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Abstract

Over the past two decades, multicomponent lattice-Boltzmann (LB) modelling has
become a popular numerical technique to study the porous medium systems. For this
technique to become a mature platform at a production level and to solve realistic
problem that can be readily incorporated in the digital core analysis services for the
oil and gas industries, there are still some challenges to resolve. This thesis intends to
resolve some of issues confronted by the LB community. The first part of the thesis
investigates the impact of the fundamental trade-off between image resolution and
field of view on LB modelling. This is of practical value since 3D images of geological
samples rarely have both sufficient resolution to capture fine structure and sufficient
field of view to capture a full representative elementary volume of the medium. To
optimise the simulations, it is important to know the minimum number of grid points
that LB methods require to deliver physically meaningful results, and allow for the
sources of measurement uncertainty to be appropriately balanced. We choose two
commonly used multicomponent LB models, Shan-Chen and Rothman-Keller models,
and study the behaviour of these two models when the phase interfacial radius of
curvature and the feature size of the medium approach the discrete unit size of the
computational grid. Both simple, small-scale test geometries and real porous media
are considered. Models’ behaviour in the extreme discrete limit is classified ranging
from gradual loss of accuracy to catastrophic numerical breakdown. Based on this
study, we provide guidance for experimental data collection and how to apply the LB
methods to accurately resolve physics of interest for two-fluid flow in porous media.
Resolution effects are particularly relevant to the study of low-porosity systems, in-
cluding fractured materials, when the typical pore width may only be a few voxels
across. The second part of the thesis explores the two-fluid displacement mechanism,
especially the Haines jump dynamics and associated snap-off during drainage, by us-
ing a novel flux boundary condition, which is numerically more stable, and can more
realistically replicate experiments given a prescribed capillary number. Irreversible
events such as Haines jump in multiphase flow is what ultimately determines the hys-
teric behaviour of the porous medium systems. The high temporal resolution of LB
methods makes it a suitable candidate to capture the dynamics of fast events (e.g.
Haines jump in millisecond). We study the impacts of both the geometries of porous
medium using persistent homology and the dynamic factors of fluids (i.e. viscosity
ratio and capillary number) on the occurrence and frequency of snap-off events during

drainage.
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Chapter 1

Introduction and Background

1.1 Background

Immiscible two-phase fluid flows in complex porous media are ubiquitous in nature
and industrial applications, and underlay the transport of groundwater, enhanced oil
and gas recovery, the chemical contaminant spreading in the vadose zone, and carbon
dioxide (COg) sequestration, to name but a few. The phase distributions during flow
depend on the intrinsic pore space structure, on the wettability of the solid phase,
and on the external forcing. For the subsurface flow in particularly, the interplay of
three major forces, gravity, capillary, and viscous forces, gives rise to a wide range of
macroscopic displacement patterns, which can be classified typically in phase diagrams
of flow regimes (Lenormand, Touboul, and Zarcone, 1988; Zhang et al., 2011), or more
recently, be characterised based on the Minkowski functionals (Schliiter et al., 2016;
Herring et al., 2018; McClure et al., 2018). Understanding the physical fundamentals
that govern the various displacement patterns is critical for the practical industrial
applications since different flow processes can then be engineered to suit different
needs, such as enhanced oil recovery or maximised carbon dioxide storage. Such study
via various experiment techniques can be very expensive as it requires very specialised
laboratory equipment, and also time-consuming, e.g. acquisition of the drilled core
samples usually takes 0.5~1 year, and a full special core analysis may take another
year for applications in oil industries (Alpak, Berg, and Zacharoudiou, 2018).

On the other hand, the modelling and associated simulations of immiscible mul-
tiphase fluid flows in porous media have also been extensively explored over the
past three decades, The advent of X-ray micro-tomography (uCT) imaging, a non-
destructive 3D microscopy technique enables the full micro-structure of porous ma-
terials to be imaged with very high fidelity from the micron to the centimetre scales
(Wildenschild and Sheppard, 2013). This is possible at both laboratory instruments
and at synchrotron beam-lines; at the latter, it is now possible to capture the dy-
namics of fluid transport within the porous micro-structure at a time resolution of
better than one second (Berg et al., 2013; Lovric et al., 2016). Even at laboratory
facilities, both the rock micro-structure and the fluid distributions can be imaged
with sufficient clarity to measure fluid-fluid interfacial curvatures and contact angles
(Armstrong, Porter, and Wildenschild, 2012; Andrew, Bijeljic, and Blunt, 2014). As
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a consequence of these recent enormous increases in imaging capabilities and even
more striking advances in computational capabilities (further accelerated since 2005
through general purpose graphical processing unit (GPGPU) computing), direct nu-
merical simulation of multi-fluid transport can be carried out with sufficient resolution
and accuracy, and can be validated against some experiment (e.g. (Armstrong et al.,
2016)).

However direct numerical simulation in complex heterogeneous geologic materials
presents numerous challenges, particularly when one considers the difficulty of solving
the underlying Navier-Stokes equations. Various modelling techniques have therefore
been applied to the study of flow in porous materials, ranging from the conventional
fluid dynamics methods (e.g. the volume-of-fluid method (Gueyffier et al., 1999;
Pilliod and Puckett, 2004) and the level-set method (Osher and Sethian, 1988; Osher
and Fedkiw, 2003; Prodanovic and Bryant, 2006) to the percolation-based pore-scale
network models (Pereira et al., 1996; Bakke and @ren, 1997; Knackstedt, Sheppard,
and Sahimi, 2001; Blunt, 2001; Caubit et al., 2009; Blunt et al., 2013)) and the
phase-field method (Jacqmin, 1999; Yue et al., 2004). The most popular approach,
however, is the lattice-Boltzmann (LB) method, whose most pronounced capability
is to almost immediately deal with uCT data sets, whereas other above-mentioned
methods generally need pre-processing such as meshing of boundaries between solid
and pore. Several review articles on single-/multiphase LB methods can be found, for
example in Benzi, Succi, and Vergassola (1992), Chen and Doolen (1998), Lallemand
and Luo (2000), Aidun and Clausen (2010), Chen et al. (2014), and Liu et al. (2016).
LB methods are advantageous for solving multicomponent fluid flows in porous media
with complex boundary conditions, and straightforward to implement in a scalable
parallel manner (e.g. numerous works done on the parallel CPU: (Hou et al., 1995;
Amati, Succi, and Piva, 1997; Kandhai et al., 1998; Krafczyk et al., 1998; Pohl
et al., 2004; Pan, Prins, and Miller, 2004; Chopard et al., 2010)), particularly on
GPU hardware (Tolke and Krafczyk, 2008; Bernaschi et al., 2010; Habich et al., 2011;
Obrecht et al., 2013; Januszewski and Kostur, 2014; McClure, Prins, and Miller, 2014;
Alpak et al., 2018).

Over the past two decades, there has been a large body of work on applying multi-
phase LB models in porous media. For example, Martys and Chen (1996) implemented
a Shan-Chen (SC) multicomponent LB model to perform drainage and imbibition in
the uCT image of a Fontainebleau sandstone, and determined the relative permeability
curves favourably with the experimental data; Schaap et al. (2007) also applied Shan-
Chen multicomponent LB model to observed computed uCT data from water-air and
water-Soltrol displacement experiments in a glass bead porous system, from which a
good agreement between simulated and observed water-air pressure-saturation char-
acteristics was found. More works on using Shan-Chen-type multiphase LB models
can be found for example in Pan, Hilpert, and Miller (2004), Sukop and Or (2004), Li,
Pan, and Miller (2005), Harting et al. (2005), Sukop et al. (2008), Porter, Schaap, and
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Wildenschild (2009), and Parmigiani et al. (2011). T6lke et al. (2002) have success-
fully applied Rothman-Keller-type multicomponent LB model to the water-air flow
in a waste-water batch reactor and the saturation hysteresis effect in soil flow, and
obtained qualitative agreement compared to the experiment. Additional work that
relies on Rothman-Keller-type LB models can be found for example in Vogel et al.
(2005), Ahrenholz et al. (2008), Ramstad, @ren, and Bakke (2010), Liu et al. (2014b),
Liu, Zhang, and Valocchi (2015), and McClure et al. (2016). The free-energy based
multicomponent LB models have also been under extensive research on exploring the
displacement patterns and the potential prediction of relative permeability, such as
the work by Zacharoudiou and Boek (2016), Zacharoudiou et al. (2017), Zacharoudiou,
Boek, and Crawshaw (2018), and Alpak, Berg, and Zacharoudiou (2018).

1.2 Research Questions

Despite much progress, the most critical question that still remains open for debate
is whether the multiphase lattice-Boltzmann modelling can give accurate and reliable
pore-scale results; in other words, can it serve as an alternative and robust technique,
and provide parallel insight compared to laboratory core analysis. To be more specific,
we expand this critical question into several concrete sub-questions, to exemplify the

requirement of accuracy and reliability:

e can LB model replicate the experimental boundary conditions to mimic the

drainage and imbibition processes accurately and be numerically stable 7

e what is the consequence and how accurate would be the simulation results, if
using different sets of LB parameters to match the same physical conditions, i.e.
both the (experimental) boundary pumping rates and the fluid properties (e.g.
interfacial tension and viscosity). This question is raised because, in practice,
it always involves a trade-off between the computation time and the size of
domain. Different sets of LB parameters can lead to different LB temporal
resolution (i.e. physical time per LB iteration), thus different simulation time,
given the same physical condition being matched, and this has a significant

impact on the computation efficiency.

e the question above naturally leads to a more concrete issue: what is the impact
of different LB temporal resolution on the ultimate simulated flow patterns and
fluid distributions, especially for the fast pore-scale phenomena such as Haines
jumps and snap-off, for which the current experimental techniques have difficulty

in fully capturing the detailed dynamics (mainly due to the CT acquisition time).

e given the ‘notorious’ interfacial spurious velocity in all of the current multi-
component LB models, which is a long-standing unresolved problem despite
numerous research attempting to eliminate such velocity, how is the interface
movement affected by the spurious velocity and can LB modelling still capture

the right physics 7
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Besides the important questions above, another pragmatic question needs to be
answered before the LB methods can be qualified as a robust numerical tool is how
well LBM can cope with the low-resolution pCT images. This is also critical because
3D images of geological samples are invariably a compromise between resolution and
field of view, and if we want to better characterise the multiphase system (porous
media plus fluids) to include more heterogeneity, simulations with lower image reso-
lution could be the easiest and most straightforward approach. An uCT image with
coarsened resolution by a factor of 2, corresponds to a shrinkage of total simulation
domain by a factor of 8, which would save thousands of hours of computation time’.
Therefore, it is of importance for researchers to be aware whether the image resolution

coarsening will render the LB simulation results erroneous and possibly meaningless.

1.3 Research Objectives

The research presented here attempts to answer the important questions listed above
to advance our understanding of multiphase lattice-Boltzmann modelling in practical
applications. The specific objectives of this work are as follows, which also correspond

to the sequence from Chapter 3 to 5:

1. Study the fundamentals of multicomponent LB models in terms of computa-
tional efficiency at low-resolution limits. The investigation is exclusively focused
on the capillary-dominated flow in porous media. This objective is accomplished
in Chapter 3:

e to implement a variety of small-scale, simple-geometry, both static and dy-
namic tests, using either periodic or constant-pressure boundary condition

with SC and RK models;

e to develop testing cases at low resolution limits to illustrate problems in
the traditional LB models, which can also be used as benchmark study for

any novel LB models;

e to characterise two models’ different breakdown behaviours ranging from
gradual loss of accuracy to catastrophic numerical instability at the reso-

lution limit; and

e to conclude both qualitatively and quantitatively the consequences of the
models’ breakdown behaviour and to discuss the ramifications for larger-

scale simulations of fluid displacements in porous media.

2. Following the first objective, the influence of the wetting boundary condition
(independent of resolution) is studied separately in Chapter 4. The conse-

quence of implementing the widely used surface-energy-type wettability model

!Such pCT image coarsening may involve some complicated segmentation rules, and whether a
voxel after coarsening becomes a fluid or solid node will depend on the specific image processing
techniques; an alternative approach is to implement a greyscale lattice-Boltzmann method (e.g.
Pereira (2016)) for images with unresolved regions.
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in drainage simulation in a Bentheimer sandstone pCT image has been explored.
A new energy-based wettability model (still preliminary) is proposed to poten-
tially overcome the breakdown caused by the existing model, but future work is

needed to validate the proposed model.

. Investigate the influence of the spurious velocity (present at fluid-fluid and fluid-

solid interfaces) on the interfacial movement, using the state-of-the-art multi-
relaxation-time colour-gradient based multicomponent model. Both drainage
and imbibition processes have been studied, and the associated error is quanti-

tatively analysed.

. Explore the influence of temporal resolution of LB models on the flow patterns

and fluid distributions, by using different sets of LB surface tension parameters,
but still mapping to the equivalent macroscopic physical system (i.e. charac-
terised by same dimensionless fluid mechanic number such as Reynolds number,

capillary number and viscosity ratio).

. Perform a series of drainage simulations under various reservoir conditions to

study the Haines jump dynamics and snap-off which is caused by some of Haines
jumps. The interfacial velocity profiles of the Haines jumps that lead to snap-
off are measured, and the correlation of the peak jump velocity to the invad-
ing/defending fluid properties is discussed qualitatively. We characterise the
snap-off events according to the pore body filled by the snapped-off ganglion
and the throat where the invading phase breaks, by a novel geometry-topology
analysis via persistent homology, and we summarise some geometric signatures
shared by the frequent snap-off sites. The objective of this work is accomplished
in Chapter 5.






Chapter 2

Background Theory of
Lattice-Boltzmann Method

Fluid flow is simply a branch of transport phenomena in our everyday life, which
can be described in general by the transport theory. A transport process involves
temporal and spatial evolution of large amount of particles in certain medium, thus the
physical foundation of the transport theory is statistical mechanics. When a system
is in equilibrium, the motion of individual particles does not change the macroscopic
state of the system. Therefore, the study of transport theory is within the regime of
non-equilibrium statistical mechanics. More specifically, the study of transport theory
can be loosely categorised into three levels: microscopic, mesoscopic, and macroscopic
levels (Huang and Ding, 2008). In the context of this thesis which aims at solving
the fluid flow problems, the governing equations at these three levels are the Liouville
equation, the Boltzmann transport equation (BTE), and the Navier-Stokes equation
(NSE), respectively (Groot and Mazur, 1984; Huang, 1987; Kardar, 2007).

On the microscopic level of description, the acquisition of the Liouville equation
starts from the fundamental classical equations of motion, i.e. Hamiltonian mechan-
ics. It is an equation of the phase density, and states that the phase density behaves
like an incompressible fluid (Kardar, 2007), where the phase space for a system of
N weakly-coupled particles, is a 6 N-dimensional space consisting of 3V spatial coor-
dinates and 3N momentum components, and a point in such phase space indicates
a microstate of the system. Going from the Hamiltonian canonical equations to the
Liouville equation, it is the starting point of the statistical mechanics; however, the
full phase space density, for which the Liouville equation is solved for, still contains
much more information than necessary for description of equilibrium properties of the
system. The Liouville equation can be reduced to the Boltzmann transport equation
by an iterative mathematical treatment, which is called BBGKY hierarchy of equa-
tions; this reduction process migrates the microscopic description to the mesoscopic
description, and involves a set of approximations. The above ‘workflow’ is well within
the regime of classical statistical mechanics which can be found in many standard
textbooks, such as Huang (1987) and Kardar (2007), or in the relevant monographs
(Harris, 2004; Cercignani, 1988), to name but a few.

On the macroscopic level of description, the Navier-Stokes equation describes the
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motion of viscous fluid substance, which arises from applying Newton’s second law to
fluid motion. Since both Boltzmann transport equation and Navier-Stokes equation
can be used to describe the same system, it leads naturally to the question of what the
correlation is between the two descriptions. The Chapman-Enskog analysis bridges
the theoretical gap between the two, and provides an effective way of correlating the
macroscopic transport coefficient (e.g. viscosity) in NSE to the molecular counterparts
described in BTE, and in fact, it can be shown that NSE can be recovered by per-
forming the Chapman-Enskog analysis on BTE, subject to a series of approximations
(Chapman, Burnett, and Cowling, 1970).

The Lattice-Boltzmann method (LBM) comes into place as a special discretised
form of BTE, therefore LBM is also a mesoscopic approach of modelling viscous fluid
flow. More details on the historical aspect of LBM can be found in the following
sub-section. The rest of this chapter is arranged as follows: first, the discretisation of
BTE into LBM is introduced; since BTE is usually in the physical units and LBM is
in the so-called lattice-Boltzmann units, we integrate the discussion of physical unit
mapping and mathematical discretisation together; then two major branches of LBM,
i.e. single-relaxation-time (SRT) and multi-relaxation-time (MRT) LB models are
introduced, and for the latter branch, how NS equation can be recovered from LB

equation via Chapman-Enskog analysis is discussed in detail.

2.1 Fundamentals of Lattice-Boltzmann Methods

Overview

In this section, the fundamental theory of the lattice-Boltzmann method (LBM) is
introduced. It is now known that LBM is a special discretised form of the Boltzmann
transport equation (He and Luo, 1997). Historically, however, it originates from the
lattice gas automata (LGA) method (Frisch, Hasslacher, and Pomeau, 1986; Wolfram,
1986), which simulates the behaviour of interactions of many single particles by a set
of simple rules on a lattice grid. For each time step of the simulation, those parti-
cles perform consecutive “collision” and “advection” steps over discrete lattice mesh.
While the LGA has shown potential for simulating multiphase fluid flow (Rothman
and Keller, 1988; Rothman, 1988), it has been criticised due to its lack of Galilean
invariance and its large statistical noise. LBM is proposed to overcome these limita-
tions. Rather than modelling individual particles, it considers a particle distribution

function f¥(z,t), which is governed by the lattice Boltzmann equation
@+ &b, t +6,) — [ (@, 1) = Qf (2, 1), (2.1)

where ff(a:, t), in a multicomponent system, represents the probability to find the ky,
fluid component at location & and time ¢, moving in the direction corresponding to
&;. O; is the discrete lattice time step, and Qf(m,t) is the collision operator for the

kgp, fluid that transfers momentum between components of the lattice velocity vectors.
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The velocity vector is discretised into a set of lattice velocity vectors &;. In this
work, we implement the D3Q19 lattice model that corresponds to a three-dimensional
lattice with 19 velocity vectors &;, i = 0,1, ...,18 (Qian, d'Humiéres, and Lallemand,
1992). The choice of different number of discretised velocity sets is of course a trade-
off between the model accuracy and the computation load, and there are many other
available lattice structures, such as D2Q9, D3Q13, D3Q15, and D3Q27 (d’Humiéres,
Lallemand, and Frisch, 1986; Qian, d’Humiéres, and Lallemand, 1992; Chen et al.,
1992; d’Humiéres, Bouzidi, and Lallemand, 2001).

The most commonly used collision operator in the LB methods is based on the
BGK approximation (Bhatnagar, Gross, and Krook, 1954; Qian, d’Humiéres, and
Lallemand, 1992; d’Humiéres, 1992), for which the process of the non-equilibrium
distribution evolving towards the local equilibrium state is characterised by a set of
relaxation time parameter 7; for each ka This naturally gives the so-called multiple-
relaxation-time model with each 7; being set individually, whereas in the single-
relaxation-time model a single value is assigned to all 7;.

For the rest of the section, we present a detailed account of the derivation of
the lattice-Boltzmann equation 2.1 from the continuum Boltzmann transport equa-
tion, primarily based on the theoretical framework proposed by Shan, Yuan, and Chen
(2006). Shan et al. formalised the framework by developing a systematic discretisation
procedure of the continuum Boltzmann-BGK equation, to obtain the Navier-Stokes
hydrodynamics and those beyond. We adapt the framework by incorporating the
physical-to-LB unit conversion scheme to make it more self-consistent from a prag-
matic perspective. In the following section 2.2, a practical procedure of setting up LB

parameters to match certain experimental conditions is then introduced.

Derivation

In the three-dimensional space, we consider x as the Cartesian coordinates and & as the
coordinates in the velocity space. The continuum Boltzmann-BGK equation which
determines the evolution of the single-particle distribution function f,(xy,&p,t,) is
given as:

O, fp+ & - Vplp+ G- Veplp = _Tlp[fp_f;q}v (2.2)
where the subscript ‘p’ denotes that the quantity is in the physical unit, v, is the
spatial gradient, V¢, is the gradient in the velocity space, g is the acceleration due
to the body forces, and 7, characterises the relaxation time of the collisions to equi-
librium. For the following derivation, the body force will be neglected for simplicity.
fp? represents the local equilibrium distribution, i.e. so-called Maxwell-Boltzmann
distribution, which is given by:

)2
[ =mpny (27;2) exp [—M] , (2.3)
5.p
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where D is the dimension of the domain, m,, is the molecular mass of fluid particle,
n, is the number density, u, is the macroscopic fluid velocity, and ¢, is the speed of
sound in the fluid. In practice, to perform LB simulation, one is usually given a set
of uCT images of rock samples as the simulation domain. One of the most important
property of a puCT image is the resolution h, for instance, in pm/l.u., where [l.u.
is short for lattice unit, which is the basic spatial unit in LB simulations. The two
fundamental relations between the physical spatial coordinates and physical time scale

and their counterparts in LB units are:

:Iip = thB, (2.4&)
t

\/gtLBa

where &y p isin l.u., t g is in lattice time (l.t), i.e. the iteration step in LB simulations,

ty = (2.4b)

and 0t,, is the time converting factor in s/l.t.. The factor of v/3 in the time relation
is a consequence of projecting the regular LB lattice onto the Hermite basis when
discretising the continuum Boltzmann equation, which will become more clear later.

Given the relations in equation 2.4, the coordinate of the velocity space and the

macroscopic velocity in physical units can be related to their LB counterparts as:

h

£p = g\/ggLBa (2-53)
p

u, = i\/§uLB, (2.5b)
5ty

where the macroscopic velocity in LB unit wyp is always given by urp = xrp/trp.
Based on the fundamental unit conversion relation, the equilibrium distribution func-

tion in physical unit can be expressed in terms of its LB counterpart as:

z )2
f;q(wp’sp7tp) = Mpnyp <1> exp |:_(£pup):|

2 2
2me 2c; ),

B 1 ] g <5tp>D exp [_ (V3€Lp — \/gULB)Q
)2

ng
=MOMLBT/NLB | ———3 >
h LW (\/gcs,LB h 2 x (ﬁcsyLB)

otb
= monolﬂ%fz%(wL& V3¢rp,tLB),

(2.6)
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where the equilibrium distribution function in LB unit is given by:

1] : exp !_ (V3€en — \/guLB)zl
27 (ﬁCS’LB)2 2 % (\/ng,LB)2

D
V3 2mel 1 2% 1

1 D
- <\/§> 13(®LB, €08 tLB)-

5% (xLp, V3€Lp,ts) = mLnLp [

(2.7)

The molecular mass m,, is related to its LB counterpart by m, = momp, where
my is a dimensionless scaling factor, and mpp is usually taken as 1.0 kg. Similarly,
the number density in physical unit is related to its LB counterpart by n, = Z—Bn LB,
where ng is another dimensionless scaling constant. The LB speed of sound is given
by ¢sp = \/gh/étpcs,LB. However, according to the LB literature, the LB speed of
sound is simply 1/+/3 l.u./l.t. for commonly used LB lattice structures such as D2Q9
and D3Q19. This apparently does not make any physical sense, since ¢, is likely
to not resemble any of actual physical systems given that the image resolution is a
completely independent quantity. Therefore, Nourgaliev et al. (2003) called ¢, 15 the
“pseudo-sound-speed" to reflect the inherent artificiality in the LB models. Likewise,
the LB mean collision time 77,5 in equation 2.9 also carries an artificial meaning. In
the later part of the section it will be shown why ¢, ;5 must be 1/\/§ lu./lt..
Overall, the conversion of the distribution function between physical and LB units
are given as:
D
fo(@p, &p tp) = TnO:ZOD(StI)fLB(mLB, V3€LB,tLB)
— M f (:I: f t ) (2.8)
= (\/§)Dh2D LB\TLB,&LB,tLB)-
The corresponding continuum Boltzmann equation (neglecting the acceleration due

to body forces) in LB units is then given by:

OtpfrB+&LB - ViBfLB = —TLlB (frB — f1%). (2.9)

To seek the solution of equation 2.9 through discretisation, we first project the con-
tinuum LB-BGK equation onto Hermite basis, by expanding frz(xrp, \/§£LB,tLB)

in terms of Hermite orthogonal polynomials in the velocity space £1.5:

o0

fre(@rp, V3€ip.tip) = w(V3&LE) Y %a(n) (@B, tLp) ™ (V3ELp),  (2.10)

n=0
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where both the expansion coefficient a(™ and Hermite polynomial 57 (") are rank-
n tensors, so the product on the right-hand side of the equation above denotes full
tensor contraction. More properties on the Hermite polynomials can be found in
Grad (1949), Shan, Yuan, and Chen (2006), and Chen (2011). The weight function

associated with the Hermite polynomials in D-dimensional Cartesian coordinates @ is

given by:
€ = — e -5 .11
w(§) = (2m) D2 exp 5 ) :
and the nth-order Hermite polynomials is defined as:
w(e) = " gnue) (2.12)
w(§) ’

which is a rank-n symmetric tensor. The first three polynomials are listed as follows

which will be used in the later derivation:

A& =1, (2.13a)
A () = &, (2.13b)
%Z(? (&) = &aép — dap; (2.13c)

where 0,3 is the Kronecker delta function whose value is 1 if & = 8 and 0 otherwise.

The expansion coefficient rank-n tensor a(™ is given by:

a™(zrp,trp) = /fLB(fBLB,\/§§LB7tLB)%”(n)(\/gﬁLB)d(\/gELB), (2.14)

where in a D-dimension, d(v/3€15) = (vV3)Pd&Lp. Here we list first three expansion

coefficients which recover the familiar hydrodynamic quantities:
aO(zrp,tLp) = /fLB(wLBA/gﬁLB,tLB)d(\/gﬁLB)
1\?
= / <> fuB(@Lp, €up,top)(V3) déLs

V3 (2.15)
:/fLB(fELB,ELB,tLB)dELB
= pLB-
Similarly, for the second expansion coefficient:
aWV(xpp, trp) = /fLB(a'ILB,\/§ELB,tLB)\/§£LBd(\/§ELB)
= \/g/fLB(wLB,ﬁLB,tLB)ﬁLBdELB (2.16)

= pre(V3urp),
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and for the third coefficient:
0 (@pitn) = [ fun(ernV3um tus) (3¢aérn — 1) d(V36un)
= 3/fLB(\/§ELB)(€LB —urp)(€rp — urLp)d(V3ELp)
+2usn [ Fun(V30m)€Lnd(V3ELn) ~ wipusn [ fLa(V3€Ln)A(V36Ln)
~1 [ fun(3600)d(V3¢1n)

=3Prs + prB Burpurs — 1),
(2.17)

where I is the identity matrix, and the rank-2 momentum flux tensor PP is defined as:

Prp = /fLB(wLB7€LB,tLB)(§LB —urp)(&Lp — urp)déLB. (2.18)

In a short summary, the macroscopic hydrodynamic quantities are completely deter-

mined by the Hermite expansion coefficients as follows:

pre =a, (2.19a)
PLBULB — a(l)/\/g, (2.19b)
PLB = 1/3 {a@) — PLB (BULBULB - H) . (2.19C)

Similarly, for the equilibrium distribution function, i.e. equation 2.7, its Hermite

expansion coefficients a(()n) can also be calculated as:

aén)(ivLB,tLB) = /fqu(ivLBa\/§£LBatLB)%(n)(\/ggLB)d(\/gﬁLB). (2.20)

Given the expression of w(&) we could rewrite the equilibrium distribution as:

e \/3 - \/gu
i (xrB, V3€rp, tLp) = PLE W 32 LB (2.21)
3CS,LB) \/gcs,LB
If we change the dummy variable as:
. V3&rs —V3uLp (2.22)

\/gcs,LB ’

then the equilibrium expansion coefficient becomes:

a(()n) (xrB,tLB) = PLB /w(??LB)e%”(")(\/ng,LB +V3urp)dnrs, (2.23)
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which gives:

aéo) = pLB / w(nre)dnrs

(2.24)
= PLB;
and
) = pus [l (VBermus + VBuss)anss 229
= pr(V3urgp),
and

ay) = prp /w(nLB) [(\/gcs,LBnLB +V3urp)(V3esLpnLs + V3uLp) — ]I] dnrs

=3prpurpurp + pLB(ch,LB - L
(2.26)

Overall, given the above expansion coefficients and according to equation 2.10, the

equilibrium distribution can be explicitly written as:

fi(xLp, V3€Ln, tLp)

= w(V3€LB)pLB {1 +3urp - €L

+3 [Guspuss + (s - D) : (unen ~D] + 0= | o

9 3
= w(V3¢LB)pLB {1 +3urp - &L + QULBULE §BéLB — §U%B
1
+5 (325 —1) (3¢i5— D) + O(n > 3)} .

Because of the orthogonality of the Hermite polynomials, the moments of the dis-
tribution functions up to Nth order is exactly preserved by truncation of the higher-
order terms in its Hermite expansions, which serves as the foundations of the discreti-
sation scheme. As a result, the distribution function that is expanded in equation
2.10 can be approximated by its projection onto a Hilbert subspace spanned by the
first N Hermite polynomials without changing first N moments (as in equation 2.19):
(Shan, Yuan, and Chen, 2006)

fre(@re, V3€rn.tip) ~ frg(xLE, V3L, tLE)

N 2.28
:w(\/§£LB)Z%a(n)(a?LB,tLB)c%ﬂ(n)(\/gﬁLB)7 ( )

n=0

which means that fiVB has exactly the same moments as the original f;p does. This
ensures that the fluid system and the associated theoretical framework can be built

by a finite set of macroscopic quantities.
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For the discretisation of the velocity space, first, utilising the Gauss-Hermite
quadrature, the integrand on the right-hand side of equation 2.14 can be expressed

as:

fp(xrs, V3€rs,trp) "™ (V3&Lp) = w(V3€rp)p(xLe, V3€Lp. trp),  (2:29)

where p(xrp,V3€rB,tLp) is a polynomial in €75 of a degree no more than 2N,
and thus the expansion coefficient a™ in equation 2.14 can be exactly written as a

weighted sum of the function values of p(xrp, vV3€Ls,tLB):

a® —

w(V3¢Lp)p(®LE, V3€ELp, tLp)d(V3ELR)

1

T~

tip(xrp, V3&i 1B, tLB) a0
—
D D ) V31 m b1 5) ™ (V3E;
i—0 W(\/gfi,LB)fLB(xLB’ §L5,tLB) (V3&,LB),

Il
= O

where t; and \/gﬁ,;’LB, i = 0,1,...,q — 1 are the weights and abscissae of a Gauss-
Hermite quadrature of a degree > 2NN.

