ŷ = 1|X = x, S = s) := h(x, s). While
setting S, Y and Ŷ to be binary variables is an assumption, this allows us to cover
many cases of interest – such as the recidivism prediction example – and facilitates
our analysis and interpretation.

Drawing X, S and Y and making decision Ŷ, we have a joint distribution µ of all
four variables. We may also derive marginal distributions over one or more variables,
such as the marginal distribution of Y:

µY(Y = y) :=
∫

x∈X
∑

s∈{0,1}
∑

ŷ∈{0,1}
µ(X = x, S = s, Y = y, Ŷ = ŷ)dx.

Similarly, we may derive conditional distributions, such as the marginal distribu-
tion of Ŷ conditioned on Y = 1:

µŶ|Y=1(Ŷ = ŷ) :=
µY,Ŷ(Y = 1, Ŷ = ŷ)

µY(Y = 1)
.

We use notation of the form p(Y = y) := µY(Y = y) for marginal distributions
and p(Ŷ = ŷ|Y = 1) := µŶ|Y=1(Ŷ = ŷ) for conditional distributions. For example,
p(Ŷ = 1|Y = 1) is known as the true positive rate (e.g. predicted reoffence rate for
reoffenders) and p(Ŷ = 1|Y = 0) is known as the false positive rate (e.g. predicted
reoffence rate for non-reoffenders). We use the symbol ⊥ to denote probabilistic
independence between variables.

5.2.1 Impossibility Results with respect to Fairness

An impossibility result states several candidate properties of a joint distribution, and
shows that no distribution can simultaneously satisfy all of these properties. We
briefly review several impossibility results with respect to fairness that have been
established in prior works.

A well-known impossibility result (Theorem 1.1 of [Kleinberg et al., 2017b], re-
stated in Theorem 5.11) considered the relationship between calibration – which re-
quires that for both groups, each risk score accurately reflects the true risk associated

2This underpins our comparisons with [Kleinberg et al., 2017b], which analyzes risk scores. Inter-
preting such scores as decision probabilities facilitates our analysis.
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with individuals assigned that score (see Definition 5.10) – and equalized odds. The
result showed that it is impossible to simultaneously satisfy both fairness criteria and
other realistic assumptions (average value of target variable differs between groups,
imperfect decisions).

Variants exist involving approximate versions of equalized odds (Theorem 1 of
[Pleiss et al., 2017]), calibration or both (Theorem 1.2 of [Kleinberg et al., 2017b]). We
mentioned earlier the incompatibility of equalized odds and test-fairness – where the
risk scores are binary and the true risk of individuals with a given score must be the
same for both groups [Chouldechova, 2017]. Simple rules of conditional probability
may be used to show that Ŷ⊥S|Y – corresponding to equalized odds – and Y⊥S|Ŷ
– which is closely related to calibration – cannot both simultaneously hold under
realistic assumptions [Barocas et al., 2018]. The incompatibility of equalized odds
and the independence relationship Ŷ⊥S (i.e. perfect statistical parity) has also been
shown [Kleinberg et al., 2017b; Barocas et al., 2018].

In our work we derive impossibility results involving equalized outcomes and
equalized odds, which are of interest given the debates about these fairness criteria
described in the Section 5.1. As we shall see in Section 5.4, our analysis also allows us
to generalize Theorem 1.1 of [Kleinberg et al., 2017b], by exploiting the relationship
between equalized outcomes and calibration.

5.2.2 Fairness Definitions

We formalize the definition of equalized odds.

Definition 5.1 (Equalized odds [Hardt et al., 2016; Zafar et al., 2017a]). Equalized odds
is satisfied if both of the following hold:

p(Ŷ = 1|S = 1, Y = 1) = p(Ŷ = 1|S = 0, Y = 1) (5.1)

i.e. the true positive rate is the same for both groups, and

p(Ŷ = 1|S = 1, Y = 0) = p(Ŷ = 1|S = 0, Y = 0) (5.2)

i.e. the false positive rate is the same for both groups.

We present a novel formalization of equalized outcomes.

Definition 5.2 (Equalized outcomes). Let

p(Ŷ = 1|S = 1)− p(Ŷ = 1|S = 0) = α(p(Y = 1|S = 1)− p(Y = 1|S = 0)), (5.3)

where α is a constant we refer to as the equalized outcomes coefficient. If (5.3) holds for α = 0
we have fully equalized outcomes. If (5.3) holds for some α ∈ (0, 1) we have partially
equalized outcomes. If (5.3) holds for α = 1 we have non-equalized outcomes.

Fully equalized outcomes corresponds to the well-known definition of perfect
statistical parity [Calders and Verwer, 2010; Dwork et al., 2012], or equivalently the



92 Equalized Odds Implies Partially Equalized Outcomes Under Realistic Assumptions

independence Ŷ⊥S [Barocas et al., 2018]. The value of introducing the parameter α

is that we quantify the extent to which outcomes are equalized in an intuitive way,
via a comparison with the observed difference between groups. Under partially
equalized outcomes, the predicted difference between groups is smaller than the
observed difference between groups. Non-equalized outcomes means that predicted
outcomes are faithful to the observed difference in outcomes between groups. If
α > 1 the predicted difference amplifies the observed difference, while if α < 0 the
predicted difference flips the sign of the observed difference. These options do not
appear advantageous in terms of either fairness or accuracy, and we do not focus on
them.

5.3 The Relationship Between Equalized Odds and Equal-
ized Outcomes

Assuming equalized odds is satisfied, we show there is a quantifiable trade-off be-
tween accuracy and the extent to which outcomes are equalized. As a corollary,
we show that equalized odds implies partially equalized outcomes under realistic
assumptions. We consider the cases where equalized odds either exactly or approxi-
mately holds.3

5.3.1 Perfectly Equalized Odds

We show in Theorem 5.3 that given perfectly equalized odds, the extent to which
we equalize outcomes is given by the difference α between the true positive rate
and false positive rate. This novel result is of interest because it precisely quantifies
the relationship between the well-known but seemingly distinct notions of equalized
odds and equalized outcomes.

As we shall see shortly in Corollary 5.7, we may use Theorem 5.3 to show that,
under mild assumptions, equalized odds implies partially equalized outcomes. This
implies that if we have non-equalized outcomes then we cannot satisfy equalized
odds. If there is an observed difference between groups (for example, in average
recidivism rates), then faithfully retaining this difference in our predictions (i.e. non-
equalized outcomes) might seem fair since it reflects a trend present in the world.
However, we show that this would imply the violation of equalized odds, which may
be perceived as unfair – for example, this was the major critique made by ProPub-
lica of the COMPAS recidivism prediction system [Angwin et al., 2016]. To avoid
violating equalized odds, the predicted difference between groups must be less than
the observed difference between groups, which can be seen as a form of algorithmic
‘affirmative action’ [Chander, 2016], itself a controversial notion. Non-equalized out-
comes (i.e. avoiding affirmative action) and equalized odds might both seem fair, but
in most realistic situations we must choose one at the expense of the other.

3While the exact version is a special case of the approximate version, we consider the exact case first
as it makes the presentation of the results more intuitive.
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Theorem 5.3 (Equalized outcomes given equalized odds). Let

α := p(Ŷ = 1|Y = 1)− p(Ŷ = 1|Y = 0).

Suppose (5.1) and (5.2) hold, i.e. equalized odds is satisfied. Then (5.3) is satisfied, i.e. α

is the equalized outcomes coefficient satisfying

p(Ŷ = 1|S = 1)− p(Ŷ = 1|S = 0) = α(p(Y = 1|S = 1)− p(Y = 1|S = 0)).

Proof. We have

p(Ŷ = 1|S = 1)

= p(Y = 1|S = 1)p(Ŷ = 1|S = 1, Y = 1) + p(Y = 0|S = 1)p(Ŷ = 1|S = 1, Y = 0)
(5.4)

and

p(Ŷ = 1|S = 0)

= p(Y = 1|S = 0)p(Ŷ = 1|S = 0, Y = 1) + p(Y = 0|S = 0)p(Ŷ = 1|S = 0, Y = 0)
(5.5)

by the law of total probability.
Applying (5.1) and (5.2) to (5.4) yields

p(Ŷ = 1|S = 1)

= p(Y = 1|S = 1)p(Ŷ = 1|Y = 1) + p(Y = 0|S = 1)p(Ŷ = 1|Y = 0) (5.6)

and similarly, applying (5.1) and (5.2) to (5.5) yields

p(Ŷ = 1|S = 0) =

p(Y = 1|S = 0)p(Ŷ = 1|Y = 1) + p(Y = 0|S = 0)p(Ŷ = 1|Y = 0). (5.7)

Subtracting (5.7) from (5.6) and using the definition of α, we have

p(Ŷ = 1|S = 1)− p(Ŷ = 1|S = 0) = α(p(Y = 1|S = 1)− p(Y = 1|S = 0)). (5.8)

5.3.2 Realistic Assumptions

We now introduce three realistic assumptions, which help to illuminate the relation-
ship between equalized odds and equalized outcomes. In the subsequent results in
this chapter, we flag whether one or more of the assumptions is used.

The first assumption is that the observed rates (e.g. of recidivism) are different
across groups, which is true for most cases of interest.
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Assumption 5.4 (Different observed rates).

p(Y = 1|S = 1) 6= p(Y = 1|S = 0) (5.9)

The other two assumptions are that our decisions are imperfect (i.e. they are
not always accurate) and non-vacuous (i.e. they have some predictive power). This
covers the bulk of realistic situations in which algorithmic decisions are used. We
observe that the imperfect decisions assumption will hold if Y cannot be expressed
as a deterministic function of X and S. In this case, changing Ŷ will not help. This
is typically the case when we are making predictions about the future actions of
individuals.

Assumption 5.5 (Imperfect decisions). At least one of the following holds:

p(Ŷ = 1|Y = 0) > 0, (5.10)

i.e. some negative examples are misclassified, or

p(Ŷ = 1|Y = 1) < 1, (5.11)

i.e. some positive examples are misclassified.

Assumption 5.6 (Non-vacuous decisions).

p(Ŷ = 1|Y = 1) > p(Ŷ = 1|Y = 0), (5.12)

i.e. the decision is more likely to be positive for positive examples than for negative examples.

As a consequence of Theorem 5.3 and our realistic assumptions, if we have per-
fectly equalized odds then we have partially equalized outcomes, as shown in Corol-
lary 5.7. While as we mentioned above the incompatibility of equalized odds and
fully equalized outcomes (i.e. α = 0, perfect statistical parity) was already known,
we are the first to show that equalized odds is also incompatible with non-equalized
outcomes (α = 1) or indeed any value of α outside the interval (0, 1) under our
realistic assumptions.

Corollary 5.7 (Equalized odds implies partially equalized outcomes under realistic
assumptions). Suppose (5.1) and (5.2) hold, i.e. we have equalized odds. Suppose also that
Assumptions 5.4, 5.5 and 5.6 hold. Then satisfying (5.3) requires α ∈ (0, 1), i.e. we have
partially equalized outcomes.

Proof. By Theorem 5.3 we know that given equalized odds, the equation (5.3) is sat-
isfied for

α = p(Ŷ = 1|Y = 1)− p(Ŷ = 1|Y = 0).

Applying Assumption 5.4 (different observed rates), this is the only value of α satis-
fying (5.3). Applying Assumption 5.5 (imperfect decisions) we have α < 1. Applying
Assumption 5.6 (non-vacuous decisions) we have α > 0. The result follows.
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Figure 5.1: Visualization of key results. Certain combinations of equalized outcomes,
equalized odds and accuracy are possible (light green regions), while other combina-
tions are impossible (dark gray regions). In (a) we vary equalized odds approxima-
tion parameter δ, fixing accuracy parameter α := p(Ŷ = 1|Y = 1)− p(Ŷ = 1|Y = 0).
In (b) we vary the p(Ŷ = 1|Y = 1) term in α and in (c) we vary the p(Ŷ = 1|Y = 0)

term in α, fixing δ. β is a distribution-dependent parameter (see Theorem 5.9).

5.3.3 Approximately Equalized Odds

We consider a relaxation of the equalized odds condition, allowing the false positive
rates to slightly differ across groups and the false negative rates to likewise slightly
differ across groups. The parameter δ quantifies the degree of this relaxation, with
δ = 0 corresponding to perfectly equalized odds.

Definition 5.8 (Approximately equalized odds). For some constant δ ≥ 0, δ-approximately
equalized odds holds if

p(Ŷ = 1|S = 1, Y = 1), p(Ŷ = 1|S = 0, Y = 1) ∈
[(1− δ)p(Ŷ = 1|Y = 1), (1 + δ)p(Ŷ = 1|Y = 1)], (5.13)

i.e. the true positive rate is approximately the same for both groups, and

p(Ŷ = 1|S = 1, Y = 0), p(Ŷ = 1|S = 0, Y = 0) ∈
[(1− δ)p(Ŷ = 1|Y = 0), (1 + δ)p(Ŷ = 1|Y = 0)], (5.14)

i.e. the false positive rate is approximately the same for both groups.

In Theorem 5.9 we show that if δ-approximately equalized odds is satisfied, then
the extent to which we equalize outcomes is given by an interval. This midpoint of
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the interval is determined by the difference α between the true positive rate and false
positive rate. The size of the interval is determined by δ and a distribution-dependent
parameter β. Section 5.3.4 provides interpretation of the result, by visualizing how
the approximately equalized odds constraint creates limited achievable combinations
of equalized outcomes and accuracy.

Theorem 5.9 (Equalized outcomes given approximately equalized odds). Let

α := p(Ŷ = 1|Y = 1)− p(Ŷ = 1|Y = 0),

ε := p(Y = 1|S = 1) + p(Y = 1|S = 0)

and

β := εp(Ŷ = 1|Y = 1) + (2− ε)p(Ŷ = 1|Y = 0).

Observe that β ≥ 0. Suppose (5.13) and (5.14) hold, i.e. δ-approximately equalized odds
is satisfied. Then

p(Ŷ = 1|S = 1)− p(Ŷ = 1|S = 0) ∈
[α(p(Y = 1|S = 1)− p(Y = 1|S = 0))− δβ, α(p(Y = 1|S = 1)− p(Y = 1|S = 0))+ δβ].

Proof idea. As in the proof of Theorem 5.3, express p(Ŷ = 1|S = 1) and p(Ŷ = 1|S = 0)
using the law of total probability. Then apply the δ-approximately equalized odds as-
sumption to upper and lower bound their difference. See Section 5.6.1.1 for complete
proof.

5.3.4 Interpretation

We visualize our results in Figure 5.1. In each plot the vertical axis shows the pre-
dicted difference between groups, i.e. the extent to which outcomes are equalized,
on a scale from zero (bottom) to the observed difference between groups (top). We
vary other parameters along the horizontal axes of the plots.

If perfectly equalized odds is satisfied there is an exact relationship between
equalized outcomes and α (see Theorem 5.3, green line on plots). If δ-approximate
equalized odds is satisfied there is a region of permissible combinations of equalized
outcomes and α values (see Theorem 5.9, light green region on plots). Combinations
outside this region violate δ-approximate equalized odds (dark gray region on plots).

In Figure 5.1(a), we see that if we relax the constraint on equalized odds by in-
creasing the parameter δ (see Definition 5.8), we have a larger region of possible
combinations.4 The size of this region is quantified by the slack term δβ. The re-
gion is an interval centered on the product of α and the observed difference between

4When δ equals δ∗ := α
β (p(Y = 1|S = 1)− p(Y = 1|S = 0)), the edge of this region intersects the

horizontal axis. Figure 5.1(a) uses the fixed parameters α := 0.5, β := 1 and ε := 1.
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groups. We see visually why for α ∈ (0, 1), i.e. for decisions that are imperfect and
non-vacuous, we have partially equalized outcomes.

Figures 5.1(b) and 5.1(c) show that if we have equalized odds, then increasing
accuracy (measured by α) moves towards non-equalized outcomes.5 We may increase
α by increasing the true positive rate, as in Figure 5.1(b), where we assume no false
positives. We may also increase α by decreasing the false positive rate, as in Figure
5.1(c), where we assume no false negatives. Under perfectly equalized odds the effect
on equalized outcomes is the same, while under approximately equalized odds the
permissible regions differ because β depends on the false positive rate and the true
positive rate.

5.4 Generalization of Calibration-Equalized Odds Impossi-
bility Result

The relationship between equalized odds and equalized outcomes, in addition to its
intrinsic interest, allows us to generalize a well-known result about the impossibility
of simultaneously satisfying calibration and equalized odds (Theorem 1.1 of [Klein-
berg et al., 2017b]). We use a proof technique involving elementary probabilities,
which also provides a simpler proof of Kleinberg’s result.

5.4.1 Review of Existing Result

We first introduce the definition of group-conditional calibration proposed in previ-
ous work [Kleinberg et al., 2017b; Pleiss et al., 2017]. This means that for both groups,
each risk score equals the observed risk associated with individuals assigned that
score.

Definition 5.10 (Group-conditional calibration [Kleinberg et al., 2017b; Pleiss et al.,
2017]). Both of the following statements hold ∀c ∈ [0, 1]:

p(Y = 1|h(x, s) = c, S = 1) = c (5.15)

p(Y = 1|h(x, s) = c, S = 0) = c (5.16)

We now state the well-known calibration-equalized odds impossibility result (The-
orem 1.1 of [Kleinberg et al., 2017b], restated to align with our definitions).

Theorem 5.11 (Calibration-equalized odds impossibility [Kleinberg et al., 2017b]).
Suppose (5.1), (5.2), (5.15) and (5.16) hold, i.e. equalized odds and group-conditional cali-
bration are both satisfied. Then at least one of Assumption 5.4 or Assumption 5.5 is violated,
i.e. the observed rates are the same for both groups and/or the decision is perfect.

In other words, equalized odds implies not calibration under realistic assump-
tions, as stated in Table 5.1.

5Figures 5.1(b) and 5.1(c) use ε := 1 and δ := 0.2(p(Y = 1|S = 1)− p(Y = 1|S = 0)).
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5.4.2 Group-Conditional Calibration Implies Non-Equalized Outcomes

In preparation for generalizing Theorem 5.11, we show in Lemma 5.12 that group-
conditional calibration implies non-equalized outcomes but not vice versa.

Lemma 5.12 (Group-conditional calibration implies non-equalized outcomes but not
vice versa). If (5.15) and (5.16) hold, then (5.3) holds for α = 1, i.e. group-conditional
calibration implies non-equalized outcomes. However, if (5.3) holds for α = 1, then it is
not the case that (5.15) and (5.16) must hold, i.e. non-equalized outcomes does not imply
group-conditional calibration.

Proof idea. Use laws of probability to show that group-conditional calibration im-
plies non-equalized outcomes. Then construct a counterexample to show that non-
equalized outcomes does not imply group-conditional calibration. See Section 5.6.1.2
for complete proof.

Using the contrapositive of the fact that group-conditional calibration implies
non-equalized outcomes, partially equalized outcomes implies not calibration as
stated in Table 5.1. We observe that in contrast to group-conditional calibration,
test-fairness as proposed in [Chouldechova, 2017] does not in general imply non-
equalized outcomes.

5.4.3 The Generalized Result

The existing result stated in Theorem 5.11 shows that if group-conditional calibration
and equalized odds hold, realistic assumptions are violated. Our new result in The-
orem 5.13 shows that if non-equalized outcomes and equalized odds hold, the same
realistic assumptions are violated.

As we just showed in Lemma 5.12, group-conditional calibration implies non-
equalized outcomes but not vice versa, i.e. non-equalized outcomes is a weaker con-
dition than group-conditional calibration. Therefore Theorem 5.13 is more general
than Theorem 5.11, since with a weaker condition we arrive at the same conclusion.
It is straightforward to see that Lemma 5.12 and Theorem 5.13 together imply The-
orem 5.11. We observe that our proof technique appears simpler, since it relies only
on elementary manipulation of probabilities.

Theorem 5.13 (Generalization of calibration-equalized odds impossibility result).
Suppose (5.1) and (5.2) hold, and (5.3) holds for α = 1, i.e. equalized odds and non-equalized
outcomes are both satisfied. Then at least one of Assumption 5.4 or Assumption 5.5 is vio-
lated, i.e. the observed rates are the same for both groups and/or the decision is perfect.

Proof. Suppose (5.3) holds for α = 1, i.e. non-equalized outcomes is satisfied, and
(5.1) and (5.2) hold, i.e. equalized odds is satisfied. Applying Theorem 5.3,

p(Ŷ = 1|S = 1)− p(Ŷ = 1|S = 0)

= (p(Ŷ = 1|Y = 1)− p(Ŷ = 1|Y = 0))(p(Y = 1|S = 1)− p(Y = 1|S = 0)). (5.17)
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Combining (5.3) and (5.17), we have

p(Y = 1|S = 1)− p(Y = 1|S = 0)

= (p(Ŷ = 1|Y = 1)− p(Ŷ = 1|Y = 0))(p(Y = 1|S = 1)− p(Y = 1|S = 0)). (5.18)

We conclude from (5.18) that at least one of the following holds:

p(Y = 1|S = 1) = p(Y = 1|S = 0) (5.19)

p(Ŷ = 1|Y = 1)− p(Ŷ = 1|Y = 0) = 1 (5.20)

If (5.19) holds then Assumption 5.4 is violated, i.e. the observed rates are the same
for both groups. If (5.20) holds, then p(Ŷ = 1|Y = 1) = 1 and p(Ŷ = 1|Y = 0) = 0.
Therefore Assumption 5.5 is violated, i.e. the decision is perfect.

5.5 Conclusion

When algorithms make predictions of the future actions of individuals, a certain de-
gree of inaccuracy seems inevitable. In this context, naively using trends observed
across groups to make predictions about individuals – a problem known as group-
to-individual inference [Fisher et al., 2018] – creates the risk that incorrect inferences
may disproportionately affect certain groups, in the legal system and beyond. We
have formalized the intuition that when algorithms conduct group-to-individual in-
ference – or in other words, stereotype – they tend to be unfair to individuals who
are ‘atypical’ (e.g. non-reoffenders from a group with higher reoffence rates). In
particular, we have seen that an imperfect algorithm for which the predicted and ob-
served differences between groups are equal will violate equalized odds. Avoiding
this requires partially equalized outcomes, which can be seen as an instantiation of
‘algorithmic affirmative action’ [Chander, 2016].

5.6 Appendix

We present the remaining proofs of the chapter’s theoretical results, as well as moti-
vating examples of equalized odds and its relationship to equalized outcomes.

5.6.1 Supplementary Proofs

We present the proofs of Theorem 5.9 and Lemma 5.12.
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5.6.1.1 Proof of Theorem 5.9 (Equalized Outcomes Given Approximately Equal-
ized Odds)

Proof. We have

p(Ŷ = 1|S = 1)

= p(Y = 1|S = 1)p(Ŷ = 1|S = 1, Y = 1) + p(Y = 0|S = 1)p(Ŷ = 1|S = 1, Y = 0)

and

p(Ŷ = 1|S = 0)

= p(Y = 1|S = 0)p(Ŷ = 1|S = 0, Y = 1) + p(Y = 0|S = 0)p(Ŷ = 1|S = 0, Y = 0)

by the law of total probability.
Assuming δ-approximately equalized odds, we have

p(Ŷ = 1|S = 1)− p(Ŷ = 1|S = 0)

≤ p(Y = 1|S = 1)(1 + δ)p(Ŷ = 1|Y = 1) + p(Y = 0|S = 1)(1 + δ)p(Ŷ = 1|Y = 0)

− p(Y = 1|S = 0)(1− δ)p(Ŷ = 1|Y = 1)− p(Y = 0|S = 0)(1− δ)p(Ŷ = 1|Y = 0)

= α(p(Y = 1|S = 1)− p(Y = 1|S = 0)) + δβ.

The equality follows by rearranging the terms and using the definitions of α and β.
Similarly,

p(Ŷ = 1|S = 1)− p(Ŷ = 1|S = 0)

≥ p(Y = 1|S = 1)(1− δ)p(Ŷ = 1|Y = 1) + p(Y = 0|S = 1)(1− δ)p(Ŷ = 1|Y = 0)

− p(Y = 1|S = 0)(1 + δ)p(Ŷ = 1|Y = 1)− p(Y = 0|S = 0)(1 + δ)p(Ŷ = 1|Y = 0)

= α(p(Y = 1|S = 1)− p(Y = 1|S = 0))− δβ.

5.6.1.2 Proof of Lemma 5.12 (Group-Conditional Calibration Implies Non-Equalized
Outcomes but Not Vice Versa)

Proof. Suppose (5.15) and (5.16) hold, i.e. group-conditional calibration is satisfied.
Then

p(Y = 1|S = 1)− p(Y = 1|S = 0)

=
∫ 1

0
p(h(x, s) = c|S = 1)p(Y = 1|h(x, s) = c, S = 1) dc

−
∫ 1

0
p(h(x, s) = c|S = 0)p(Y = 1|h(x, s) = c, S = 0) dc

by the law of total probability
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=
∫ 1

0
p(h(x, s) = c|S = 1)c dc−

∫ 1

0
p(h(x, s) = c|S = 0)c dc

by group-conditional calibration, substituting in (5.15) and (5.16)

=
∫ 1

0
p(h(x, s) = c|S = 1)p(Ŷ = 1|h(x, s) = c, S = 1) dc

−
∫ 1

0
p(h(x, s) = c|S = 0)p(Ŷ = 1|h(x, s) = c, S = 0) dc

by the definition p(Ŷ = 1|X = x, S = s) := h(x, s)

= p(Ŷ = 1|S = 1)− p(Ŷ = 1|S = 0)

by the law of total probability. Hence (5.3) holds for α = 1 and we have shown that
group-conditional calibration implies non-equalized outcomes.

However, we may have non-equalized outcomes without group-conditional cali-
bration. For example, consider the case that

h(x, s) = p(Y = 1|S = s) + η

where η is generated by random noise with range

[−p(Y = 1|S = s), 1− p(Y = 1|S = s)]

and mean zero.
Therefore

p(Ŷ = 1|S = s)

=
∫

x
p(X = x|S = s)p(Ŷ = 1|X = x, S = s)dx

=
∫

x
p(X = x|S = s)h(x, s)dx

=
∫

x
p(X = x|S = s)[p(Y = 1|S = s) + η]dx

= p(Y = 1|S = s).

Hence (5.3) holds for α = 1, i.e. we have non-equalized outcomes.
We also have ∀c ∈ [0, 1]

p(Y = 1|h(x, s) = c, S = 1) = p(Y = 1|S = 1)

and
p(Y = 1|h(x, s) = c, S = 0) = p(Y = 1|S = 0).

Hence (5.15) and (5.16) do not in general hold and we have shown that non-
equalized outcomes does not imply group-conditional calibration.
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5.6.2 Motivating Examples of Equalized Odds and its Relationship to
Equalized Outcomes

We present a motivating example for equalized odds using recidivism prediction. We
also present an example which motivates the relationship between equalized odds
and equalized outcomes.

5.6.2.1 Equalized Odds

We explore the definition of and rationale behind equalized odds, using recidivism
prediction with the ProPublica dataset, which contains information about 7214 crim-
inal offences committed in Broward County, Florida. We used the individual’s age,
gender, race and criminal history to predict whether they would reoffend within two
years.6 We applied a 70/30 training/test split of the data, trained a logistic regression
model7 on the training set, and used this model to predict the probability that each
individual in the test set would reoffend.

The model achieved an area under the curve (AUC) of 0.72 on the test set, in-
dicating that the model is far from perfect but a lot better than a random guess.8

The results are shown in Table 5.2. We note there is a difference in the observed
reoffence rates between African-American and non African-American individuals in
the data. The predicted reoffence rates were close to the observed reoffence rates for
both groups, and thus showed a difference of a similar magnitude, i.e. non-equalized
outcomes was approximately satisfied. The model rated African-American individ-
uals as higher risk on average, but one could justify this by arguing that the model
simply reflects trends in the data.

However, looking separately at those individuals who were observed as non-
reoffenders, and those who were observed as reoffenders, we find that the predictions
were far from satisfying equalized odds. Looking at the non-reoffenders, for African-
Americans the predicted reoffence rate was 47.8% while for non African-Americans
it was 36.2%. In other words, the false positive rate was much higher for African-
Americans than for non African-Americans. Now looking only at the reoffenders,
we notice a difference in the true positive rate across racial groups – for African-
Americans the predicted reoffence rate was 61.5% while for non African-Americans
it was 47.4%. Equivalently, the false negative rate for non African-Americans (52.6%)
was much higher than for African-Americans (38.5%).

Among non-reoffenders, non African-Americans would be better off with this
model since they are less likely to be incorrectly classified as high risk. Among
reoffenders, non African-Americans would also be better off since they are more

6The dataset is available at https://github.com/propublica/compas-analysis/blob/master/compas-
scores.csv. We predicted the column is_recid using sex, age_cat, juv_fel_count, juv_misd_count,
juv_other_count priors_count and c_charge_degree, representing categorical variables as a
one-hot encoding.