A quadrature formula is usually named by three numbers as in Ef)yn, where d is the
number of points employed by the quadrature, D is the dimension of the quadrature,
and n is the algebraic degree of precision (Shan, Yuan, and Chen, 2006). These
quadratures directly map to the commonly seen lattice structures in LB models. For
example, the Gauss-Hermite quadrature giving rise to the D3Q19 lattice with ¢ = 19
in LBM, is annotated as E§?5, i.e. a three-dimensional degree-5 precision quadrature
with 19 abscissae. E§95 has three groups of abscissae \/§£Z~7 LB, namely, the stable group
(0, 0, 0) with the weight to = 1/3; the orthogonal group (£v/3, 0, 0), (0, /3, 0),
and (0, 0, ++/3) with ¢t; = 1/18 for i = 1,2, ..., 6; and the diagonal group (£v/3, £v/3,
0), (£v/3, 0, £v/3), and (0, /3, £/3), with t; = 1/36 for i = 7,8, ..., 18. For more
quadratures that give for example D3Q15 or D3Q27 lattices please see Shan, Yuan,
and Chen (2006). Now it becomes clear to readers why a factor of v/3 is introduced
early in equation 2.4 and is used throughout our derivation. This is essentially to map
the Gauss-Hermite quadrature to a regular spatial grid such that the actual abscissae
& 1B has the increment of 1 [.u. for 7 > 0.

It is noted that the set of discrete distribution functions fN (xrB,&i,LB,tLB),
i =0,1,...,¢ — 1 completely determines f(xrp,€&rp,tr5) and thus its first N mo-
ments. The superscript N is thus omitted hereafter, and fLB(\/igl, L) is short for
fre(xrB, \/géi,LB,tLB)- Now explicitly write the first three expansion coefficients

according to equation 2.30, and considering the macroscopic hydrodynamic quantities
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given in equations 2.15 to 2.17, after some algebra we obtain:

ik tifre(V3& LB)
pLE = ; w (V3¢ E)

= tifre(V3& 1B)V3¢i LB
PLB <\/§uLB> = ; w (V3€.15) , (2.31b)

= tifre(V3&i 1) 3¢ et — 1)
3P 3 —I) = : 2 2 .
+ prB Burpurp — ) ;1 o (V3i.01)

(2.31a)

(2.31c)

If we further define that:

firB(xLB,trB) = tiff\(fg/jiiif),

(2.32)

the commonly seen equations of macroscopic hydrodynamic quantities in terms of

discretised velocity &; g in the LB literature are obtained:

q—1
pLB = Z Ji,LB, (2.33a)
=0
qg—1
pLeuLe = Y fiLB&iLB, (2.33b)
=0
q—1
Prp + prpurpurp = Z Ji,0B&i,LBE: LB, (2.33¢)
=0

and the discretised equilibrium distribution function can be written as:

eq _ tif1 5 (V3&i L)
firp(®LB.tLB) o (V3€1.11)

9 3
=t;pLB {1 +3urp &+ sururs : &,.B&i,LB — iu%B (2.34)

2

+- (32 s —1) (3¢5 — D)+ O(n> 3)} :

N | —

where it can be seen that if ¢, g is set as 1/4/3, and neglecting the higher-order
terms, the discretised equilibrium distribution functions recovers the commonly seen
form such as equation 2.52 in the later section. This also reflects the artificial feature
carried by the current LB models - that is, cs 1 g, although being called the speed of
sound, comes more as a result of mathematical manipulation, and does not resemble
any of real physical meaning usually seen in the classical thermodynamics context.
Based on the definition of equation 2.32, the relation between macroscopic quan-

tities and the discretised equilibrium distribution functions can also be obtained after
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some algebra:

qg—1
pPLB = Z fits (2.35a)
i=0

qg—1
PLBULB = Z fiiB&iLB (2.35Db)
i=0
q—1
2 _ eq
pLBULBULB + pLBCS Bl = Z fi1p&iLB&i,LB (2.35¢)
i=0
In terms of the discrete Boltzmann-BGK equation, firstly we can directly evaluate

equation 2.9 at &; 1 to obtain:
1 e
O pfrB(&irr) + & - Vipfrie(&i) = T [frB(&irB) — [15(&LB)], (2.36)

and multiplying (1/v/3)P on both sides of the equation above to change f1g(&;1B)
to frLp(V3& 1p); and lastly multiplying the constant t;/w(v/3&; L5), we obtain the
discrete-velocity Boltzmann-BGK equation for f; rp(xrp,trp) as follows:

1
Oupfies+&iB-VipfiLe = _a(fi,LB — fitp) (2.37)

The discretisation of space and time is then performed, via first-order upwind finite-
difference approximation to equation 2.37 to obtain the celebrated lattice-Boltzmann
BGK equation 2.41. It should be noted, as pointed out by Cao et al. (1997), this
particular discretisation scheme is merely a reflection of historical evolution of the
LB models, which first originated from the lattice gas automaton method; but as we
show in this section that LB model is simply a discrete form of continuum Boltzmann
equation, various mature discretisation methods used in the computational fluid dy-
namics can also be applied to equation 2.37. Although in this thesis only the simplest
upwind finite-difference method is introduced, readers are refer to the reported works
for other techniques, such as the Runge-Kutta based finite-difference LBM by Cao et
al. (1997), finite-volume LBM by Nannelli and Succi (1992), and finite-element LBM
by Lee and Lin (2001), to name but a few.

Following the historical path (Wolf-Gladrow, 2000), the discretised space and time

are coupled as:
ox oy 0z
Ev gz,y - E? El,z - E?

where the subscript ‘LB’ is neglected hereafter for more clarity. In a regular grid, this

iw = (2.38)

implies that dz = dy = 0z = t. Again, such a discretisation relation is not necessary

and any standard finite difference method serves the purpose of discretising equation
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2.37. An upwind discretisation of equation 2.37 is then given by:

fi(x, t +0t) — fi(x,t) fi(z + 0z, t + 6t) — fi(x,t + 1)

5t i Sx
fily + 0y, t + ot) — fi(x,t + t)
+ fz‘,y 5
Y (2.39)
+ §i7z
0z
= —L(fi- £

Given the relation 2.38, the equation above can be rearranged as:

fi(z,t + 52 — filz.t) | filz+ €0t + fj;) — filz, t +6t) _i(fi — fE9). (2.40)

Simplifying the equation above, it finally leads to the celebrated single-relaxation-time
lattice-Boltzmann BGK equation (in LB units):

st

filx + &t t + 6t) — fi(x,t) = — . (fi = f{9). (2.41)

2.2 Unit Conversion in LBM

The physical-to-LB unit conversion has been touched briefly in equations 2.4 and 2.5 in
the previous sub-section, to facilitate the full derivation from the physical Boltzmann
transport equation to the lattice-Boltzmann equation. In this sub-section more details
are introduced for the unit conversion of other relevant quantities that are important
for modelling multiphase flow. There are three fundamental units in the LB modelling;:
the lattice unit (l.u.), the lattice time ([.t.), and the mass (kg), from which a series of

relevant quantities can be constructed, as is summarised in Table 2.1.

TABLE 2.1: Summary of Units in Lattice-Boltzmann Method

Quantity Symbol  Unit in LBM
Length T1B lu.
Time tip l.t.
Velocity VLB lult ™t
Mass o kg
Number Density NLB lu.~3
Density OLB kg l.u.”3
Kinematic Viscosity B lullt ™!
Pressure Py kg lu."11.t.72
Surface Tension VLB kg 1.t.72

In practical pore-scale two-phase simulations, one is usually given a sets of digitised
uCT images of certain rock type to start with, and the most relevant parameter here
is the resolution of the pCT image (h). As mentioned, the LB units are linked to the

physical units by several scaling factors, among which, the image resolution h is the
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most fundamental one, and all of the rest scaling factors can be derived from it. More

specifically, the unit conversion procedure can be performed as follows:

1. Given a physical system, the resolution of the pCT image (h), the density of the
fluid (ppnys), the dynamic viscosity of the fluid (pipnys) or the kinematic viscosity

(Vphys = Mphys/Pphys ), and the interfacial tension(ypnys) are known.

2. By relating the physical density of the fluid to its LB counterpart, the density-

related scaling factor mong (see equation 2.47) can be determined.

3. Once mgng is determined, one has the freedom to set either the LB surface
tension ~rp or the LB kinematic viscosity v, but it is noted that only one of
the two can be set freely. For example, if choosing to set g first, the time
conversion factor dtgnys (in the unit of s/1.t.) can be immediately determined by

Ophys = %’Y}JB; this also automatically determines the LB viscosity by

2

_ V/3h .
Vphys = 37, VLB and vice versa.

4. After determining the scaling factors mong and dtpnys, all the other quantities,

such as the LB pressure, are set accordingly.

All the key unit conversion relations, together with some extra notes, are sum-

marised as follows for reference:

1. length:
Lphys = hxyg, (242)

where h is the resolution of the pCT image of certain reservoir rock type, in the
unit of m/l.u..
2. time:

Otohvs
tphys = \I}L;)ythBa (2.43)

where dtpys is the time conversion factor in the unit of s/I.t., and ¢ is usually
the iteration step in the LB simulations. The factor v/3 is due to the mathemat-
ical details of the Gauss-Hermite quadrature when discretising the continuum
physical quantities into their LB counterparts, and see more discussion under

equation 2.30.

3. welocity:
h
u = ———uB. 2.44
phys (%phys/\/g LB ( )
4. mass:
Mphys = MOMLB, (2.45)

where myg is a dimensionless scaling factor for the molecular mass of fluid.

5. number density:

o
nphys = ﬁnLB, (2.46)
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where the physical and LB number densities are in the units of m=2 and l.u.73,
respectively. ng is a dimensionless scaling factor for the number density of fluid.
6. density:
mono
Pphys = TPLB, (2.47)
where, in practice, it is usually the product mgng that is calculated, by setting
pL = 1.0 kgl.u.73, which is a common choice for immiscible LB models (e.g.

section 2.4).

7. kinemalic viscosity:
h2
Vphys = = =VLB-
P 5tphys/\/§

This relation is obtained by retaining the consistent Reynolds number (Re)

. U x
between the physical and LB systems: Re = p}l‘/ysh phys — HLBTLE.
phys

(2.48)

8. interfacial tension:
mong
Yphys — == JLB- (2.49)
P (St /V/3)?

9. pressure:
mong
P, = —FB. 2.50
phys h(étphys/\/g)Q LB ( )

2.3 Single-Relaxation-Time Multiphase Lattice-Boltzmann
Methods

After reviewing the fundamentals of the LB theory and how the model can be set up
in practical simulations, now it is time to introduce the concrete multicomponent LB
models for the two-phase flow study. In this and next sections, the multicomponent LB
models based on the single-relaxation-time (SRT) and multi-relaxation-time (MRT)
collision operators are introduced, respectively. Although the SRT-based LBM is less
advanced compared to the multi-relaxation-time (MRT) ones, in terms of the numer-
ical stability and the range of viscosity ratio etc., they can be algorithmically easily
implemented and are usually used to perform quick proof-of-concept demonstrations.

In this section, two commonly used SRT multicomponent models, Shan-Chen (SC)
model, and colour-gradient based Rothman-Keller (RK) model, are briefly introduced,
as they are used in the low-resolution characterisation study in Chapter 3. Here only
the algorithm-wise implementations of SC and RK models are discussed; regarding
the physics of how LB method can recover the macroscopic Navier-Stokes equation
(with surface tension force), it will be studied in detail when introducing the MRT
multicomponent model in the next section 2.4, and we conducted all of the practical
simulations with MRT-LB model in Chapter 5.

Overall, to handle multiple fluid components, the collision operator in equation
2.41 must be revised to incorporate the surface tension forces between the fluids.

Therefore, on top of the normal BGK collision process, the surface tension and the
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associated phase segregation is realised (1) by adding a body force which only becomes
non-negligible where there is a large density gradient, (2) by adding extra terms in
the equilibrium distribution functions, or (3) by adding an extra perturbation process
after the normal BGK collision. The Shan-Chen (SC) model (Martys and Chen,
1996; Pan, Hilpert, and Miller, 2004; Huang et al., 2007) introduced in section 2.3.1
uses external body force to realise the surface tension, whereas the Rothman-Keller
(RK) model, also known as colour-gradient model (Gunstensen et al., 1991; Grunau,
Chen, and Eggert, 1993; Latva-Kokko and Rothman, 2005a; Liu, Valocchi, and Kang,
2012), introduced in section 2.3.2 chooses to use perturbation process. The MRT
model introduced in section 2.4, however, uses the approach of adding extra terms in

the equilibrium distribution functions to realise the surface tension.

2.3.1 Shan-Chen Model

The key feature of Shan-Chen model is that two external forces, cohesion and adhe-
sion forces, are introduced. The cohesion force determines the excess free energy of
mixing, causes the fluid components to phase separate and gives the resulting fluid-
fluid interfaces a surface tension. The adhesion force incorporates different wetting
conditions by adding excess free energy to the interaction with solid surfaces. The
excess energies are provided through attractive or repulsive forces between nearest-
/next nearest-neighbouring particles, arising from modifying the momentum values
in the equilibrium distribution function on which the collision operator depends. In
this work, we use a single-relaxation-time, Bhatnagar-Gross-Krook (BGK) collision

operator for SC model, which is given by (Qian, d’'Humiéres, and Lallemand, 1992):

e

Of (x,t) =
Tk

k,
JHEX BN ACI (2.51)
where 7 is the relaxation parameter for k;, fluid component, which describes how
quickly the system relaxes to the equilibrium. The kinematic viscosity of ki, fluid,
Vg, is linked to 7 by: v, = (27, — 1)/6. The equilibrium distribution function fz-k’eq is
given by (Qian, d’Humiéres, and Lallemand, 1992):

k
[z, t) = prti |1+

(2.52)

_l’_
2 2cd 2¢2

2
& -y (&-uz‘?>2_\u2‘1]
)

where w; is the weighting factor associated with D3Q19 lattice, which is given by ¢; =
1/3(@=0),t=1/18 (i=1,2,...,6), and t; = 1/36 (i = 7,8,...,18); cs = 1/V/3 is
the speed of sound for the lattice. The macroscopic density and momentum of the k;,
fluid component are defined as py, = >, fF and prup = >, fF&;, respectively. The
total fluid density p is given by p =", pi.
The macroscopic equilibrium velocity uzq in equation (2.52) is given by:
7 F

u! =u' + o (2.53)
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where v’ is a weighted velocity among fluid components (also known as the common

velocity), and is given by:
Z PrUL
I _ kT

U = ———-,; -
>k

Note in the current SC model the body force is incorporated by directly adding the

(2.54)

resultant momentum to the equilibrium velocity; there are however many other forcing
schemes, for example, the explicit forcing method, developed recently by Porter et al.
(2012), has shown enhanced numerical stability and coverage of larger viscosity ratio
(0.001 ~1000).
In equation (2.53), Fy, is the total force exerted on ky, fluid component, and is
normally written as:
Fy = F£°" + F® + prgy, (2.55)

where FE°! is the fluid-fluid cohesive force, F2% is the fluid-solid adhesive force, and
Prgr is the gravitational force on ky, fluid. The fluid-fluid interaction force F; lj°h at
site @ is calculated as the sum of forces between the ky, fluid particle at @, and the

ky,, fluid particle at neighbouring sites of @, given as:

FISOh(iB, t) = —Gcohpk(az, t) Z tlpk/(l‘ =+ Eiét, t)E“ (256)

1

where Gcop is the cohesion coefficient. Based on equation (2.56) it is the product
of Geon and the total fluid density p that controls the strength of the fluid-fluid
interaction. Systematic study of the dependence of phase separation on Gconp has
been done, which shows that there is a threshold value for Gconp, beyond which a
stable immiscibility among different fluid phases can be achieved (Schaap et al., 2007;
Huang et al., 2007). To determine the correspondence between Geonprotal to the
macroscopic interfacial tension, a calibration such as a bubble test is needed.

Similarly, the fluid-solid interaction force F2% takes the form as:

Fljds(m¢ t) = _Gads,kpk(ma t) Z tis(m + £i6t7 t)é’ia (257)

)

where s(x,t) is an indicator function that is 1 for a solid node and 0 for a fluid
node, and Gags ; is the adhesion coefficient that controls the surface force for £y, fluid
component. The adhesion coefficients for the non-wetting and wetting phases should
satisfy Gagsnw — Gadasw > 0, and setting Gagsnw = Gads,w models a neutral wetting
condition. For simulations in this thesis, we choose to set Gagsw = 0 and vary Gags nw
between 0 and 1; another common parametrisation, which is to set Gags.nw = —Gaasw
(Pan, Hilpert, and Miller, 2004; Huang et al., 2007), is in fact equivalent to our setting,
provided that |Gadsnw — Gads,w| s same in two cases.

For D3Q19 lattice, the overall pressure, for example in a two-phase system is given

by:
GCO
P() = 2 (p1 + po) + 22, (2:58)
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which is determined by the sum of two fluids, with an extra non-linear term considering
the non-ideal gas law that explicitly depends on the fluid-fluid cohesive interactions.
The total macroscopic fluid velocity w is given by pu = ), prui + % > i Fi. Overall,
for SC model, the input parameters for a two-phase system include Gcon, which con-
trols the strength of macroscopic surface tension, and Gagsaw and Gagsw that realise

different wetting conditions.

2.3.2 Rothman-Keller Model

The RK model, also known as the colour-gradient model, was the first multicompo-
nent lattice-Boltzmann model, originally proposed by Gunstensen et al. (1991) as a
development of the lattice gas model (Rothman and Keller, 1988), and was further
developed by Grunau, Chen, and Eggert (1993) to incorporate variable density and
viscosity ratios. The RK model has been criticised for its larger spurious current at
the phase interface than that of SC model (Hou et al., 1997) and a “lattice pinning"
phenomenon that results in a loss of Galilean invariance (Latva-Kokko and Rothman,
2005a). It was not until Latva-Kokko and Rothman (2005a) revised the recolouring
step in the collision operator for RK model that these issues were effectively addressed.
Generally, in the context of RK model, fluid particles of different species are labelled
as red and blue fluid particles, with particle distribution functions of fiR and fiB, re-
spectively. The collision operator for RK model consists of three parts (Liu, Valocchi,
and Kang, 2012):

QF = (@)P1eHM + @H ), (2.59)

where the superscript k is either R or B for red or blue fluid, respectively. (QF )(1) is the
normal single-relaxation-time BGK collision operator which has the same form as for
SC model (i.e. equation (2.51)), and the kinematic viscosity for each fluid component
is still vrp = (27pp — 1)/6. (2F)?) is the perturbation operator that produces
interfacial tension, while (Qf)(?’) is the recolouring operator that forces particles of
each fluid to congregate together to ensure immiscibility.

The macroscopic density for ky, fluid component is given by pp = >, fik, and
the total fluid density is p = pr + pp. In the BGK collision operator (Qf)(l), the
equilibrium distribution function fik’eq is defined the same as in equation (2.52) for
SC model, except that uzq is replaced with the total macroscopic fluid velocity wu,
which can be obtained from pu = 3. >, fF¢;. The original perturbation operator
(2F)@) proposed by Gunstensen et al. (1991) and Grunau, Chen, and Eggert (1993)
was designed for 2D hexagonal lattice, and it has been shown that a direct extension of
it to D2Q9 or D3Q19 lattice cannot recover the Navier-Stokes equations for multiphase
fluid flow. In this work we adopt an improved perturbation operator proposed by Liu,
Valocchi, and Kang (2012) for D3Q19, which has been shown to recover the correct

interfacial force term in the Navier-Stokes equations with reduced spurious current.
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This (2F)?) is given by:

A (& G)?
QR (kY = kL TR g (4,25 — B; 2.60
where Ay is a free parameter that controls the surface tension, and By = —1/3,

Bi_¢ = 1/18 and B7_13 = 1/36 from (Liu, Valocchi, and Kang, 2012). G is the
colour gradient, which is the gradient of the phase field: G = V®, where the phase
field is given by:
B(x,t) = pr(x,t) — /)B(wvt). (2.61)
pr(x,t) + pp(x, t)

To minimise the discretisation error, the spatial derivative in the definition of the
colour gradient G is evaluated by applying 9-point difference stencils (Liu, Valocchi,
and Kang, 2012):

G(z) =3) t;d(x + &) (2.62)

The recolouring operator (2F)®) modified by Latva-Kokko and Rothman (20052)

is defined as follows:

QB () = %Rf;‘ + 62 IZQB cos(#1) > I uo, (2.63a)
k

@O (fF) = %B P - ﬂpi’;B cos(i) > 17 fuo, (2.63b)
k

where f is the total particle distribution function after BGK collision and perturba-
tion steps, but prior to the streaming. ( is another free parameter that controls the
thickness of the phase interface (the interface becomes thicker as  decreases), and it
is suggested to be between 0 and 1 to ensure the positive distribution functions and
numerical stability. The values of £ is 1 in this work. ¢; is the angle between the
colour gradient and discrete velocity vectors, which can be obtained from:

&G

cos(ypi) = G (2.64)

The macroscopic surface tension in RK model can be derived analytically, and is
linked to the model parameter Ay by (Liu, Valocchi, and Kang, 2012):

2
v = §(AR+AB)T, (2.65)

where 7T = 7 = 7 is assumed, and in this work Agr = Ap is set for simplicity.
The contact angle is related to the phase field on the wall nodes, and is predicted by
(Latva-Kokko and Rothman, 2005b):

cosf — ‘I)($wa11) _ Pwall,R — Pwall,B (2.66)

)
Pwall,R + Puall,B
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where pya11,r and pya11,s are densities of red and blue fluids on wall nodes. The

pressure for kg, fluid is p, = c¢2py, and the overall pressure is given by:
P(2) = A(pr + pp). (2.67)

Overall, for RK model, the input parameter for a two-phase system include Ag and Ap
that determine the macroscopic surface tension, 5 that controls the phase interfacial
thickness, and pya11,r and pya11,r that realise different wetting conditions.

A distinct feature of the RK model is that macroscopic physical quantities, such
as surface tension and contact angle can be predicted in advance, unlike the SC model
where the relation between macroscopic quantities and model parameters (i.e. Geon

and Gags) can only be obtained through a set of calibrations.

2.4 Multi-Relaxation-Time Multiphase Lattice-Boltzmann
Methods

In this section, a colour-gradient based multi-relaxation-time model is introduced.
The algorithm-wise implementation of this MRT-LB model has been presented in de-
tail in McClure, Prins, and Miller (2014), however, a systematic theoretical study on
the macroscopically recovered momentum and mass transport equations and the asso-
ciated errors (due to truncation of higher order terms) is still lacking in the literature.
Therefore, here we focus on the derivation of recovering the macroscopic momentum
transport (i.e. Navier-Stokes equation) and the mass transport (i.e. the continuity
equation). Overall, the MRT-LB model by McClure, Prins, and Miller (2014) is an
efficient two-phase model, by simultaneously solving the momentum and the mass
transport equations on separate LB lattices to maximise the computation efficiency.
These two equations are coupled via the colour gradient, which is the key element
that gives rise to the interfacial tension. The momentum transport equation is solved
for the distribution of pressure and velocity fields, while the mass transport is solved
for the phase field, which indicates the evolution of the interface in an incompressible
fluid context. In the following two sub-sections, using the standard Chapman-Enskog
analysis (Chapman, Burnett, and Cowling, 1970; Mohamad, 2011; Huang and Ding,
2008), the derivations from the respective LB evolution equation to the corresponding

macroscopic transport equation will be presented in detail.

2.4.1 Momentum Transport with Surface Tension Force

The MRT-LB evolution equation that accounts for the two-phase momentum trans-

port is given by:

filz + &bt t + 6t) — fi(z,t) = —Ayj | fi(z,t) — f;eq)(wjt) : (2.68)
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In order to recover its macroscopic counterpart, we first Taylor expand the equation
above up to O(e?): (Guo and Shu, 2013)

Ot

Difi+ 5 D2 i = =Ny (f; = 1), (2.69)

J

where D; = 9; + €;,,0,, and A;j = Ay;/0;. If writing the equation above in a ‘bra-ket’

vector form, it becomes:

Ot

D|f)+ 5D |f) = —A'(|f) = [£Y)), (2.70)

where D = diag{Dy, D1, ..., D1g}, and A’ = A’/é;. In the moment space of the

distribution, we have correspondingly:
. 5 -
D |m) + 3 D* |m) = —8'(jm) - [m (), (271)

where D = MDM ! = 8,1+ Chdy, Co = MC M, C,, = diag{€on, £1a, ..., €180},
I is the identity tensor, and S’ = S/4;, where S is the relaxation parameter which,
for D3Q19 lattice being implemented in our LB code, is given by: (d’Humiéres et al.,
2002)

S = diag(0, se, S¢, 0, 54,0, 54,0, 8¢, S0, Sr, Suy Sy Su, Sus Sy Smy Sms Sm), (2.72)
and the moments for D3Q19 lattice are given by:

Im) = (6p, €, €, Jiws Qs Jigs Qys Jos Qo> 3> 3z s Pevnos Tawuws Daryys Py s Dars My Mgy M) T
(2.73)
where the ‘ket’ notation indicates a column vector. The above 19 moments are the
density variation (mg = dp) which literally just gives the pressure variation'dp =
c25p = 6p/3, the part of the kinetic energy independent of the density (m; = e),
the part of the kinetic energy square independent of the density and kinetic energy
(mg = & = €?), the momentum flux (ms57 = jzy.2), the energy flux (Mmagss = quy.2),
the symmetric traceless viscous stress tensor (mg = 3pze, M11 = Pww, and Mmi3,14,15 =
Payyzaz), the vectors of quadratic order (mig = 37y, and mi2 = myy), and the
vectors of cubic order (mi6,17,18 = May,.) (d’Humiéres et al., 2002).
The equilibrium moment functions in D3Q19 lattice with the surface tension terms
are as follows (Tolke, Freudiger, and Krafczyk, 2006; Ahrenholz et al., 2008; McClure,

1First, note that in our MRT based multicomponent LB model, the LB speed of sound ¢, that
relates the density variation to the pressure variation, is merely a mathematical constant from the
standard Chapman-Enskog analysis used to recover the macroscopic equation, and does not resemble
any physical meaning in a classic thermodynamics context. Therefore, in many literature, e.g. in
Ahrenholz et al. (2008), the introduction of ¢ is even skipped and simply dp = dp/3 is given, to avoid
any confusion. Second, although the first moment Jp is called the density variation in the original
work by d’Humiéres et al. (2002), our MRT model only deals with strictly incompressible fluid with
constant density, and the existence of dp is only for calculating the pressure field by dp = dp/3.
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Prins, and Miller, 2014):
mgeoo = dp, (2.74a)
o 19
m{V = el = _116p + — o (2 + dy +32) — 19a|v |, (2.74Db)
mgeq) = e =y §p + E] -7, (2.74c)
(BQ) = ju = POtz (2.74d)
méeq) = Jy = poty, (2.74¢)
m(fQ) = j, = pols, (2.74f)
e 2.
mY = g (2.74g)
2
A 2
e 2 :
mé D = —3J= (2.741)
(eq) 3P(QO‘) + a|V¢]( n — nz — n2)
Lt .. (2.74)
= 70 [2];v - (]y +]z)] + 50&|V¢’(2nx Ny = nz)7
(ca) _ plea) 4 1 2y Loz oy 1 2_ 2 2,74k
m1 = fuw + 2a‘v¢|(ny nz) - pO (] ]z) + O‘|v¢‘(ny nz)v ( . )
e 1 X
mg?’q) = PQEZQ) + iaw(ﬁmwny J jy + a]Vqﬁ\nxny, (2.741)
€ 1 z
mgf) = P(ﬁq) + fa\v¢|nynz = jypj + a|V¢|nynZ, 2.74m)
m{g) = Pl 4 a\wmnxnz _ dedz a\wrnxnz, (2.74n)
mi{g) = 37(50) = Buwg, PV, (2.740)
m{g) = 7l = we, PEY, (2.74p)
mig) = m{d =0 (2.74q)
misY = m{eD = o, (2.74r)
m{g? =ml =, (2.74s)
where w, = 3, w.; = —11/2, and wy; = 0, according to d’Humiéres et al. (2002).

Also, it is noted that the equilibrium moments m1, mg, mi1, m13, mi4, and mqs are

perturbed by adding the colour-gradient related terms to generate the correct surface

tension force. In these perturbed terms, the phase field is defined as:

Pn — Pw
b=———
Pn T Pw

(2.75)

and the corresponding unit normal vector of the colour gradient V¢ is given as:

_ Vo
Vel

(2.76)
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Following the Chapman-Enskog analysis, we assume that the moment distribution

functions can be expressed as:

o

m) =" m™), (2.77)

n=0

where € is the smallness parameter, and it can be usually given by the Knudsen
number (Kn), which is defined as the ratio of the molecular mean free path to the
characteristic length of the fluid system. The time and space can also be expanded in

the power series of the smallness parameter as:
&5 = 68t1 + 62at2, (278)

and
Oa = €014, (2.79)

and then we can get the moment equations on different order of € as follows:

m©) = |m(), (2.80a)
Dy |m©®) = -8 |mM)y, (2.80D)
Ay, My + Dy <I — *g) Imy = -8 |m®)) | (2.80c)

on the order of O(e%), O(e') and O(e?), respectively, where Dy = 9y, I + Cyd14. For

the conserved moments we know that:

m®™ = 6pm =0, (2.81a)
m = =0, (2.81b)
m" = j =0, (2.81¢)
m(7n) =M =0, forn>0, (2.81d)

On the order of O(e!), we have the conserved moment for mg:

91, (0p) + 01z (pouiz) + Ay (pouy) + Or=(pouz) = 0, (2.82)

for mg:

2 1 1 1
O (pouz) + 01 |Op +—+ a]Vd)| ( 3n§n2>}

] 37 3
]w]y
+ 01y ) + 04|V¢>\n$ny (2.83)
L Po
+ 01, ]Z]Z + 04|Vq§nynz] =0,
L Po
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for ms:

]x]y

O (pouy) + 01 + a\v¢|nxny]

_ ji 1 1 1 1
+ Oy 5p+ + a|v¢| <—n2 +=n2 — gng - >] (2.84)

Jy]z

+ 012 + a‘v¢’nynz:| =0,
0

and for my:

-.]IJZ
L Po
L PO

[ 1 1 2 1
+812 _5p—|—p + Oé‘v¢’ (—3ni § +§ g—3>:| =0.