7Implemented in Python using the sklearn package.
8AUC can be interpreted as the probability that a randomly selected positive example will receive

a higher score than a randomly selected negative example. A perfect classifier achieves an AUC of 1,
while a random classifier achieves an AUC of 0.5.
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Table 5.2: Test set results for a recidivism prediction model on the ProPublica dataset.
The example motivates equalized odds.

Metric African-
American

Non African-
American

Overall

Observed reoffence rate 54.1% 39.9% 47.2%
Predicted reoffence rate 55.2% 40.7% 48.1%
Predicted reoffence rate among
non-reoffenders

47.8% 36.2% 41.4%

Predicted reoffence rate among
reoffenders

61.5% 47.4% 55.7%

likely to be incorrectly classified as low risk. These two types of discrimination are
precisely what ProPublica reported about the COMPAS algorithm [Angwin et al.,
2016]. Our example has shown how easily this can occur, even if on the face of it the
model seems to just reflect differences between two groups in its training data. It also
shows how individuals are impacted by inferences made from past observations of
others who appear similar to them – in effect they are stereotyped by the algorithm.

In summary, our example has shown how a model’s true positive rates and false
positive rates may differ across groups, which may disadvantage a particular group.
This observation motivates the definition of equalized odds – requiring that the true
positive rates and false positive rates are equal across groups – which, if satisfied,
prevents this form of disadvantage [Hardt et al., 2016].

5.6.2.2 The Relationship between Equalized Odds and Equalized Outcomes

Continuing with our ProPublica dataset example, we ask whether our findings – that
our observed and predicted reoffence rates were close for both groups, and that we
violated equalized odds – are quirks of this particular algorithm or dataset? As our
theoretical results have shown, this is far from a coincidence – in fact, under realistic
assumptions this combination is inevitable!

The core contribution of our work is to formalize the relationship between equal-
ized odds and equalized outcomes. To provide further intuition on this relationship,
we pre-processed the ProPublica data to suppress information about race using a
technique proposed in [Edwards and Storkey, 2016]. The technique is governed by
a parameter λ – increasing this parameter changes the data to make it harder to
distinguish between the records of African-Americans and non African-Americans.9

We then ran logistic regression (as in Section 5.6.2.1) on the pre-processed data and
reported results on the test set, as shown in Figure 5.2.

9We learned a representation function f , which is applied to each input, by approximating (4.8)
via generator and adversary neural networks trained in tandem, i.e. learning fair representations with an
adversary. The objective function jointly depends on how well the generator approximates the input,
and how well an adversary can estimate a particular sensitive variable (in this case race) from it. The
latter is more important for larger λ. Simply omitting the sensitive variable is not sufficient, since it
may be possible to infer this variable from other columns.
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Figure 5.2: Motivating example: equalized odds appears related to equalized out-
comes. The horizontal axis shows the parameter λ used in pre-processing (see text)
on a log scale, while the vertical axes show several performance measures of interest.

This technique yielded more equalized outcomes with increasing λ, i.e. the pre-
dicted reoffence rates for African-Americans and non African-Americans became
closer (top left). The accuracy of the model as measured by AUC declined some-
what with increasing λ (top right). The predicted reoffence rates for non-reoffenders
became closer for the two groups with increasing λ (bottom left). The predicted re-
offence rates for reoffenders for the two groups also became closer (bottom right). In
other words, we achieved a tighter approximation of equalized odds by increasing λ.

In summary, our example showed anecdotal evidence of a relationship between
equalized odds and equalized outcomes, and raised questions about whether this
relationship has a mathematical foundation. The technical results in this chapter have
formalized the mathematical relationship between these two notions of fairness.
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Chapter 6

Trade-offs in Algorithmic Risk
Assessment: an Australian
Domestic Violence Case Study

6.1 Introduction

Actuarial methods have been part of criminal law and its enforcement in jurisdic-
tions around the world for nearly a century [Harcourt, 2006]. These methods em-
ploy probability theory to shape risk management tools designed to help humans
make decisions about who to search, what geographical areas to police, eligibility for
bail, eligibility for parole, the length of a criminal sentence and the kind of prison a
convicted offender should be incarcerated in [Harcourt, 2006]. The criminal justice
system can be said to have been employing algorithms and crunching ‘big’ data for
decision-making long before these words became part of the popular lexicon sur-
rounding automated decisions.

More recently, a range of commercial and government providers have developed
software that embeds actuarial methods in code, using machine learning methods
on large bodies of data and marketed under the umbrella of artificial intelligence
(AI) [Berk, 2012]. While the effects of using these kinds of probabilistic methods
in criminal justice contexts – such as higher incarceration rates among certain racial
groups and distorted future predictions – have been critiqued by legal and social
science scholars for several years [Rice and Harris, 1995], they have also become
issues for the computer scientists and engineers developing these software solutions.

In-depth investigations of commercial criminal recidivism algorithms, like the
COMPAS software developed by US-based company Equivant (formerly known as
Northpointe), have become flashpoints in discussions of bias and prejudice in AI
(see Chapter 5 and [Angwin et al., 2016]). Within the computer science community,
developing quantitative methods to build fairer, more transparent decision-making
systems is an increasingly important research area [Nayaranan, 2018].

We trial one quantitative approach designed to address potential discrimination
in the outputs of a pre-existing case study predicting domestic violence recidivism
in the Australian context. This chapter is a case study that considers the practical
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potential and consequences of fair representation learning in the criminal justice sys-
tem, and complements the theoretical perspective on fair representation learning we
presented in Chapter 4.

As we have already seen in Chapters 4 and 5, there is no one authoritative defini-
tion of fairness, in computer science or in any other discipline. ‘Fairness’ as a word
carries significant cultural heritage [Wierzbicka, 2006]. John Rawls’ famed “veil of
ignorance” proposes an approach to fairness akin to an impartial observer, who does
not know what status they will have in society and how the definition of fairness is
agreed on [Rawls, 1971]. Other scholars have noted this abstract approach of fairness,
when put into practice, does not reduce perceptions of unfair outcomes [Trautmann
and van de Kuilen, 2016]. Previous explorations of varied definitions of fairness in
disciplines as diverse as philosophy, law, neuroscience and information theory have
concluded there is no single foundation on which to rest for the purposes of fair
algorithms [Menon and Williamson, 2018].

To paraphrase the science fiction author Margaret Atwood: “Fair never means
fairer for everyone. It always means worse, for some” [Atwood, 1985]. This chapter
does not assert its approach to fairness as the ‘right’ one. What is ‘fair’ is not a
technical consideration, but a moral one [Nayaranan, 2018]. We are interested in the
insights that quantitative methods for fairness give human decision makers, allowing
us to make explicit certain implicit trade-offs that have long been part of how humans
make decisions. Efforts to quantify what is ‘fair’ allow us to measure the impact of
these trade-offs.

Used effectively in a criminal justice context, machine learning methods could
help human decision makers make more transparent, informed decisions about a per-
son’s likelihood of recidivism. Whatever definition of ‘fairness’ is employed, there are
real world consequences. The impact of varying trade-offs in ‘fair’ decision-making
on victims and offenders should be carefully considered in a domestic violence con-
text.

6.2 Algorithmic Risk Assessment in an Australian Domestic
Violence Context

In a 2016 paper [Fitzgerald and Graham, 2016], Australian researchers evaluated the
potential of using existing administrative data drawn from the NSW Bureau of Crime
Statistics and Research (BOCSAR) Re-offending Database (ROD) to predict domestic
violence-related recidivism [NSW Bureau of Crime Statistics and Research, 2018].
Being able to reliably and accurately assess which offenders, in which contexts, are
likely to recommit domestic violence is a priority for law enforcement, victim support
services and of course, for victims themselves.

Domestic violence (DV), also referred to as family violence or domestic abuse,
is defined as a pattern of violence, intimidation or abuse between individuals in a
current or former intimate relationship. A World Health Organization study found
that within each of dozens of studies conducted around the world, between 10% and



§6.2 Algorithmic Risk Assessment in an Australian Domestic Violence Context 109

69% of women reported having experienced physical abuse by an intimate partner,
and between 5% and 52% reported having experienced sexual violence by an intimate
partner [Krug et al., 2002].

In Australia, one in six women and one in twenty men have experienced at least
one instance of domestic violence since the age of 15 [Australian Bureau of Statistics,
2017b; Cox, 2012]. On average, police in Australia respond to a domestic violence
matter every two minutes [Bulmer, 2015]. These statistics emphasize the scale and
the gendered nature of this issue. Indeed, aggregate prevalence rates further high-
light the negative impact of DV and family violence more broadly. DV is one of
the top ten risk factors contributing to disease burden among adult women [Aus-
tralian Institute of Health and Welfare and Australia’s National Research Organisa-
tion for Women’s Safety, 2016; Australian Institute of Health and Welfare, 2018], and
the economic costs of violence against women and children in Australia (including
both domestic and non-domestic violence) are estimated at around $13.6 billion per
year [Australian Government Department of Social Services, 2009]. Existing statistics
and surveys suggest that Indigenous communities face domestic violence issues at
much greater rates than the rest of the population.1

6.2.1 The Evolution of Algorithmic Risk Assessments

Actuarial methods and probability theory have been employed to help humans make
decisions in a criminal justice context for many years [Harcourt, 2006]. It’s only
recently that they’ve been embedded in software [Desmarais and Singh, 2013]. While
these longstanding methods could be said to be ‘algorithmic’ in nature – taking a
rule-based approach to predictions – for the purposes of this chapter we use the
term “algorithmic risk assessment” to refer to the more recent automated, software-
driven systems. An example is the Public Safety Assessment [Laura and John Arnold
Foundation, 2017], which has been used in the U.S. states of Kentucky, Arizona and
New Jersey and several other U.S. counties [Laura and John Arnold Foundation].

Algorithmic risk assessment systems have several potential advantages. They of-
fer a mechanism to improve the accuracy of decisions made in the criminal justice
system.2 They are readily scalable, offering greater consistency than human judg-
ment [Kleinberg et al., 2017a]. They offer increased transparency of decisions, if the
system’s code, methodology and input data are accessible [Zeng et al., 2017]. And
they often have adjustable parameters (as in this work), which render trade-offs ex-
plicit in decision-making and allow them to be managed.

However, investigations of existing algorithmic risk assessment systems have
demonstrated that these systems can – by choice – also be shrouded in secrecy, un-

1In NSW in 2016, 2.9% of the population were Indigenous [Australian Bureau of Statistics, 2017a]
while 65% of victims of family and domestic violence overall were Indigenous [Australian Bureau of
Statistics, 2017d].

2For example, a recent study using data from more than 750,000 pre-trial release decisions made by
New York City judges found that, at the same jailing rate as human judges, an algorithm could reduce
crime by 14.4-24.7%. Alternatively, without any increase in crime, an algorithm could reduce jail rates
by 18.5-41.9% [Kleinberg et al., 2017a].
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necessarily complex, and disadvantageous to particular groups [Angwin et al., 2016].
It has been shown that COMPAS – which used over a hundred variables for predic-
tions – performs no better than a logistic regression classifier using age and total
number of previous convictions [Dressel and Farid, 2018]. A controversial recent ex-
ample of a risk assessment system in the Australian context is the Suspect Targeting
Management Plan (STMP) [NSW Police Force, 2016]. In the cases of both COMPAS
[Angwin et al., 2016] and STMP [Sentas and Pandolfini, 2017], concerns have been
raised that the systems are unfair, in the former case towards African-Americans and
in the latter case towards Indigenous Australians.

6.2.2 Predicting Domestic Violence Recidivism using Administrative Data

A primary aim of any recidivism prediction is accuracy.3 This allows law enforce-
ment agencies to identify which offenders are most likely to recommit a crime and
subsequently (1) adjust their access to bail or parole, or period of incarceration ac-
cordingly; and (2) understand the risk factors associated with recidivism in order to
better target resources and programs aimed at crime prevention. But what is consid-
ered an ‘accurate’ prediction is complicated by risk-based, profiling approaches to
policing that inevitably see certain populations overrepresented in data about past
offenders, which is then used for making future predictions. In what senses are pre-
dictions based on this past data ‘fair’, and to whom are they ‘fair’? Answering this
question depends on identifying and managing the trade-offs involved in the design
of recidivism assessments.

Although domestic violence (DV) is a serious problem in Australia, to date there
has been relatively little research on the risks associated with family violence and
DV recidivism in the Australian context [Boxall et al., 2015; Fitzgerald and Graham,
2016]. Recidivism in this chapter refers to reoffending following conviction for an
offence. Broadly speaking, a ‘reoffender’ is an individual who is a repeat or chronic
offender. In the context of DV recidivism, national and state-based agencies have
begun to develop and implement computerized decision support systems (DSS) and
risk assessment tools that draw on standardized data (within and/or across agencies)
to help understand the risk of DV recidivism for sub-groups within the population.
There is increasing interest in evidence-based crime and social welfare governance
that draw on data science and big data, perhaps due to a perception that these kinds
of DSS and risk assessment tools are more efficient, objective and less costly than
existing approaches [Gillingham and Graham, 2017].

The point of these DSS and risk assessment tools is to enhance, refine and better
target programs and resources to prevent DV, rather than simply punishment and
control. While computer-based DSS have been criticized in, for example, child wel-
fare and protection [Gillingham, 2006], recent studies suggest that DV-related risk
assessment tools can be effective, particularly to assist under-resourced front-line
agencies to make informed and speedy decisions about detention, bail and victim

3The term ‘accuracy’ is used here in a broad sense. In practice, a cost-sensitive risk may be appro-
priate given that false positives and false negatives may carry different social costs.
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assistance [Mason and Julian, 2009; Messing et al., 2017]. A standard practice is to
measure the accuracy of risk assessment tools using Area Under the Curve (AUC)
[Fawcett, 2004]. Predictive risk assessment tools for DV recidivism have been shown
to provide reasonably high levels of predictive performance, with AUC scores in the
high 0.6 to low 0.7 range [Rice et al., 2010].4

6.2.3 Findings from Previous Studies

Fitzgerald and Graham [2016] applied statistical methods to existing administrative
data on NSW offenders who had committed domestic violence, to examine the kinds
of factors – for example, socioeconomic status, history of past offences, Indigenous or
non-Indigenous status – which were predictive of future domestic violence offences.
They used logistic regression to examine the future risk of violent DV offending
among a cohort of individuals convicted of any DV offence (regardless of whether it
is violent or not) over a specific time period. They found that applying their models
to unseen data achieved AUC of 0.69, indicating a reasonable level of predictive
accuracy, on par with other risk assessment tools in other countries and contexts.
A follow-up study explored using a decision tree induction approach on the same
dataset [Wijenayake et al., 2018]. Although these prior works showed the potential
for such models to be deployed to enhance targeted programs and resources for DV
prevention, Fitzgerald and Graham’s study also highlighted a significant problem:
the authors found that the use of their model could disadvantage the Indigenous
population in the justice system.

Fitzgerald and Graham argued that whilst DSS that incorporate logistic regres-
sion might offer a satisfactory tool for predicting the risk of domestic violence re-
cidivism in the overall population, the efficacy is reduced for making predictions for
particular sub-groups, particularly for individuals who identify as Indigenous. In
their study, Indigenous individuals were more than twice as likely to be predicted as
reoffenders (29.4%) by the model compared to the observed rate (13.7%), whereas
non-Indigenous individuals were less than half as likely to be predicted as reoffenders
(2.3%) compared to the observed rate (6.1%).5

In other words, when it came to predicting DV recidivism for the Indigenous sub-
group, Fitzgerald and Graham found that the model was biased on two fronts: over-
predicting Indigenous reoffenders and under-predicting non-Indigenous reoffenders.
If deployed as a risk assessment tool, this model could have serious negative conse-
quences that may reinforce existing inequalities that have resulted from historical
and contemporary injustices and oppression of Indigenous Australians. The output
of the model not only reflects but also potentially amplifies and reinforces these inequal-
ities. Indeed, the fact that Indigenous status (as an independent variable) appears at

4AUC can be interpreted as the probability that a randomly selected reoffender will receive a higher
risk score than a randomly selected non-reoffender. A random guess has expected AUC of 0.5 while
the perfect prediction has AUC of 1.

5Looking at the entire population the predicted (7.4%) and observed (7.6%) recidivism rates are
relatively well-aligned. The large differences between predicted and observed recidivism rates only
become visible looking separately at the Indigenous and non-Indigenous cohorts.
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all in the dataset brings to light the politics of data collection and statistical forms
of reasoning. The data provided through the BOCSAR ROD, and subsequently used
in the study by Fitzgerald and Graham, reflects a “practical politics” that involves
negotiating and deciding what to render visible (and invisible) in an information
system context [Bowker and Star, 1996]. This example shows the importance of the
issue of fairness in algorithmic decision-making as we move towards computerized
risk assessment tools in criminal justice and social welfare. At the same time, caution
needs to be taken in how such fairness is defined and achieved.

6.3 Designing Fair Algorithmic Risk Assessments
The impact of an algorithmic risk assessment is determined by both its design and
the context in which it is used. This context – which includes human judgment,
policy settings and broader social trends – will remain an important determinant
of outcomes in the justice system and elsewhere. No algorithm can rectify all of the
past and present structural disadvantage faced by a particular social group. However,
algorithmic risk assessments influence human decisions, which in turn determine the
extent to which structural disadvantage is entrenched. As we have already seen in
Chapters 4 and 5, considerable research is underway to incorporate fairness into the
design of algorithmic systems. This approach requires clear definitions of fairness,
and modifications to algorithm design to accommodate these definitions.

6.3.1 Defining Fairness in the Australian DV Recidivism Context

We must be precise about what we mean if we are to embed fairness in computer
code – a definition that seems simplistic or reductionist may still be preferable to none
at all. Therefore we necessarily consider a narrow subset of the possible meanings
of ‘fairness’. We consider applying parity-based definitions of fairness, which we
introduced in Chapter 4, to the context of recidivism prediction. Parity-based defini-
tions may be used to assess the fairness of a recidivism risk assessment model which
generates a probability that an individual will reoffend. Given the issues associated
with the context of DV in Australia, parity between Indigenous and non-Indigenous
populations in the criminal justice system is of special interest.

An important design choice is selecting a subset of the population to which a
particular parity-based definition of fairness is applied. We then ask for parity of
average predictions between groups only within this subset. For example, in the
recidivism context we might consider all individuals, or only those who reoffended,
or only those who did not reoffend. Consider the difference between Indigenous and
non-Indigenous populations for each of the following:

• Predicted reoffence rate: the average probability of reoffence predicted by the
model.

• Predicted reoffence rate for non-reoffenders: the average probability of reof-
fence predicted by the model, for those individuals who were not observed to
reoffend.
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• Predicted reoffence rate for reoffenders: the average probability of reoffence
predicted by the model, for those individuals who were observed to reoffend.

We recall several possible parity-based definitions of fairness introduced in Chap-
ter 4, and discuss them in the context of predicting DV recidivism in Australia. Parity
between groups of predicted reoffence rates among non-reoffenders is referred to as
equality of opportunity [Hardt et al., 2016] in the quantitative fairness literature. If
we also have parity of predicted reoffence rates among reoffenders, this is referred
to as equalized odds [Hardt et al., 2016] (also known as avoiding disparate mistreat-
ment [Zafar et al., 2017a]). Enforcing these parity measures between Indigenous and
non-Indigenous populations has some intuitive appeal, since it ensures that disagree-
ments between the algorithm’s predictions and the subsequently observed data do
not disproportionately impact one racial group. However, these measures are sen-
sitive to the way in which the reoffence data was collected. Profiling of particular
populations, based on pre-existing risk assessments, can distort trends observed in
reoffending. A feedback loop may be created, where this reoffence data in turn in-
fluences future risk assessments [O’Neil, 2017].

Overall parity between groups of predicted reoffence rate is referred to in the
quantitative fairness literature as statistical parity [Dwork et al., 2012] or avoiding
disparate impact [Zafar et al., 2017a]. We may not want overall parity of predicted
reoffence rate if the observed rates of reoffence for Indigenous and non-Indigenous
populations are different. However, overall parity has the advantage that it does not
depend on the way that reoffence data was collected, which may systematically dis-
advantage one group [Barocas and Selbst, 2016]. Furthermore, an actual difference
in reoffence rates between groups may be the result of a complex historical process.
In the case of Indigenous Australians this includes founding violence, structural vi-
olence, cultural breakdown, intergenerational trauma, disempowerment, and alco-
hol and drugs [The Healing Foundation and White Ribbon Australia, 2017]. Legal
decision-makers may wish to intervene in this process by reducing the discrepancy
between incarceration rates for Indigenous and non-Indigenous populations.6 To
support this intervention, it may be appropriate for the design of a risk assessment
system to incorporate greater parity in predicted reoffence rates. By contrast, other
fairness definitions may be used to justify and perpetuate current rates of Indigenous
incarceration.

A risk assessment model should also be accurate, subject to the previous caveat
that reoffence data is likely to be imperfect and is possibly biased. While AUC does
not consider fairness with respect to group membership, it is certainly related to
fairness insofar as it measures the extent to which observed reoffenders are assessed
as higher risk than observed non-reoffenders.

6As of 2017, the incarceration rate of Australia’s Aboriginal and Torres Strait Islander population
stood at 2434 per 100,000 people, versus 160 per 100,000 people for the non-Indigenous population
[Australian Bureau of Statistics, 2017c].
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6.3.2 Learning Fair Representations with an Adversary

We are interested in using a modified recidivism prediction algorithm to achieve
greater parity in predicted outcomes for Indigenous and non-Indigenous popula-
tions. We saw in Chapter 4 that there are several possible approaches to achieving
this. For a review of using techniques for algorithmic fairness in the context of re-
cidivism prediction, see [Berk et al., 2017].

In this chapter we explore using an approach known as learning fair representa-
tions with an adversary, which was proposed in [Edwards and Storkey, 2016] and
we considered in Chapter 4. While this is not the only possible method for this
problem setting, as we shall see it provides a proof of concept that it is possible to
achieve the objective of greater parity in predicted outcomes between Indigenous
and non-Indigenous populations. A data producer pre-processes the data to remove
information about the sensitive variable (in this case race). This means that the data
user making decisions with the data does not need to incorporate fairness into their
algorithm design. This approach enables certain fairness criteria to be met even in
the case where the data user is not trusted to be fair. It may also be more convenient
for the data user since they can continue to use whatever prediction algorithm they
choose, in the knowledge that fairness concerns have already been addressed at the
data pre-processing stage.

We describe how this approach works in the context of ensuring that recidivism
predictions do not discriminate on the basis of race. A data producer learns a cleaned
variable (Z) such that an adversary is unable to predict race (S) from it, while also
trying to make the cleaned variable similar to the original input (X). In our case we
assume that the data producer does not have access to whether the person has reof-
fended (Y), which means that it is not affected by any bias in the way that reoffence
data is collected.

We introduce a parameter λ, a non-negative constant, to control the trade-off
between the two objectives involved in the construction of the cleaned variable (Z).
When λ is large, the algorithm focuses more on making the adversary unable to
predict race (S). When λ approaches zero, the algorithm focuses more on making
the inputs and cleaned data similar. The algorithm does not provide any guidance as
to how to select λ. Rather, this depends on a decision about the relative importance
assigned to inter-group parity and accuracy in the design of the algorithmic risk
assessment. Such a decision is a social, political and regulatory one – the algorithm
simply provides an implementation for whatever decision is made.

The learning steps of the algorithm are summarized in Figure 6.1.7 The data pro-
ducer learns a neural network parameterized by weights θ1, which produces cleaned
records from input records. The adversary learns a neural network parameterized
by weights θ2, which predicts race from the cleaned records. Four steps are repeated
for each batch of examples from the training data:

7See Chapter 4 and [Edwards and Storkey, 2016] for further details. We also considered a variant
of the adversary training objective proposed in [Madras et al., 2018] but found it did not substantively
change the results.
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Input X
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Cleaned Z
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Sensitive S

1. Produce
Z using X, θ1

2. Predict S
using Z, θ2

3. Update θ2
to improve

prediction of S

4. Update θ1 to
worsen prediction of
S and make Z like X

Data producer Adversary

Figure 6.1: Learning fair representations with an adversary. In the text we use the
example of X=criminal record, Z=the cleaned version of the criminal record, S=race,
Y=whether the person reoffended. θ1 and θ2 are parameters of the learning algo-

rithm.

1. On receiving examples of X, the data producer passes them through a neural
network with weights θ1 to produce examples of Z

2. On receiving examples of Z, the adversary passes them through a neural net-
work with weights θ2 to predict the values of S

3. By comparing the true values of S to its predictions for these examples, the
adversary updates θ2 to improve its prediction of S in future

4. By comparing the true values of S to the adversary’s predictions for these ex-
amples, the data producer updates θ1 to worsen the adversary’s prediction of
S in future while also trying make Z similar to X. The trade-off between these
two objectives is governed by the parameter λ.

Once learning is complete, for each individual the data producer passes their in-
put record through a neural network with weights θ1. This cleaned record is then
provided to the data user, who uses it to make a prediction about whether the indi-
vidual will reoffend.

6.4 Predicting DV Recidivism with the BOCSAR Dataset

We applied learning fair representations with an adversary to the prediction of DV
recidivism in Australia with the BOCSAR ROD used in Fitzgerald and Graham
[2016]. As a result, we achieved improved fairness compared to Fitzgerald and Gra-
ham’s study on several measures. However, this case study also highlights the in-
evitable trade-offs involved. Our proposed approach allows us to reduce the relative
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Table 6.1: Independent features in the BOCSAR dataset.
Feature Description

Offender demographic characteristics

Gender Whether the offender was recorded in ROD as male or female.
Age The age category of the offender at the court appearance,

derived from the date of birth of the offender
and the date of finalization for the court appearance.

Indigenous status Recorded in ROD as ‘Indigenous’ if the offender had ever
identified as being of Aboriginal or Torres Strait Islander
descent, otherwise ‘non-Indigenous’.

Disadvantaged areas index Measures disadvantage of an offender’s residential postcode at
quartile the time of the offence. Based on the Socio-Economic Index for

Areas (SEIFA) score produced by the Australian Bureau of Statistics.

Conviction characteristics

Concurrent offences Number of concurrent proven offences, including the principal
offence, at the offender’s court appearance.

AVO breaches Number of proven breaches of Apprehended Violence Order (AVO)
at the court appearance.

Criminal history characteristics

Prior juvenile or adult Number of Youth Justice Conferences or finalized court
convictions appearances with any proven offences as a juvenile or

adult prior to the court appearance.
Prior serious violent Number of Youth Justice Conferences or finalized court

offence conviction appearances in the 5 years prior with any proven
past 5 years homicide or serious assault.

Prior DV-related property Number of Youth Justice Conferences or finalized court
damage offence conviction appearances in the 2 years prior with any proven
past 2 years DV-related property damage offence.

Prior bonds past 5 years Number of finalized court appearances in the 5 years prior
at which given a bond.

Prior prison or custodial order Number of previous finalized court appearances at which given
a full-time prison sentence or custodial order.

disadvantage faced by Indigenous defendants incurred by using the original input
data, but at the cost of predictive accuracy.

6.4.1 BOCSAR Dataset Experiments

The BOCSAR ROD contains 14776 examples and 11 categorical and ordinal input
features for each example, as shown in Table 6.1. The input features are grouped
to represent the offender demographic characteristics, conviction characteristics, and
criminal history characteristics for each case. The target variable is whether or not an
individual re-committed a DV-related offence within a duration of 24 months since
the first court appearance finalization date. DV-related offences include any physical,
verbal, emotional, and/or psychological violence or intimidation between domestic
partners. We used a random 50% sample for training and the remaining 50% for
testing, as in some experiments in [Fitzgerald and Graham, 2016].

Our baseline experiments used the original data, including the Indigenous status
variable. We also tested the pre-processing method described in Section 6.3.2, applied
to the original data without the Indigenous status variable, for several values of the
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Figure 6.2: Results of applying pre-processing to the BOCSAR dataset, followed by
logistic regression, to predict DV reoffences. Baselines using logistic regression with-
out pre-processing are shown as dashed lines, and experiments using logistic regres-
sion with pre-processing are shown as solid lines. The vertical axes show several
measures of interest on the test data. The horizontal axes show the parameter λ (see

text) used in pre-processing on a logarithmic scale.

parameter λ. We predicted recidivism from the data – the original data in the baseline
experiments and the pre-processed data in the other experiments – using logistic
regression as in Fitzgerald and Graham’s study, which predicts the probability of
reoffence for each individual. We computed the metrics described in Section 6.3.1,
as shown in Figure 6.2. We computed each of these metrics for all individuals, for
Indigenous individuals and for non-Indigenous individuals.