8t1 (pOUz) + 8lzc

1
+ 2a|v¢|nxnz:|

1
+ 01y + alv¢|nynz} (2.85)

where the following relation
op = 20p = dp/3, (2.86)

is used for the fluid pressure variation (also see the footnote when introducing equation
2.73). It is noted that although the density variation dp is constantly seen here during
the derivation, it is the pressure variation dp (and its distribution) that is of key
interest in the modelling. Hence, although on the order of O(e!), from equation 2.82

we have recovered the continuity equation as follows:
91, (0p) + Ora(poua) =0, (2.87)

it can be seen as a by-product when performing Chapman-Enskog analysis on the LB
evolution equation 2.68. What dp really gives is the pressure field dp = dp/3, and
the fluid density is always a constant in our incompressible LB model. The actual
mass transport is modelled by a separate LB evolution equation 2.114 which will be
discussed in the next sub-section.

Also, from equations 2.83, 2.84, and 2.85, given that n2 + ”2 +n? =1, we can
recover the Euler equation with the continuum surface force F' = v - S, where S is

the capillary stress tensor:

O (poua) + O1p(pouaup) = —01a(0p) + D155as; (2.88)

where the capillary pressure tensor S takes the form as:

1
Sap = 50| V|(0ap — nans), (2.89)
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or in the matrix form as:

1 nz + ng —NgNy  —NgN,
_ 2 2
Saﬂ = §alv¢| —NgNy Nz + Ny —Nyny ’ (290>
—TNpNy —TNy M, ng + nz

which satisfies the required isotropy for an interfacial force (Reis and Phillips, 2007).

On the order of O(e?), we have for the conserved moment mg:

By, (p) = 0, 2.9)
for ma:
o) 0 155 (1) 0+ (1= ) ]
+on, [(1-5) ) (2:92)
+o.[(1- %) PY] =0,
for ms:
B, (pouy) + D1y (1 _ %) pgglp}
o5 (- )@ L) -] e
coe[(-g)me] =
and for my:
Bry (pouz) + D1 (1 _ %) pggg}
o |(1-5) A (2.94)
vone g (1 5) 05 (1) i P =0

where e(l), ngi), ngzl,), Py(;), Pm(i)7 and P&g are to be determined from the equations
on O(el).

Before solving for the terms e and so on, note that from the recovered Eu-
ler equation 2.88, we can get a relation which turns out to be very useful for the

subsequent derivations?:

A, (Potiatia) = —uad15(8p) — usdia(3p) + O(u?), (2.95)

where O(u?) will be omitted, and some order-of-magnitude relations (i.e. dp ~ O(u),

2However, to obtain this relation it in fact requires §p = po, which implies that our current MRT-
LBM model is not fully compatible with the presumed incompressible setting. The derivation of the
relation is shown at the end of this sub-section.
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6p ~ O(u?), Sap ~ O(u?) ) are used to give the equation above. Equipped with

equation (2.95), we have:

e = —38 x ;s—t(apalxux + 6pdiyuy + 6pdizus), (2.96a)

P = — 2 (48pdh s, — 20pihy, — 20pu), (2.96D)
1)

P&g = _5(25p81yuy - 25palzuz)a (296C)
1)

Péji) = _é(épalxuy + 5p81yuaz)a (296d)
1)

Py(;) = _é((spalyuz + 6palzuy)7 (2966)
m_ _ 0%

P:cz = _;(6278133“7; + 6palzuw)- (296f)

v

The above equations are derived from the Euler equation 2.88 by neglecting the surface
tension term since S,z ~ O(u?).

Now substituting equation (2.96) into equation (2.92) we get on O(e?) for msg:

atz (Poux) = 01 |:25/0V (almuz - év : u> + 5p<(v : u):|

+ O1y [0pv (O1zuy + Oryuz)]
+ 012 [5/07/(81wuz + 612“:1:)] 5

(2.97)

and substituting equation (2.96) into equation (2.93) we have on O(e?) for ms:

A (pouy) = O [6pv(O10uy + O1yug)]
+ 01y [25p1/ <81yuy - év . u) + 0pC(V - u)} (2.98)
+ 01 [0pv(O1yu, + O1:uy)]
and substituting equation (2.96) into equation (2.94) we have on O(e?) for my:
O (pouz) = 01z [6pv(O1zu: + O12us)]
+ 01y [0pv(O1yus + O12uy)] (2.99)

+ 01, [25p1/ (81Zuz — %V . u) +0pC(V - u)] ,

where the kinematic shear viscosity is given by:

1/1 1
= (SV _ 2) 5. (2.100)

and the kinematic bulk viscosity is given by

2/1 1
C = § <S€ - 2) 5t. (2101)
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To enable various viscosity ratios between two phases, we set the LB kinematic
viscosity a linear interpolation spatially dependent on the phase field value: (T6lke,
Prisco, and Mu, 2013)

L 1+ ¢ 1—¢

Vi T g T (2.102)

and if choosing pnw = pw = 1.0, the viscosity ratio is simply M = vy /4, which can
be achieved by using prescribed s, nw and s, .
Following the reported work by Ginzburg and d’Humiéres (2003), the relaxation

rates in our model is set in a ‘two-relaxation-time’ (TRT') fashion as:

(2—sy)

=L (2.103)

S¢ =8: =85 =5y, S¢q=58p=28

In summary, combining the equations on O(e') and O(e?) we obtain the continuity
equation:
0t(0p) + 0o (poua) = 0, (2.104)

and for the momentum transport we have:
I (potia) + 9s(potaup) = —0ap + 0p0ap + 055as, (2.105)

where the viscous stress tensor o,g is given by:
2
ap = (0p)V | (Oaug + Ogua) — §87u75a5 + (0p)C0yu~y003, (2.106)

and the capillary stress tensor S, is given by:
1
Saﬁ = §a|v¢](5a5 — nan[g). (2.107)

Incidental Note

This note introduces how the equation 2.95 is obtained. The contribution of this part
of the thesis is to identify a critical constraint of the current MRT-LB formulation,
which also applies to other variants of MRT-LB models by Télke, Freudiger, and
Krafezyk (2006), Ahrenholz et al. (2008), and Tsuji, Jiang, and Christensen (2016).
It has an important implication on the simulation of non-unitary density ratio cases.

Multiplying equation 2.88 by another set of velocity we can get:

Uy O, (Potia) + uy018(pPotatp) = —uy014(p), (2.108)
—_———— —_———
=0, (pouau»y)—pouaatlu,y =018(potatgl~y)—pPotatgdl gy

Then rearranging the equation above we get:

O, (potatiy) = pota O Uy + potiatig gty —018(Potatgty) — UyO1a(dp).  (2.109)

call it TIo~
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The simplification of the term Il is as follows:

oy = uq (P00 sy + :00“/3815“’7]

= ta [0, (pouy) + O18(pousuy) — uyOr po — uy0158(poug)]
= —Ua014(0p) — tay [Or, po + D15(poug)],

where the second term on the right-hand side is zero if dp = pg, since on the order of
O(e!') we have recovered 94, (6p) + d15(poug) = 0. Currently, the condition of dp = po
is obviously an incompatibility to the incompressible setting of the LB model: pg is
the (constant) phase density which can be a linear interpolation spatially dependent

on the phase field:
_1+9 +1—gz§
T2 T

but dp is the pressure variation (or more precisely, dp = dp/3); in other words, the

Po Prs (2.111)

pressure dp and the density pg should have been completely decoupled, but they are
currently subject to the constraint dp = pg, in order to recover the targeted Navier-
Stokes equation. For unitary density ratio, this constraint should not cause any prob-
lem since for pressure it is the difference that matters; for close-to-one density ratio,
the error caused by this incompatibility may also be limited. However, future work
is needed to appropriately resolve this issue, possibly by using some other approaches

to model the case of non-unitary density ratio.

2.4.2 Mass Transport with Phase Segregation

The mass transport (i.e. convection-diffusion equation) is solved separately, using the
velocity field from momentum transport as the input. To the author’s knowledge, the
study of the macroscopically recovered mass transport equation (incorporated with
recolouring scheme) is still lacking in the literature, thus it is necessary to investi-
gate the limitations and the associated error terms (due to higher-order truncation)
to better understand the model behaviour. Similar to the momentum transport for-
mulation, the mass transport is also modelled in a collision-streaming fashion, but on
a D3Q7 lattice for more efficient computation. First, for D3Q7 lattice according to
Wolfram (1986) the isotropic relations of the lattice take as follows:

> oti=1, (2.112a)
7
> ticineip = ka|c[*dag, (2.112D)
7

Z tieiaeigemeig = k4|c|45a575, (2.1120)

i
where e; is the discretised velocity for D3Q7 lattice with ¢ = 0,1,2, ..., 6, and its norm
is |e;] = 1. The weight coefficient is tg = 1/3 and ¢t; = 1/9 for ¢ = 1,2,...,6. The LB
speed of sound for D3Q7 lattice is ¢2 = 2/9. The coefficient ko and k4 are linked to
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the lattice property as:
kolcl? = kale|® = 2ty|c|* = 2 = 2/9. (2.113)

The LB evolution equations are given by, for NW and W phases, respectively, as

follows:
Ri(@ + biei,t +6) — Ril,1) = —— O [Rya,t) - R (2, u, t)} . (2.114a)
Bi(w+ et +0,) — Bl t) = —— [Bilw.t) - BV (@, un)],  (21140)
Tm,w

where 7, , and 7, w are the relaxation parameters of mass transport for NW and W
phases, respectively. Here we use R; (short for ‘Red’) and B; (short for ‘Blue’) to
denote the distribution functions for NW and W phase, respectively. For simplicity
we take Ty n = Tm,w = Tm, and in the end we will take 7,,, = 1.

Firstly we can decouple the collision and the streaming steps explicitly as follows,

the collision step is:

Rit (@) = Ri(, 1) — — ZEX R lCR] (2.1154)
Tm
1

Bl (x,t) = Bi(z,t) — — [Bl-(a:,t) - Bfe@(m,u,t)} : (2.115b)
Tm

where the double dagger superscript denotes the post-collision, post-recolouring dis-

tribution functions. The streaming step is:

Ri(x + dpe;,t + 6,) = R (a, 1), (2.116a)

()

Bi(z + drei, t+ 6,) = Bl (z,1). (2.116b)

The equilibrium distribution function for the mass transport are given by:

R =, [pn (1 + eié“) + Bpp‘f“; (n- ei)] , (2.117a)
B =t o (14 551 ) < 5P (). (2.117)

where w is the colour-blind macroscopic fluid velocity given by solving the momentum
transport (i.e. the Navier-Stokes equation). The recolouring step, which promotes the
phase separation, is embedded in the last term in R‘;q and qu. The same coefficient
(B, which is also seen in equation 2.63 in the SRT-RK model, determines the thickness

of the interfacial region. The unit normal vector of the colour gradient is given by:

Vo

"= Ta (2.118)
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where the phase field is defined as:

Pn — Pw
= —. 2.119
¢ T p ( )

Furthermore, the phase densities are given by:
pm=> Ri, pw=)Y Bi, (2.120)
i i

and the phase density and the phase field can be linked as follows: (Halliday, Hollis,
and Care, 2007)

Pn = %p(l +¢), (2.121a)

Pw = %p(l — ), (2.121b)

where the colour-blind density p = p, + pw. According to the molecular capillary
relation, for diffused flat interface, the one-dimensional theoretical phase field takes the
form as follows: (Rowlinson and Widom, 1982; Anderson, McFadden, and Wheeler,
1998; Latva-Kokko and Rothman, 2005a; Halliday, Hollis, and Care, 2007)

¢(z) = tanh [B(z — x0)] , (2.122)

where x( corresponds to the position of exact zero phase field. The 1D relation above
can be well extended to a 2D lattice, e.g., D2Q9 (Halliday, Hollis, and Care, 2007),
and since D3Q7 lattice only has orthogonal velocity links, the same extension applies
as:

¢(s) = tanh(Bs), (2.123)

where s measures the distance in the direction of n, with s = 0 corresponding to the
centre of the interface. The actual phase field given by the LB model, however, is
only an approximation of the theoretical relation above; nevertheless it still gives us

an useful relation as follows:
Ve ~ Bsech?(Bs)n = B(1 — ¢*)n. (2.124)

The relation above will come very handy when dealing with one of the recolouring

term:
PnPw p
Pnbu = Lo, 2.125
5 (L2 ) o = L0 (2129
since % = £(1 — ¢?) according to equation 2.121.

Now we perform the Chapman-Enskog analysis for the mass transport LB equation

2.114. Again, assuming it is possible to expand the mass distribution functions as
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follows:

oo

Ri(z,t) =Y "R (a,1), (2.126a)
n=0

Bi(z,t) = > "B (x,1), (2.126b)
n=0
where it is taken up to n = 2 for the following derivation, and the power expansions

in time and space are similar to those for the momentum transport:
Oy = e@tl + 628152, (2127)

for time and
On = €01as (2.128)

where € is again the smallness parameter which can be approximated by the Knud-
sen number (Kn). The Zeroth-order approximation of R; and B; are simply the
equilibrium mass distributions given in equation 2.117. Then it is straightforward to
work out some basic relations for NW and W phases (considering the lattice isotropic
relations 2.112):

S8 = (1250
ZR( Cio = Pl + ko f3 :’f;w Ty, (2.129b)
ZR €in€ig = C pnéaﬁ, (2.129c¢)

and similarly for the W phase:

S BY = p, (2.130a)
Z Bz‘(O)eia = Pwla — k2ﬁmnav (2'130b)
- Pn + Pw
Z Bgo)eiaew = cgpuﬁag. (2.130c¢)

i

Based on equation 2.129(a) and 2.130(a), it implies that:

SRV =0, Y BV <o, (2131)

i
However, it should be noted that the first- and second-order moments are not neces-
sarily zero: ), Rénzl)eia #0and ), Rz(nzl)emeig # 0. Furthermore, we can define
some net mass flux terms, for example, the post-collision (i.e. equation 2.115) net
mass flux as:
q'f(@,1) = qff (x,1) — qjf (@.1), (2.132)
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where
an = Z RITeiaa CJEQ = ZBZTeia- (2133&)
i 7

Similarly we can also define post-propagation pre-collision (i.e. equation 2.116) net

mass flux as:

q(ma t) = QR(wa t) - QB(wv t)a (2134)
where
Qo = Y Ri€ia: qBa = Y  BiCia. (2.135a)
i i
Now let us work out the various net mass fluxes above. First, by just considering
equation 2.115 we could already figure out the post-collision net mass flux qﬂ.
aff =" Rl(a,t)ein — > Bl (z, t)eia
i i
<1_ ) 3 ficin =3 Bt = S e =3B (130
)
1 1
(1 - > Qo + — <p¢ua + 2k2/8 PP noz) )
Tm Tm Pn + Puw
and if we take 7,,, = 1 we could immediately get:
all = piua + 2kyB-L
Pt P (2.137)

=S RO, )eia — > B (2, t)eia, for 1 = 1.

For q,, however, it takes more algebra to work out, since it involves post-propagation
(mass) distribution functions, i.e. R;(x,t) and B;(x,t), and solving >, R;(x, t)e;q di-
rectly is kind of troublesome since there is no formula that can be used. Nevertheless,
the trick here is to note that these post-propagation distributions are equal to their
pre-propagation counterparts R;H (x —e;dy,t—0;) and R;H (x —e;dy,t—0;), and solving
for instance ), RIT (x —e;0y,t — 0t)e;q is much easier since we can still utilise equation
2.115. Therefore we have:

o = ZRi(myt)eia - ZBi(xat)eia

= ZR;H(SD - eiét,t - 5t)eioc — Z BJT(m - eiét,t — 6t)€io¢-

i

(2.138)

To resolve equation 2.138, Halliday, Hollis, and Care (2007) introduces three ap-

proximations:

1. In the continuum applications, the interfacial phase field is always close to equi-

librium such that the time variation can be neglected. This means that we can
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ignore the §; time step difference and obtain:

RN (@ — e;6,,t — 6;) ~ R (x — eidy, 1), (2.139a)

)

Bl (x — e;6;,t — 8,) = Bl (x — €;6;,1). (2.139b)

1

2. Then we can Taylor expand the right-hand side of equation 2.139 and only retain
up to the first-order spatial derivatives, which is the second approximation. Thus

we have as follows:

RIT(x — €0, 1) ~ R (z,1) — 010(R!Tei0), (2.140a)

7

Bit(x — eid;,t) ~ Bl (2, 1) — 010(B] ein). (2.140b)

3. The third approximation is, during the derivation of ¢, shown below, to assume:

R (x,1), (2.141a)
eBY (@, 1), (2.141b)

which means to neglect the higher-order terms RZ@) and BZ.(2). This approxi-
mation is mainly to simplify the calculation (which will come clear in the due

part).

Based on the first two approximations above, the net mass flux for the post-

propagation distributions are thus given as:
o ~ Z [RIT(:Bﬂf) - BJT(w,t):| Cia — 815 Z [RIT(IIZ,t) - Bzﬂ(w,t)} €ia€ip
i i
=all 015y [RIT(SU, t) - Bl (x, t)] Ciacis (2.142)
i

= pgf)ua + kaﬁ%na - 815 ZZ: [RIT(iL', t) — B;”L(ZL‘, t)] €ia€is,

n T Pw

where the first term in equation 2.142 is simply qy, given by equation 2.137. For

the second term of equation 2.142, we use equation 2.115 to replace RZTT(as,t) and
Bl (x,t):

R{'(z,t) — B]f(a.t) = (1 - 1) (R, 1) — Biw,t)] + — RO (@,t) - B (1)

Tm Tm
1
_ [Rgo)(x,t) - Bf“@,t)} + (1 . T> [Rg”(m,t) - Bi‘”(a;,t)} ,

(2.143)
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where the approximation 3 mentioned above has been used. Hence the second term

of equation 2.142 becomes:

term (1)

=3 o [BlN@.0) — Bl (@, 0)] cineis = ~015 Y[R (@.1) = B (@,1)] eineis

- (1 _ jn) oY [RV(@.t) = B(@.0)] eiaeis

[\

term (2)
(2.144)

Considering the relations in equation 2.129 and 2.130, the term (1) of equation 2.144

can be further simplified as follows:

_81,3 Z [RZ(O) (:B, t) - BZ(O) (mat) €ia€ig = _81ﬁ (Cgpn(saﬁ - Cgpwéaﬁ)
i (2.145)

= _Cgala(PQS)-

For the term (2) in equation 2.144, we could utilise equation 2.153 which connects
RY and BY to R and BZ»(O) on the order O(e!). Therefore the term (2) can be

() 7 i

simplified as follows:

— (1 — 7_1n> alﬂz [Rl(l)(w7t) - Bz‘(l)(mvt)} €ia€ig

1
- <1 B ) (_Tm)alﬁ Z eiaeiﬁ(ah + alWeiW)Rz(O) (2'146)

Tm

1
# (172 ) 0wy B cuncis(@n + Oner B
m .
K2
in which the first term on the right-hand side of equation 2.146 can be simplified as:

1
_ <1 - > (=Tm )01 Zemew(atl + 8lv€w)Rz(O)

Tm

:(Tm — 1)315 lﬁtl Z emewREO) + (317 Z €ia€z‘/3€mR§0)

%

=(Tm — 1)04, 01a(2pp)

+ (Tm - 1) l:alapnalvu'y + k28014 (%) 817”7:| )



40 Chapter 2. Background Theory of Lattice-Boltzmann Method

and similarly the second term on the right-hand side of equation 2.146 is as follows:

1
(1 - ) (=7m)15 Y €incig(Oh; + Oryeiy) BY

Tm

= (Tm - 1)at1 81a(cgpw) (2148)

PnPw
- (Tm - 1) [alapwalfyu'y — k23014 <pn T pw> al'ynfy:| .

Overall, the term (2) of equation 2.144 is given by:

~(1- )amz (R (@,0) = BO(,1)] cincin

= (1 — 1) [cgatlam(pqs) + 010 (p) D1yt + 2k 8014 ( p’fw > al,ynv] .

Pn T Pw

(2.149)

Hence, considering equation 2.145 and 2.149, we are able to work out the expression

for equation 2.144 as:
=3 ons [R] (@) = B (@, 0)] eiacis
i

= —}01a(p9) (2.150)

+ (Tm - 1) [Cgatlala (p¢) + (9104(/%?))6171% + 2k2/861a ( prfw > al’yn'y:| .

n T Pw

If we again set 7,,, = 1, and substitute equation 2.150 into equation 2.142 we eventually

obtain the net mass flux of the post-propagation distributions as follows:

(o = PPUG — c?@la(/xb) + 2]?2,6%77‘&, for 7y, =1, (2.151)

n T Pw

where it can be easily seen, by comparing to equation 2.137:
Go = qa — A0u(pop), for T, =1, (2.152)

that 9y, is replaced by the normal J,.

After working out the net mass flux terms, which is an important prerequisite
for the subsequent derivation, now we can perform the Taylor expansion for equation
2.114, on the order of O(el):

1

(04, + Draeia) RO = —T—RZ@, (2.153a)
1

(01, + Draeia)BY = ——BY, (2.153b)
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and on the order of O(€?):

1

8t2Rz(0) + (ah + alaeia) <1 - 6t> REI) = _7R7,(2)7 (2'1543)
2Tm Tm

01, BY + (01, + 010€ia) <1 - ;) BY = - L5 (2.154b)

where, for visual clarity 6; = 1 is used hereafter.

On the order of O(e!), if summing equation 2.153 over i for each phase we can

get:
O, Pn + O10(pntia) + k28014 { PrnPuw na} =0, (2.155a)
Pn T Pw
PnPw _
Oy pw + O1a(puwiia) — k28014 [—i—pna} =0, (2.155b)

where it can be seen that, if neglecting the terms due to the recolouring algorithm, the
convection equation for each phase is indeed recovered on the e 't} scale. If taking
the difference of equation 2.155(a) and 2.155(b) we then get:

O (p®) + Ora(pdua) = —2k2B014 L): ’fzw na} (2.156)

Also, on O(e'), by multiplying equation 2.153 with the lattice velocity e;, and

summing over ¢, we obtain:

0 Y eisR” + 01 Z eineigR\" Z eis RV, (2.157a)

i

O, Z elgB + 010 Z emelgB Z elgB (2.157b)

which can be straightforwardly simplified by considering equation 2.129 and 2.130:

TL

O, (pnug) + O, |:k‘25 p:?l; ng] +c awpn = —— ZelﬁR (2.158a)

n

s, (pwiig) — O, [kgﬁmnﬁ] + 201 pw = _7 Y eisBY, (2.158b)

and can be further simplified as:

n T Pw

O, (pdug) +2ke S0y, [ prfw na] +c; 81a (pp) = _72610‘( = Z»(l)>. (2.159)

Again, for the term on the right-hand side of equation 2.159 we need to use the
third approximation mentioned before (i.e. REI) ~ R; — Rl( ) and similar to B( ))
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such that the equation above becomes:

O, (pdug) + 2ke 304, [ p ’f“’ na} + 01a(p9)

n T Pw

1 1 0 0
= —aZeia (Ri_Bi)_aZem (Rl( )—i-Bi( )) (2.160)
1 1
1
— = (gt = )
where the expressions for g, and qy are given in equation 2.137 and (2.151) for 7,,, = 1.

On the order O(€?), similarly, we can sum equation 2.154 over i to obtain:

1 3 (1)

8t2pn + <1 - 27_7n) ala ' eiaRi = O, (2161&)
1 1

Ory P + <1 - 2Tm> Oa § einBY =0, (2.161b)

where equation 2.131 is used during the derivation. Considering again equation 2.153
to replace Rgl) with Rl(-o), we can then evaluate the right-hand side of equation 2.161

as follows:
> eiRY = -1, > eio (01, + D1peis) R

0 0
= —~TmOp, Y eiaB = Tmdis Z CincigR\ (2.162)

i

PnPw
= —Tm |:8t1 (pnuoc) + kQBah (Pn"‘ﬁwna) + Czalapn] ’

and similarly:

ZemBl-(O) = —T [@1 (Pwla) — ko0 <pp7f1; na) + c?@lapw} . (2.163)

Then substitute equation 2.162 and 2.163 into equation 2.161 we get:

1 nrHrw
Oty pn — (T — 5)% {8t1(pnua) + k280, [ '0_"_0 na] + ci@lapn} =0, (2.164a)

n T Pw

Oty puw — (T, — %)81,1 {8,51 (Pwta) — ko0, [pl%fw na] + ci@lapw} =0, (2.164b)

n T Pw

which can be rewritten as:

D nrHrw
Onap ~ Ddadiapn — 0ha {atl (Ptia) + k280, L” f ; na} } =0, (2.165a)

D nrw
Onspw = Ddadhapu — 1 {atl (Pwtia) — k280, Lp P na} } =0, (2.165b)

S
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where the diffusion coefficient D is given by:

1
D=¢2 (Tm - 2) : (2.166)

It can be seen that equation 2.165 indeed recovers the diffusion equation on the =2t}
scale, if neglecting the third term for each phase. Taking the difference between
equation 2.165(a) and 2.165(b) we obtain:

D nrFw
00s(p9) ~ DO1Ora(p9) = 3010 {0 (piue) + 20250y, | L, | 4 (2.107)

and note that the right-hand side of equation above is part of equation 2.159, thus we
can substitute equation 2.159 into equation 2.167 to get:

D
00(p9) - DO1Orap) = 13 |~201a(p0) + - (alf ~ )|
s Tm
D
> [=201a(00) + 010 (p0)] (2.168)

=0, formr, =1,

where equation 2.152 is used during the derivation, and note that when 7,,, = 1, the
diffusion coefficient becomes D = ¢2/2.

Now we can combine equation 2.156 and equation 2.168 to obtain:

Ou(p6) + Ou(p1a) = —2ks30, [”f;n] | Dudalpo)

n

C2 C2
=~ 0a(p0a0) + 5 0a [Da(p)] (2.169)
c
= anz(ﬁbaap)a

2

where equation 2.125 is used and note that ks|c|?> = c2. We hereafter rewrite the

evolution equation above as:

2
01(p®) + Dalpdia) = 2 0a(60ap). (2.170)

To obtain the evolution equation of the phase field, we need further manipulation of
all equations above: recalling that for the Chapman-Enskog analysis being performed
above, we always start from the relevant equation for each phase, and after the sum
over the discretised velocity index ¢, we take the difference between each phase, which
is why we get an evolution equation for p¢ = p, — py. Alternatively, for the equation
on O(e!) and O(€?), we can take the sum, not the difference, of two phases to obtain
an evolution equation for p = p, + py. Therefore, if summing equation 2.153(a) and

2.153(b), we immediately get, on the order O(e'), as follows:

O p + 01a(pua) =0, (2.171)
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which is the continuity equation for the colour-blinded phase. Similarly, if summing
equation 2.165(a) and 2.165(b), we get on the order O(e?):

D
O, p — gatlam(pua) — DO14010p =0, (2.172)
S
where it is noted that the second term on the left-hand side of the equation above can
be rewritten using equation 2.171 such that 9y, d14(pua) = — 04, O, p. If combining the
two time scales by doing (! xequation 2.171 +€2xequation 2.172) we get:

D
Op + Oulpua) + C—Qﬁtﬁtp = D3y0up- (2.173)
S
Neglecting the second-order time derivative of the total density p (= pn + pw), and
noting that when 7, = 1 the diffusion coefficient D = ¢2/2, we thus have two evolution
equations for p¢ and p:

2

9 (pd) + Oalppua) = %’%(qﬁaap), (2.174a)

2

0ip + Ol pua) = %saaaap. (2.174b)

If multiplying equation 2.174(b) by the phase field ¢, we get:

2
GOp + P0a(pua) = %qﬁ@a@ap, (2.175)

and if subtracting equation 2.175 from equation 2.174(a) we get:

2
pat¢ + puaaa¢ = %g apaa¢a (2'176)

which, noting that D = ¢2/2, can be rearranged to obtain the evolution equation of
the phase field as:
D
01 + UuqO0n) = —0upOap, for 7, =1, (2.177)
p

or in the vector notation as:
D
Op+u-Vo=—vVp-Ve, forr, =1. (2.178)
p

It is noted that the right-hand side of equation 2.177 is not zero, which indicates an
error term in the recovered phase field evolution equation. This error terms essentially
comes from the recolouring term in equation 2.117. The recolouring term is designed
to suppress the inter-phase diffusion as well as to achieve phase segregation. Without
the recolouring term, a standard convection-diffusion equation for the phase field will
be recovered; ideally it is expected the inter-phase diffusion can be exactly cancelled
by introducing a recolouring term; however, as it has just been shown, our recolouring
scheme introduces an error term indicating that the interface accelerates with respect

to the local fluid. The similar observation has also been made in the work of Halliday,
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Hollis, and Care (2007), where a slightly different LB evolution equation is used.
Currently, the error term in the phase field equation remains one of the unresolved
issues in our multicomponent LB model. The consequence of the error term, however,
will be shown negligible based on the results in sections 5.1.2, where it is demonstrated
that the evolution of the interface complies with the imposed boundary injection
condition with decent accuracy (i.e. Figure 5.4). In terms of mitigation, the idea by
Hollis, Halliday, and Law (2007) may be borrowed to revise the current recolouring
formulation by imposing extra kinematic condition on the interface; since the current
error term makes the interface move faster than the bulk fluid, a perturbation term

introducing more viscous damping on the interface can be a potential remedy.
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Chapter 3

Discretisation Limits of
Multicomponent LB Models

3.1 Introduction

Over the past two decades, there have been a large body of work on applying mul-
tiphase LB models in the study of fluid flows in porous media. In section 1.1 we
had a brief review of many examples applying different types of multiphase LB mod-
els in porous media applications. Despite the progress (most of which focus on the
proof-of-concept that multiphase LB models can be applied to the realistic porous
media), there has been relatively little study of the models’ ability to make opti-
mal use of 3D imagery by considering the minimum number of grid points that are
needed to represent geometric features such as pore throats. This is important since
3D images of geological samples are inevitably a compromise between resolution and
field of view. Pan, Hilpert, and Miller (2004) studied how the primary drainage LB
simulations are affected by different resolution levels in both simple geometry and ar-
tificial sphere packing system. But the resolution of the model was not pushed to the
extreme discrete limits, and this work did not focus on identifying shortcoming’s in
the model’s behaviour at low resolution and the potential implications for simulation
studies. Moreover, for the Shan-Chen (SC) multicomponent LB model used in Pan,
Hilpert, and Miller (2004) and many other works, concerns regarding to the numeri-
cal stability arises from the relatively narrow range of available model parameters and
the need to fine-tune the pressure boundary condition. The latter has been studied
by Schaap et al. (2007) who proposed an approach of identifying a stable pressure
boundary condition empirically. It is natural to ask whether this approach would
break down in some way if the resolution is pushed to the extreme discrete limit and
what the consequences of this breakdown would be. As a result, it is also natural to
examine if other mainstream multiphase LB models are suitable to be applied at the
low resolution. McClure et al. (2016) compared LB drainage and imbibition sequence
at different resolutions in a sphere packing system, using Rothman-Keller (RK) mul-
ticomponent LB model, and has shown that small features such as pendular rings will
always tend to matter in real systems. However the focus of this work was not on

examining the RK model at extremely low resolution as well as what the associated
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breakdown behaviour will arise. Alongside these studies, there are also several works
that compares the SC model, RK model, and free energy LB model (Hou et al., 1997;
Huang, Wang, and Lu, 2011; Yang and Boek, 2013), but none of them have focused
on the models’ breakdown behaviour at the resolution limits.

Given the existing literature reviewed above, although some treatments have been
introduced to overcome some shortcomings in the multicomponent LB models, overall
the coverage is limited and the focus of most works is on generating positive outcomes.
There is still an important question to ask: what will happen if we perform multiphase
LB simulations on pCT images with coarsened resolution 7 Ultimately, if we want to
better characterise the multiphase system (porous media plus fluids) to include more
heterogeneity, simulations with lower image resolution could be the easiest and most
straightforward approach. An puCT image with coarsened resolution by a factor of 2,
corresponds to the shrink of total simulation domain by a factor of 8, which would
save thousands of hours of computation time. However, it is critical for researcher to
be aware whether the resolution coarsening will render the LB modelling erroneous
and meaningless. Therefore, the goal of this chapter is to explore the discretisation
limits of multicomponent LB models by pushing the fluid-fluid interfacial radius of
curvature and the feature size of the simulation domain down to the discrete unit size
of the computational grid, i.e. what is the coarsest computational grid that can be
used to simulate a given system, and in what ways do the simulations break down as
these limits are approached ?

Throughout this investigation, we attempt to study some of the fundamentals
of multicomponent LB models in terms of computational efficiency at low-resolution
limits. Thus, to suit that need, we select two of the most commonly used single-
relaxation-time multicomponent LB models: the SRT Shan-Chen (SC) model and
the SRT Rothman-Keller (RK) model!, where the details of these two models have
been introduced in sections 2.3.1 and 2.3.2. Single-relaxation-time model can be eas-
ily implemented, hence it could serve as a quick proof-of-concept demonstration for
our low-resolution study. Hence, in this chapter the study of SRT models consti-
tutes the major part of our survey. The more state-of-the-art multi-relaxation-time
(MRT) model (section 2.4) is also investigated in the dynamic drainage simulations.
It is noted that MRT models focus more on the enhanced numerical stability and
improved capacity of simulating systems with non-unity viscosity and density ratios,
but most of models’ low-resolution-limit behaviour (classified in Table 3.1), as will
be discussed in the due parts of this chapter, is more closely linked to the feature of
diffused interface models (to which LB methods belong) and wetting boundary con-
ditions in multicomponent LB models. Therefore, the conclusions of our study apply
more broadly to multicomponent LB models in general, regardless of whether SRT or
MRT collision operators are used and whether the system is of unitary or non-unitary
viscosity /density ratios. The SRT-based SC and RK model have been implemented
with CUDA /C++ programming language on a single GPU card, with the algorithm
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fully adopted from the work by T6lke (2008). For the algorithm and numerical perfor-
mance of the MRT-base colour gradient model, please see McClure, Prins, and Miller
(2014).

Our investigation is focused on capillary-dominated flow in porous media, and we
restrict ourselves to unity viscosity and density ratios. In all such systems the Reynolds
number is very low and Stokes flow can be assumed. In the rest of the sub-sections, we
implement a variety of small-scale, simple-geometry, both static and dynamic tests,
using either periodic or constant-pressure boundary condition with SC and RK models.
These testing cases developed here can also be used as benchmark study for any novel
LB models. For each test, we characterise SC and RK models’ breakdown behaviours
ranging from gradual loss of accuracy to catastrophic numerical instability at the
resolution limit; and in the end of the chapter, we discuss the consequences of the
models’ breakdown behaviour and the ramifications for larger-scale simulations of

fluid displacements in realistic porous media.

3.2 Methodology

Our goals are to identify these limits and to explore the nature of the loss of accuracy,
thereby helping to understand the potential consequences for larger scale simulations.
We classify the errors that appear in the SC and RK models at low resolution into the
categories defined in Table 3.1. For type I behaviour, the simulated results are still well
bound by the relevant physics laws, but there are discrepancies between theoretical
relations and simulations. This loss of accuracy arises due to progressive change of
the resolution or certain model parameters. Type II behaviour denotes non-physical
behaviour of the models that cannot be predicted by any known physics laws. For
example, in section 3.5 it shows that the dissolved non-wetting phase accumulating
at the solid surface forms conduction layer which leads to the breakthrough of the
capillary tube at a much lower entry pressure than that predicted by the theory.
Type III behaviour denotes the numerical instability which sometimes leads to non-
a-number (NaN) situations and complete program failure ensues.

We perform a series of simple tests with known results, and classify the breakdown
of accuracy as one of error types. The behaviour of both multi-component models are
evaluated primarily by examining the mean curvature of the fluid-fluid interfaces in
the simulation. The fluid-fluid interface is defined as the level set of a real-valued
function defined on a grid. At low-resolution limit it should be noted the accuracy
of measuring the curvature of an interface will be degraded. Therefore, the mean
interfacial curvature is measured by two methods: one that involves fitting a surface
to the interface (i.e. the ‘surface fitting’ method) (Herring et al., 2017) and the

Tt is noted that there is also another popular multicomponent lattice-Boltzmann model, the free-
energy model, which is also commonly seen in the porous media applications. However, considering
the time frame of the thesis project and the time to develop the corresponding GPU-parallel code,
we did not attempt to exhaust all multicomponent LB models and thus decided to only examine the
two most popular ones, i.e. SC and RK models.
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other that computes curvature directly from the real-valued function using a level-set
approach (i.e. the ‘level-set’ method). More information of these two methods are
introduced in Appendix A.

TABLE 3.1: Numerical Behaviours of Multicomponent Lattice-
Boltzmann Models

Descriptions

Type I Progressive loss of accuracy

Type II  Transition to nonphysical behaviour

Type III  Complete numerical instability and program failure

3.3 Bubble Test

The static bubble test is frequently used to calibrate multicomponent LB models by
providing a relation between the macroscopic surface tension and the model param-
eters (Hou et al., 1997; Tolke et al., 2002; Huang et al., 2007; Liu, Valocchi, and
Kang, 2012; McClure, Prins, and Miller, 2014). Here we aim to determine the small-
est bubble that the models can simulate, to explore how SC and RK models behave
differently at limits of large curvatures, and to categorise their behaviour according
to Table.3.1. We also investigate the fluid-fluid interface thickness and compare the
magnitudes of interface spurious currents for SC and RK models.

To carry out the bubble test, we place a pure bubble of non-wetting (NW) phase
whose radius is Rinitia1 inside a 65 x 65 x 65 domain of wetting (W) phase. We set
Pnw,major = Pu,major = 1.0 With pny minor = Pu,minor = 0.0, Where pny minor (Pw,minor) i8
the dissolved density of NW (W) phase inside the W (NW) phase. All dimensional and
model related parameters are summarised in Table 3.2. For the sake of the continuity
with later discussions, we use the naming of NW and W phases for the bubble and
its ambient fluid respectively, even though such naming has no meaning until a solid
phase is present. Periodic boundary conditions are applied in all directions. As the
system reaches equilibrium, we measure the mean curvature of the bubble kp (defined
as Ky = % (% + %), where 1 and r9 are the principal radii of curvature and are equal
for spherical interfaces) as well as the capillary pressure P, across the phase interface,
which is calculated as P. = Py, — Py, where P,,, and P,, are volume-averaged pressure
values taken away from the interface. R¢ina1 and P. should follow the Young-Laplace

law:

2
P. = YunRH = ’Yumﬂ,

(3.1)
where Rgina1 is the final radius of the bubble at equilibrium. The mean curvature of
the bubble is measured by both surface fitting and level-set methods. For the case
of a spherical bubble, Rfina1 is conventionally measured by a method proposed by
Hou et al. (1997), which defines Rgina through the equation ppaxmRZ ., + (L% —
TR2, 1) Pnin = pL? in a 2D case, where L? is the area of the computational domain,

p is the average density of the NW phase, i.e. p = EX Pau/ L?, and Pmax and ppin are
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the maximum and minimum of the NW phase density over the entire domain. Then,
the calculated Rgina1 can be used to derive the corresponding mean curvature by
assuming the bubble a perfect sphere. We performed curvature measurements using
the method of Hou et al. (1997), as well as the surface fitting and level-set methods,

to help validate our curvature measurement methods.

TABLE 3.2: Major Parameters in Bubble Test

SC Model RK Model

Domain Size

(Nz, Ny, N) (65, 65, 65)

Pnu,major = 1.0

Initial NW density Py, minor = 0.0

I . pw,major =1.0
Initial W density P minor — 0.0
Relaxation parameter Tow = 1.0
T Tw = 1.0
Other parameters Geon = 1.5, 2.0, 2.5 Ap =Ag= 0.001, 0.005,
P 3.0, 3.5, 4.0 0.01, 0.05, 0.1, 0.5

In terms of the initial condition, the equilibrium velocity u;! was set to zero to

initialise fik’eq, and initial values of f¥ were also set to filC “d for both models. The

stopping criterion for simulations is chosen as:

sup { Zx[PnW(Xa t) — pou(X,t — 200)]2 ZX[PW(Xa t) — pu(x,t — 200)]2 } <5 x 10—15’

Zx[pHW(Xv t)P ’ Ex[pW(X’ t)]2
(3.2)

where t is the simulation step size, set as 1. This stopping mechanism is applied
throughout the simulations in this chapter.

For the SC model, as already mentioned, it is the product of the cohesive coefficient
Gcon and the sum of major and minor densities that determines the macroscopic
surface tension. According to reported works (Schaap et al., 2007; Huang et al.,
2007), for 1.5 < Geonprotar < 4.4, a reasonably immiscible two-phase system can be
achieved for a range of surface tensions, where piota1 is the sum of initial pny, major
and py minor- It is noted that for Geonprota1 greater than 4.4, the SC model becomes
numerically unstable (a type III breakdown). Therefore we select several Geon values,
{1.5,2.0,2.5,3.0,3.5,4.0}, for the SC model (note that pyota1 is unity according to the
initial condition).

For the RK model, according to equation 2.60, the macroscopic surface tension is
determined by the free parameters Az and Ag. Here we examine a few representative
Agr(= Ag) values: {0.001, 0.005, 0.01, 0.05, 0.1, 0.5}, across three orders of magni-
tude. Like the SC model, if Ag g 2 0.6, the RK model becomes numerically unstable.
The free parameter (3 is set 1.0, corresponding to the thinnest numerical stable phase
interface (Liu, Valocchi, and Kang, 2012).
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Given the model parameters mentioned above and in Table 3.2, a quick order of
magnitude estimation of the physical scale of the simulations can be made. According
to the discussion on the unit conversion in section 2.2, the physical capillary pressure
is related to the size of physical lattice units of the uCT image, and the physical as well
as LB interfacial tension. If assuming an oil-water system with a interfacial tension
of 0.0378 N/m, and a resolution of 10 pm per lattice units ({.u.), for SC model, based
on the fitting results shown Figure 3.2, with 1.5 < Gcon < 4.0, the capillary pressure
ranges between 0 ~ 4100 Pa. For RK model, the model parameter Ag g of 0.001 ~
0.5 gives the capillary pressure of 0 ~ 2600 Pa. In terms of the physical time scale, if
a typical water kinematic viscosity of 1076 m? /s is assumed, the physical time is 107°
seconds per lattice time ([.t.), i.e. it takes 100,000 time steps to simulate one physical
second.

Starting with different Rinitia1 and allowing the system to relax to an equilibrium
state, we can obtain bubbles with various sizes. Figure 3.1 shows the examples of 1D
phase density profiles of the bubbles at equilibrium with a bubble radius of ~10.0 [.u.,
for both SC and RK models. The phase density was extracted along the central line
of a central plane of the domain. For SC model, it can be seen that as G., decreases,
which corresponds to a decreased surface tension, both the dissolved densities pny, minor
and py minor increase. On the other hand, for RK model the amount of the dissolved
phase in another fluid is negligible and is not affected by the model parameter Ag g
which controls the surface tension. The SC model’s immiscibility can be improved
by using a larger Gcon, but we will show in the section 3.4 that once the solid phase
is added, even a Gcon of 2.0 can lead to numerical instabilities. Most likely as a
consequence of this, simulations described in the literature use lower values of Gcop
(Schaap et al., 2007; Huang et al., 2007). In short, employing the SC model involves
a trade-off between miscibility and numerical stability, while for RK model one can
choose a surface tension without affecting numerical stability, but it’s challenging to
simulate any genuine miscibility. Fluid-fluid interface thicknesses can be estimated
from this data by fitting the 1D density profile with a tanh(2z/€) function (Rowlinson
and Widom, 1982), where € is a measure of the interface width. This gives the interface
thickness of ~5 [.u. for the RK model at all Az g with § = 1.0, and 4~6 [.u. for the
SC model with Gcon ranging from 4.0 down to 1.5.

By measuring a series of bubble radii and the corresponding capillary pressure, the
Young-Laplace law in equation (3.1) can be tested. Figure 3.2 summarises the bubble
test results for both models, where P, normalised by the fitted lattice surface tension
Yuwn 1S plotted against the mean curvature xg. The capillary pressure is normalised
to allow meaningful comparison among all results. The uncertainties associated with
the estimation of P. are due to the measurement of the volume-averaged P,, and P,
from the bulk NW and W phases; the pressure must be sampled in the bulk phase well
away from the interface. The surface tension is calculated as the slope of the linear
fit to the P, versus Ky data, based on equation (3.1). All the fitted surface tension
values agree well with reported works for the SC model (Schaap et al., 2007) and the
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FiGURE 3.1: The NW and W fluid density profiles along the central
line (y = 33) in the central plane (z = 33) for (a) SC model, and (b)
RK model. The solid symbols with solid lines are of the non-wetting
phase, and blank symbols with dotted lines are of the wetting phase.
The density profiles are obtained at a mean curvature of about 0.2
l.u.”', which corresponds to a bubble radius of 10 l.u.. For SC model,
the amount of dissolved density of one phase in another is dependent
on Gon that controls the surface tension, whereas for RK model, the
dissolved phase is negligible, and is not affected by Ag 5 that controls
the surface tension.

RK model (Liu, Valocchi, and Kang, 2012).

As can be seen from Figure 3.2, the RK model shows good agreement with
Laplace’s law for mean curvature up to kg ~ 0.7 L.u.~! (corresponding to a bub-
ble diameter of 5.71 l.u.), according to both curvature measurements. Beyond this
the capillary pressure-curvature relation deviates progressively from the Laplace’s law,
which we classify as a type I breakdown behaviour?. Given that the average inter-
facial thickness of RK model (8 = 1.0) is ~5.0 l.u. as calculated based on Figure
3.1, this breakdown behaviour is clearly caused by the fact that the bubble diameter
becomes comparable to the interfacial thickness, so that interfaces on opposite sides
of the bubble overlap, preventing the NW fluid pressure inside the bubble from reach-
ing a plateau. Consequently, even in the centre of the bubble the NW fluid pressure
is significantly lower than it would be in the bulk, leading to an exaggerated mea-
surement of capillary pressure. Such breakdown is a predictable, indeed inevitable
consequence of finite interface thickness, and in fact as we shall see in section 3.4,
the RK model suffers no fundamental breakdown at this radius and can accurately
simulate situations with much higher interfacial curvatures. For kg > 0.7 Lu.~!, the
surface fitting method gives larger curvature values than the method of Hou et al.
(1997): for the smallest bubble, an infeasible mean curvature of ~ 2.75 l.u.~! is given
by the surface fitting method (shown as the rightmost data point in the inset of Fig-
ure 3.2(d)). This is again due to the degraded NW phase density inside the bubble,
such that the threshold used by the surface fitting method to construct an isosurface
becomes inappropriate in the bubble interior. At this point, both LBM and measure-

ment method are approaching the limits of accuracy, and it should be noted that the
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FIGURE 3.2: The bubble test of Laplace’s law, where the mean cur-
vature is measured by the method proposed by Hou et al. (1997) for
(a) SC model and (b) RK model, and by the surface fitting method
for (¢) SC model, and (d) RK model. The measured capillary pressure
is normalised by the fitted surface tension for each G¢on and Ag 5. In
(d), as discussed in the text, the surface fitting method over-estimates
the mean curvature for the smallest bubble; the inset shows the full
data set. Error bars for the surface fitting method arise from statis-
tical variation between localised measurements. For more details of
curvature measurement, see Appendix A.

lattice-Boltzmann model can still give reasonable results. Overall, for RK model as a
strictly immiscible model, we are able to obtain bubbles of radii as low as ~ 2.0 l.u.,
and although the pressure at such a small radius is degraded due to the proximity of
the phase interface, the bubble remains stable and spherical.

For SC model different behaviour is observed depending on Gcon. More specifically,
for Geon = 3.5 and 4.0, whose minimum bubble sizes are similar to the RK model (i.e.

the bubble diameter is ~4.0 [.u.), the breakdown apparent in the RK model is not

2The deviation from the Laplace’s law in RK model is indeed a type I error, since type I error
is predictable as the model is pushed to the low-resolution limit. In contrast, the type II error
(transition to nonphysical behaviour), such as the nonphysical attraction of dissolved NW phase to
the solid surface which is discussed in the later section, is not a feature of the model that can be
predicted.
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observed. This is expected, since based on the density profiles in Figure 3.1, the
average interfacial thickness involves as small as 4.0 [.u.. However, for Geon < 3.0,
the curvature measurement stops at kg = 0.75 or less, beyond which the bubble
completely dissolves. In fact, as Gcon decreases, the maximum mean curvature beyond
which the initial NW bubble dissolves decreases correspondingly. The phenomena
observed here are two folds: (a) in contrast to the RK model, the solubility of the SC
model is strongly dependent on the curvature, as is directly shown in Figure 3.2; (b)
the solubility (or more specifically the immiscibility) of the SC model also depends
on the system’s surface tension, since the maximum mean curvature decreases with a
decreased Gcon, and a smaller Gcon gives a smaller system’s surface tension. For the
dissolution issue observed in phenomenon (a), it is convenient to refer to the Kelvin
equation (Israelachvili, 2011) which describes the effect of curvature (and thereby
capillary pressure) on the relative solubility of a liquid or a solid in a liquid. In the
context of the bubble test where the dissolution of the NW bubble is of interest, the

Kelvin equation can be conveniently written as:

nw, minor V
In (p})o) = o5 P (3.3)

where pg refers to the amount of the dissolved NW density in bulk W phase at zero
capillary pressure (i.e. a plane interface), V; is the molar volume of the NW phase,
and R is the universal gas constant (i.e. 8.314 JK 'mol™!). The curvature-dependent
solubility for the SC model has been investigated by Schaap et al. (2007), whose
results is re-plotted here in Figure 3.3, where the same multicomponent SC model
was used to model a water-Soltrol system. Figure 3.3 shows that the dissolved NW
phase (i.e. Soltrol) density pny, minor increases with increased capillary pressure, which
qualitatively agrees with equation (3.3). However, at capillary pressure of ~700 Pa,
the magnitude of the left hand-side of equation (3.3) is ~0.7. In reality, given that
Soltrol density (790 kg/m?) is close to water density, we can perform a quick order-
of-magnitude estimation of the right hand-side of equation (3.3) by using the molar
volume of water as an approximation (i.e. 18.016 mL - mol™! at 277K (Chieh, 2009)),
which gives Vo P.R™'T~! ~ 107°. Therefore, the dissolved fluid concentration changes
far more rapidly with small pressure changes in the SC model than in the real world.
As the curvature increases, larger capillary pressure is needed, and more NW phase
will dissolve into the W phase. The sensitivity of concentration on pressure means
that the SC model is constantly being driven out of equilibrium by small changes
capillary pressure. For this test, the main consequence is that small bubbles have an
exaggerated tendency to dissolve into the surrounding fluid and it is not possible to
simulate the type of partially-miscible but pre-equilibrated system that is common
in laboratory experiments. Nevertheless, there are also circumstances that partial
miscibility is a desired feature, such as vapour-liquid systems; for such applications,
readers are referred to the work by Yuan and Schaefer (2006), where an improved SC

model incorporated with many commonly used equations of state is studied. Overall,
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in the context of immiscible simulations, using a larger G¢on would certainly suppress
the dissolution of the phases, thereby improving the immiscibility; it, however, comes

at a cost of reduced numerical stability as will be shown in the following discussion;
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F1GURE 3.3: Component densities of NW and W phases in the SC
model as a function of capillary pressure for a water-oil system, with
the water-oil interfacial tension of 0.0378 N/m, computed by Schaap
et al. (2007). While this was used to help calibrate the model in
Schaap et al. (2007), we point out that it demonstrates the sensitivity
of solubility to component pressure which lies at the heart of most
problems with the SC model, and which violates the Kelvin equation.
The simulation setup is similar to the flat tube test in this work (see
section 3.4.1). pay major aNd Py ninor are extracted from within the bulk
NW phase, and py major and py minor from within the bulk W phase.
Note that Gcon defined in Schaap et al. (2007) is 36 times smaller than
that defined in this work. In Schaap et al. (2007), Geon = 0.025 with
Protal — 2.088 is used as the initial conditions, which, converted to the
setting in this work, is equivalent to have Geon = 1.87 with piota1 =
1.0. We obtained the similar trend in the phase density components
by using Geon = 2.0 with piora1 = 1.0 as the initial conditions, at the
same tube size.

Lastly, we compare the level of spurious currents for SC and RK models. Ideally,
at equilibrium, the velocity field in the bubble test over the simulation domain should
be zero. However due to the imbalance of discretised forces, especially near curved
phase interfaces, an artificial velocity field is present, and this unwanted velocity field
is called the spurious current (Connington and Lee, 2012). Spurious currents are
an universal problem for multicomponent LB models. The magnitude of spurious
currents becomes larger as the system’s surface tension increases, since the fluid-fluid
interaction force is larger, increasing the imbalance of these discretised forces. Large
spurious currents can prevent the system from achieving a true equilibrium state
and even cause numerical instability (type III breakdown). Figure 3.4 summarises
the maximum spurious current (extracted from fluid-fluid interface) for SC and RK
models, plotted against mean curvature measured by the method of Hou et al. (1997).

Overall, the RK model exhibits smaller spurious currents than the SC model, except
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for the case of smallest surface tension (Geon = 1.5) in the SC model and largest
surface tension in the RK model (Ag g = 0.5). However, it should be noted that for
SC model more recently, Porter et al. (2012) replaced the velocity-shift forcing scheme
(i.e. equation (2.53)) with the more accurate one by Guo, Zheng, and Shi (2002), and
have shown much reduced spurious current. The reduced spurious current in RK
model is because of the use of modified perturbation collision operator (i.e. equation
(2.60)) that improves the isotropy in surface tension calculation, and the recolouring
collision operator (i.e. equation (2.63)) further reduces the spurious currents. It is also
noted that, both the interfacial curvature and the capillary pressure do not strongly
influence the magnitude of the spurious current. For both models, as Gcon or Ag s
increases, the level of spurious currents increases correspondingly. In particular, for
SC model with Gcon > 3.0, the spurious currents are comparable to the lattice speed
of sound cg, thus at the proximity of the low Mach-number limit for incompressible
LB models (Latt et al., 2008). Therefore, to avoid numerical instabilities due to large
spurious currents, 1.6 < Geon < 2.0 is usually used for SC model (Huang et al.,
2007). In this regime, the interfacial widths in the SC and RK models are the same,
eliminating the SC model’s potential advantage of generating thin phase interfaces at

large Geon.
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FIGURE 3.4: The maximum spurious currents for SC and RK mod-
els” bubble test at different model parameters Geon and Ag 5. Mean
curvatures are measured by the method of Hou et al. (1997).

3.4 Static Capillary Tube Test

In this section, solid boundaries ("walls") are added, with the NW and W fluids
enclosed in a square-shaped capillary tube (Schaap et al., 2007; Huang et al., 2007,
Ramstad, @ren, and Bakke, 2010). The NW phase is placed in the middle of the tube
with the W phase at the ends, and the total masses of NW and W phases are set

equal. Being able to achieve high curvatures with a high NW fluid saturation avoids
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the complete dissolution that plagued the SC model in the bubble test. Periodic
boundary conditions are applied at ends of the tube. For the fluid-solid interface,
the standard bounce-back condition is used (Cornubert, d'Humieres, and Levermore,
1991). This is the simplest scenario for simulating a single pore in real porous rocks.
In this test, by varying the wetting conditions (adjusting Gags i for SC model and
®(xya11) for RK model), we explore the models’ behaviour through the capillary
pressure - mean curvature relation. Two configurations are tested: a flat tube and a
tube tilted at 45° to all coordinate axes. A flat tube is an ideal simplification of the
real pore space, and the flat sides of the tube give perfectly aligned wall nodes. The
tilted tube introduces a complex "staircase" structure along its side walls, as occurs
in voxelated representations of real porous media.

For the case of the flat tube, the simulations were performed for wall to wall tube
sizes of 3.0, 4.0, 6.0, and 8.0 l.u., corresponding to inscribed tube radii (Rype) of
1.5, 2.0, 3.0, and 4.0 [.u.. As a reference, we also performed simulations at Riupe =
20.0 l.u., for which we have higher resolution to measure the mean curvature. For
the case of the tilted tube, the tube is oriented at 45° to each axis (i.e. the tube
axis is parallel to the (1,1,1) Cartesian vector). The tilted tube is constructed by
geometrically transforming the axis-aligned flat tube. The actual size of the tilted
tube, e.g. the effective cross-sectional area, is discretised and therefore not identical
to the original flat tube. In addition, the ‘zigzag’ of the staircase walls means that one
can only talk about a length-averaged tube size. We calculate the average inscribed

radius of a tilted tube Rijiteq as:

= 1 Viilted
tilted = o )
\/ N2+ N2+ N2

where Vii1teq is the volume of the tilted tube in voxels, and (N, Ny, N.) is the domain
size for the tilted tube. For Ryype = {1.5,2.0,3.0,4.0,20.0} l.u. in the flat tube, after
being tilted the calculated inscribed radii are Reiiteq = {1.44,1.85,2.83,3.79,17.73}

lu..

(3.4)

In terms of the model parameters, for the RK model, a mediate surface tension
parameter Ag (=Ag) of 0.01 is chosen. There is no a-priori preference to choose a
particular Ag g, since according to the bubble test, as long as Ay 5<0.5, the model’s
behaviour (e.g. numerical stability and interfacial thickness etc.) is relatively insensi-
tive to Ag p. Following equation 2.66, to achieve contact angles in the range [0°,90°]
(defined with respect to the wetting phase), the phase field on the wall nodes ®(xya11)
is varied in the range [—1.0,0.0]. For the SC model, following results from the bubble
test, we set the fluid-fluid interaction coefficient Gon as 2.0 to avoid potential numer-
ical instabilities while maintaining reasonable immiscibility. The wetting fluid-solid
interaction coefficient Gags w is kept 0.0 while different contact angles are achieved by
varying the non-wetting fluid-solid coefficient Gags nw in the range [0.0,2.0]. For SC

model, there is no theoretically predicted relation®between contact angle and Gads, x-
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The restriction of Gags,nw < 2.0 is because the SC model exhibits a type III break-
down for Gags nw > 2.0 for small inscribed radii in a tilted tube (e.g. Rgwve = 1.5 Lu.),
due to very large spurious currents near the fluid-solid interface. Nevertheless, as will
be shown in the following sections, the use of Gagsnw < 2.0 is already sufficient to

generate the contact angle from 0° to 90°. All parameters used in the flat and tilted

tube tests are summarised in Table 3.3.

TABLE 3.3: Major Parameters in Flat/Tilted Tube Tests

SC Model RK Model
o . Pnw,major = 1.0
Initial NW density P minor — 0.0
.. . Pu.major = 1.0
Initial W densit mad
Y Pu,minor = 0.0
Relaxation parameter Tow = 1.0
T 7w = 1.0

Riwe = 1.50, 2.00, 3.00, 4.00, 20.00 [.u.
Reitrea = 1.44, 1.85, 2.83, 3.79,17.73 l.u.
Model parameter 1 Geon = 2.0 Ag,z =0.01
Gags,nw = 0.0 ~ 2.0
Gags,w = 0.0

Inscribed radius of the tube

Model parameter 2 D (xXya11) = —0.1 ~ 0.0

3.4.1 Flat Tube Case

In the flat tube test, the simulation domain has a dimension of (N, Ny, N;) = (Reuve+
2, Riyve + 2,80), where the constant ‘2’ accounts for the one-voxel thick wall layer of
the tube. Before investigating models’ contact angle and capillary pressure-curvature
relations, we first check the morphology of NW and W phases. Figure 3.5 shows, at an
inscribed tube radius of 4.0 [.u., the longitudinal (i.e. along z-axis) and cross-sectional
(i.e. x-y plane) density profiles of SC and RK models at a contact angle near 45°,
where the cross-sectional profiles are plotted in red for NW phase and in blue for W
phase for visual clarity. Four cross-sectional density profiles are shown, corresponding
to NW phase and W phase at the centre and ends of the tube. For both models,
the cross-sectional density profiles at the centre of the tube look reasonable, as W
phase is present in the corners while NW phase occupies the centre of the tube. This
is not entirely physical, however, as the wetting film thickness is a function of the
lattice unit size (Chen et al., 2015). More seriously, at the ends of the tube, we see
non-physical accumulation of the NW phase at the walls (and especially the corners)
and a corresponding repulsion of the W phase.