6.4.2 Discussion of the BOCSAR Dataset Results

We discuss our results by comparing the performance of the baseline method with
our proposed pre-processing method.
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6.4.2.1 Baseline Results using Original Data

Using the baseline, there are significant differences in the average predicted reof-
fence rates for Indigenous and non-Indigenous individuals. These predicted rates
are close to the observed rates in the test set: for Indigenous 14.9% predicted vs
14.6% observed, and for non-Indigenous 6.4% predicted vs 6.5% observed. Our base-
line does not display the severe overestimation of Indigenous reoffence observed in
the Fitzgerald and Graham’s model. Furthermore, the baseline test set AUC was
0.71 (slightly superior to the 0.69 previously reported by Fitzgerald and Graham),
indicating that the model has some predictive accuracy.

Interestingly, the baseline AUC was higher for the overall population than for ei-
ther Indigenous or non-Indigenous subpopulations, which is likely because compar-
ing Indigenous and non-Indigenous individuals contributed positively to the overall
population AUC whereas these comparisons do not occur within the subpopulation
AUC scores. Furthermore, the AUC was lowest for the Indigenous subpopulation,
indicating that the model found it harder to make accurate predictions within this
group relative to the non-Indigenous subpopulation. However, separately condition-
ing only on observed reoffenders and on observed non-reoffenders revealed that the
types of inaccurate predictions made for Indigenous and non-Indigenous subpopula-
tions differed – an issue which is not evident from the AUC figures alone.

There are several other potential issues with the baseline:

• variations in the way that reoffence data is collected among Indigenous and
non-Indigenous populations may influence and be reinforced by predictions
made by the model

• among observed non-reoffenders the average predicted reoffence rate was 14.3%
for Indigenous vs 6.2% for non-Indigenous populations, indicating that Indige-
nous non-reoffenders were rated more than twice as risky as a non-Indigenous
non-reoffenders

• among observed reoffenders, the average predicted reoffence rate was 18.3%
for Indigenous vs 10.0% for non-Indigenous populations, indicating that non-
Indigenous reoffenders were rated only just over half as risky as Indigenous
reoffenders8

• from a process perspective, it may be viewed as unfair that a person’s Indige-
nous status is considered by the model.

Removing the Indigenous status column in the data is a possible step towards
remediating these issues. It would address the final concern around fair process; but

8By the contrapositive of Corollary 5.7, if predicted reoffence rates are equal to observed reoffence
rates for both Indigenous and non-Indigenous populations, and the observed Indigenous and non-
Indigenous reoffence rates are different from each other, and the model is not perfectly accurate, then
the predicted reoffence rate for non-reoffenders is different between Indigenous and non-Indigenous
populations and/or the predicted reoffence rate for reoffenders is different between Indigenous and
non-Indigenous populations.
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as has previously been observed [Dwork et al., 2012] and is reinforced by our results,
this “fairness through blindness” approach is insufficient to address the first three
concerns, which remain even without the presence of this column.

6.4.2.2 Results using Pre-processed Data

Recall that the results using pre-processed data depend on the parameter λ, which
controls the extent to which information about Indigenous status is removed by the
pre-processing. The solid lines on the left hand side of the plots, where λ approaches
zero and the data is effectively left untouched except for the exclusion of the Indige-
nous status column, indicate that while the discrepancies between the Indigenous
and non-Indigenous populations are not as acute as in the baseline case, they are
still very much present. Information contained in the other columns still results in
different outcomes for Indigenous and non-Indigenous populations, a phenomenon
known as redundant encoding [Dwork et al., 2012].

Applying pre-processing with increasing values of λ, the issues associated with
the baseline described in Section 6.4.2.1 are addressed:

• the predicted reoffence rate for non-reoffenders is more similar for Indigenous
and non-Indigenous populations (for λ = 10, 8.1% for Indigenous vs 7.8% for
non-Indigenous)

• the predicted reoffence rate for reoffenders is more similar for Indigenous and
non-Indigenous populations (for λ = 10, 9.7% for Indigenous vs 9.5% for non-
Indigenous)

• the predicted reoffence rate overall is more similar for Indigenous and non-
Indigenous populations (for λ = 10, 8.3% for Indigenous vs 7.9% for non-
Indigenous).

There was a cost to pre-processing in terms of accurately predicting reoffence.
The AUC dropped to 0.62, so that the predictions were less accurate than the baseline
(AUC 0.71), while still significantly more accurate than a random prediction (AUC
0.5).9 Overall predicted reoffence rates for non-reoffenders were higher compared
to the baseline: 7.9% for λ = 10 vs 7.6% for the baseline, a 10.2% increase. Overall
predicted reoffence rates for reoffenders were lower compared to the baseline: 9.6%
for λ = 10 vs 12.9% for the baseline, a 26.0% decrease. This reduced accuracy is not
surprising as the pre-processing removed information from the dataset. The decrease
in predicted reoffence rates for reoffenders caused by the pre-processing is undesir-
able from the perspective of potential victims of domestic violence. Furthermore, this
decrease was greater for Indigenous individuals, whose potential victims are more
likely to also be Indigenous.

9By Theorem 5.3, given equal Indigenous and non-Indigenous predicted reoffence rates among re-
offenders, among non-reoffenders and overall, the predicted reoffence rates for reoffenders and non-
reoffenders must be equal (assuming that the observed Indigenous and non-Indigenous reoffence rates
are unequal).
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6.4.2.3 Summary of the BOCSAR Dataset Results

In summary, our approach improved on several measures of fairness compared to
Fitzgerald and Graham’s study. The baseline approach of learning from the orig-
inal input data resulted in a prediction indicating that the average risk associated
with Indigenous individuals was more than twice that of their non-Indigenous coun-
terparts, even among non-reoffenders, while using pre-processing with a value of
λ = 10 these average risks were comparable. As discussed previously, this could not
have been achieved simply by removing the Indigenous status column from the data.
However, achieving comparable risks came at the cost of overall predictive accuracy
(AUC 0.71 to AUC 0.62). It is worth repeating that our approach does not prescribe a
particular value of the trade-off parameter λ, but rather provides a quantitative tool
to estimate the effect of this trade-off. We discuss further implications of fairness
trade-offs in our conclusion.

6.5 Conclusion

The Australian DV case study shows that without incorporating an explicit fairness
criterion into algorithm design, individuals from one racial group may be marked
higher risk than another, even when separately considering only observed reoffend-
ers or only observed non-reoffenders. This is still true when race is simply dropped
from the input data: blindness is not enough. An alternative is the use of the fair
representation learning, which we analyzed in Chapter 4, as a data pre-processing
technique. This approach yielded more equal predicted reoffence rates for different
racial groups: among reoffenders, among non-reoffenders and overall.

The case study also reveals an important trade-off involved in the design of al-
gorithmic risk assessments. From the perspective of Indigenous defendants who in
the baseline scenario were considered higher risk than non-Indigenous defendants,
both among reoffenders and among non-reoffenders, this pre-processing makes the
system fairer. The flipside is that non-Indigenous non-reoffenders are judged to be
more risky. And all reoffenders – particularly Indigenous reoffenders – are judged
to be less risky, which is not in the interests of potential victims.

The trade-off between the interests of different stakeholders is equally a part of
human decision-making in the criminal justice system. The advantage of our ap-
proach is making this trade-off explicit and precisely controllable through a model
parameter, which may be set according to whatever weighting is deemed appropriate
by society. The approach we propose – involving an explicit trade-off between cer-
tain quantitative definitions of accuracy and fairness – also applies to other contexts
where prediction algorithms are used to support decisions about individuals such as
the provision of credit or insurance, and to other demographic groups besides racial
groups.

There is a second trade-off involved here: between explicit and implicit explana-
tions for decisions. Transparency allows individuals to better understand the social
systems – including the criminal justice system – that make decisions about their
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lives. However, when the rationale for these decisions is laid bare, they may be less
palatable than when they are opaque. Algorithms – with their stark rules imple-
mented in code – have the effect of illuminating the myriad forms of inclusion and
exclusion that invisibly form our social fabric. Perhaps the more profound trade-off
is determining to what extent we are willing to shine that light.



122 Trade-offs in Algorithmic Risk Assessment



Chapter 7

Using Cohort Analysis and
Predictive Modeling to Inform
Targeted Student Support

7.1 Introduction

Universities, students and society at large have a shared interest in students achiev-
ing outcomes at university. These outcomes include program completion, passing
individual courses, academic grades, student satisfaction and relevant graduate em-
ployment. In the Australian context, outcomes are reported by universities through
the Higher Education Information Management System (HEIMS) and monitored by
the federal government [Australian Government Department of Education and Train-
ing, 2015; Australian Government Tertiary Education Quality and Standards Agency,
2017].

To help students achieve outcomes, universities frequently offer support services
such as accommodation, financial aid, academic skills development programs, peer
learning communities, counselling and mentoring. Data-driven approaches can help
universities to target their student support to maximize its effectiveness. Descriptive
statistics allow universities to understand the performance of various student cohorts
across several outcomes, and hence plan future interventions to support particular
student cohorts [Norton and Cherastidtham, 2018; Edwards and McMillan, 2015].
Individualized predictions of student outcomes offer universities the chance to be
even more targeted, by directing their assistance to students who will most benefit
[Jia and Maloney, 2015; Korhonen and Rautopuro, 2018].

Targeting student support becomes even more critical when a university’s ad-
missions process changes. This is the situation currently faced by The Australian
National University (ANU), which recently announced plans to move to a new na-
tional undergraduate admissions model starting in 2020 [Australian National Uni-
versity, 2018; Hughes-Warrington et al., 2019]. The new model is aligned to the
mandate of ANU as Australia’s national university and is intended to democratize
access to undergraduate places at the university. It is expected that the new model
will significantly increase the diversity – including in terms of geographic spread
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and socio-economic status – of the student population. To make the new model a
success, ANU must adapt its existing support services to enable previously under-
represented cohorts to achieve across a range of student outcomes. This process
starts with understanding student outcomes for particular cohorts and identifying
individuals who are likely to require support, the focus of this work.

A risk in predicting student outcomes is that the resulting interventions may lead
to unequal outcomes for particular demographic groups, particularly in the realistic
case where the predictions are not always correct. It is possible to quantify these ef-
fects – for example, by analyzing the extent to which different demographic groups
are subject to incorrect predictions [Hardt et al., 2016; Zafar et al., 2017a]. Recent
scholarship on fairness in machine learning allows such risks to be managed by
incorporating equity considerations into predictive model design, including via fair
representation learning [Edwards and Storkey, 2016].1 We show how such an approach
can be applied to the context of predicting ANU student outcomes. This provides an-
other case study of the practical use of fair representation learning, which addresses
a different set of issues compared to the recidivism prediction case study presented
in Chapter 6.

This chapter focuses on topics of interest for the Australian National University
administration2 and the higher education sector, and also includes topics that are
more closely connected to the earlier chapters of this thesis. In Section 7.2 we in-
troduce the data inputs and student outcomes from ANU on which our analysis is
based. In Section 7.3 we analyze the performance of several cohorts across multiple
student outcomes. In Section 7.4 we make and evaluate individualized predictions of
student outcomes. In Section 7.5 we examine the equity considerations of our predic-
tions and present approaches to incorporating equity into predictive model design
via fair representation learning. We conclude in Section 7.6.

7.2 Data Inputs and Student Outcomes

We present the ANU data inputs and student outcomes used in the analysis. Given
the focus of ANU on reforming its undergraduate admissions model for domestic
school-leavers, we limit our analysis to this student group. While some findings are
specific to this group, our methodology as well as certain findings may apply to other
student groups and higher education institutions.

7.2.1 Dataset and Feature Extraction

This work uses a dataset of 8498 domestic undergraduate current school-leavers ad-
mitted between 2011-17 at ANU. The dataset incorporates data from a range of ANU
databases as well as data licensed from the Universities Admissions Centre (UAC).

1See Chapter 4 for an introduction to fair representation learning.
2This project was sponsored by the Australian National University Deputy Vice-Chancellor (Aca-

demic). The Planning and Performance Measurement Division of the Australian National University
collaborated on this project, including providing source data.
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Table 7.1: Features and outcomes in the analysis.
Feature Options Source

Prior studies
Australian Tertiary Admissions Rank (ATAR) Continuous UAC
ATAR top 3 in school Yes/No UAC
ATAR top 2% in school Yes/No UAC
High school English attempted Yes/No UAC
High school Maths attempted Yes/No UAC
High school subject attempts 268 Yes/No variables UAC
High school subject grades 264 continuous variables UAC

Demographics
Gender Male/Female UAC
Age at application date Continuous UAC
Home state ACT/NSW/NT/QLD/SA/TAS/VIC/WA/Other UAC
Home address socio-economic status (SES) High/Medium/Low UAC
Home address remoteness Major cities / Inner regional / Outer regional UAC
Financial difficulties Yes/No UAC
Medical disadvantage Yes/No UAC
Geographic disadvantage Yes/No UAC
Youth Allowance Yes/No UAC
Family Tax Benefit Part A Yes/No UAC
Non-English Speaking Background Yes/No UAC
School Index of Community Socio-
Educational Advantage (ICSEA) band

<900 / 900-1100 / >1100 ANU

Indigenous Yes/No ANU
Disabled Yes/No ANU

University enrolment
Combined Program Yes/No ANU
Bachelor of Philosophy – Honours (PhB) Yes/No ANU
Attendance type Full-time/Part-time ANU
Basis of Admission Higher Education/Secondary Education/Other ANU
Program Primary Broad Field of Education 7 fields ANU
Program Primary Narrow Field of Education 15 fields ANU

University outcomes
Attrition year 1 Yes/No ANU
Attrition year 2 or later Yes/No ANU
Failed at least one course year 1 Yes/No ANU
Failed at least one course year 2 or later Yes/No ANU
Grade point average year 1 Continuous (fail=0, passing grades=4-7 scale) ANU
Grade point average year 2 or later Continuous (fail=0, passing grades=4-7 scale) ANU

The features cover the student’s prior studies, demographics and university enrol-
ment – all of which are known before the student commences.3 There are also several
university outcomes of interest. The features and outcomes are shown in Table 7.1.
For each feature or outcome we describe its options, if it is a categorical variable, or
else note that it is a continuous variable. We also show whether the source of the
feature is ANU or UAC.

ATAR is a national percentile rank based on the student’s academic performance
at high school.4 For the categorical variables, we only included options that applied
to at least 20 students. The Program Primary Broad and Narrow Fields of Education

3The home state and address refer to the student’s permanent home location when applying to
ANU.