An analysis of what causes the peculiar accumulation/repulsion phenomena for
both SC and RK models can be found in Chapter 4. In the static tube test, the

3Readers are noted that the excellent work by Huang et al. (2007), where an equation relating
the contact angle to the SC model parameters Gcon, Gads,nw and Gaas,w 1S given, is not a theoretical
derivation of the contact angle from the SC model theory; on the other hand, the authors proposed
an approximation of the contact angle determination, which is a direct substitution of SC cohesion
parameters for the Young’s equation.
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accumulation of dissolved NW phase near the solid surface is a type II breakdown
behaviour, i.e., it is a gradual transition, but the behaviour is entirely non-physical and
can therefore have quite unexpected consequences. One potential consequence of this
phenomenon is that the models may not be able to support trapped NW phase ganglia
at different pressures: for example, in a real porous medium, if two trapped NW
ganglia with different capillary pressures are connected via a narrow throat filled with
W phase, then the dissolved NW phase accumulating on the walls could allow non-
physical transport of NW phase, allowing the ganglia pressures to equalise. In section
3.5.4 we will see that for primary drainage in a simple geometry, the pathway generated
by the dissolved NW phase on the solid surface can cause dramatic, non-physical fluid
transport; and in section 3.6 where primary drainage in a realistic porous medium is
studied, it is shown that the non-physical NW fluid transport generates NW ganglia
that are hard to distinguish from ganglia of physical origin (e.g. arising from snap-off).
Lastly, it is noted that the SC model has another, more serious problem in the scenario
of two disconnected ganglia due to the sensitivity of fluid-fluid solubility to pressure:
in the SC model a difference in pressure of two ganglia results in a concentration
gradient in the NW fluid dissolved in the W fluid between the two ganglia, causing
the ganglia pressures and consequently their boundary curvature/radii to equilibrate

rapidly for any choice of model parameters.
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FIGURE 3.5: Longitudinal (i.e. along z-axis) and cross-sectional (i.e.
x-y plane) density profiles for (a) SC model, and (b) RK model at
a contact angle of ~45°, in which Gags nw = 0.7 for SC model and
D(xya11) = —0.63 for RK model, at an inscribed tube radius of 4.0
l.u.. In each sub-plot, the grey-scale image is the longitudinal density
of the NW phase, and on its right, four cross-sectional density profiles
correspond to (from top to bottom): NW phase (in red) and W phase
(in blue) densities extracted from the centre of the tube, and NW
phase and W phase densities extracted from the ends of the tube. The
colour-bar of each cross-sectional density profile has its own scale, in
order to highlight the spacial variation of the phase density.
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FI1GURE 3.6: Plots of calculated mean curvature versus normalised
capillary pressure for (a) SC model, and (b) RK model. The black
line in each sub-plot is the one-to-one prediction line corresponding to
Laplace’s law. The error bar in the mean curvature is due to the aver-
aging of mean curvature values of cloud points on the interface (more
details in the support information S1). The error bar in the capillary
pressure is due to the calculation of a volume-averaged pressure. Note
that for Rywe = 1.5 and 2.0 [.u., the fluid density data is up-sampled
by linear interpolation to provide sufficient data points for the surface
fitting method.

The capillary pressure - mean curvature measurements at different inscribed radii
are shown in Figure 3.6 for SC and RK models, to test if the Laplace’s law is recovered
(for mean curvature measured by level-set method see Appendix F). The local fluid
pressure at each grid point is calculated based on equation 2.58 and equation 2.67
for SC and RK models, respectively. Then the capillary pressure is obtained by
taking the difference between the volume-averaged pressure in the bulk NW phase
and that in the bulk W phase. Since the surface tension in SC and RK models differ
by an order of magnitude, the capillary pressure is normalised by the surface tension
obtained from the bubble test. A range of capillary pressure is obtained by setting
0.0 < Ghy,ads < 2.0 for SC model and —1.0 < Pya17 < 0.0 for RK model. The mean
curvature is measured by the surface fitting and the level-set methods. It is noted
that, due to the surface fitting algorithm (explained in Appendix A), the resolution
of the cases of Riype = 1.5 and 2.0 [.u. is so low that not enough cloud points can
be found to calculate the curvature values. Therefore, linear interpolation is used to
double and treble the original density data for Riye = 2.0 and 1.5 [.u., respectively,
before applying the surface fitting method.

For both models at the inscribed radius Riype = 1.5 [.u., small negative mean
curvature values are observed at neutral wetting condition (i.e. when the capillary
pressure is close to zero), which is within the measurement error, and is due to the fact

that at such a low resolution, the density information cannot be perfectly translated



62 Chapter 3. Discretisation Limits of Multicomponent LB Models

to a measurable interfacial curvature. Comparing the SC and RK models, we make
several observations:

First, when the resolution is high enough at R = 20.0 [.u., both models follow the
prediction line within measurement uncertainty. This follows from the bubble test
results in section 3.3, since the interface is predominantly many voxels away from the
wall and should not suffer any degradation of accuracy.

Second, at Riwpe = 4.0 and 3.0 l.u., SC and RK models still follow the prediction
lines well for low mean curvature (i.e. large contact angle). For the SC model at
Riupe = 4.0 L.u., the simulation becomes progressively less accurate (type I breakdown
behaviour) for kg 2 0.4 l.u.~t, corresponding to a radius of curvature regry < 5.0
lu., and at Rewpe — 3.0 Lu. accuracy is not degraded until at kg ~ 0.5 L.u."!, (i.e.
Teury =~ 4.0 L.u.). For the RK model, accuracy does not degrade until slightly higher
mean curvatures: ky ~ 0.5 Lu."! for Rewe = 4.0 Lu. (i.e. Tewry =~ 4.0 Lu.), and
kg ~ 0.6 L.u."! for Rewpe = 3.0 L. (i.e. Teury ~ 3.3 Lu.).

Third, given that the range of the curvature values in Figure 3.6, it indicates that
we can explore higher curvatures in the SC model with the tube test than the bubble
test, because the dissolution is suppressed via adjusting the mass ratio of NW to W
phase, while still confining the fluids in very small space. For the RK model, the tube
test does not exhibit the apparent breakdown due to the finite interface thickness that
was observed in the bubble test (i.e. Figure 3.2 (b) and (d)), since the long NW fluid
blob in the tube allows accurate bulk pressure measurement even at high curvatures.
This demonstrates that the apparent loss of accuracy in the bubble test was a result
of measurement failure rather than a breakdown of the simulation. It also indicates
that for SC and RK models in general, the range of influence of the wall on a single
fluid density can be as thin as ~1.5 [.u., and this is much smaller if compared to the
fluid-fluid interface (4.0 ~ 6.0 l.u.).

Overall, our results suggest that in the regime of high curvature where Laplace’s
law is not accurately recovered (i.e. type I breakdown behaviour), the curvatures
appear too high in the RK model and too low in the SC model. This is the case
for both the curvature measurement methods used here (results from the level-set
method can be found in Appendix F), but we cannot rule out that this might also be
a measurement artefact.

Figure 3.7 shows the contact angle against the model’s wettability parameter,
Gagsw for SC model and ®ya11(x) for RK model. Note that the contact angle is
not measured directly, but is derived from the mean curvature. For large tubes, the
contact angle can be directly measured, for example, by measuring the angle between
the tangent to a contour line representing the fluid-fluid interface and the side-wall
of the tube. However, for small tubes it is challenging to identify the presence of a
fluid-fluid-solid triple-contact line, so the angle of the tangent line is highly uncertain.
More information about this can be found in Appendix B. Therefore, in this work the
contact angle is calculated based on the mean curvature and the tube size, given the

following relation between the contact angle 6 and the mean curvature for an angular



3.4. Static Capillary Tube Test 63

(a) (b)

—~90 90

g)so 80

870 70

860 60

2’50 50

<

5 40 40

s

5 30 30

=20 20

210 10

L

20 0 .

0.0 0.5 1.0 15 2.0 0.0 0.2 0.4 0.6 0.8 1.0
Gads, nw |q)wa11 |

‘; ¢ Rewe=150u. % # Rewe=200u. & § Rewe=300lu  + 4 Rewe=40lu. 4 Rmbe:20.()l.u.‘

FIGURE 3.7: Derived contact angle plotted against model parameters

for (a) SC model, and (b) RK model. For the SC model, the wetting

condition is adjusted by varying the adhesion coefficient of NW phase

Gags, nw, While keeping the adhesion coefficient of W phase Gags, » fixed

at 0.0. For RK model, the wettability is changed by varying the phase

field on wall nodes ®,11. Contact angle is derived from tube size and
measured mean curvature using equation (3.5).

tube (Princen, 1969; Ramstad, Qren, and Bakke, 2010):

Rtube
(1+2V7G)F(6,G)

cosf = KH, (3.5)
where kp is the mean curvature, measured by the surface fitting and the level-set
method, G is the shape factor defined as G = A/O?, where A and O are the tube cross-
sectional area and perimeter length, respectively. The function F'(6,G) is dependent
on the pore shape and is set 1.0 as suggested by Ramstad, Oren, and Bakke (2010).
As can be seen from Figure 3.7, the case of Riype = 20.0 l.u. serves as the outline
of the contact angle data (excluding the case of Rewpe = 1.5 l.u.), and for the same
model parameter, the contact angle becomes smaller as the tube size decreases. This
is due to the presence of a finite-thickness W phase layer which increases the mean
curvature by a larger fraction for a smaller tube size. For SC model, the variations in

the contact angle results for Riype = 2.0~4.0 [.u. is not as big as those in RK model.

3.4.2 Tilted Tube Case

In the tilted tube test, since a staircase shape along the tube interior walls is intro-
duced, it is more representative of a real pore than the flat walls of the untilted tube in
the previous section. First, the capillary pressure - mean curvature measurements is
shown in Figure 3.8. The results of mean curvature measured by the level-set method
can be found in Appendix F. For Ryi1teqa = {1.44,1.85}, data interpolation is needed
to provide adequate statistics to estimate curvature using the surface fitting method.

The staircase structure means that this interpolation is performed on an irregular and
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non-convex domain, so an unstructured-grid linear interpolation scheme that imple-
ments the Quickhull algorithm (Barber, Dobkin, and Huhdanpaa, 1996) is used via
the SciPy library (Jones, Oliphant, and Peterson, 2001). However, for Ryi1teq = 1.44,
due to the large variation in density between neighbouring voxels, the interpolation
scheme did not handle the concave features well and exaggerated the density of dis-
solved fluid near the solid surface. This results in biased segmented input data for
the surface fitting method and decreasing the accuracy of the curvature estimates.
Therefore, although visual inspection of the fluid configurations demonstrates that
there is no catastrophic breakdown at Ryi1teq = 1.44 for both models, we were unable
to accurately determine the curvature at this resolution limit. Curvature results for
Riiltea = 1.44 are therefore not shown. However, in Figure 3.9(a) and (c), examples
of 3D contour plots (in red) of the zero phase field for SC and RK models are shown,
respectively, with Gags nw — 0.50 for SC model, and ®ya11 = -0.63 for RK model.
The phase field is calculated according to 2.61 and the zero phase field indicates the
fluid-fluid interface. Also, Figure 3.9(b) and (d) show the corresponding non-wetting

fluid phase field projected to the diagonal cross-section of the simulation domain.
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FIGURE 3.8: The mean curvature-capillary pressure measurements of
the tilted tube test for (a) SC model, and (b) RK model. The black line
in each sub-plot corresponds to the Young-Laplace law (i.e. a one-to-
one correspondence between the mean curvature and the normalised
capillary pressure). The error bar in the mean curvature is due to
statistical variability from point sampled on the interface. The error
bar in the capillary pressure is due to the calculation of a volume-
averaged pressure. Note that for Rewe = 1.85 l.u., the surface fitting
method uses linearly interpolated density data.

From Figure 3.8, it can be seen that for both capillary pressure and the measured
curvature, the standard deviation error bars are larger than those in the flat tube,
indicating that the voxelisation of the tilted walls plays a more significant role. In the
flat tube case, the standard deviations in the capillary pressure for both models are
negligible since the pressure along the tube centreline was uniform. In contrast, for
the titled tube, the SC model pressure shows significant variation, much greater than

that in the RK model. This low pressure variation in the RK model indicates that the



3.4. Static Capillary Tube Test 65

(d)

FI1GURE 3.9: Three-dimensional non-wetting fluid configurations at
Riittea = 1.44 lu. in the tilted tube test. The non-wetting phase is
highlighted by the surface contour of the zero phase field in red for
(a) SC model, and (¢) RK model, where the light green depicts the
boundary of the tilted tube. The phase field in diagonal cross-section
is also shown for (b) SC model, and (d) RK model. Since the diagonal
cross-section is not orthogonal to any of the axis planes, the pixel

rendering is needed. The phase field is calculated according to equation
2.61, and the zero phase field indicates the fluid-fluid interface.

"zigzag" effect of the staircase walls is averaged out into an equivalent smooth wall,
whereas for the SC model the crevices of the staircase strongly affect the density dis-
tribution throughout the tube. Figure 3.10 qualitatively shows the different responses
of SC and RK models to the zigzag solid surface, where the surface contours of the
non-wetting phase pressure for both models are presented, at Riiiteqa — 1.85 l.u. with
a mean curvature kg = 0.9. Also, to highlight the spatial variations of the phase
pressure, several 2D contour plots which cut the y-z plane of the domain are added at
the centre and the ends of the surface contours. It can be seen that for RK model, the
morphology of the surface contour along the axis of the tilted tube presents a periodic
pattern, whereas in SC model, the pattern of the surface contour is more irregular.
For RK model, the three 2D contour plots at different locations along tilted tube show
a consistent pattern of the contour lines; however in SC model, the contour lines of
the 2D contour plots all present different patterns.

From Figure 3.8, it can be also seen that, for RK model in particular, the mea-
sured mean curvature at Riiitea — 1.85 [.u. shows a much larger deviation from the
prediction line than that at Riwe = 2.0 [.u. in the flat tube test. This is again due
to the different response of RK and SC models to the ‘zigzag’ solid boundaries: RK
model sees the staircase as being averaged out such that the effective solid surface
point is up at the outer edge of the staircase (i.e. an effective Rii1teq < 1.85 lu.) .
Thus higher mean curvatures ensue. Moreover, the curvature data exhibits significant
variation for both models for R¢i1teq — 1.85 l.u.. We believe that it is the longitu-
dinal variation (i.e. in the direction of the axis of the tilted tube) in the location of

the interface relative to the staircase wall that gives rise to the fluctuations in the
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FIGURE 3.10: Three-dimensional surface contour plots of the non-

wetting phase pressure profiles in the tilted tube test for (a) SC model,

and (b) RK model. To highlight the spatial variations in the pressure

profiles, the individual colour bar is used for each sub-plot. Alongside

the iso-surface plots, 2D cut-plane contour plots are also added at the

centre as well as the ends of the surface contours, where the cut-plane
is in the y-z plane.

measured curvatures.

In Figure 3.11, we show how the measured curvature values are affected by shifting
the NW /W phase interface by only a few voxels. We use RK model in a tilted tube of
Rtittea = 1.85 l.u. as an example. By adjusting the initial NW phase density at the
NW /W phase interface, the fluid phase saturation will change as the NW or W phase
will expand or shrink, such that the pinning locations of the NW /W phase interface at
equilibrium can be manipulated. As a reference, setting pny, major = 1.0 and py, ninor =
0.0 at the NW /W phase interface (on the side of the NW phase), as specified in Table
3.3, is called the original configuration. Other initial configurations are obtained
by setting ppw,major = {0.75,0.50,0.25,0.00} and py minor = {0.00,0.25,0.50,0.75}.
Once the system reaches the equilibrium, we calculate the wetting phase saturation
Sw for each configuration and measure the mean curvature. It is noted that the
direct control of Sy, prior to the simulation is challenging due to the limited lattice
size and associated discretisation effects. For simplicity, we test a few RK wetting
parameters ®ya11 to generate a representative range of mean curvature and contact
angle. Different configurations by setting pnw,major = {0.75,0.50,0.25,0.00} result
in the change of W phase saturation as AS,, = {0.78%,1.57%,2.35%, 3.14%}. The
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FIGURE 3.11: (a) The mean curvature - capillary pressure measured
for RK model in a tilted tube of Riiiteqa = 1.85 l.u.. There are five
configurations by setting pay,major = {1.00,0.75,0.50,0.25,0.00} and
Pu.minor = {0.00,0.25,0.50,0.75,1.00} as the initial conditions, at the
NW /W phase interface (on the side of the NW phase). The original
configuration refers to the case of pny najor = 1.0 With py ninor = 0.0.
(b) The derived contact angle for these five configurations. The
effective shift of the NW/W phase interface ALjpterface iS calcu-
lated with respect to the original configuration. Setting puw,major =
{0.75,0.50,0.25,0.00} at NW/W interface leads to ALjnterface =
{0.19,0.38,0.57,0.76} L.u..

effective shift (in the lattice size) of the NW /W phase interface can then be calculated
as ALjnterface — 0.5 X ASchilted/(élﬁiilted), where Vii1teq and 4§3ﬂted are the total
volume and the average cross-sectional size of the tilted tube, respectively, and the
factor of 0.5 accounts for the fact that there are two spherical NW /W interfaces in
the tube test. The effective shift are ALjpterface = {0.19,0.38,0.57,0.76} l.u..

It can be seen from Figure 3.11 that at the resolution limit there is an apparent
sensitivity of the curvature measurement to the tiny movement of the phase interface.
For example, for the case of ®ya11 — -0.42 at Rijirea — 1.85 l.u., which gives a
normalised capillary pressure of ~0.4 l.u.~!, the measured mean curvature changes
by ~19.5% if shifting the NW phase interface by only 0.38 [.u. from the configuration
that gives the measurement results in Figure 3.8. This implies that, for RK model,
the shift of the NW /W phase interface for every consecutive data points (at the same
Rtilted) in Figure 3.8 potentially ranges from ~0.02 to ~0.4 [.u.. Therefore, when
there are only a few voxels across the tube with roughened surface, even a tiny shift of
the interface will lead to apparent variation in the curvature measurement. Overall,
neither RK nor SC model derive an advantage from this test, since it is not clear
whether a staircase-type surface should be interpreted as a planar one, however for
practical purposes and given that the variations in the pressure profile are smaller
in RK model, it is advantageous to average out single-voxel features and so the RK

model’s behaviour is slightly preferable.
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FIGURE 3.12: The mean curvature measured from the flat tube and
the tilted tube tests for (a) SC model, and (b) RK model. The
black line in each sub-plot is the one-to-one reference line. The leg-
end shows the tube size in the flat tube test. Flat tube sizes of
Riwe = {2.0,3.0,4.0,20.0} l.u. correspond to tilted tubes of Ryiitea =
{1.85,2.83,3.79,17.73} l.u. respectively.

Figure 3.12 shows the mean curvatures of tilted tubes compared to those of flat
tubes of comparable size, at the same model wetting parameters. It can be seen that
for Rewpe > 3.0 there is a good agreement between the flat and tilted tube cases,
although the actual averaged tilted tube size is slightly smaller than the flat tube size
(because it is not possible to create tilted tubes with radii of exact integer values).
This indicates that the discretisation effect is negligible down to a pore throat size
(i.e. a diameter) of ~6 l.u.. For Rewe = 2.0 l.u. (corresponding to Reiiteqa = 1.85
l.u.), both the RK and SC models give larger curvature values in the tilted tube,

suggesting that the prominence in the staircase boundaries significantly affects the

interfacial shape.
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F1GURE 3.13: The derived contact angle of the tilted tube test plotted
against model parameters for (a) SC model, and (b) RK model.

Lastly, the derived contact angle for the tilted tube test is shown in Figure 3.13. For
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Riilteqd = {1.85,2.83,3.79,17.73}, there is little difference in the contact angle results
between the flat and tilted tube cases for both models. But the large fluctuations
in the mean curvature are reflected in the contact angle data for Reiiteqa = 1.85 L.
Overall, the tilted tube analysis further demonstrates the effectiveness of both RK

and SC models at very high levels of discretisation.

3.4.3 Correlation with Unit Conversion

In practice, the simulated LB capillary pressure P% needs to be converted to its

counterpart P%. . in the physical unit, which is given by (Schaap et al., 2007):

phys

Ponys = Yonysh ™ PlpMis = Yonysh ' Kis, (3.6)

where pnys is the physical interfacial tension in N/m, h is the resolution of the sim-
ulation domain, in the unit of for example um/l.u., and PS5 and ~1p are the lattice
capillary pressure and lattice interfacial tension, respectively. If the Young-Laplace
relation PfBVI}l = kg holds, using either sp or PGy to do the unit conversion is
equivalent. However, Figure 3.6 and 3.8 show that ki < PS%/vs for SC model and
ki > Pf%/1e for RK model, especially when the mean curvature is large (Note it
assumes that xrp and P% can be measured independently). A potential positive side
is that one might utilise this deviation of the Laplace relation to offset the require-
ment of the image resolution: for RK model if rp (>PS%ys ) is used to convert to
Pligs.
similarly, in SC model, one can use Py (>7pr1s) information to convert to P,

one can in fact use a lower resolution image to still achieve the given Ppg ;

ys 1L
a low-resolution image.

The physical time can be derived from equation 2.48:
Stpnys = V3ULaVpps h?, (3.7)

where dtppys is in the unit of second per lattice time, and the lattice time in this work is
the iteration time step equal to 1 [.f.. vphys and 1 are physical and lattice kinematic
viscosities. When the range of the physical pressure to be simulated is given, and
considering the deviations from the Laplace relation for both models, it is important
to increase the resolution (i.e. a smaller h) to maintain accurate simulation results,
because the relation kg = PfB'yﬂgl is only maintained when kg is small, and higher

resolution will ensure the given PS .. can be obtained with a relatively small k1. An

hys
obvious side effect of a higher r;sglution is that dtphys decreases significantly since
Stonys ~ O(h?), thus a much longer simulation time is needed to achieve the given
physical time. Also, a higher resolution image means longer uCT image acquisition
time, therefore in most cases it is possible to simply up-sample the image to circumvent

the problem.
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3.5 Primary Drainage in Square Capillary Tubes

The bubble test and static capillary tube tests in the previous sections are of more
fundamental characterisation value, in which the boundary conditions only involve
simple periodic or solid-wall boundaries. In practice, we are more interested in models’
behaviours in dynamic numerical tests such as drainage and imbibition, where pressure
or velocity are specified at the boundaries. In this section, primary drainage (PD)
simulations are performed in a square capillary tube with fixed pressure boundary
conditions.

Fluid displacement simulations in a square capillary tube are of particular value
since the physical behaviour is known analytically: for a square tube, the saturation-
capillary pressure relation of the wetting phase beyond the entry pressure can be
calculated from the simple geometry as (e.g. see Pan, Hilpert, and Miller (2004)):

5 4(1 — 7 /4)R?
w AP 9

(3.8)
where Ap is the cross-sectional area of the pore, and R = R(P.) is the radius of the
cylindrical meniscus in the cross section of the tube, which is related to P. by the
Laplace’s law as P, = 'ywn(% + é) = Ten Therefore by comparing the measured
primary drainage curves against the analytical relation equation (3.8), the validity
and accuracy of two models can be investigated.

The simulation set-up for the primary drainage test is shown in Figure 3.14, which
is mainly adapted from Pan, Hilpert, and Miller (2004). A NW phase reservoir (NWR)
and a W phase reservoir (WR) are placed at the entry and exit of the capillary tube
respectively. Each reservoir consists of a certain number of layers of the fluid phase.
An extra porous plate is inserted between the WR and the capillary tube, which serves
as a barrier to prevent the NW phase from exiting the tube beyond the entry pressure.
This porous plate includes at least one square-shaped tube of smaller diameter than

the primary tube.

Y i x non-wetting phase N ~ solid wall
z

wetting phase porous plate

FIGURE 3.14: Set-up of the primary drainage test. A square capillary
tube is sandwiched by a non-wetting phase reservoir (NWR) and a
wetting phase reservoir (WR). Between the capillary tube and WR,
there is a porous plate, acting as a barrier to prevent NW phase from
entering WR. In our set-up, this porous plate is simply a narrower
capillary tube than the primary tube in the flow medium domain.
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For NWR and WR, periodic boundary conditions are applied in the transverse di-
rections (i.e. z and y), and pressure boundary conditions are applied longitudinally, to
the first layer of NWR and the last layer of WR, respectively. To simulate the primary
drainage (PD) process, the capillary tube, void space of the porous plate, and WR are
initially saturated with the wetting fluid, and NWR is filled with non-wetting fluid, as
shown in Figure 3.14. The simulation starts from a condition of zero capillary pres-
sure between NWR and WR. Then the capillary pressure is increased progressively,
by decreasing the WR boundary pressure while keeping the NWR, boundary pressure
constant. The pressure gradient causes a capillary pressure and thus a curved inter-
face, driving the NW phase into the capillary tube and displacing the W phase. For
each capillary pressure P., we let the system evolve until it reaches the equilibrium
condition of equation (3.2), i.e. there is no more change in the W phase saturation S,
in the capillary tube. At each capillary pressure, the resulting .S, is recorded, giving
a P.-S, primary drainage curve.

Our results show that for small Riype, the drainage experiment is affected by
several parameters whose influence can be neglected when the resolution is not a

limiting factor. These include:
1. how W phase saturation .S, is calculated;

2. for SC model, the peculiarity of the pressure boundary condition on the NWR/WR

boundaries;
3. for RK model, where the capillary pressure P, is measured.

4. the inscribed radius Rpore of the single pore in the porous plate, and the thick-

ness of the porous plate Lpore (both in the units of l.u.);

5. the size of the capillary tube: Ryype (in l.u.);

3.5.1 Effect of Phase Saturation

First, we consider the effect of how W phase saturation 5, is calculated. We calculate
Sy using four methods: (i) threshold of NW phase density (Pan, Hilpert, and Miller,
2004), (ii) threshold of W phase density, (iii) threshold of the difference between NW
and W phase densities (Schaap et al., 2007), and (iv) proportional to the the scaled
difference of NW and W phase densities. For example, for RK model, method (i)
defines a lattice node as being occupied by W phase if the NW phase density on that
node is less than half the prescribed NW phase density on the NWR boundary. For
method (ii), a lattice node is occupied by W phase if the W phase density on that
node is larger than half of the prescribed W phase density on the WR boundary.
Method (iii) defines a lattice node as occupied by W phase if the W phase density
is greater than the NW phase density. In method (iv), targeted at tubes only a few

nodes across, we allow nodes to be partially occupied by both phases, computing the
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local W phase saturation S, (x) as follows:

fnw(m) _ ,Onw(m) - pnw,minor , (393)

lonw7 major ~ in, minor

fw(a:) _ pw(w) - pw,minor ’ (39b)

Pu,major — Pw,minor

fu(@)

Sw(x) = —fnw(CC) (@)’ (3.9¢)
5, - Zeols) 50

where puu majors Pw,minors Pw,major> aNd Pny minor are the prescribed densities of each
fluid component at the NWR and WR boundaries. The overall W phase saturation
Sy is obtained by averaging Sy, (x) over the interior of the capillary tube. There is no
a-priori reason to favour one of these methods over another. For simplicity, only the
grey-scale method (method (iv)) is used in the rest of the section. Here an example
primary drainage (PD) test is used to illustrate the difference of four methods, where
a PD simulation is performed at Riype = 4.0 [.u., using a porous plate with a pore

size Rpore = 1.5 l.u. for SC and RK models. The PD curves are shown in Figure 3.15.
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FIGURE 3.15: Primary drainage curves for (a) SC model, and (b) RK
model, at a capillary tube size Riyype = 4.0 l.u. with a porous plate
of the pore size Ryore = 1.5 l.u.. It assumes a zero contact angle in
the primary drainage process by using Gags,nw = 1.0 and Gags,w =
0.0 for SC model and ®,,:7 = —0.835 for RK model, based on the
curvature measurement in the flat tube test. The W phase saturation
Sw is calculated with four different methods. The entry pressure of the
reference line is obtained from the flat tube test of Riwpe = 20.0 l.u. of
SC and RK models, respectively. The S,, beyond the entry pressure
in the reference line is calculated according to equation (3.8).

For RK model, it is found that the difference in S,, calculated by method (i), (ii)
and (iii), is negligible, and in fact the data points of method (i) - (iii) overlap as shown
in Figure 3.15. Whereas for SC model, there is apparent difference especially when

P2 is above the entry pressure. Method (i) to (iii) are closely related to each other:
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for a fluid node o being considered as occupied by W phase, method (i) requires
Pow(To) < pow(Twir)/2, method (ii) requires py(xg) > pu(xyr)/2, and method (iii)
requires pny(x0) < pu(xo), where ppy(Twyr) and py(xyr) are densities at NWR and the
WR boundaries, respectively. In RK model, for a fluid node where pp, (o) < pu(x0),
it also naturally leads to pny (o) < pau(Twr)/2 as well as py(x9) > py(xyr)/2, due to
RK model’s good immiscibility, so that all three methods regard the node xy being
occupied by W phase.

On the other hand, in SC model when there is pny(xo) < pu(xo), it is likely
that both ppy(xg) and py(xg) are small in magnitude because of SC model’s partial
miscibility, leading to ppy (o) < pPaw(wur)/2 and also py(xo) < py(ayr)/2, such that
method (ii) gives an opposite answer to what method (i) and (iii) give. For SC
model, since method (i) only examines NW phase density, method (ii) only examines
W phase density, while method (iii) considers both, it can be seen that method (iii)
gives Sy, (beyond entry pressure) somewhat in between what method (i) and (ii) give.
Comparing method (iii) to method (iv) (since both methods consider NW and W
density components), it can be seen that beyond the entry pressure, S, by method
(iv) is larger than that by method (iii) for RK and SC models. This is because
the criterion in method (iii), ppu(®) < pu(x), is after all an abrupt method: the
contribution of each fluid node to S,, is either 1 or 0, which is independent of py(x)
or puy(x) itself, and if py(x) < poy(x) its contribution to S, is zero. Whereas the
method (iv) collects the contributions to Sy from all fluid nodes as long as py(x) > 0.0
on that node, despite that there might be py(x) < pny(x). In addition, for SC model
when the dimensionless capillary pressure becomes greater than 4.0, it can be seen
there is a minor increase in S,,, which is due to the boundary conditions and is a type
IT breakdown.

3.5.2 Effect of Pressure Boundary Condition

We now consider the effect of the pressure boundary condition, which is a particular
problem for SC model. Pressure boundary conditions are implemented for SC and
RK models by prescribing certain pressure values, which is equivalent to prescribe the
densities, i.e. Pny major and Py minor ON the NWR boundary, and py, najor and puu, minor
on the WR boundary. For RK model, simply setting pau,major = Pw,najor = 1.0 and
Prw,minor = Pw,minor = 0.0 Will give a zero capillary pressure condition, and decreas-
INg pu major progressively while keeping all other densities fixed gives an increasing
capillary pressure. For SC model, there is an extra concern, that changing average
density due to the pressure boundary condition will change the value of Geonpiotal
and thus change the surface tension of the system. Schaap et al. (2007) proposed
that the boundary densities be determined from the flat tube test that uses simple
periodic boundary conditions, as shown in Figure 3.3. Here we could use densities ex-
tracted from the Ryype = 1.5 [.u. flat tube test to specify the boundary conditions, as
the small tube gives the widest range of curvature values for different contact angles.