4The ATAR top 2% in school feature is crudely computed by dividing the within-school ATAR rank
of the student by the total number of graduating students from the school, and checking if this quantity
is no greater than 0.02. This method has shortcomings, however, notably that in schools of less than 50
graduating students, even the top-ranked student is determined not to be in the top 2%!



126 Cohort Analysis and Predictive Modeling to Inform Targeted Student Support

(FoE) conform to the Australian Standard Classification of Education [Australian
Bureau of Statistics, 2001]. In the case of high school subjects, we focused on year 12
subjects across all Australian states and territories, including subjects offered through
the International Baccalaureate (IB). We included records of subject attempts for those
subjects taken by at least 20 students in the dataset. We also included the individual
grades for those subjects for which a grade was awarded. For a small minority of
high school subjects for which ordinal grades were given (Queensland and some IB
subjects), we applied a simple heuristic method to convert these to numerical grades.

7.2.2 Student Outcomes

When describing student outcomes we use the term course to refer to a single unit
of study, and program to refer to a qualification such as a bachelor degree comprised
of several courses. We focused on describing and predicting the following student
outcomes:

1. Attrition, defined as leaving ANU without completing a program5

2. Failure of at least one attempted course

3. Grade Point Average (GPA), where the average is weighted by the credits allo-
cated to a course.

Each of these outcomes (or in the case of attrition and course failure, their con-
verse) is an important indicator of a successful student experience at ANU. For each
outcome we separately considered:

• The outcome in the student’s first year, using features known before they com-
mence their first year

• The outcome in the student’s second and later years, using features known
before they commence their second year.

Separately analyzing first year outcomes was motivated by a recognition that this
can be a particularly challenging time for students, given the change in circumstances
they have recently experienced. It is also a period where the university has fewer data
points about a student on which to make informed interventions, making targeting
support particularly challenging.

7.3 Analysis of Student Cohorts

For each outcome of interest, we investigated how different cohorts of students per-
formed. We focused our attention on first year outcomes, given the importance of
this period in a student’s time at university. We describe the methodology for the
analysis of student cohorts, followed by our results for each outcome.

5Transferring to another institution and ceasing studies altogether are both counted as attrition. It
was not possible to distinguish between these two cases based on the dataset used in this study.
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7.3.1 Methodology

We analyzed the relationship of each outcome to a set of standard features, comprised
of the prior studies, demographic and university enrolment features from Table 7.1,
except for the high school subject attempts and grades. For each outcome and cat-
egorical feature, we computed the difference between the average outcome when
the feature was present and the average outcome when the feature was absent. For
continuous features we computed the difference between the average outcome when
the feature was above average and the average outcome when the feature was below
average. For example, we computed the difference between first year attrition rates
among students with ATARs above the dataset average and among students with
ATARs below the dataset average.

When analyzing each outcome, we:

• identified a subset of the standard features which had a statistically significant
relationship with the outcome

• investigated the relationships between the outcome and membership of several
equity cohorts, comprised of students facing various forms of potential educa-
tional disadvantage.

Given the large number of the high school subject attempt and grade features, we
excluded these from the set of standard features to allow us to focus our attention
on the remainder of the features. For GPA, we separately analyzed the relationship
of this outcome to high school subject attempts and grades.

For each feature and outcome, we conducted a two sample test for the differ-
ence in outcome when the feature is present vs absent (above vs below average for
continuous features). For attrition and failing at least one course, which are binary,
the statistical test was a two-tailed Pearson’s chi-squared test implemented via the
prop.test function in R. For GPA, which is continuous, the statistical test was a two-
tailed Student’s t-test implemented via the t.test function in R.

Each test produced an estimate of the difference in outcome, a 95% confidence
interval for the difference, and a p-value. The p-value indicates the probability of
a difference at least as large as that observed, given a null hypothesis that there is
no difference in average outcomes between the two samples. Because we simultane-
ously tested multiple features for each outcome, we applied the Bonferroni correc-
tion, which required a smaller p-value for statistical significance compared to testing
a single feature. This ensured that the family-wise error rate – the probability that
at least one of the statistical significance tests passed given null hypotheses for all
features – was at most 0.05. The result was a more conservative subset of features
marked as statistically significant.

7.3.2 Attrition

The results of the cohort analysis for first year attrition are shown in Figure 7.1. Data
was available for all 8498 students. The results showed that the intensity and duration
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Figure 7.1: Cohort analysis of first year attrition, showing statistically significant
features (top) and equity cohorts (bottom).

of a student’s program were predictors of attrition. Part-time students showed higher
rates of attrition, while combined program students showed lower rates of attrition.
Among the equity cohorts considered, the only statistically significant difference was
among non-English speaking background students who tended to attrit less in first
year. While students with an above average ATAR showed lower rates of attrition,
attrition is often a personal decision of which academic performance is only one part.
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Figure 7.2: Cohort analysis of failing at least one first year course, showing statisti-
cally significant features (top) and equity cohorts (bottom).

7.3.3 Failing At Least One Course

The results for the cohort analysis of failing at least one first year course are shown
in Figure 7.2. Data was available for 8384 students (98.6%). The results show that a
student’s high school academic performance, as measured by their ATAR, is closely
related to their probability of failing a course – students with higher ATARs were
less likely to fail. Students enrolled in programs within certain primary fields of
education – like information technology and commerce – had higher rates of failure,
while those in law and social sciences had lower rates. We observe that in some cases
the courses failed may have been outside of their primary field of education.
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Figure 7.3: Relationship of gender to probability of failing at least one first year
course, broken down by ATAR band (top) and Program Primary Narrow Field of

Education (bottom). Sample sizes are shown for males vs females.

Among the equity cohorts, students with low SES home addresses and from non-
English speaking backgrounds had the highest rates of failure. The non-English
speaking background group is particularly interesting, given that they are less likely
to attrit but more likely to fail courses than other students. Failure and attrition are
more tightly coupled with respect to other features such as ATAR. Further analysis
is required to explain this trend.

Another cohort of students with higher rates of failure is males. To better un-
derstand the relationship between failing courses and gender, we disaggregated our
analysis by ATAR bands and Program Primary Narrow FoE as shown in Figure 7.3.
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For each ATAR band and Narrow FoE we report the number of male vs female stu-
dents. We omitted cases where either of these numbers was below 10, motivated
both by privacy and the fact that with very small sample sizes it is difficult to draw
any meaningful conclusions.

The trend for males to have a higher probability of course failure holds up across
ATAR bands. While it is less pronounced in the 99+ cohort compared to the cohorts
below 90, this is not surprising since the low rate of failure across the board in the 99+
cohort leaves less room for variability between genders. The results provide evidence
that academic support services need to be appropriately designed to support male
students, in the same way that boys’ education in the school system is a specific topic
in educational research [Epstein, 1998].

The picture is more mixed once we disaggregate by gender and narrow field of
education. Females outperform males in passing courses in the majority of fields,
and markedly so in certain fields across both the sciences (e.g. behavioural science,
process and resources engineering, other natural and physical sciences) and the hu-
manities (e.g. performing arts, other society and culture). However, in several other
fields (e.g. law, banking and finance, economics) there is no marked difference be-
tween genders. Information technology is something of an outlier in the opposite
direction, with males tending to outperform females. These results indicate that ef-
forts to deliver academic student support services may need to be tailored to students
of different genders across different fields of education.

7.3.4 Grade Point Average

The results for the cohort analysis of first year GPA are shown in Figure 7.4. Data
was available for 8384 students (98.6%). The trends are broadly similar to those for
failing at least one first year course. This is expected since a failed course incurs a
zero mark (pass marks are in the range 4-7), which in turn affects GPA. Students
who had lower ATARs, were male, came from a non-English speaking background,
came from a low SES home address, and were in disciplines such as information
technology and commerce had higher rates of failure and lower GPAs. The analysis
shows that part-time students and those from outside the ACT also lagged their peers
on GPA to a statistically significant degree. Indigenous and disabled students both
appeared to have lower GPA, although not to statistical significance. Further analysis
of lower GPA cohorts could help to design and target academic support services.

Separately, we looked at the relationship between high school subject attempts
and grades and first year GPA, as shown in Figure 7.5. This illustrates that looking
beyond ATAR gives a more detailed picture of student preparedness for the univer-
sity academic environment. Above average grades in physics and advanced mathe-
matics subjects were prominent at the top of the list of high school subjects associated
with high first year GPA. However, above average subjects across a diverse range of
disciplines including accounting, biology, politics, economics and chemistry were
also associated with high first year GPA. Above average grades from jurisdictions far
from ANU were particularly strongly associated with high GPA. A possible expla-
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Figure 7.4: Cohort analysis of first year GPA, showing statistically significant features
(top) and equity cohorts (bottom).

nation is that these students had previously demonstrated both academic aptitude
based on their grades and a commitment to their studies based on their willing-
ness to relocate a significant distance to Canberra. Attempts at some subjects were
associated with lower first year GPA, including general mathematics, business and
information technology.
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Figure 7.5: Descriptive results for first year GPA, showing statistically significant
high school subject features. For the ‘grade above average’ features, ‘feature absent’
applies to students who attempted a subject and achieved a grade below the dataset

average.
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Table 7.2: Feature sets used for individualized predictions.
Feature Set Features used in predicting year 1 out-

comes
Features used in predicting year 2+ out-
comes

One feature ATAR Year 1 GPA
Standard features Features listed in Table 7.1 except high

school subject grades and attempts
Features listed in Table 7.1 except high
school subject grades and attempts
plus year 1 information including GPA,
whether any courses were failed, and
satisfaction with student support services

Standard features +
high school subjects

Features listed in Table 7.1 including high
school subject grades and attempts

Features listed in Table 7.1 including
high school subject grades and attempts
plus year 1 information including GPA,
whether any courses were failed, and sat-
isfaction with student support services

7.4 Individualized Predictions of Student Outcomes

We developed and applied a methodology for making individualized predictions of
student outcomes. This involved extracting features from the dataset and testing
several predictive models that took these features as inputs.

7.4.1 Feature Extraction

For our predictive modeling, we used features about an individual’s prior studies,
demographics and university enrolment to predict several outcomes of interest, as
described in Table 7.1. We conducted the following additional processing of the
dataset using standard techniques, to enable us to make predictions using all rows
and columns of the dataset:

• replaced missing values with the feature mean for continuous variables and
with an ‘unknown’ category for categorical variables

• applied min-max normalization to the continuous variables, so that all values
fell into the range [0, 1]

• converted categorical variables to dummy variables, using one-hot encoding
for all categories but one to avoid redundancy.

We then considered three types of feature sets, as shown in Table 7.2. We also
considered using only features found to be statistically significant in Section 7.3, but
preliminary investigation indicated that this did not substantively change the results.

7.4.2 Predictive Models

We considered the tasks of predicting each student outcome – both in first year and
in second and later years – and investigated the difficulty of each of these tasks sep-
arately. Attrition and failing at least one course are binary, yielding two classification
tasks. GPA is continuous, yielding a regression task.

For each outcome, we randomly selected 70% of the students to form the training
set, trained several predictive models on the training set, and then tested the models
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on the remaining 30% of the of the data. We tested several linear and non-linear
models. In each case we attempted to select model parameters that produced rea-
sonable performance, but did not exhaustively investigate parameter selection. The
models were:

• linear/logistic regression – a simple linear model whose outputs were a weighted
sum of the input features. In regression tasks the outputs were taken as is (linear
regression), while in classification tasks the outputs were converted to probabil-
ities via the logistic function (logistic regression). The weights were learned from
the training set, using lasso regularization to make the model more robust to
noise from features with limited predictive value [Tibshirani, 1996]. We imple-
mented the model using the glmnet R package.

• decision tree – a simple non-linear model which assigned each data point to a
leaf node in a tree based on its input features, and associated predictions with
each leaf node in a tree [Breiman et al., 1984]. The tree structure and leaf node
predictions were learned from the training set, with the procedures varying
between classification and regression tasks. We implemented the model using
the rpart R package.

• random forest – a more complex and resource-intensive non-linear model which
learned a set of decision trees, each based on a random subset of the rows
and columns of the training set [Breiman, 2001]. Predictions were made for
new data points by aggregating the predictions of each decision tree, with the
aggregation varying between regression and classification. We implemented
the model using the randomForest R package.

We used standard evaluation measures of model performance over the test set
for both regression and classification tasks. For regression, we evaluated the mod-
els’ predictions using root mean squared error (RMSE), including RMSE-specific
95% confidence intervals implemented using R. Lower RMSE indicates better per-
formance. For the classification tasks, we evaluated the models’ predictions using
area under the curve (AUC), including AUC-specific 95% confidence intervals im-
plemented using the pROC R package. AUC can be interpreted as the probability
that a randomly selected positive example will receive a higher predicted probability
than a randomly selected negative example [Fawcett, 2004]. Higher AUC indicates
better performance. A random guess is expected to achieve AUC of 0.5, while a
perfect rank ordering achieves AUC of 1.

7.4.3 Results

The results of the predictive models on the classification tasks are shown in Figure
7.6. There are several interesting aspects of the results:

• In the case of all outcomes, there was evidence that they were somewhat pre-
dictable (some models achieved AUC above 0.5), but not entirely predictable
(no models achieved AUC of 1).
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Figure 7.6: Performance of several models and feature sets across predicting attrition
and failing at least one course. Higher AUC is better.

• The AUC scores were higher for course failure than for attrition. It is perhaps
not surprising that academic performance was easier to predict than attrition,
which may be a personal decision.

• It was easier making predictions in years 2 and later – using additional infor-
mation about student outcomes in first year – compared to making predictions
of first year outcomes using only pre-university predictors. It is not surprising
that a student’s performance and experience at university becomes more pre-
dictable once data is available about their time at university to date. There also
appeared to be a survivorship bias, where there was less variability in outcomes
among students who made it through first year.

• Logistic regression mostly outperformed both of the non-linear models. This
suggests that for prediction purposes it does not hurt too much to treat the in-
teractions between different features as primarily linear (despite the existence
of some non-linear effects, as we saw with the relationship of gender, ATAR
bands and fields of education). The lasso regularization used in logistic re-
gression was an effective way to focus the model’s efforts on the most robust
predictors. The non-linear models may have been more ‘distracted’ by the other
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Figure 7.7: Performance of several models and feature sets in predicting GPA. Lower
RMSE is better.

less predictive features. It is possible that parameter tuning in the non-linear
models could improve performance, but there is no evidence to suggest they
would significantly outperform linear models. This is not too surprising given
that these tasks do not fall into the categories where non-linear models tend to
be most dominant: very high-dimensional tasks with very large training sets.