However, using these densities, we find that the NW phase cannot be driven into a
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capillary tube of Riype = 2.0 l.u., no matter how high the capillary pressure is set.
A similar phenomenon is also observed when trying a PD test for Rewe = 1.5 ..
Further discussion can be found in Appendix C. In short, as the capillary pressure
becomes very high, the density components of for example Riype = 1.5 l.u. no longer
retain a well-behaved trend as for the larger tube shown in Figure 3.3 (see Figure
C.1 in Appendix C), which leads to erroneously high entry pressure that stops NW
phase from breaking through. The example PD curves indicating the breakdown at
Riwpe = {1.5,2.0} l.u. can also be found in Figure C.2 in Appendix C.

In addition, if py minor is fixed at a much smaller value than that extracted from the
tube test, the NW phase can be driven into the tube for Riype < 2.0 l.u.. However,
at such case the system non-physically reaches several equilibrium states for 0.5 <
Sy < 0.8, with an example PD curve shown in Figure C.3 in Appendix C, where the
invading NW phase stops halfway along the tube, indicating the surface tension of the
system is constantly changed along the length of the tube (i.e. type II breakdown).
Hence it is concluded that for SC model it is very challenging to maintain a constant
surface tension, and meanwhile to perform a fluid displacement process for Riupe < 2.0
l.u.. All primary drainage simulations for SC model in this section are for Riype > 3.0
l.u., using the density information extracted from the tube test of Riwpe = 3.0 l.u.
as the boundary conditions. Overall, the issue associated with the pressure boundary
in SC model originates from the severe miscibility of the density components which
represents an exaggerated Kelvin relation (equation (3.3)) as discussed in the section
3.3. This is a long standing issue (Schaap et al., 2007; Huang, Sukop, and Lu, 2015),
and if the surface tension can be decoupled from the densities and can be chosen
arbitrarily like in the RK model, it is easier to maintain approximately a constant
surface tension, as well as maintaining low density compressibility. In practice, a
porous medium has various pore throat sizes within it, but in order for SC model
to give stable fluid displacement simulations, the use of calibrated pressure boundary
conditions from a square tube of Rywpe = 3.0 [.u. means pores with effective pore radii
smaller than 3.0 l.u. will not be invaded by the NW phase within the numerically
stable range of capillary pressure.

A side effect of using densities from the flat tube test as the boundary conditions
is the snap-off of the invading NW phase after the entry of the capillary tube. An
example of such snap-off process is shown in Appendix G. The snap-off usually occurs
when the capillary pressure is high, and the exact onset pressure can be found in Table
3.4. The cause of such snap-off can be seen as an collapse of solubility in SC model at
very high capillary pressure: since we impose the boundary conditions according to the
densities such as shown in Figure 3.3 and Figure C.1 (in Appendix C), as the pressure
becomes higher, py ninor starts to increase (i.e. Figure C.1), as opposed to the normal
trend shown in Figure 3.3 for small capillary pressure. Such a boundary density for
Pu,minor & NWR boundary will eventually cause the invaded NW phase near the inlet
of the capillary tube becomes supersaturated and so the W phase ‘condenses out’.

By the same token, png minor is also large when the capillary pressure is very high
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(e.g. the case of Reype = 1.5 lu. in Figure C.1), and we observed the NW phase
can also ‘condenses out’ inside the W phase reservoir (not shown in this work). The
‘condensation’ of the dissolved phase also brings numerical instability (i.e. type III
breakdown). A consequence of this collapse of solubility in SC model is that, if the
pressure boundary conditions calibrated from the tube test are used in a real porous
medium (which is useful to maintain an approximately constant surface tension), when
the capillary pressure is very high, significant errors in the phase saturation will be
introduced due to anomalously changed dissolved components of NW and W phases.

Incidentally, it should be noted that the snap-off of the NW phase, although being
triggered by the pressure boundary in our particular case, is fundamentally caused by
the severe inter-phase dissolution of SC model, and is independent of how the driving
force of the flow is implemented; for example, the use of body force to drive the flow
will also lead to snap-off, provided that a large pressure gradient is built up where the

minor dissolved phase tends to condense out.

3.5.3 Effect of Various Radius Tube

We now consider the effect of how capillary pressure P, is measured. In the PD test,
it is observed that the NW phase pressure at the entry of the capillary tube differs
from that at the boundary of NWR (the W phase pressure is always measured at
the boundary of WR, due to the presence of the porous plate), most prominently in
the RK model. Figure 3.16 shows the measured PD curves for the RK model at
Riwpe = {2.0,3.0,4.0}, with P. measured at both the tube entrance and the NWR
boundary. To put the capillary pressure at different Riype under the same scale, Figure
3.16 plots dimensionless capillary pressure P¢ = P.Reype/Yun against S,,. Figure 3.16
shows that the major difference in P occurs after the NW phase percolates through
the tube, and P2 values based on NWR/WR boundary are less than those measured

at the tube entrance.
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FIGURE 3.16: Primary drainage curves of RK model, at (a) Ryype =

2.0 lu., (b) Reype = 3.0 l.u., and (¢) Ryype = 4.0 l.u.. The NW phase

pressure is measured from the entry of the tube (blue), or is directly

extracted from the NWR boundary (red). The size of the porous plate

is Rpore = 1.5 l.u. with Lpore = 10 L.u.. The maximal P, is limited by
the breakthrough of NW into the porous plate.
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To screen out the potential influence due to the pressure boundary condition, we
implement a special flat tube test as shown in Figure 3.17(a). Simple periodic bound-
ary conditions are applied to the open boundaries of NWR and WR. Figure 3.17(b)
and (c) show the longitudinal pressure profile for SC and RK models respectively, at
a 45° contact angle and Riwpe = 4.0 l.u.. At equilibrium, the pressure throughout
each phase should be uniform, but the pressure is clearly distorted by proximity to

the solid phase, as the pressure is lower in the reservoir than in the tube.
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FIGURE 3.17: Top: Schematic showing the set-up for the special tube
test. Centre and Bottom: longitudinal fluid pressure profile in the
middle of the tube with Riywe = 4.0 [.u., for the SC and RK models,
at a 45° contact angle (i.e. Gags,ny = 0.7 for the SC model and ®ya11
= -0.63 for the RK model). To generate similar fluid pressures, Geon =
2.0 is used for SC model and Ay 5 = 0.225 is used for RK model such
that the lattice surface tension 7, for both models is ~0.1. Note the
non-physical pressure shifts at Z = 10, 70, 90 and 150 [.u.. At 45°
contact angle, the pressure shift in SC model is smaller than that in
RK model and see more details in Figure 3.18

The difference between capillary pressures measured in the open reservoirs to those
measured within the tube is shown in Figure 3.18 for a range of Riype for SC and RK
models. In order to compare SC model to RK model on a relatively equal footing,
Geon = 2.0 for SC model and Ag g = 0.225 are used so that the resultant lattice surface
tensions of two models are of the same order of magnitude. For all cases, we find that
capillary pressure measured in the open reservoirs is less than when measured in the
tube. There are two features in Figure 3.18: first, as the tube size becomes larger,
the deviations in capillary pressure decrease for both models. This is expected since
it is the proximity to walls in all directions that causes the distortion in the pressure
distributions, which is why near the walls in a bigger tube there is not such a problem
as at the centre of the a smaller tube. Second, for more strongly wetting conditions (i.e.

lower contact angles), for SC model the deviation becomes larger, and for RK model
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the deviations looks almost independent of the wetting condition for |®ya11| > 0.2.
Overall, both the SC and RK models present similar trends and magnitudes in the
deviations. This implies that, for a realistic porous medium simulation, the capillary
pressure measured at the inlet and outlet reservoirs will differ from the local capillary
pressures in pores of radii < 6.0 l.u., by up to 17%. The results in Figure 3.18 are
consistent with observed discrepancies in P2 in the PD test for the RK model with
the relative deviation of P2 being ~15% for smaller tube sizes. The deviation in the
measured P2 in the PD test for RK model is a type II breakdown behaviour, and it
should be noted that the discontinuity in the local pressure between open and confined
space is limited to the multicomponent LB models and is not observed when only a

single component is present.
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FIGURE 3.18: Relative deviations in the capillary pressure for (a) SC
model, and (b) RK model between open reservoir and capillary tube,
using the set-up shown in Figure 3.17. The inscribed tube radius
Riuwe in the special tube test is varied from 3.0 to 6.0 l.u., and the
lattice surface tension vy, for both model is fixed at ~0.1, by setting
Geon = 2.0 for SC model and A 5 = 0.225 for RK model. For both
models, the deviation in P. decreases as the tube size becomes larger.
This is expected since the boundary phase layer at the solid surface is
effectively thinner for a larger tube.

In addition, an extended study on the influence of the surface tension on the
deviations in the capillary pressure is shown in Figure 3.19, where a tube of Ryype = 4.0
l.u. is used for this study. For SC model, G¢op is varied from 1.8 to 2.8 (the initial
Protal = 1.0), which corresponds to the surface tension of 0.1 ~ 0.175 according to
the bubble test. For RK model, Ag g is varied from 0.001 to 0.8, corresponding to the
surface tension of 4.44 x 10™* ~ 0.36 according to equation 2.65.

It can be seen from Figure 3.19 that SC and RK models generate about the same
levels of the relative deviations. SC model’s surface tension is in a much narrower
range, so the corresponding deviations is at the same magnitude as for RK model at
Ag,z = 0.225. Also, it indicates that a larger surface tension gives a smaller relative
deviation, which implies that a larger surface tension is preferred to reduce the non-
uniformity effect in the pressure fields. However, for a larger surface tension the
associated compressibility in the phase density is also increased, as a requirement to

generate larger pressures. In practice, in a dynamic fluid displacement simulation
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FIGURE 3.19: Relative deviations in capillary pressure for (a) SC

model, and (b) RK model by comparing the results measured from

NWR/WR to those measured from within the tube. The inscribed

tube radius Riype 1S 4.0 l.u.. The SC model parameter Gqy is varied

from 1.8 ~ 2.8, giving the lattice surface tension of 0.1 ~ 0.175; the RK

model parameter Ap g is varied from 0.001 ~ 0.8, giving the surface
tension of 4.44 x 10™% ~ 0.36.

where the pressure boundary condition is usually used, low compressibility in phase
densities is desired, since we want the pressure gradient developed between NWR and
WR due to the compressibility is just big enough to drive the flow, but is also small
enough to avoid the numerical instability and to not violate the incompressible limit
of LB models. Hence, as a compromise, for both SC and RK models, an intermediate
surface tension should be considered. Overall, it is found that for SC model the
deviation is almost independent of the surface tension, whereas for RK model an
increased surface tension leads to a decreased deviation. It is noted that the surface
tension of RK model used in the PD test is one order of magnitude higher than that
of SC model, so the deviation in capillary pressure in SC model is generally lower, and

reflected in the P3-S,, curve, the deviation in P2 is not as apparent as in RK model.

3.5.4 Effect of Porous Barrier

We have found that the porous plate plays an important role which can be studied
by varying its size. The dimensions of the porous plate are characterised by (a) the
inscribed radius Rpore of the tube through the plate and (b) the thickness Lpore of the
plate. To examine the models’ behaviour at the resolution limit, porous plates with
channels of Ryore = {0.5,1.0,1.5} l.u. and two different thickness Lpore = 3.0 and
10.0 l.u. are tested for a capillary tube of Riype = 4.0 l.u.. The thin porous plate is
comparable to the phase interface thickness of two models, and the thick porous plate
refers to Lpore = 10.0 l.u., which is much greater than the phase interface thickness.

The SC and RK models are then used to simulate primary drainage for these 6 porous
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plate configurations, with P2 varied from 0.0 to the entry pressure of the porous plate.
These simulations result in several non-physical behaviour.

First, for both SC and RK models, before the breakthrough of the NW phase into
the capillary tube, the NW phase accumulates inside the porous plate, with higher
NW saturation in the smaller porous plate channels, which is a type II breakdown
behaviour. The average NW phase fractions in the porous plate are summarised in
Table 3.4. It can be seen that for both models, as Rpore becomes larger, the non-
physical NW fluid accumulation decreases without ever reaching zero. This is not
due to a non-conservation of NW phase but is transported from the NWR through
the main capillary tube: as the simulation begins, the NW fluid is first attracted to
the walls at the tube entry, and gradually propagates along the surface of the walls
(especially the corners) to the porous plate. For Rpore < 1.0 l.u., the surface-to-volume
ratio of the porous plate channel is very high, which provides perfect accommodation
to trap the dissolved NW fluid, as is discussed in Chapter 4.

TABLE 3.4: Summary of Breakdown Due to Size of Porous Plate

Average percentage pnw, minor Onset pressure  Onset pressure Reference entry pressure
Rpore Lpore  in porous plate before breakthrough of snap-off of leak through ¢ th o ’] ‘t} (pRK '1 )
SC model RK model SC model RK model 01 the porous plate mode
3.0 L. 7.0% 5.0% P — 4.62 P = 1.77
5 L. . < = Pé=14.1
05 b <0G 8.0% 3.0% PI=162 PE=177 e 6
30w 45% 1.0% Pi= 479 PY=413 .
LO b 6T 5.0% 1.0% PI=179 PY=177 Fe=T.08
3.0 l.u. 3.8% 0.5% P3 — 479 PY — 383
- c c d_
S [ R AT R L/ 0.6% PI=479 PI— 142 Fe=am2

Second, for RK model after the entry of NW phase into the capillary tube, the
invaded NW phase leaks through the porous plate at relative low capillary pressure,
which is a type II breakdown behaviour. For example, as shown in Table 3.4, for the
porous plate of Ryore = 0.5 l.u., the leak-through occurs at P = 1.77, whereas the
breakthrough of such porous plate is supposed not to occur until P¢ ~ 14.16 (the
actual entry pressure for Rywpe = 4.0 Lu. is Pcd = 1.77, so the corresponding entry
pressure for a porous plate of Rpore — 0.5 l.u. should be 8 times higher, which is
P% = 14.16). Figure 3.20 captures the moments of before and after the leak-through
of the porous plate with Ryore = 0.5 l.u. for both Lyore = 3.0 and 10.0 l.u., which
rules out the possibility that this non-physical behaviour is due to the finite interfacial
thickness. It is the dissolved NW fluid trapped on the walls of the porous plate that
behaves as a conduction layer and leads to the non-physical transport of NW fluid. For
Rpore = {0.5,1.0} l.u., all of fluid nodes inside the porous plate are corner fluid nodes,
on which the NW phase forms a conduction layer to facilitate the leak-through, hence
giving a much lower entry pressure of the porous plate than reality. Only when Rpore
increases to 1.5 [.u., where there are non-boundary fluid nodes and a reduced surface-
to-volume ratio, the NW phase flux within the porous plate that flows towards WR
decreases, and the entry pressure of the porous plate is comparable to the theoretical
value. Also shown in Table 3.4, the case of Rpore — 1.0 l.u. with Lpore = 3.0 L.

is an outlier with a much higher breakthrough pressure. We found no clear pattern



80 Chapter 3. Discretisation Limits of Multicomponent LB Models

for leak-through pressure at such low resolution and simply recommend avoiding such
small channels in all simulations. The leak-through behaviour raises the concern that,
in real porous media simulations, the RK model cannot sustain two disconnected NW
ganglia at different pressures if they are separated via a narrow throat filled with
W fluid, since conducting layers of NW phase will form on the walls of the throat
allowing the ganglia pressure to equalise. An example of the leak-through of the
porous plate for RK model with Rpore = 0.5 l.u. and Lpore = 3.0 l.u. is shown in
Appendix G. Later in the section 3.6, this NW phase attraction and the associated
non-physical fluid transport will be revisited with a realistic porous medium, and some

consequences are explored.

FIGURE 3.20: Snapshots of RK model’s breakdown behaviour during
the drainage test before and after the entry of the NW phase into
the main capillary tube, with the porous plate of (a) Lyore = 3.0 l.u.,
and (b) Lyore = 10.0 l.u.. The inscribed radii of the main capillary
tube and the porous plate are Ryye = 4.0 l.u. and Rpore = 0.5 lLu.,
respectively. The 2D plots are extracted from the central plane (z
= 5). Due to high surface-to-volume ratio of the porous plate, the
dissolved NW phase that accumulates inside the porous plate forms a
conduction layer and leads to the breakthrough.

Third, for SC model, even with the presence of the NW conduction layer, an-
other instability issue - the snap-off of the NW phase occurs earlier before a possible
porous-plate leak-through can be observed for all sizes of the porous plate. The di-
mensionless capillary pressure at which the snap-off occurs is summarised in Table 3.4.
Although the snap-off masks any possible leak-through in this work, Porter, Schaap,
and Wildenschild (2009) reported non-physical leakage through a porous plate of Rpore
= 0.5 L.u. and Lyore = 1.0 [.u. when simulating drainage in glass beads with a velocity
boundary condition. The leak-through occurred at dimensionless capillary pressure (if
translated into our context) of P¢ ~ 1.58. Study of the breakdown behaviour of the
SC and RK models when velocity boundary conditions are used is a topic for future
research. The pressure boundary condition was also implemented in Porter, Schaap,
and Wildenschild (2009), but the highest capillary pressure applied in simulations
was (converted into our context) P? ~ 1.85, hence no non-physical leak-through or
snap-off behaviour was reported. Incidentally, the wetting boundary condition of SC
model is more often set by Gagsnw = —Gadsw in the literature, which is different

from our setting, i.e. varying Gadsnw from 0.0 to 1.0 while Gags nw = 0.0; however, it
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should be noted that the more common setting of Gags nw = —Gads,w Will not mitigate
the nonphysical mass transport of dissolved NW phase near solid surface. This will
become clear in section 4.1.

Fourth, readers are noted that both snap-off and leakage capillary pressure sum-
marised in Table 3.4 are specific to our square tube drainage tests. In applications to
real porous media, taking RK model as an example, there is no such “leak-off” thresh-
old pressure above which the nonphysical leakage happens, since the nonphysical mass
transport of NW phase occurs and evolves right as the simulation begins (see more
discussion in Chapter 4 and see Figure 4.8). Therefore, the erroneous “snap-off” and
“leak-off” behaviours are indeed concerns as they are somewhat unpredictable in real
porous medium applications.

Overall, the results of Table 3.4, suggest that a larger (Rpore > 1.0 l.u.) and a
thicker porous plate is preferable, to suppress early NW phase leak-through in the RK
model. On the other hand, snap-off in the SC model occurs regardless of what the
size of the porous plate is used, and is mainly due to the anomalously high py minor
values at the NWR boundary.

3.5.5 Effect of Capillary Tube Size

The last factor affecting the PD curve is the resolution of the capillary tube. To solely
investigate the effect of Ryype, we performed PD simulations for Ryype = {2.0,3.0,4.0}
l.u., all with a porous plate of Rpore =1.5 l.u. and Lpore = 10.0 Lu., to avoid NW
phase leak-through. As a result, the case of Riype = 1.5 l.u. is not examined, as
this requires that the porous plate has Rpore < 1.5 l.u.. Moreover, for SC model the
case of Ryupe = 2.0 [.u. is not studied, since as discussed before, a numerically stable
simulation with a conserved surface tension cannot be conducted for Riype < 2.0 [.u..
The density components extracted from the flat tube test of Riywe = 3.0 l.u. are
used as the boundary conditions for the SC model. A zero-contact-angle condition is
assumed, in which, according to Figure 3.7, Gpy aqs = 1.0 and |Pya11| = 0.83 are used
for SC and RK models, respectively. All PD curves are summarised in Figure 3.21.
For RK model the measurement of the PD curves stop when the breakthrough of the
porous plate occurs; for SC model the snap-off of the invading NW phase has an earlier
onset so the PD curves stop when the snap-off occurs. In addition, the theoretical
PD curve after NW phase entry is shown on both plots, where S,,(P2) is calculated
according to equation (3.8). The entry pressure of the theoretical PD curve for each
model is calculated by averaging the individual entry pressure of different Ryype, since
for both models there is little difference in the entry pressure for different Riype-
From Figure 3.21, we make several observations. First, for both models, it can
be seen that the irreducible W phase is larger than the theoretical line. This is
partly because the reference line assumes an ideal cylindrical meniscus NW phase
filling the capillary tube after the entry, whereas near the porous plate the actual NW
phase forms a spherical shape. Moreover, by examining the cross-sectional W phase

saturation of the tube (we checked several locations along the tube, i.e. near the
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inlet, at the middle of the tube, and near the porous plate), the offset still remains,
which indicates that at the low resolution the effect of the measurement error in our
density-based S,, calculation method (i.e. equation (3.9)) is not negligible. Regardless
of the offset, for both models at Riwpe > 3.0 [.u., the patterns of Pcd—Sw curves are
well-behaved and look similar to the theoretical line.

Second, for RK model at Ryype = 2.0 l.u., the simulated P3-S,, curve deviates from
the theoretical line, where 5, decreases faster as the capillary pressure increases, indi-
cating that the interfacial curvature may be larger than Young-Laplace law predicts.
This is consistent with the deviation from the Young-Laplace law found in the flat
tube test whose result is shown in Figure 3.6.

Third, for SC model after the entry of the NW phase, it can be seen that W
phase saturation increases with decreasing lattice sizes. This dependence is expected
since for most of the diffused interface based models, at a lower resolution it becomes
harder to represent the meniscus at the fluid-solid interface with finite numbers of
voxels. Compared to the RK model, the W phase layer thickness in SC model seems
to be more dependent on the lattice size.
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FIGURE 3.21: Primary drainage curves at various Riuwe for (a) SC
model, and (b) RK model. The size of the porous plate used in the
simulation is Rpore = 1.5 l.w. with Lpore = 10.0 lu.. un is the surface
tension. The wetting phase saturation is calculated using the grey-
scale method. The wetting parameters of Gpy ags = 1.0 and |Pya11| =
0.83 are used for SC and RK models, respectively, which assumes a
zero-contact-angle condition according to Figure 3.7. The measured
data points in the PD curves stop when the breakthrough of the porous
plate occurs for the RK model, and when the snap-off occurs for the
SC model. A reference line is plotted for each model, in order to show
the theoretical P2-S,, relation beyond the entry, where S, after the
entry is calculated according to equation (3.9). The entry pressure of
the reference line is simply an average of the individual entry pressure
at different Riupe for each model.

Overall, both models can handle well the displacement processes as small as Rupe
= 3.0 l.u., and the size of the tubes do not play significant roles in the displace-

ment processes, with P3(S,,) relation in SC model having slightly more resolution
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dependence after the entry. At the low resolution limit, the systematic error in the
Sw measurement is inevitable for diffused interface based model, even if a grey-scale

based Sy, calculation method (i.e. equation (3.9)) is adopted.

3.6 Primary Drainage in Porous Medium

This section is a test for the more promising RK method in a realistic but challenging
porous medium, attempting to correlate our breakdown analysis in simple geometries
in the previous sections with real-world simulations. The simulations in this section
are performed using a graphics processing unit (GPU)-based implementation of the
adaptive MRT RK model that is introduced in section 2.4 (McClure, Prins, and Miller,
2014), and the wetting boundary condition between the fluid and solid interface is
implemented according to equation (2.66).

As will be shown in the rest of this section, almost all of breakdown issues encoun-
tered in the simple-geometry characterisations from section 3.3 to 3.5%, have their
reminiscence in the realistic porous medium simulations. An exception is that, since
only the RK model is used, the severe inter-phase dissolution and miscibility issue (see
equation 3.3 and Figure 3.3) are no longer a concern as those issues particularly per-
tain to the SC model. For the consequence of inter-phase dissolution of SC model in
real porous media applications, please see the discussion at the end of the conclusion
section 3.7. In addition, the reminiscence of two key breakdown issues found previ-
ously, namely the nonphysical mass transport of dissolved phase near solid surface
and the interfacial spurious currents, are not examined in this section, but in Chapter
4 and in section 5.2 of Chapter 5), respectively, because their importance is worthy
of dedicated discussions. A zero contact angle condition is implemented by setting
the phase field of solid nodes as ¢ = —1.0; although this is only a ‘makeshift’; it
technically rules out the influence of nonphysical transport of dissolved NW phase®.

The simulations in an X-ray uCT image of Bentheimer sandstone mimic primary
drainage experiments performed on the same sample as in Herring et al. (2017), for a
fluid pair of n-decane (non-wetting) and brine (wetting). More details of the experi-
mental set-up and properties of materials can be found in (Herring et al., 2017). The
voxel size of the uCT image is 4.95 pm/l.u., and a sub-domain of 2563 l.u.3 is used in
this work. The porosity of the sub-domain is 0.22. For simplicity, both the density and
viscosity ratios of n-decane - brine system are taken as 1.0. For the lattice-Boltzmann
simulation, the relaxation time is 7g p — 0.7, and the surface tension parameter Ar p
= 0.01. Both the non-wetting phase reservoir (NWR) and the wetting phase reservoir
(WR) consist of 10 layers at the inlet and outlet, respectively. Between the WR, and
the porous medium, a porous plate with Lyore of 3 l.u. and Rpore of 1.5 lu. is in-

serted. We use Rpore of 1.5 l.u. since this is large enough to prevent the non-physical

A summary of all key breakdown issues is in section 3.7.
5See section 4.2 for why this would circumvent the nonphysical mass transport near solid surface.
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NW fluid transport through the porous plate (see section 3.5.4) and small enough to
prevent NW fluid entry in our simulations.

We also performed characterisation on the Bentheimer sub-sample based on the
watershed partitioning and network statistical analysis: the distribution of the pore
and throat radii can be found in Figure D.1 in Appendix D, which shows that over
70% of the throats have a radius less than 3 l.u., and 50% of the pores have pore
radii less than 3 l.u.. The maximum square/circular throat radius at the percolation
threshold is ~ 4 l.u.. Based on the tilted tube tests for RK model (see Figure 3.8),
a mean curvature of 0.48 [.u.~! (corresponding to a circular throat radius of ~ 4.17
l.u.) is at about the onset of the type I behaviour, where the simulated Young-Laplace
relation starts to deviate. This implies that, given the current image resolution, there
will be some loss of accuracy beyond percolation due to the gradual onset of type I
errors.

To check the results of the bubble and flat /tilted tube tests, we performed drainage
simulations using a constant pressure boundary condition and 0° contact angle (i.e.
®(xya11) = —1.0). The pressure gradient applied to the medium, if converted to the
equivalent mean curvature, is 0.403 l.u.~!, slightly less than the percolation threshold.
The simulation was run until steady state which was judged to have occurred at
800,000 time steps, when the interface-averaged mean curvature ky, is changing less
than 1076 [.u.~! per 1000 iterations as shown in Figure 3.22(a). A snapshot of the
fluid configuration at steady state is shown in Figure 3.22(b). The spatial averaging
of physical and geometrical quantities are based on the multi-scale averaging theory
(McClure et al., 2016). The initial fluctuations in Ky, and p, - py that are visible in
Figure 3.22(a) are due to (1) the fact that an abrupt large pressure gradient is applied
across the medium at the beginning, and (2) Haines jumps occur during drainage.
However, it is the steady state that is of interest here for drawing correlation with
previous simple geometry tests.

Figure 3.22(a) shows that, at steady state, the type I error is observed by compar-
INg Kyn t0 Pn — Pu/Yum, Where vy is the interfacial tension. The difference between the
pressure and the mean curvature during the drainage and at steady state is mainly
due to the breakdown behaviour shown in Figure 3.17 and Figure 3.18 where NW
phase pressure is reduced in confined spaces less than 6 [.u. in radius. This will cause
an error since pressure averaging will include both larger and smaller pores. It is un-
certain that whether this deviation is also related to the breakdown behaviour shown
in Figure 3.6(b) and Figure 3.8(b) where the Young-Laplace relation is gradually vio-
lated when the mean curvature is large: we tested the Young-Laplace relation at the
steady state (i.e. at 800,000 time steps) in a small region (50 l.u.?) highlighted in the
red circle in Figure 3.22(b), which contains abundant non-wetting and wetting phase.
Averaged over just this domain, the mean curvature and the pressure difference agree
well with the Young-Laplace equation.

At steady state, it can be also seen that the boundary applied pl — pL slightly

deviates from the volume averaged p, — py, when all the invaded non-wetting phase
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FIGURE 3.22: Primary drainage simulation in a pCT image of Ben-
theimer sandstone with a constant pressure difference applied between
the inlet and outlet boundaries. (a) Evolution of the interface-averaged
mean curvature Ky, the mean curvature converted from the pressure
difference, p. - pL, measured from the pressure boundary condition,
and the mean curvature converted from the volume-averaged pressure
difference p, - py. (b) The corresponding non-wetting fluid configura-
tion when the system reaches the steady state at 800,000 time steps.
For visual clarity, the wetting phase is not shown. The light grey phase
indicates the pore matrix of the Bentheimer sandstone.

branches are still connected to the reservoir. This again correlates with the results of
the special flat tube test (i.e. Figure 3.17 and Figure 3.18(b)). Based on the results
in Figure 3.18(b), for a 0° contact angle (i.e. |®(Xya11)| = 1.0), the deviation in the
capillary pressure is ~ 9% for Riype = 6.0 l.u., whereas the deviation here in Figure
3.22(a) is only ~ 2%, which means that many pores of radius greater than 6.0 l.u.
contribute to the volume average.