• The standard features combined with logistic regression performed strongly on
most tasks. The addition of the high school subject features made little differ-
ence (and in the case of the non-linear models, sometimes worsened perfor-
mance). Using just ATAR to predict first year outcomes was not far behind the
standard set of features. Using just year 1 GPA to predict later year outcomes
yielded comparable performance to using more features. This indicates that
a single number measuring past academic performance can be an extremely
powerful predictor of student outcomes, and even more so when it measures
past academic performance at university. The other features appear to offer
some predictive benefit – but this benefit is surprisingly small.

The results of the models on the regression task of predicting GPA are shown in
Figure 7.7. The trends in the results are broadly comparable with those of the clas-
sification tasks, particularly for students failing at least one course. We observe that
even the most successful models had considerable variability – an RMSE of around 1
– which is relatively large considering that of the 7 point GPA scale, passing grades
lie within a 3 point range. We should remember that we are predicting the future
behavior of human beings, which to a certain extent will always be unpredictable.
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7.5 Incorporating Fairness into Predictive Model Design

We consider the implications for fairness of using our predictive models, and explore
changes to their design to incorporate fairness. We examine a case study of predicting
students who will fail at least one course, looking at the fairness implications with
respect to gender. A potential concern is that certain types of errors made by a
predictive model disproportionately affect students of one gender, which may be
viewed as discriminatory. We measure model error rates for both male and female
students, and show a proof of concept approach to reducing the difference in these
error rates between genders. The definitions and techniques we present have wider
applications beyond this particular problem setting.

7.5.1 Defining Quantitative Fairness

A concern arising from the use of predictive models is the risk that decisions aris-
ing from these models may discriminate on the basis of group membership, such as
gender, language background or socio-economic status [O’Neil, 2017]. Researchers
in the field of machine learning have in recent years developed a quantitative per-
spective on the question of whether a predictive model is unfair. This has included
the development of several quantitative definitions of fairness [Mitchell and Shadlen,
2018; Nayaranan, 2018] and approaches to incorporating fairness into the design of
predictive models [Dwork et al., 2012; Menon and Williamson, 2018] (see Section 4.2).

We investigate whether the potential for unfairness exists in the case of predicting
ANU student outcomes, and explore possible solutions to manage this risk. As we
observed earlier, in our dataset the male students tended to be more likely to fail at
least one course compared to the female students. As a case study, we consider the
effects for both genders of the use of our predictive models of subject failure.

We focus on one possible definition of quantitative fairness, which has variously
been referred to in the literature as equalized odds [Hardt et al., 2016] or the avoidance
of disparate mistreatment [Zafar et al., 2017a] (see Definition 5.1). Applying this defini-
tion to our context, first we consider all students who did in fact fail at least one first
year course, and measure the difference in average predicted probabilities of failure
among males and among females. This difference is small (ideally zero) for a model
satisfying equalized odds. Second, we consider all students who did not in fact fail
at least one first year course, and again measure the difference in average predicted
probabilities of failure among males and among females. Once more, this difference
is small (ideally zero) for a model satisfying equalized odds.

The motivation for this definition of fairness is that conditioned on the indi-
vidual’s actual behavior, the model’s predictions are the same on average for both
groups, i.e. they are not determined by group membership. A related motivation
is that the mistakes made by the model are evenly distributed across both groups.
False positives – where the model predicts that someone will fail when in fact they
do not – occur at the same rate for both genders. Similarly, false negatives – where
the model predicts that someone will not fail when in fact they do – also occur at the
same rate for both genders.



§7.5 Incorporating Fairness into Predictive Model Design 139

7.5.2 Achieving Quantitative Fairness

We might hope that simply excluding group membership – for example, the column
encoding a person’s gender – from the data on which the model is trained might
be sufficient to achieve equalized odds. However, as we saw in the recidivism case
study in Chapter 6, there may be correlations between group membership and the
other features. For example, it may be possible to infer a student’s gender with some
accuracy from their program field of education or other demographic characteristics.
In that case, the model may still have different effects on different groups even if it
does not explicitly consider group membership. The shortcomings of this ‘fairness
through blindness’ approach are well known [Dwork et al., 2012].

While there are several approaches to ensuring that equalized odds is (at least
approximately) satisfied [Hardt et al., 2016; Zafar et al., 2017a], we explore the use of
learning fair representations with an adversary [Edwards and Storkey, 2016] (see Chap-
ters 4 and 6 for further details). In this approach, we prepare a cleaned version of the
input data such that group membership – in this case, gender – cannot be inferred
from the cleaned data. The cleaned data can be seen as an alternative representation
of the original input.

We briefly recap the technique used in learning fair representations with an ad-
versary. The cleaned data is prepared by passing the original input through a neural
network model. The weights of the neural network are learned by optimizing a com-
bination of two objectives on the training set: preventing an adversary (itself another
neural network model) from inferring the group membership of individuals in the
data, and otherwise making the cleaned data as similar as possible to the original
input. In our experiments we selected parameters for the neural network learning
which delivered reasonable performance, without exhaustively exploring the issue
of parameter selection. We implemented the neural network models using the Ten-
sorFlow library in Python.

An advantage of learning fair representations with an adversary is that we may retain
the same approach to predictive modeling, only applied to the cleaned data instead
of the original input. This separation of concerns between achieving fairness in data
pre-processing, without otherwise altering our approach to predictive modeling, is
convenient. It also has governance benefits in that the party conducting predictive
modeling need not be trusted to be fair, since this has already been guaranteed by
the data pre-processing, which may be conducted by another party (see Chapter 4).

7.5.3 Results on the ANU Dataset

Recall that logistic regression using standard features was an approach which per-
formed strongly in predicting at least one first year course failure (see Figure 7.6).
We explored the effect of using logistic regression with:

• original input – standard features from Table 7.1

• original input without gender – standard features from Table 7.1, except gender
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Figure 7.8: Addressing potential for gender discrimination when predicting at least
one year 1 course failure.

• cleaned data – learning fair representations with an adversary applied to the
original input.

The results are shown in Figure 7.8. In the left-hand plot we consider only stu-
dents who did not in fact fail at least one first year course (non-failing students),
showing the average predicted probability of failing for all students, male students
and female students. In the right-hand plot we consider only students who did in
fact fail at least one first year course (failing students), again showing the average pre-
dicted probability of failing for all students, male students and female students. 95%
confidence intervals are shown, which were computed using a Student’s t-test in R.

Using the original input, males were predicted to be more likely to fail than
females to a statistically significant degree, both among non-failing and failing stu-
dents. If such predictions were used to make decisions about which students were
offered academic support, two fairness concerns may arise. Among the non-failing
students, males may be disproportionately targeted for academic support programs
that they do not in fact need. Among the failing students, females may dispropor-
tionately miss out on academic support programs that they do in fact need.

Using the original input without gender, the gap between genders reduces some-
what among both non-failing and failing students. This is because the predictive
model can no longer explicitly consider gender. However, the gap between genders
persists due to correlations between other features and gender.

Using the cleaned data, the predicted probabilities of failing converge for males
and females among both non-failing and failing students. This convergence is par-
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ticularly apparent among non-failing students, who make up a sizeable majority of
students. If such predictions were used to make decisions about which students were
offered academic support, the probability of non-failing students being targeted for
an academic support program would be similar both males and females. Further-
more, the probability of failing students being omitted from an academic support
program would be similar for both males and females. Hence, the fairness concerns
we identified using the original input would be addressed.

However, among non-failing students the overall average predicted probability
of failing appears somewhat higher using the cleaned data compared to the original
input. Among failing students the overall average predicted probability of failing
appears somewhat lower using the cleaned data compared to the original input.
Using the cleaned data, the model is less accurate in absolute terms, while in relative
terms its inaccuracies are more evenly spread between genders. This is not surprising
given that the cleaned data has removed information present in the original input.
The cost for overall utility of requiring such quantitative definitions of fairness has
previously been observed in the literature [Corbett-Davies et al., 2017; Corbett-Davies
and Goel, 2018; Menon and Williamson, 2018].

7.6 Conclusion

Cohort analysis and predictive modeling are both useful tools to assist higher ed-
ucation institutions in understanding and shaping student outcomes at university.
Cohort analysis can help to identify particular characteristics of students who fre-
quently achieve – or do not achieve – positive outcomes. This can assist universi-
ties in planning which groups of students to focus their student support efforts on.
Predictive modeling offers the ability to be even more targeted, identifying which
individuals would benefit most from assistance from the university. Inevitably, how-
ever, the trajectory of each individual student is to a degree unpredictable, and it
is important not to overstate the accuracy of such models. This work covered only
some possible outcomes – notably, it would be interesting to also consider graduate
employment outcomes in future work.

Universities should expect and aspire to increasingly diverse student populations
over time. The move to a national undergraduate admissions model at ANU is just
one example of this. To make this transition a success, universities will need to en-
sure that they are providing support that is most needed by particular students and
cohorts. They will also need to consider the equity implications of such interven-
tions. Understanding the value – and limitations – of data-driven approaches will
be essential in enabling institutions to help students get the most out of their time at
university.

An interesting question is determining when it is appropriate for predictive mod-
els to be used. For example, is there a difference between using predictive models
to target student support services and using them to inform admissions decisions?
When predictive models are used, universities should be mindful of the risk that
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decisions made based on such models may have discriminatory effects against par-
ticular groups.

Fair representation learning is one mechanism to adjust models to minimize the
risks of these discriminatory effects. This chapter demonstrated how this technique
could be applied in the context of predicting higher education student outcomes,
building upon our theoretical analysis in Chapter 4 and the recidivism case study in
Chapter 6. However, the student outcomes case study again highlighted the trade-
off between maximizing the absolute utility of a predictive model and equalizing its
relative utility for different groups.

In reality, individual identities are not binary and often cut across multiple group
memberships, a phenomenon known as intersectionality. The small sample sizes in
these intersections makes cohort analysis more difficult. An interesting area of ac-
tive research is designing fairness definitions and interventions to address situations
involving multiple intersecting groups [Kearns et al., 2018].



Chapter 8

Conclusion

This thesis has examined the question: when is representation learning provably
useful? While we have provided specific examples to this question in Chapters 2,
3 and 4, it is possible to draw upon these cases to answer the question in a more
holistic way (see Section 8.1). Our work on several problem variants has also yielded
a common set of methodological insights (see Section 8.2).

This thesis has also examined a second question: how can representation learn-
ing help to achieve fairness in machine learning, and what are its limitations? Chap-
ters 4 and 5 have addressed technical aspects of this question using mathematics,
while Chapters 6 and 7 have examined case studies illuminating this issue. We step
back and consider the relationship between representation learning and fairness with
greater critical distance (see Section 8.3).

In the course of writing this thesis many opportunities for interesting future work
have been identified, with respect to representation learning, fairness in machine
learning, and their intersection. We preview a few such directions (see Section 8.4).

8.1 When Representation Learning is Provably Useful

Deep learning techniques, which transform raw data into successively more abstract
representations, are at the core of contemporary machine learning. Such techniques
have been successful in computer vision, natural language processing and other do-
mains with high dimensional sensory input [Goodfellow et al., 2016]. Intuitively,
such techniques learn structure from raw data, in the same way that a baby learns to
make sense of the ‘blooming, buzzing confusion’ [James, 1890] their senses confront
them with.

The term representation learning – while synonymous in the machine learning con-
text with feature learning – evokes the broader notion of representation which stands
in for an original, i.e. a signifier replacing a signified [Saussure, 2011]. A photo repre-
sents a scene in the physical world; a spoken or written word represents an abstract
concept; a member of parliament represents their constituents. In each case, the
representation synthesizes something more complex. It is easy to see what is lost
– the detail of the original that is not present in the representation – as formalized
in results such as the data processing inequality (Theorem 2.8.1 of [Cover and Thomas,
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Figure 8.1: Three situations where representation learning is provably useful. In each
case, we would like the hypothesis of interest to lie in the region shaded red.

2012]). We feel that we have gained something in return, but what exactly? The para-
dox is that while the downside of moving from the original to the representation can
be crisply quantified, the upside can be intuited but is harder to pin down.

This thesis has considered the question of why a representation might be use-
ful in the context of supervised learning. In particular, we have compared using an
original hypothesis class H to an hypothesis class induced by representation func-
tion f , G ◦ f := {g ◦ f |g ∈ G}. This thesis has provided three possible answers to
the question of when representation learning is provably useful, as summarized in
Figure 8.1.
(a) Looking elsewhere: The original hypothesis class H does not contain the target
hypothesis, whereas G ◦ f does. In Chapter 2 we investigated how to find such an f
using unlabeled data.
(b) Making a shortlist: G ◦ f is a subset of H, both of which contain the target hy-
pothesis. However, because of the smaller size of G ◦ f , we can bound generalization
error with fewer samples. In Chapter 3 we investigated how to find one or more such
choices of f using labeled data from another task.
(c) Restricting an adversary: G ◦ f is a subset of H. While H contains an hypothesis of
interest to an adversary, G ◦ f does not. In Chapter 4 we investigated how to verify
that for some f , no hypothesis in G ◦ f can be too unfair to a particular group.

Inspecting Figure 8.1 it becomes clear that what makes a good representation
function f depends on the hypothesis classes H and G. In (a), if H is all possible
hypotheses, we will not be able to ‘look elsewhere’. The representation function f is
only useful insofar as G ◦ f compensates for the deficiencies of H. In (b), G must not be
too large, or else our ‘shortlist’ G ◦ f will not be very short after all. In (c) by contrast,
it makes sense for H and G to be the sets of all possible hypotheses corresponding to
their respective type signatures, since there may still be unfair hypotheses available
to an adversary in H but not in G ◦ f . Our results are stronger if we are able to
restrict an adversary who is optimally unfair.

Our analysis has revealed that a good representation function f also depends on
the probability distribution and loss function used in the supervised learning prob-
lem. We conclude that there is no such thing as a universally useful representation
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function. This context dependence is reminiscent of the notion of compatibility be-
tween an hypothesis class and a probability distribution, which was introduced in
the analysis of semi-supervised learning [Balcan and Blum, 2010].

8.2 Methodological Insights

This thesis has considered the theoretical foundations of representation learning
across several distinct settings. There were several common aspects of our method-
ology in each case. In particular, problem specification, dependence on assumptions and
modularity each played a role.
Problem specification: A wide range of techniques are used in machine learning. But
it is important to first clearly state the problem that is being solved. In the cases
of unsupervised representation learning (Chapter 2), learning transferrable repre-
sentations (Chapter 3) and fair representation learning (Chapter 4), we formalized
the definitions of successful representation learning before examining the conditions
under which such definitions could be satisfied.
Dependence on assumptions: In constructing examples where particular forms of rep-
resentation learning were provably useful, we had to introduce assumptions. In our
example where unsupervised representation learning is useful we required a set of
relationships between the representation function class, the hypothesis class, and the
joint and unlabeled probability distributions (Chapter 2). Similarly, in our example
where transferring representations is useful we considered particular classes of two-
layer neural networks, and source and target tasks with related distributions (Chapter
3). We cannot expect unsupervised or transfer representation learning to always be
useful. However, it is interesting to note that in practice these techniques have been
found to be effective even when it is not clear that such assumptions have been met
[Hinton and Salakhutdinov, 2006; Mikolov et al., 2013; Yosinski et al., 2014; Donahue
et al., 2014]. In these cases, there are other aspects of the problem setting which
we have not considered in our analysis – for example, the use of gradient-based op-
timization techniques, and regularities in particular kinds of domain-specific data
– which may play a role in the success of unsupervised and transfer representation
learning techniques, but about which we do not yet have a theoretical understanding.
Modularity: Modularity is an important principle in systems design, including in
software engineering [Pressman, 2005]. Rather than solving a complex problem in
one attempt, we instead decompose it into several components which are more man-
ageable. The motivation for representation learning is similar – while our ultimate
objective is solving a supervised learning problem, learning a new representation of
the input is a first step. However, modular optimization is suboptimal compared to
global optimization, in the same way that a greedy algorithm is suboptimal com-
pared to the global solution. A security benefit of modularity is that user access
can be limited to certain required system components, as we saw in the case of us-
ing representation learning to restrict an adversary in Chapter 4. The perspective of
modularity helps us to understand both the advantages and disadvantages of repre-
sentation learning as an approach to supervised learning problems.
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8.3 Issues in Applying Representation Learning to Fairness

During the course of writing this PhD, fairness in machine learning dramatically in-
creased its profile as an issue in public debate, in the academic community and in
industry. Symptomatic of this trend, several of the world’s largest technology com-
panies released open source fairness toolkits, including IBM’s AI Fairness 360 and
Google’s What-If Tool.1 This thesis has considered applying representation learning
to fairness, both from a theoretical perspective (Chapter 4), and in practice in the
contexts of predicting recidivism in the criminal justice system (Chapter 6) and stu-
dent outcomes at university (Chapter 7). It is of interest to consider issues associated
with implementing such techniques in practice.

A central issue is how fairness is quantitatively defined. Chapter 4 showed that
fair representation learning may improve group fairness, while simultaneously nega-
tively impacting individual fairness. Furthermore, there are multiple possible defini-
tions of group fairness, including several parity-based definitions. We may look at
the difference in outcomes between groups (statistical parity) or the ratio of outcomes
between groups (disparate impact). We also face a choice whether to condition these
measures on some variable – for example, conditioning on the target variable we
have equalized odds. Chapter 5 showed that there are hard trade-offs between equal-
ized outcomes and equalized odds. We are unable to satisfy certain combinations
of fairness definitions, regardless of whether we use fair representation learning. In
practice, we must pick particular fairness definitions and recognize that they may
represent the interests of certain stakeholders.

Representation learning for fairness raises issues of interpretability and trans-
parency. In machine learning, it is common to convert an input vector into a feature
vector via a representation function, and then use the feature vector to make predic-
tions. A data point may be represented as a new point in a representation space that
may be different from the original space, or even as a distribution over points if the
representation function is stochastic. This method, which as we have seen may help
to achieve some fairness objective, may also make it harder to interpret the reasons
behind the algorithm’s decisions. This kind of interpretability is beginning to be de-
manded by regulators, such as the ‘right to an explanation’ included in the European
Union’s General Data Protection Regulation (Recital 71 and Article 13, 2f of [Euro-
pean Union, 2016]). It is unclear what the public reaction will be to the identity of
an individual being represented inside an algorithm as a vector which is not readily
interpretable. This public reaction will have to be considered in the practical roll-out
of such approaches.

The role of trust – and its absence – was highlighted in our analysis of applying
representation learning to fairness. In Chapter 4, we saw that there are different
routes to achieving fairness in the context of a trusted data user, i.e. fair classification,
and in the context of an untrusted and potentially adversarial data user, i.e. fair rep-
resentation learning. We introduced the notion of the cost of mistrust, which formalizes

1Accessible at https://developer.ibm.com/code/open/projects/ai-fairness-360/ and https://pair-
code.github.io/what-if-tool/ respectively.
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the price paid in terms of the accuracy-fairness trade-off available if the data user is
not trusted, relative to the case of a trusted data user. This echoes findings about the
role of trust in economics: trust reduces transaction costs, and without it, economic
activity may be stifled [Algan and Cahuc, 2010; Gould and Hijzen, 2016]. While mis-
trust incurs a cost, in the scenario of data release to many parties, the assumption
that a data user cannot be trusted to be fair may be inevitable. This would bring
fairness in machine learning in line with other machine learning problem settings
where users are not trusted, such as privacy-aware learning [Wainwright et al., 2012]
and adversarial machine learning [Huang et al., 2011].

8.4 Future Work

In the course of conducting the research contained in this thesis, many interesting
directions for future work have emerged. These are summarized below within the
subject areas of representation learning and fairness in machine learning.

8.4.1 Representation Learning

We have considered representation learning as a tool in supervised learning prob-
lems. Representation learning promises a more principled alternative to feature ex-
traction by humans. Feature extraction is particularly common with structured data
which is not in the matrix form expected by a standard classifier, such as data from
sequences, graphs, or several joined tables in a relational database. Representation
learning has been applied to such structured data, such as time series data [Längkvist
et al., 2014; Keogh and Pazzani, 1998]. An interesting direction is to formally inves-
tigate the role of representation learning in such cases.

Of particular interest is the formal analysis of learning representations of dis-
crete entities, from data about the relationships between those entities. Entities are
naturally represented using a one-hot code. Hinton [1984] proposed moving to ‘dis-
tributed’ vector representations, where aspects of the representation of an entity are
shared with other entities. Where the entities are words, for example, embeddings
can be found which place words that frequently co-occur nearby in the vector space
[Mikolov et al., 2013; Turian et al., 2010]. The success of such an approach rests on
the distributional hypothesis, i.e. that co-occurring words tend to be semantically simi-
lar, or in other words ‘you shall know a word by the company it keeps’ [Firth, 1957].
In social network analysis, the entities are people and their embeddings are learned
from a graph of their relationships – here the analog of the distributional hypothesis
is homophily, i.e. people connected to each other tend to have more similar tastes
[Tang and Liu, 2011; Perozzi et al., 2014]. A comparable approach can be used to
learn representations of entities from a bipartite graph – such as the graph of user
ratings about movies – and is common in recommender systems [Menon and Elkan,
2010].
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Given the ubiquity of representation learning of entities from relational data,2 it
would be interesting to formalize the conditions under which such techniques work
well. We speculate that it may be possible to formalize the distributional hypoth-
esis and quantify it along a spectrum between ‘public’ and ‘private’ behaviors, i.e.
different types of behaviors may be more or less influenced by the behaviors of neigh-
boring entities. Such a formalization would be of interest both from technical and
sociological perspectives. A related question is the value of learning representations
of entities, as compared to a distance metric between entities, and the extent to which
the two notions are equivalent.

Representation learning is also at the heart of broader topics in machine learn-
ing and artificial intelligence. We intuit that the brain is capable of forming abstract
representations of the world, including from unlabeled data. Should we be learning
more about how [Fong et al., 2018], in order to guide research on machine learning?
An example of this approach is research which identified how faces are encoded in
the brains of macaques [Chang and Tsao, 2017]. Representation learning is an im-
portant part of the move towards automated machine learning (AutoML3), where the
design choices involved in setting up a machine learning system are automated, in
addition to standard learning of parameters. AutoML systems aim to make deci-
sions of the kind that human designers typically make at present: choosing not only
the representation of the data, but also the learning algorithm, the data collection
process, and the infrastructure on which the system runs. Can we provide a math-
ematical formalization of AutoML, and the conditions under which it works well,
more generally?

8.4.2 Fairness in Machine Learning

Fairness in machine learning is a growing field with many open research questions
of interest. Among these, there are questions about fairness definitions, about the
relationship between privacy and fair representation learning, and about the fairness
implications of generalizing from data.

Fairness definitions: Definitions of fairness have been studied well before the current
surge of interest in fairness in machine learning [Hutchinson and Mitchell, 2019].
Engaging with a breadth of issues associated with defining fairness – from a range
of disciplines including law and philosophy – will be central to the next steps in the
field of fair machine learning. Here are four particular directions of interest.

1. Multiple groups. The analysis in this thesis has focused on the case of ensuring
fairness where there are two distinct groups, i.e. the sensitive variable is binary.
However, in many realistic applications there are more than two groups, or
group membership may be continuous or probabilistic. Furthermore, a person
may be a member of multiple groups, as analyzed via the notion of intersection-

2An example of their popularity is the NeurIPS 2018 workshop on Relational Representation Learn-
ing (see https://r2learning.github.io/).

3See https://www.automl.org/ and https://cloud.google.com/automl/ for examples.
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ality. Researchers have begun to consider this problem setting [Williamson and
Menon, 2019; Kearns et al., 2018; Hebert-Johnson et al., 2018] and we expect that
considering both fair representation learning and fairness impossibility results
would be interesting in these cases.

2. Conditioning variable. The difference between equalized outcomes and equal-
ized odds is that the former involves parity between groups overall, while the
latter involves parity between groups conditioned on the target variable. It is
possible that past data about the target variable is either not available (e.g. in
the context of a hiring decision, it is not clear what the definition of the target
should be), or affected by historic injustice or structural inequality. What about
the case where it is possible to quantify the extent to which the target variable
is observed or corrupted? Can we develop a principled interpolation between
equalized outcomes and equalized odds?

3. Relative vs absolute errors. Equalized odds is far from the only possible mea-
sure of fairness, and has the downside that it is concerned only with relative
error rates between groups rather than absolute error rates [Corbett-Davies and
Goel, 2018]. What are the properties of possible variants, such as the abso-
lute error rate among the group for which the algorithm has the highest error
[Williamson and Menon, 2019]? Is it possible to apply concepts from finance
– such as the Sharpe ratio for measuring risk adjusted returns [Sharpe, 1994],
which trades off absolute returns and variation in returns over time – to the
problem of trading off absolute error and variation in error across groups?

4. Process fairness. If a sensitive variable can be discerned from other variables,
could it be acceptable to consider those other variables but not acceptable to
consider the sensitive variable in a decision-making process? The two may be
equivalent from a mathematical perspective, but perceived as distinct by so-
ciety. More generally, can the legal idea of certain kinds of evidence being
admissible and others not [Murphy, 2007] be extended to the context of algo-
rithmic decisions? It would be interesting to incorporate human perceptions of
process fairness into quantitative definitions of fairness, building on emerging
work on this topic [Grgic-Hlaca et al., 2018].

Privacy and fair representation learning: Methods which alter data to preserve privacy
have much in common with fair representation learning. In both cases the intent
is to obscure some aspect of the data from an adversary, while preserving other
useful information. It would be interesting to investigate the relationship between
fairness metrics and differential privacy, which requires that summary statistics from
a dataset are not too different, whether or not an individual record is included in the
dataset [Dwork, 2008]. Techniques from privacy preserving data publishing [Fung et al.,
2010] – where data is published with noise added, or is synthetically generated – may
be applicable to fairness. Definitions such as k-anonymity (each individual’s record
is indistinguishable from k other records) and l-diversity (each released group of
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records is aggregated from a diverse range of records) may also have interpretations
as fairness metrics. There is scope to bring insights from the fields of privacy and
fair representation learning together, allowing techniques and definitions developed
in one research area to be applied to the other.

Fairness implications of generalizing from data: A final topic of interest is understanding
the implications for fairness of generalizing from past data. The process of general-
izing from past data is at the heart of what machine learning systems do: as such,
it cannot readily be excised. When it is acceptable to make predictions or decisions
about someone on the basis of generalizations from the past behaviors of others? For
example, recalling the case study on predicting student outcomes at university from
Chapter 7, is there a difference between using this approach for targeted support
as compared to university admissions decisions? Will the generalization process on
which machine learning algorithms depend be perceived as objectionable to broader
society in some contexts, and lead to a popular backlash? As machine learning is
deployed to make or inform an increasing number of important decisions about peo-
ple’s lives, a key challenge – for researchers, industry practitioners, regulators, and
society more broadly – is determining in a principled way the contexts where the
algorithmic process of generalization can appropriately be used.

To understand the fairness implications of algorithmic generalizations from data,
it is useful to consider similar generalizations made by humans. The concept of a
stereotype has been defined as “an individual’s set of beliefs about the characteristics
or attributes of a group” [Judd and Park, 1993], which in many cases is informed
by past data. Stereotypes can help individuals to explain trends they observe across
groups [Campbell, 1967; McGarty et al., 2002] and are not necessarily inaccurate [Lee
et al., 1995] – although they can be, and the term ‘stereotype’ carries a connotation
of potential inaccuracy.4 Analogously, we may view an algorithm’s beliefs about the
characteristics or attributes of a group – often based on generalizations from past
data – as an algorithmic stereotype. These beliefs can be probabilistic in nature and
measured in terms of observable behavior: for example, “members of group A are
twice as likely on average to exhibit a certain behavior compared to members of
group B”.

Existing typologies of stereotype inaccuracy can help to analyze the effect of al-
gorithmic stereotypes on particular groups. One possible distinction [Judd and Park,
1993] is between stereotypic inaccuracy – where the belief is inaccurate with respect to
the average behavior of individuals in the group – and dispersion inaccuracy – where
the belief does not take account of within-group differences. Our results in Chapter
5 showed that if, for each group, the average outcomes predicted by an algorithm
equal the average observed outcomes – i.e. stereotypic inaccuracy is not present –
the algorithm also tends to make less accurate predictions about individuals who are

4An alternative definition of ‘stereotype’, taken from the Cambridge Dictionary, captures this po-
tential inaccuracy explicitly: “a set idea that people have about what someone or something is like,
especially an idea that is wrong” [O’Shea and Waterhouse, 2012]. A proposed definition of ‘stereo-
type’ from an influential earlier work [Allport et al., 1954] – “an exaggerated belief associated with a
category” – insists upon the inaccuracy of stereotypes, as opposed to objective “group traits”.
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atypical of their group – i.e. dispersion inaccuracy is present. Drawing upon the
literature on stereotypes is a promising direction for understanding the implications
for fairness of algorithmic decision-making.
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