Overall, as a counterpart of the primary drainage process in single square tube (sec-
tion 3.5), the drainage in a realistic porous medium shares some of breakdown issues
(although to a less extent). The pressure variation within one fluid due to local solid
confinement (see Figures 3.17, 3.18 and 3.19) clearly leads to some errors as evident
in Figure 3.22 showing disagreement in system’s capillary pressure measured by dif-
ferent means. For the breakdown issue of inaccurate discrete representation of curved
interface (see Figures 3.2, 3.6, and 3.8) however, it is not certain that whether this is
the cause of the deviation between the interface-averaged mean curvature sy, and the
volume-averaged phase difference (normalised by the interfacial tension) .. (pp —pw),
which is observed in Figure 3.22(a), or the deviation might also be due to numerical
artefact in both mean curvature and phase pressure measurements. The reminiscence
of the other two issues encountered in the simple-geometry tests, the non-physical at-
traction of dissolved NW phase near solid surface and the speed of interfacial current,

will be discussed in detail in Chapter 4 and section 5.2, respectively.
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3.7 Conclusions

In this chapter, we have characterised the breakdown behaviours of two commonly
used multicomponent lattice-Boltzmann models: Shan-Chen model and Rothman-
Keller model, by performing a series of small-scale, artificial-geometry tests, with the
feature size of the domain being pushed down to the discrete unit size. Both models
display quite reasonable basic accuracy (i.e. compared to Young-Laplace law) to mean
curvatures approaching ~1.0 .u.~!, meaning that the models can potentially simulate
drainage of tubes down to radius of ~2.0 l.u.. However the inherent miscibility of
the SC model causes great problems with constant pressure boundary conditions,
resulting in severe instabilities in smaller tubes unless the boundary conditions are
carefully tuned. Recently there have been much work on improving the stability of
SC model, such as the work by Sbragaglia et al. (2007), where a secondary fluid-
fluid cohesion coefficient is introduced such that the equation of state and the surface
tension can be tuned independently to enhance numerical stability, or the work by
Porter et al. (2012), where an explicit forcing scheme is proposed to demonstrate
enhanced stability and capacity to simulate wider range of viscosity ratio; however,
to the author’s knowledge, the severe inter-phase dissolution still remains as one of
the most challenging issue for Shan-Chen-type multicomponent model, and certainly
more work is needed in the future.

The RK model is generally more stable, but the current implementation of wet-
ting boundary conditions causes layers of dissolved non-wetting phase to accumulate
at the solid surface, thus pressure gradients eventually drive the non-wetting phase
into the tube at non-physically low entry pressure. To correlate our knowledge from
the simple-geometry characterisations with the real-world simulations, we also imple-
mented the Rothman-Keller based model in a sub-domain of a Bentheimer sandstone
uCT image. The standard test results were largely confirmed in the porous medium,
with discrepancies in pressures in the porous medium consistent with predictions from
special geometries.

At the resolution limit, the behaviours of the two models are categorised into dif-
ferent breakdown types. There are several key issues arising from various tests, which
can be summarised as follows, where the onsets of these issues have been highlighted

either by the individual model parameters or the related geometric measures:

1. Inaccurate discrete representation of curved interface due to the finite width of

fluid-fluid interface.

e Feature tests: (1) bubble test, (2) flat tube test, and (3) tilted tube test
(see sections 3.3, 3.4.1, and 3.4.2).

e Onset of the issue: SC model: (1) Not observed (masked by dissolution
that has earlier onset); (2) ky = 1.0 Lu."%; (3) ky = 0.4 Lu."l. RK
model: (1) kg = 0.65 L.u."t; (2) ky = 1.2 Lu.™t; (3) ky = 0.5 Lu.~t



3.7.

Conclusions 87

e (Consequences: For both SC and RK models, the simulated Young-Laplace

relation (P, — kg relation) is not accurate, which will introduce errors in

estimating the fluid volume fraction such as 5.

e FError types: Type L.

2. Inter-phase dissolution due to capillary pressure.

e [eature tests: (1) bubble test, and (2) flat tube primary drainage test (see

sections 3.3 and 3.5).

Onset of the issue: SC model: (1) It depends on Gcon and initial phase
volume ratio; (2) All Ryype, Geon and Gags. RK model: Not observed.

Consequences: SC model: (1) The behaviour of NW ganglia depends on
initial conditions and there is potential transport of dissolved fluid between
disconnected ganglia; (2) Pressure boundary conditions need empirical cal-
ibrations, which would otherwise lead to changing surface tension, snap-off
of the non-wetting phase, or erroneously high entry pressure. RK model:
N/A.

Error types: SC model: (1) Type II; (2) Type II and III. RK model:
N/A.

3. Speed of interfacial spurious currents approaching the lattice speed of sound.

e Feature tests: bubble test (see section 3.3).
e Onset of the issue: SC model: Gcon > 3.0. RK model: Ag 5 > 0.5.

o (onsequences: This issues introduces numerical instability and program

failure, and it also renders the interfacial velocity indistinguishable from

large spurious currents.

e Error types: Type I and III.

4. Accumulation of dissolved non-wetting phase at solid surface.

o Feature tests: (1) flat tube test, and (2) flat tube primary drainage test

(see sections 3.4.1 and 3.5).

e Onset of the issue: SC model: (1) Gags > 0.0; (2) Not observed (masked

by snap-off that has earlier onset). RK model: (1) |®ya11]| > 0.0; (2)
Depending on Rpore (see Table 3.4).

o Consequences: SC model: (1) Errors in estimating fluid volume fraction

(e.g. Sw); (2) N/A. RK model: (1) Errors in estimating fluid volume frac-
tion (e.g. Sy); (2) Transport of non-wetting phase through capillary barrier
prior to the capillary entry; Inability to reach high capillary pressure; and

potential transport of non-wetting phase between isolated ganglia.

e Error types: SC model: (1) Type I and II; (2) N/A. RK model: (1)

Type I and II; (2) Type II.
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5. Pressure variation within one fluid due to local solid confinement.

e Feature test: special tube test (see section 3.5.3)

e Onset of the issue: It depends on Ryype and Geon (for SC model) and Ag g
(for RK model) (see Figure 3.18 and Figure 3.19).

e Consequences: It introduces errors in measuring capillary pressure. Also,
non-equilibrium interfacial curvature due to pressure depends on the local

neighbouring solid nodes.

o FError type: Type II.

It should be noted that, while the issues 1 and 5 can be partially alleviated by
increasing the image resolution or applying image up-sampling, to fix issues 2, 3 and
4, more advanced models are needed. For both issues 1 and 5, it is shown in section
3.6 that type I error occurs in the globally averaged pressure difference; this is due
to the fine features in the porous media (i.e. characteristic throat size < 8 [.u.); on
the other hand, for some local region (e.g. red circle in Figure 3.22) the type I error
diminishes. In real porous media applications, where there are always fine features,
the type I error is bound to happen due to issues 1 and 5.

For issue 2, this exaggerated tendency of small bubbles dissolving into the am-
bient fluid makes the SC model unsuitable for immiscible flow (unless an improved
model is developed.): Figure 3.3 shows that larger the capillary pressure, greater
the solubility will be; hence when two initially separate NW bubbles are trapped at
different capillary pressure, the system will not reach an equilibrium state until the
bubble at higher capillary pressure completely dissolves. Hence the issue 2 clearly
will cause type II error in real porous media simulations, and also considering the
breakdown behaviour in capillary tube (Figure G.1), the issue 2 also leads to type III
error. In fact, the inter-phase dissolution problem in the multicomponent SC model
(not the single-component multiphase SC model) has long been overlooked by the
LB community, and many observations based on such multicomponent SC model are
thus biased: in McClure (2011), the author has pointed out that the (non-physical)
inter-phase dissolution “explains the apparent absence of disconnected phase from the
simulations reported by Porter, Schaap, and Wildenschild (2009)”; and “the existence
of disconnected phases observed in Pan, Hilpert, and Miller (2004) is due to termina-
tion prior to equilibrium as a consequence of the termination criteria”. Incidentally,
the severe inter-phase dissolution turns out to be a problem for the free-energy LB
multicomponent model as well, as pointed out by Liu et al. (2016). On the other
hand, for modelling single-component multiphase phenomena, a tuneable miscibility
feature in SC model is desirable; the recent work such as Yuan and Schaefer (2006),
Sbragaglia et al. (2007) and Porter et al. (2012) have largely improved the original
single-component multiphase SC model with enhanced numerical stability and wider

coverage of density and viscosity ratios.
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For issue 3, the large interfacial spurious current might hinder the accurate mea-
surement of the actual velocity field of the fluids, and this effect becomes more sig-
nificant at low capillary number. To address issue 3 for SC model, several improved
models have been proposed such as Lee and Fischer (2006) and Kuzmin and Mohamad
(2010). For RK model implemented in section 3.6, the phase field, being the direct
solution of LBM, is used to solve for the level-set equation, thus the evolution of the
interface can be accurately determined (McClure et al., 2016).

For issue 4, which is also resolution independent, several improved wetting bound-
ary conditions have been proposed to address the issue for the SC model (Jansen and
Harting, 2011; Chen et al., 2015) and for the RK model (Wang, Huang, and Lu, 2013,;
Liu et al., 2015; Leclaire et al., 2016; Leclaire et al., 2017; Xu, Liu, and Valocchi,
2017). Additionally, the issue 4 is also a problem for other commonly used multi-
component LB models, such as free-energy and phase-field LB models (Liang et al.,
2019). Readers are referred to the work by Lee and Liu (2010), Wiklund, Lindstrom,
and Uesaka (2011), Lou, Yang, and Xu (2018), and Liang et al. (2019), to name but
a few, for the potential resolution of nonphysical mass transport in free-energy and
phase-field LB models.

In terms of the future work, first, more thorough resolution dependence simulations
are needed to investigate the impact of the under-resolved features of a complex porous
medium on the overall fluid interfacial movement. This can be tested by firstly running
up-sampled simulations, and then running progressively down-sampled simulations
until the behaviour of the fluid phase front changes significantly. These tests serve as
a guidance for the so-called minimal numerical resolution that can be applied to most
of diffused interface based models, in comparison with the uCT image resolution.

Second, in some cases, the entire simulation domain can be described as under-
resolved; to study the two-phase flow in such condition requires the development of
Shan-Chen-type or Rothman-Keller-type greyscale lattice-Boltzmann models, which
utilise the sub-resolution porosity and effective permeability as input parameters. The
greyscale LB models can well compliment the study when the yCT images are under-
resolved, and they are Darcy-scale modelling techniques, which are different from the
pore-scale LB models studied in this thesis. The hybrid approach (i.e. normal LB
model plus greyscale LB model) is therefore a future direction for the up-scaling study

of multiphase flow in porous media.
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Chapter 4

Wetting Boundary in
Lattice-Boltzmann Models

In section 3.4.1 where a static flat tube simulations were performed, it has been shown
in Figure 3.5 that in the bulk wetting phase, the dissolved non-wetting phase is at-
tracted near the solid surface (especially the corner nodes) for both SC and RK models.
More seriously, when it comes to the dynamic simulation where the primary drainage
simulation was performed in square tube, the dissolved NW phase that accumulates
at the solid surface in RK model leads to significant breakdown such that once the
NW phase front approaches the porous plate, the NW front can break through the
porous plate at a much smaller entry pressure than that required by the Laplace’s
law. The similar breakthrough (of the porous plate) in SC model, under the constant
pressure boundary condition, was not observed in our study, since the potential leak-
age is masked by an earlier breakdown behaviour, the snap-off of the NW phase (see
section 3.5.2 and Appendix G). However, using the velocity boundary condition, the
non-physical leakage through the porous plate is indeed observed, reported by Porter,
Schaap, and Wildenschild (2009). The issue of non-physical attraction (of dissolved
NW phase) is not limited to SRT-LB models, since it is only related to the treatment
of the boundary phase field gradient between the fluid and solid phases; it is shown in
section 4.3 that our current MRT-LB model also suffers the same non-physical error.

In this section the cause of the attraction of the dissolved NW fluid to solid surface
is discussed in detail. In fact, researchers have been well aware of such non-physical
behaviour and have proposed several improved wettability models attempting to elim-
inate the NW phase attraction. Generally speaking, there are two major branches of
LB wettability models, the surface-energy based approach and the geometry-based
approach, with our current implementation falling into the former branch. Thus we
also have a detailed review of state-of-the-art geometric method in section 4.4. In
practice, however, the surface-energy based method is more often used because of its
very simple algorithm and more sound physics it models, hence we propose a new
energy-based approach and briefly introduce its conceptual implementation in section
4.5. Since this proposed wetting model has not been validated through tests, more fu-
ture work is needed to implement the model, to compare against the geometric based

method, and to evaluate the pros and cons of the two methods.
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4.1 Wetting Boundary in Shan-Chen Model

For SC model, such non-physical behaviour of dissolved NW phase in the bulk W phase
is due to the imbalance between fluid-fluid cohesion force and fluid-solid adhesion
force, which has been discussed in detail in (Chen et al., 2015). Ideally we expect
that near the solid surface, W phase is attracted and NW phase is repelled for non-
zero adhesion forces F2% and F2% for NW and W fluids, respectively. However,
even for F23 = F2ds — () which supposedly gives a neutral wetting condition with
a 90° contact angle, both fluids have a significant attraction to the surface which
overcomes the immiscibility and attracts significant non-physical minor fluid density,
which is illustrated in Figure 4.1 as adapted from Chen et al. (2015). For the sake of
continuity with later discussions, we still use the naming of NW and W fluids when
explaining Figure 4.1 (and Figure 4.3 for RK model), although at neutral wetting
condition there is no NW or W fluid, but simply two immiscible fluids.

solid node T+ .

Y ‘ﬂuid node

FIGURE 4.1: A two-dimensional schematic illustrating the fluid-solid
boundary at the corner of a square capillary tube. The arrows of solid
lines indicate the fluid-fluid cohesion forces exerting on the fluid node
A, and arrows of broken lines indicate the fluid-solid adhesion forces
experienced by node A. The actual tube test is in three dimensions, so
there are more cohesive and adhesive forces coming from the adjacent
planes which are parallel to the plane of the paper. At the neutral
wetting condition, the adhesion force is exactly zero. (Adapted from
Chen et al. (2015))

In Figure 4.1, node A is a fluid node at the corner of a square tube. The NW
fluid particles on node A experience repulsive cohesion forces from W fluid particles
on the neighbouring fluid nodes, as well as repulsive adhesion forces from surrounding
solid nodes. Therefore, if there is no adhesion forces, such as at the neutral wetting
condition, the NW fluid will accumulate at the solid surface since it experiences a net
force pointing towards the solid phase. For dissolved NW phase near the solid surface,
it is the competition between F295 and FE°" that determines how much NW fluid will
be attracted.

Figure 4.2 shows how dissolved NW density distributions in the bulk W phase
change with an increasing F2%%  extracted from the flat tube test. According to

nw

our analysis, the density attraction due to an imbalance of F2% and F°® should be
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FI1GURE 4.2: Cross-sectional density profiles of dissolved NW phase

in the bulk W phase are extracted from the end of the capillary tube,

at different wetting conditions for SC model. The inscribed radius of

the capillary tube is 4.0 l.u.. The adhesive force F2% exerting on the

NW fluid increases along the direction of the arrow of F2d. Fob s
the cohesion force that W phase exerts on the NW phase.

reflected immediately as the system evolves, thus the NW density profiles just after one
iteration are also presented. The adhesion force F23% is increased by adjusting G ads, nw
where Gags, w 1s fixed at 0.0. It can be seen from Figure 4.2 that for 0.0 < Gags,nw < 1.2,
after one iteration NW fluid is already attracted to the solid surface, and the case of
Gads,nw = 1.2 has less NW fluid attracted compared to that of Gags nw = 0.0 since
F2% is increased. Eventually, at Gagsnw = 2.4 we have F2% > F2" 0 that NW
fluid is repelled from the solid surface. Nevertheless, our contact angle measurement
indicates that Gagsnw = 1.2 already gives a 0° contact angle, but at Gagsnw = 1.2
a significant amount of NW phase density accumulates near the solid surface. This
essentially indicates that in a normal range of contact angles 0° ~ 90°, the issue of the
non-physical accumulation of dissolved NW phase near solid surface is parasitic. This
issue can be reduced (but not completely eliminated) by the use of an unrealistically
high Gags,nw, Or applying a new wetting model: Jansen and Harting (2011) and Chen
et al. (2015) have resolved the problem for SC model by introducing virtual fluid on
the solid nodes to compensate for the imbalance between cohesive and adhesive forces
near the solid surface. In a real porous medium, different amount of dissolved NW
fluid will be trapped at various irregular-shaped corners where the net force of F2ds
and FS°" can be pointing to any directions. Furthermore, even if an improved wetting
boundary condition is implemented, the non-physical miscibility (discussed in sections
3.3 and 3.5.2) in the SC model still makes it unsuitable for most studies of immiscible

flow.
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4.2 Wetting Boundary in Rothman-Keller Model
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FIGURE 4.3: (a) A two-dimensional schematic of the phase field near
the corner of a square capillary tube, extracted from the centre of tube,
and (b) the ends of the tube. pya11,red = Pwai1,viue = 0.1 is set, so the
phase field values on wall nodes are zeros. At the centre of the tube,
the initial conditions are pyeq = 1.0 and pp1ye = 0.02, and at the ends
of the tube the initial conditions are preq = 0.02 and ppiye = 1.0.

For RK model, different wetting conditions are realised through the gradient of
the phase field ®(x) between solid nodes and adjacent fluid nodes (i.e. colour gradient
G(x) at the solid surface). According to the recolouring step in equation (2.63) and
the way we define the phase field, red fluid particles tend to move to where G(x) > 0
and blue fluid particles tend to move to where G(x) < 0. More specifically, at the
solid surface, if the phase field on wall nodes is less than that on adjacent fluid nodes,
blue fluid particles will be attracted towards wall nodes and red fluid particles will
tend to move away from these wall nodes, thereby the red fluid being the NW phase
and blue fluid being the W phase. Similar to SC model, even at neutral wetting
condition, the fluids still have ‘preference’ towards the solid surface. To explain this,
the initial phase fields near the corner of the tube are shown in Figure 4.3, where
®yar1 () = 0.0 is set, which is expected to give a 90° contact angle. Again, for the
sake of continuity with rest of the discussion in this chapter, we still use the naming
of NW and W phases at contact angle of 90°, even though there is no NW and W
fluids at neutral wetting condition. Figure 4.3(a) shows the initial phase field in the
bulk NW phase (e.g. the centre of the tube in a flat tube test). Because of the phase
field gradient between solid nodes and fluid nodes, the red and blue fluid particles
would adjust their distributions according to this gradient, which makes the wetting
boundary ‘less neutral’. By the same token, Figure 4.3(b) shows that in the bulk W
phase (e.g. the end of the tube in a flat tube test), the dissolved NW fluid particles
are attracted to the solid surface in response to the local phase field gradient. At
the neutral wetting condition, to eliminate the phase density attraction/repulsion for
example at the centre of the tube (i.e. Figure 4.3(a)), we can remove the phase field
gradient between boundary fluid nodes and solid nodes by setting ®ya11(x) = 0.98,
but this would not change the fact that dissolved NW phase is still attracted to the
solid phase at the ends of the tube (i.e. Figure 4.3(b)). As the ®ya11(x) is changed
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from 0.0 to negative values (i.e. from neutral wetting to strong wetting), less dissolved

NW phase will be attracted to solid surface.
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FIGURE 4.4: Cross-sectional density profiles of dissolved NW phase
in the bulk W phase are extracted from the end of the capillary tube,
at different wetting conditions for RK model. The inscribed radius of
the capillary tube is 4.0 l.u.. The absolute values of the phase field on
wall nodes |®ya11| increase along the direction of the arrow of [®ya11].

Figure 4.4 shows how dissolved NW phase distributions in the bulk W phase change
with a decreased phase field on wall nodes. According to the analysis as shown in
Figure 4.3, the attraction of dissolved NW phase near solid surface should be reflected
immediately after one iteration for —0.63 < ®,,11 < 0.0, and compared to the case of
D11 = 0.0, less amount of NW phase is attracted for ®,,7 = —0.63. Lastly, when
D211 becomes smaller than ®¢1,39, NW phase is repelled from solid surface. However,
when @17 is around -0.63, a 0° contact angle is reached already, and ®ya17 = —1.0
gives rise to a thick film of W phase near the wall. Hence, similar to what is found
in SC model, for a normal range of contact angle 0° ~ 90°, the non-physical surface
attraction of dissolved NW phase is parasitic. To overcome the non-physical issue
in the current RK wetting boundary condition, an alternative approach, geometric
formulation, has been recently proposed by several works such as Wang, Huang, and
Lu (2013), Liu et al. (2015), Leclaire et al. (2016), and Xu, Liu, and Valocchi (2017).
The geometric approach is briefly reviewed in section 4.4.

The pressure of the models is directly linked to the phase densities: for RK model,
it is simply the sum of NW and W densities weighted by the lattice speed of sound,
but for SC model, besides the sum there is an extra non-linear term Gcopppypy/3 in
the pressure equation (2.58), which arises due to the presence of the cohesion force and
the requirement of correctly recovering the macroscopic momentum equation (Huang,
Sukop, and Lu, 2015). The cross-sectional pressure profiles from the tube test at a

contact angle of ~ 45° and an inscribed tube radius of 4.0 [.u. are shown in Figure
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FIGURE 4.5: For SC model, the cross-sectional pressure profiles are
shown, at (a) the centre of the tube, and (b) the end of the tube. For
RK model, the cross-sectional pressure profiles are shown, at (c) the
centre of the tube, and (d) the end of the tube. The contact angle for
both models is ~ 45°. The inscribed tube radius is 4.0 [.u.. For each
model, the same colour bar for the pressure distribution is used.

4.5 for both models. Figure 4.5(a) and (c) show the profiles at the centre of the
tube (i.e. the bulk NW region) for SC and RK models, respectively. RK model’s
profile looks as is expected: the pressure is higher in the centre of the tube and is the
lowest at corners. On the contrary, the high pressure at corners in SC model is non-
physical, which is essentially due to SC model’s partial miscibility such that the major
and minor fluid densities are comparable at the corner, and thus the non-linear term
G conpnwpu/3 also plays a significant role. More specifically, on the corner nodes where
the W phase film arises, the NW phase does not vanish completely - in fact they are
about the same order of magnitude, which makes py,py at corners much greater than
PnupPw in the centre where py is very small. Thus, it also should be noted, given that
SC model’s partial miscibility which leads to comparable NW and W phase densities
at corner nodes, some errors in the curvature and contact angle measurement will
be introduced due to erroneous phase field at corners which is needed as input for
these measurements. If the pressure were calculated the same way as in RK model,
there is no such peculiar distribution. Figure 4.5(b) and (d) show the profiles at the
end of the tube (i.e. the bulk W region), which ideally should present a uniform
pressure distribution. However both models show non-uniform distributions, with the

SC model showing a stronger pressure variations near the solid surfaces.

4.3 Consequence in Porous Media Simulation

In section 3.5.4 where the primary drainage simulation was taken in a single square

tube, the consequence of problematic wetting boundary (for RK model) has been
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investigated and it shows that due to accumulated dissolved NW phase near and in-
side the porous barrier, the invading NW phase in the tube can easily break into the
porous barrier below the required entry pressure. This can certainly lead to numer-
ical instability as it blows NW bubbles inside the W phase reservoir and might give
erroneous phase distributions due to non-physical fluid transport. For SC model, such
non-physical breakthrough of porous barrier is not observed with pressure boundary
condition, because it is masked by another breakdown, the snap-off of NW phase dur-
ing invasion (see section 3.5.2 and Figure G.1), which has an earlier onset. Therefore,
in this section our extended study of the problematic wetting boundary will exclusively
focus on the RK model.

The leakage of NW phase through porous barrier shown in section 3.5.4 seem-
ingly makes the impression that non-physical attraction of NW phase only becomes
problematic when the surface-to-volume ratio of the medium is large (e.g. surface-to-
volume ratio of 4 for a porous plate of Rpore = 0.5 l.u. and Lpore = 10 l.u.), or one
might think by smoothing the image, the consequence could be mitigated. However,
based on the discussion in section 4.2, it is clear that this non-physical attraction of
NW phase is essentially a problem of colour-gradient LB model and is image resolution
independent. In the following, we will show that accumulation of dissolved NW phase
leads to erroneous NW fluid distribution where numerous small NW phase bubbles
(< 15 L.u.3) were “generated”, none of which were due to known physical processes
such as snap-off during Haines jumps. Where those ‘fake’ NW phase bubbles are
generated, does not necessarily need a high surface-to-volume ratio.

Following the set-up in section 3.6, here we use a combined boundary condition
to more realistically mimic drainage experiment in reality: a constant flux boundary
(see more in section 5.1.2) is applied at the inlet, and a constant pressure boundary
is applied at the outlet. A mid-contact angle of 50° was used ( i.e. ®(@ya11) = -0.55
according to the calibration in (McClure, Prins, and Miller, 2014)). The advantage
of flux boundary condition is that the Capillary number (Ca) can be easily specified
in advance, and more details about this boundary condition can be found in section
5.1.2. The capillary number with respect to the invading phase in drainage can be
calculated as Ca = vu/~yn, where v is the kinematic viscosity, and v is the Darcy
non-wetting phase velocity given by u = q/e, where € is the porosity, and the flux ¢
can be specified by the flux boundary condition.

Figure 4.6 shows non-wetting fluid configurations at three capillary numbers at
a wetting phase saturation of S, ~ 0.98 (i.e. early in drainage). In Figure 4.6(a),
where Ca= 2 x 1075, numerous non-wetting phase bubbles are visible, with 90% of the
bubbles having volumes of 15 l.u.? or smaller, equivalent to a sphere of radius < 1.5
l.u.. A close examination of the displacement process shows that a non-physical film
of dissolved non-wetting fluid forms on the solid surface in advance of the main NW
phase front (see Figure 4.8). This film gradually migrates along the surface towards
the interior of the domain and agglomerates into NW phase droplets near crevices.

This is essentially also the cause of the breakdown behaviour observed in single square
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tube drainage test (see Figure 3.20(b)). Figure 4.7 illustrates the “growth” process of
a non-physical NW ganglion (in the red circle) that is never connected to the main

NW phase, due to the non-physical transport of the dissolved non-wetting phase.

FIGURE 4.6: Primary drainage simulations in the Bentheimer sand-

stone sample using flux boundary conditions with capillary numbers of

(a) 2x 1075, (b) 3x 1074, and (c) 3 x 1073, The wetting phase satura-

tion for all three configurations is around 0.98. The non-wetting phase

is in blue, and for visual clarity, the wetting phase is not shown. The

light grey phase indicates the pore matrix of the Bentheimer sandstone
sample.

Due to the slow migration of the dissolved NW fluid films, we expect the growth
of these small non-physical bubbles to depend on the flow rate. This is confirmed in
Figures 4.6 and 4.8, where the extent and thickness of dissolved films and the number

of non-physical bubbles are significantly decreased at higher flow rates. It can be also
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FIGURE 4.7: A illustration of the growth of a non-physical non-wetting

phase ganglion during the drainage process in the Bentheimer sand-

stone sample. The non-physical ganglion is highlighted in the red
circle.

shown that this phenomenon is independent of boundary conditions: using constant
pressure boundary conditions with a capillary pressure smaller than the capillary entry
pressure, we observed numerous small non-wetting phase bubbles present before an
apparent non-wetting phase invasion happens, as shown in Figure 4.9(c) and (d).

Furthermore, in section 4.2 we also show that at smaller contact angles, less dis-
solved non-wetting phase is attracted to the solid surface (see Figure 4.4). Therefore,
here we also performed the drainage simulation at 0° contact angle for both pressure
and flux boundary conditions (Figure 4.9 (b) and (d)), and it can be seen that the
amount of small non-wetting droplets is drastically decreased, comparing to Figure
4.9 (a) and (c).

Lastly, it is noted that this propagation and accumulation of the dissolved non-
wetting phase cannot be reduced with higher image resolution. In Figure E.1 (Ap-
pendix E), we show that the amount of dissolved non-wetting phase density attracted
at corner nodes and normal fluid boundary nodes in fact becomes larger with in-

L. Also, same simulations as shown in Figure 4.6 were preformed

creased tube size
using a smaller sub-domain (643 [.u.3) and a refined sub-domain where the image
resolution is double (the refining is performed based on linearly interpolating the cor-

respond signed distance map of the sub-domain). We still observe the generation of
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FIGURE 4.8: Illustrations of the propagation of the transport of dis-
solved non-wetting phase along the solid surface, where the 2D views
(i.e. y-z plane) of a sub-domain of 125 x 125 l.u.? of the phase field
are shown, with the capillary number of (a) 2x 1075, (b) 3 x 10~* and
(c) 3x 1073 It can be seen that there are less surface that is “coated”
with dissolved NW phase at higher flow rates. The 125 x 125 l.u.2
sub-domain is extracted from x = 7. A non-linear colour scale is used
for the phase field to highlight the distribution of the dissolved non-
wetting phase near the solid surface. The yellow solid line delineates
the pore-solid boundary, and the solid phase is in black. The contact
angle is 50°.

‘fake’” NW bubbles inside the sub-domain (not shown in the thesis), before the major

NW phase front enters the medium.

4.4 Introduction to Geometric Formulation

In the previous sections, the problematic wetting boundary conditions in SC and RK
model have been reviewed, and we have explored the consequence of such wettability
model in realistic porous medium simulations for RK model, which causes significant
non-physical ganglia generation that could potential render the modelling meaning-
less. We are not the first to notice this phenomenon: for SC model, based on SC’s
original wetting model (Martys and Chen, 1996), Jansen and Harting (2011) and
Chen et al. (2015) have made improvement by introducing virtual density to the solid
boundary nodes, which equivalently reinforces the (fluid-solid) adhesive force to ‘off-
set” the unbalanced (fluid-fluid) cohesive forces. More details of the implementation
can be found in their works. For RK model, to the author’s knowledge, there has not
been any improved wettability model being proposed based on the commonly adopted
fictitious-density model, which is also being used in this thesis, and is proposed by
Latva-Kokko and Rothman (2005b). The fictitious-density model introduced in sec-
tion 4.2, assigns a fictitious density to solid nodes, which sets up a colour-gradient
such that NW and W fluid particles are redistributed near the solid boundary. Since
this model essentially follows the assumption that the solid boundary is a mixture
ot NW and W fluids by Rowlinson and Widom (1982) and is based on the Young’s

Tt is also noted that in such case, the total mass fraction of dissolved NW phase decreases due
to the decrease in the ratio of the volume of fluid boundary nodes to the total volume of fluid nodes.
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FIGURE 4.9: The drainage simulations in the Bentheimer sandstone

sample using (a) the flux boundary condition at 50° contact angle,

(b) the flux boundary condition at 0° contact angle, (c) the pressure

boundary condition at 50° contact angle, and (d) the pressure bound-
ary condition at 0° contact angle.

equation of surface tension (Latva-Kokko and Rothman, 2005b), it is also called the
surface-energy formulation (Jacqmin, 2000; Briant, 2002; Khatavkar, Anderson, and
Meijer, 2007; Yu et al., 2018). On the other hand, an alternative wettability model,
the so-called geometric formulation, has been proposed for RK model for fixing the
non-physical behaviour. This approach was initially proposed for the diffuse interface
method by Ding and Spelt (2007), and was extended to be implemented in RK model
in 2D by Wang, Huang, and Lu (2013), Ba et al. (2013), Liu et al. (2015), Liu and
Zhang (2015), Leclaire et al. (2016), and Xu, Liu, and Valocchi (2017) and in 3D by
Ba et al. (2015), Leclaire et al. (2017), and Akai, Bijeljic, and Blunt (2018). Inciden-
tally, the similar geometric formulation has also been proposed for SC model by Li,

Zhou, and Yan (2016). However, some of these reported approaches are either limited



102 Chapter 4. Wetting Boundary in Lattice-Boltzmann Models

to flat surface (Wang, Huang, and Lu, 2013; Ba et al., 2013; Ba et al., 2015; Liu
et al., 2015; Liu and Zhang, 2015; Li, Zhou, and Yan, 2016; Yu et al., 2018) or may
lead to non-symmetric results for a physically symmetric problem such as in Leclaire
et al. (2016), as pointed out by Xu, Liu, and Valocchi (2017). This leaves us with
the approach by Xu, Liu, and Valocchi (2017) in 2D, which is then extended by Akai,
Bijeljic, and Blunt (2018) to 3D case, and the approach by Leclaire et al. (2017), both
of which are algorithmically feasible to handle arbitrary surface.

For the rest of this section, the approach by Leclaire et al. (2016) and Leclaire et
al. (2017), referred as Leclaire’s method hereafter, and the approach by Akai, Bijeljic,
and Blunt (2018), referred as Akai’s method hereafter will be introduced. These two
methods following the same methodology of geometric formulation, but are different
in the computation of the unit vector normal to the fluid-fluid interface. The basic
idea of geometric method is to artificially modify the orientation of the colour gradient
G on the fluid boundary nodes such that the prescribed contact angle 6 is matched?.
First of all, we group the lattice sites into several categories as follows (Leclaire et al.,
2016; Xu, Liu, and Valocchi, 2017; Akai, Bijeljic, and Blunt, 2018):

1. Cgg: a list of lattice nodes that belong to the fluid domain and are in contact

with at least one lattice node in the solid domain.

2. Cgr: alist of lattice nodes that belong to the fluid domain but are not in contact

with any lattice nodes in the solid domain.

3. Csp: a list of lattice nodes that belong to the solid domain and are in contact

with at least one lattice node in the fluid domain.

4. Cq: alist of lattice nodes that belong to the solid domain but are not in contact

with any lattice nodes in the fluid domain.

To satisfy a certain contact angle at the contact line, the following simple relation

must be respected for nodes belonging to Crg:
n-ng = cosb, (4.1)

where ng is the unit normal vector of the solid boundary. n; is purely a characteristic
of the porous medium that can be obtained prior to the LB simulations, hence it
can be assumed known and the calculation of ng will be introduced in the end. n is
the orientation of the colour gradient G, namely the unit vector normal to the fluid

interface, and can be calculated as:

G
n(x) = @ x € CrB (4.2)

2Tt should be noted that, in reality even for a homogeneously wet porous medium, the local
contact angle (measured from pCT images based on various image processing algorithms) can vary
significantly. Therefore, it is still debatable whether this methodology of setting prescribed contact
angle artificially has a sound physics foundation.
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Therefore, in the context of geometric formulation, the contact angle 6 is the input
(which is known), ns is also known, and obviously the key is to compute n. However,
equation (4.1) is a degenerate system with one equation but three unknowns (i.e.
three components of a 3D vector n). To overcome this difficulty, Leclaire et al.
(2016) proposed the prediction-correction methodology: an initial guess m* is first
calculated on each node (x € Crp) based on the colour gradient information in the
current iteration, and such prediction is then corrected after considering the prescribed
contact angle.

The Leclaire’s method and Akai’s method are different in how m* is corrected.
In terms of obtaining n* for & € Cpp, which is equivalently to obtain the (guessed)
colour gradient G* for & € Cgg, the information of the phase field ® for & € Csp is
needed, which is not known. Hence, the phase field ® for * € Cgp is extrapolated
based on a weighted average of its nearest ® € Cpp as follows (Xu, Liu, and Valocchi,

2017):
Z wiCIJ(a: + 61‘(5,5)
(I)(w) _ 1:x+e;0:€CrB xE CSB (43)

> oW ’

i:x+e;6t€CrB

where w; is the weighting coefficient of LB lattice. Once ® for & € Cgp is obtained,

the guessed colour gradient G* for & € Cppg can be calculated, and the guessed unit

normal vector n* can be determined by n* = |g—*|

FIGURE 4.10: (Figure copied from Akai, Bijeljic, and Blunt (2018))
Schematic of the wetting boundary condition of Akai’s method. ng is
the unit normal vector of the solid nodes for € Csg. 4 and n_
are the two possible unit vectors which have an angle 6 from ng in a
counter-clockwise and clockwise direction, respectively. The unit vec-
tors ny are obtained by the linear combination of ng and the guessed
unit normal vector n* through equation (4.4). Then the guessed vector
n* is replaced with either n, or n_ according to equation (4.6).

The next step is to correct the direction of G* to match the prescribed contact
angle, while still keeping the magnitude |G| unchanged. The Akai’s method borrowed
the idea from the OpenFOAM finite volume library, an open source CFD toolbox,

to go through a vector transform that rotates ms to obtain the corrected m. An
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illustration of the wetting boundary condition in Akai’s method is shown in Figure
4.10, which is directly adopted from Akai, Bijeljic, and Blunt (2018). In Figure 4.10,
it can be seen that there are two contact lines, each of which makes an angle 8 with
N in two possible directions (i.e. the unit vectors n, and n_). The two unit vectors

n, and n_ can be calculated via the linear combination of ng and n* as follows:

(4.4)

1 / .
ny = (cos(ie) _ sn1(:|:9)<:050> n, Sln(:l:@) .

- § n
sin @/ sin @’ ’

where 6/ = arccos(ng - n*). To choose the appropriate unit normal vector to interface,

the Euclidean distances D4 between n4 and n* are evaluated as follows:

Dy =lny —n'|, (4.5a)
D_=|n_—n". (4.5b)

Then the corrected unit normal vector of the fluid-fluid interface n is selected by:

n D. <D_
n={ = 7= (4.6)
n_ D+ > D_

Lastly, the corrected colour gradient G that matches desired contact angle can be
calculated as:
G =|G"n (4.7)

For the correction step in Leclaire’s method, instead of dealing with complicated
3D vector transformation, the numerical method of secant is used, with the guess n*
being the initial condition, and a solution m is obtained via recurrence relation with

iterative index n as follows:

n® =n* (4.8a)
n) = n* — \(n* +n,), (4.8b)
n(n) _ ,n(n—2)f(n(n—1)) _ n(n—l)f(n(n—2)) (4 8C)
f(n=D) — f(n(n=2)) ’ '
where f(n) is simply the condition 4.1 but with an arbitrary vector:
Fm™)y =n™ .n,—|nM™)cos, (4.9)

where 6 is the prescribed contact angle.

In Leclaire’s method, due to the special choice of first two order approximations
n® and n(, the final iterative solution n will be situated in the plane spanned by
n* and ng. For simplicity, A of 0.5 is adopted in Leclaire’s method and the iteration
stops at n = 2 to avoid too much computational cost. The recurrence equation (4.8)

does not guarantee the norm of n(™ is unity, thus the normalisation is taken before
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it is used to calculate the corrected colour gradient as:
G = |G*|n®. (4.10)

Incidentally, T6lke, Prisco, and Mu (2013) also proposed similar wettability model
based on the idea of geometric formulation, but instead of making a initial guess n*
and then performing the correction, T6lke, Prisco, and Mu (2013) directly solved the
condition (4.1), together with two extra constraint equations, which, in total, consti-
tuted five non-linear equations with five unknowns. Those equations were numerically
solved by Newton-Raphson method, which is more computationally expensive com-
pared to the approach proposed by Leclaire et al. (2017).

For the unit normal vector of the solid boundary ng, there are at least two methods:
either directly performing the gradient operation on the binary solid matrix of yCT
image using eighth-order isotropic discretisation (Xu, Liu, and Valocchi, 2017), or
smoothing the pCT image first and then performing gradient operation using a lower-
order discretisation (e.g. fourth-order isotropic discretisation as in equation 2.62)
(Leclaire et al., 2017). If directly performing the gradient operation using eighth-
order isotropic discretisation, ng can be calculated as follows (Xu, Liu, and Valocchi,
2017):

Sw(lal)s(@ + cdr)e

1
ns(x) = | ;w(|cl|2)s(m +ed)el|’

x € Cpg, (4.11)

where s(x) is the indicator function that is 0 for & € CpUCEg, and 1 for & € CqUCsp.
w(|eg|?) is the eighth-order weight function which is given by Sbragaglia et al. (2007):

(

4/21  |¢)* =1
4/45  |el?* =2
w(al’) =21/60  |ef?=4 (4.12)
2/315  |¢* =5
1/5040 |¢i|* =8

where ¢; is the [th mesoscopic velocity associated with eighth-order isotropic discreti-
sation, which can also be found in Sbragaglia et al. (2007).

Alternatively, the pCT binary image can be first smoothed iteratively proposed
by Leclaire et al. (2017) as follows:

=1

k=1 j=1
s(@, B, =" 3" Y W@+ +E)s(a+i B4,y + k)Y, (4.13)

k=—1j=—1i=—1

where n is the iterative index, and w(i? + j2 + k?) are the weighting coefficients for
D3Q27 lattice with w(0) = 8/27, w(1) = 2/27, w(2) = 1/54, and w(3) = 1/216. Then

ns can be calculated based on the smoothed indicator function s(x)™ for example
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by forth-order isotropic discretisation:

1
n, = 2 Zwis(m + eiét)(")ei, x € Cpg, (4.14)

where w; here is the weighting coefficient for D3Q19 lattice.

Overall, it can be seen that the geometric formulation heavily relies on the calcula-
tions of local unit normal vectors n and ng, which can be potentially disadvantageous
in the highly complex porous media or the media at low resolution. Furthermore,
in the mixed wet situation, it might be very difficult to set the unit normal vectors
appropriately at the boundary of different minerals where different contact angles are
prescribed, especially when the solid geometry is highly irregular, which might cause

the fluid interface being pinned at certain point.

4.5 Proposed Wetting Boundary for RK Model

In the previous section, the wettability model based on the geometric formulation
has been reviewed. Compared to the surface-energy formulation (or fictitious-density
approach) used in section 4.3, the ideology between geometric and surface-energy
methods are fundamentally different: in the geometric method, the contact angle is
an input parameter and different wetting condition is implemented through artifi-
cial manipulation of the unit normal vectors of interface; whereas in surface energy
method, contact angle is an outcome of pseudo-interaction between fluid density on
pore nodes and fictitious density on solid nodes, which is more consistent with the
original idea of surface free energy. Although the obvious shortcoming of the current
surface-energy approach is its non-physical behaviour in the dissolved NW phase as
reviewed in section 4.2 and 4.3, the surface-energy formulation can handle arbitrar-
ily complex geometries of porous media with great ease and its ideology is perfectly
suitable for the mixed wetting condition. In this section, the preliminary work of an
alternative surface-energy model, which just took place recently before the writing
of this thesis, is introduced. With the intention of hopefully fixing the non-physical
attraction of dissolved NW phase near the solid surface, more future work is needed
to implement our proposed algorithm and validate the approach.

As is illustrated in section 4.2, for the conventional surface-energy formulation, it
is the manipulation of local colour gradient between fluid boundary nodes and solid
nodes that redistributes the NW and W fluids, in which a single phase field value &,
is assigned to the solid nodes. For example, to realise a mid-contact angle of ~ 50°, a
&, = —0.55 is used for solid nodes. Figure 4.11(a) and (b) show the initial phase field
distribution at the centre and the end of a square tube (near the corner), respectively.
At the centre of the tube where the bulk NW phase is assumed to reside, the local
phase field decreases as it moves from fluid nodes towards solid nodes, thereby leading
to repulsion of NW phase and attraction of W phase, which is expected and correct.
However at the end of the tube where resides the bulk W phase, the local phase field
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FIGURE 4.11: A two-dimensional schematic of the phase field near the

corner of a square capillary tube, at the centre of tube, where the solid

phase field is calculated with (a) the conventional wetting boundary

condition, and (c¢) the proposed wetting boundary condition. Similarly,

the phase field at the end of the tube is shown with solid phase field

calculated based on (b) the conventional wetting boundary condition,
and (d) the proposed wetting boundary condition.

increases as it moves from fluid nodes towards solid nodes, which leads to attraction
of non-physical NW phase and repulsion of W phase.

Inspired by the works of Chen et al. (2015) and Jansen and Harting (2011), we
propose a new way of calculating the phase field on solid nodes such that the colour
gradient between fluid and solid nodes in the bulk W phase region can be reversed to

avoid non-physical attraction of dissolved NW phase:

1
@;Wg(w,t) — N Z @(az +eid, t), x € Csp, (4~15)

CFB i:m—l—eiét GCFB

where Csg and Cgp are sub-sets of the simulation nodes which are introduced in
section 4.4, and N¢yy is the total number of nodes for € Crp. In doing so, the
local phase field gradient vanishes for the contact angle of 90°: for example in Figure
4.3(a) in section 4.2, equation (4.15) gives for all solid nodes ®5® = 0.98 in the bulk
NW phase, and ®5® = —0.98 in the bulk W phase in Figure 4.3(b), such that a
true neutral wetting condition is achieved. For contact angle other than 90°, an extra

amount of solid phase field is added:
O (x,t) = V8 (x,t) — ADy(x), x € Csp, (4.16)

where Ad(x) is a positive spatial variable to account for the mixed wetting condition,
and if the medium consists of only one kind of mineral, it can simply be a constant.

For instance, to achieve about the same contact of 50° as in Figure 4.11(a) and (b),
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we might use A®; = 1.53 so that ®(x,0) = —0.55 in the bulk NW phase as shown
in Figure 4.11(c). More importantly, in the bulk W phase in Figure 4.11(d), the
initial phase field is ®s(x,0) = —2.51, so that the local colour gradient correctly lead
to repulsion of NW phase and attraction of W phase. This new wetting boundary
scheme is still preliminary, thus to achieve a contact angle of 50° in reality, the actual
A, value might be different. The essence of the proposed approach is to dynamically
adapt the solid phase field value in every LB iteration, by considering the phase field of
all its neighbouring fluid-boundary nodes, such that the colour gradient between fluid
and solid can always be maximally suppressed. The full development and numerical
validation of this new wetting boundary condition is, however, beyond the scope of
this thesis.

Overall, for surface-energy formulation, the contact angle is an outcome not an
input parameter, thus a calibration is needed beforehand to map A®; to certain con-
tact angle; on the contrary, in the geometric formulation a contact angle is prescribed
a prior, but it also involves heavy computations on the local unit normal vectors and
it might be challenging to implement in a mixed wet condition. Conceptually, the
idea of contact angle comes out as a result of pseudo-interaction between fluid nodes
and solid boundary nodes in the fictitious method is more consistent with the original
idea of surface free energy, but practically more future work is needed to implement

our proposed method and to validate if the fix will work or not.
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Chapter 5

Two-fluid Flow 1n Porous Medium

and Haines Jump Dynamics

In the previous two chapters, we have taken a thorough characterisation of two com-
monly used multicomponent LB models, examined these models’ numerical behaviour
and how well the multiphase physics is recovered, and had concluded that the colour-
gradient based Rothman-Keller (RK) model is a more suitable candidate for modelling
immiscible two-fluid flow in porous media. In this chapter, based exclusively on the
MRT-RK model (section 2.4), we perform preliminary study on the Haines jump dy-
namics and the associated snap-off through primary drainage simulations. Haines
jumps, which were named after Haines (1930), is an irreversible event during drainage
when the NW phase front invades a wider pore body through a narrow throat. As the
NW phase front first reaches the entry of the throat, the local capillary pressure is
high as the NW phase needs to overcome the entry pressure; once the entry pressure
is surpassed, the front rapidly enters the pore body with large local velocity, during
which the mean curvature of the phase front suddenly becomes smaller, correspond-
ing to a sudden drop in the local capillary pressure, thus the name of Haines jumps.
Also, because of the sudden pressure drop, the W phase quickly enters the narrow
throat, which, depending on the local pore geometry and fluid properties, may snap
off the remaining NW fluid in the throat. The entire process (from Haines jump to
snap-off) happens so fast (in milliseconds) that it is still challenging to capture such
phenomenon experimentally (Armstrong and Berg, 2013; Berg et al., 2013; Singh et
al., 2019). However, it is important to resolve the detailed dynamics of Haines jumps
and snap-off so to better understand their potential impact on the macroscopic flow.
LB modelling is a good candidate for studying Haines jumps since its temporal res-
olution (i.e. the physical time per LB iteration step) can be flexibly manipulated to
achieve the required time-scale for Haines jumps.

In this chapter, to advance our knowledge of understanding the fundamental mech-
anism during Haines jumps and snap-off, we perform a series of primary drainage
simulations in a Bentheimer sandstone puCT image under a range of viscosity ratios
and capillary numbers, with the focus specifically on the Haines jumps that leads to
snap-off. The rest of this chapter is organised as follows. Before presenting the simula-

tion results, we first introduce two extra features being implemented in our MRT-RK
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model that enable us to more realistically mimic the experimental condition and per-
form the simulations with non-unitary viscosity ratio. Then the influence of the large
spurious velocity present at fluid-fluid and fluid-solid interfaces on the two-phase flow
is discussed, since it is critical to know how well the physics of the interface movement
is captured by the LB model before the simulation results can be seriously studied.
Lastly the results of all drainage simulations, the Haines jumps, and the associated

snap-off are presented and discussed.

5.1 Methods

In this section, the calibrations of two important features that are implemented in our
MRT-RK model are introduced. The capability of coping with non-unitary viscosity
ratios and mimicking the volumetric flow condition at the inlet boundary are the
prerequisites for performing practical drainage simulations. Thus it is important to
validate our RK model in some common calibration tests with known theoretical

answers.

5.1.1 Non-unity Viscosity Test

The details of how the non-unitary viscosity feature is implemented in the MRT-RK
model has been introduced in section 2.4. Here we present the calibration results of
a 3D parallel plate test, in which the theoretical velocity profiles are known. The
viscosity ratio M, by definition, is given by the ratio of NW phase dynamic viscosity
to that of W phase (i.e. M = £2%) where the dynamic viscosity is defined, for

Hw
example for NW phase, as fnw = pnwVnw, Where vy is the NW phase kinematic

viscosity. Therefore, the change of viscosity ratio is due to an interplay of both fluid
density and kinematic viscosity. In this thesis, we limit the testing case to only varying
the kinematic viscosity, while keeping the density of both fluids unity, although the
variation of the density ratio is also available in our model. Hence M = vy /1y,. There
are two testing cases: one with NW phase more viscous than W phase of M = 2.5,
and the other one with W phase more viscous than NW phase of M = 0.2. If the
density ratio is also varied, a much wider range of viscosity ratio can be achieved.

For immiscible two-fluid flow in porous media at a strong water-wet condition,
the W phase attaches and moves along the solid surface, while the NW phase flows
in the centre of the pores. The momentum exchange between two phases leads to
viscous coupling and lubrication. Hence the viscosity ratio plays an important role,
which influences the relative velocity between phases, and is also closely linked to the
relative permeability of the flow system (Huang and Lu, 2009; Ramstad, @ren, and
Bakke, 2010).

Here we study two-fluid co-current flow through two parallel plates, which is il-
lustrated in Figure 5.1. The flow direction is along z-axis, and the periodic boundary

condition is applied to all four side boundaries. The normal bounce-back boundary

!The viscosity ratio is also known as mobility ratio, thus the abbreviation M.
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condition is applied in the upper and lower plates. The same body force is applied to
both fluids along z-axis to drive the flow. The initial thickness of NW and W phase
layers is set @ = b = 25 l.u., and a body force of 1076 kg - l.u. - 1.t.72 is used. For the
case of M = 2.5, Tnw = 1.0 and 7, = 0.7 are used; and for M = 0.2, 7w = 0.7 and

Tw = 1.5 are used.

a |

2b

y B Non-wetting Phase
z I Wetting Phase
X [ ] Solid Phase

FIGURE 5.1: Schematic of three-dimensional two-fluid co-current flow
through parallel plate. The flow direction is along z-axis. Note that
the diagram is not drawn to scale.

The velocity profiles for M = 0.2 and M = 2.5 are shown in Figure 5.2. The ve-
locity is measured along the central line (x = 51) in the central plane (z = 51), and is
compared to the analytical solution for the layered multiphase flow between the paral-
lel plates. The corresponding derivation of analytical solutions can be found in Huang
and Lu (2009). It can be seen that for both cases, the velocity profiles computed from
the LB model agree well with the analytical solutions, which demonstrates the capa-

bility of our MRT-RK model to simulate two-phase flow with non-unitary viscosity

ratlos.
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FIGURE 5.2: Velocity profiles along the central line (z = 51 l.u.)

in the central plane (z = 51 l.u.) of three-dimensional parallel plate

system, at viscosity ratios of M = 0.2 and M = 2.5, respectively. The

relaxation-time parameters for M = 0.2 are 1, = 0.7 and 7, = 1.5,
and for M = 2.5 are 7w = 1.0 and 7, = 0.7
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5.1.2 Total Flux Boundary Condition

The capacity to deliver (numerically stable) multiphase simulations mimicking exper-
imental volumetric flow boundary condition is of strong interest, since as shown in
this thesis and elsewhere, instability is a problem for LBM in many situations. The
details of the implementation of our adaptive volumetric flux boundary condition,
however, will not be repeated here as it can be found in McClure et al. (2018). The
flux boundary condition is different from the commonly used velocity boundary con-
dition as it allows the velocity to vary over the boundary region, provided that the
total flux through the boundary satisfies a prescribed constraint. In this section, we
test the boundary condition with both single- and two-phase simulations in a square
tube and a Bentheimer sandstone uCT image. Results can also be found in McClure
et al. (2018).

First of all, the single-phase Poiseuille flow in a 3D square tube is performed, in
order to verify the accuracy of the flux boundary condition. A square tube of size
(Lg, Ly, L,) = (40,40,80) l.u. is used, where the flow direction is along z-axis. The
3D Poiseuille flow in a square tube, driven by the pressure gradient over the flow
direction, has an analytical steady-state solution, which can be derived from solving
the Navier-Stokes equation with non-slip boundary condition (Zhang, Shi, and Wang,
2015). For our set-up, if the Cartesian origin is at the centre of the plane normal to
the flow axis, and the flow region is: —w < z < w and —w < y < w, the 3D Poiseuille

flow is known to have a steady-state solution given by:

uy(z,y) =

1642 d > _ cosh|kmx /(2w coslkmy /(2w
o <_dp> S (pyknr {1_ Coih(k%)]} eny )]

k=1,3,5,...

(5.1)
where w is half of the width of the square tube, dp/dz is the pressure gradient along
the flow axis of the tube, and v is the kinematic viscosity of the fluid. The infinite
series in equation (5.1) was truncated at k = 200 to allow for a good approximation of
the theoretical values. For the numerical simulations, the criterion used to determine

steady state flow is:

> lu(z, t) —u(x,t — 1000)]
> lu(x,t)]

The relaxation time for the single-phase simulation is 7 = 1.0. Three cases of

<107°. (5.2)

inlet fluid velocity u, were applied to the boundary (a constant pressure boundary
condition is applied at the outlet), and Figure 5.3 shows that the simulation results
are in close agreement with the analytical solutions given in equation (5.1), which
validates the implementation of the flux boundary condition for single-phase flow.
After the validation of single-phase test, we then performed primary drainage
tests with unitary density and viscosity ratios in a square tube and a sub-domain of a
Bentheimer sandstone yCT image. Typically when performing two-phase simulations

to match experiment, the inlet volumetric flow rate @, (e.g. in pL/hr) is assumed
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FIGURE 5.3: Velocity profiles for Poisueille flow along the central line
y = 20 l.u. at the middle plane of the square tube (z = 40 l.u.. The
solid line indicates the theoretical solution given by equation (5.1).

known, and the flow rate for each phase satisfy (McClure et al., 2016):

0Sy @
Duw _ =z 5.3
ot eV’ (53)
where 5, is the W phase saturation, € is the porosity of the rock sample, and V is
the total volume of the sample. The commonly used capillary number (Ca), for a

drainage process in which NW phase displaces W phase, can be calculated as:

Caq = HwQz (5.4)
'YwTLEA
where A is the cross-sectional area of the inlet boundary.
To match the experimental capillary number, the input parameter of simulation,

the LB volumetric flow rate QLB (in l.u.? - [.t.71), can be calculated as:

LB
QLB = EALB%UTECCL . (5.5)
Hw

The primary drainage tests were first performed in the square tube with the same
size as in the single-phase test. More specifically, the computation domain consists
of a capillary tube sandwiched by a NW phase reservoir (NWR) and a W phase
reservoir (WR), each with six layers of pure fluid nodes, which is similar to the set-up
shown in Figure 3.14 in Chapter 3. Three cases of lattice volumetric flow rate, QEB
= {0.02, 0.2, 2.0} l.u.3/l.t., were simulated. The time rate change of the saturation,
0S,,/0t, multiplied by the pore volume of the tube (eV'), is plotted (in blue) against
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different QI;B, as shown in Figure 5.4. The colour of the data points (from light
to dark) indicates the temporal evolution, with the time scale normalised by the
total simulation time. It can be seen that, as time evolves, the time rate change
of the saturation approaches the prescribed QI;B once the steady state displacement
is reached. The consistency between the prescribed injection rate and the actual

displacement rate thus validates the total flux boundary condition.
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FIGURE 5.4: The time rate change of the saturation (scaled by the
pore volume of the media) in the primary drainage simulations, is
plotted against the volumetric flow rate QLB specified at the inlet, for
the case of the square tube in blue, and for the case of the Bentheimer
sandstone in red. The colour of the data points indicates the temporal
evolution, and the time scale is normalised by the total simulation
time. For visual clarity only the colour bar (in blue) for the square
tube case is presented. The blank symbols are used to highlight the
exact values of QLB. The LB surface tension parameter o is 107°.
The phase density pt'B is 1.0, and the phase kinematic viscosity v}-B
is 1/6 (i.e. 7; = 1.0), where i € {nw, w}.

It is also noted that, at the initial stage 35, /0t deviates from QLB but eventually
stabilises to match the boundary flux. The fluctuations in initial 9S,,/0t are possible
due to fluid compressibility and the rearrangement of the diffuse interface in the RK
model. At low-flow rates the presence of spurious currents may also influence the
accuracy of the boundary condition, which is a known limitation as is identified in
Chapter 3 (see section 3.7). This can be mitigated by using larger fluid reservoirs such
that spurious currents do not arise in proximity to the boundary.

The primary drainage tests were then performed in an X-ray pCT image of Ben-
theimer sandstone sample, which is the same sample used in sections 3.6, 4.3 and 5.4.

The resolution of the image is 4.95um/l.u.. A sub-domain of 2563 [.u.3 was used,
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which corresponds to a cube with side lengths 1.27mm. The sub-domain was again
sandwiched by six layers of NWR and WR. Three cases of lattice volumetric flow rate,
QLB = {0.172, 1.72, 17.2 } l.u.3/l.t. were set such that the capillary numbers were
the same as in the square tube case.

The time rate change of saturation is also shown in Figure 5.4 in red. Due to the
initial capillary entry effect, the time rate change gradually approaches the prescribed
QLB as the steady-state displacement is reached. Moreover, to illustrate the capability
of the proposed flux boundary to locally adjust the inlet flux, a two-dimensional
u(z,y) profile at the inlet boundary of NWR, for the case of QB = 1.72 [.u.3/l.t. is
shown in Figure 5.5. Since the NWR consists of pure fluid nodes, a contour line in
white delineating the fluid-solid boundary of the first layer of the porous medium is
also shown. It can be seen that the proposed boundary condition only directs positive
flux towards the pore space of the medium, while maintaining zero flux for where the
solid phase is present. This demonstrates that the boundary condition allows the local
flow rate to adapt itself across the boundary region based on the interior structure
of the flow, while maintaining control over the volumetric flow rate for fluid injected

into the system.
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FIGURE 5.5: The cross-sectional view of the velocity field u,(z,y) at

the inlet boundary of NWR in Bentheimer sandstone primary drainage

simulation for the case of QB = 1.72 [.u.?/l.t.. The white contour line

depicts the fluid-solid boundary of the first layer of the medium. The

velocity field was extracted at time step 250,000 [.t. when the steady
state displacement was reached.

Overall, the results of the velocity profiles for single-phase Poiseuille flow demon-

strate the accuracy of our flux boundary implementation as a consistent alternative
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LB boundary condition. The results of two-phase flow further demonstrates the ca-
pacity of the flux boundary condition to match experiment conditions based on the
resolution, volumetric flow rate and capillary number. However, it is also noted that,
for two-fluid simulations, spurious currents associated with the interfacial tensions
can reduce the accuracy of the approach, although the method is sufficient to set the
capillary number to match experimental conditions in practice. In fact, our numerical

examination covers a much wider range of capillary number, up to Ca ~ 10°.

5.2 Influence of Interfacial Spurious Currents

Before we study the Haines jump dynamics using LBM, there is another important
issue that might render the simulation results less meaningful, which is the spurious
currents that are present at the fluid-fluid and fluid-solid interface. In static simula-
tions such as the bubble test in section 3.3, large spurious currents may prevent the
system from reaching a true equilibrium state and thus lead to numerical instability;
in dynamic simulations, large spurious currents render the actual velocity field indis-
tinguishable from the interfacial spurious current (McClure et al., 2016; Zacharoudiou
and Boek, 2016). As we have shown in the bubble test (Figure 3.4), the magnitude of
the LB spurious current is proportional to the LB surface tension, which implies that,
if not using an improved LB model with a special treatment on spurious current, a
smaller LB surface tension might be an appropriate option to alleviate the problem.
In this section however, it will be demonstrated that, for any practical applications,
the manipulation of LB surface tension is not helpful, since other LB parameters need
to be scaled to match the same physical system. This leaves us the only viable option,
i.e. implementing an improved multicomponent LB model. In fact, the battle against
the spurious current started almost the same time as various multicomponent LB
models were born - as long as the model is based on a diffused interface deployed on
a finite number of spatial grid points, there will be imbalanced discretised interfacial
tension forces, and the spurious current ensues. Over the past two decades, researchers
have proposed all kinds of treatments for Shan-Chen model, e.g. (Shan, 2006; Yuan
and Schaefer, 2006; Sbragaglia et al., 2007), for colour-gradient based model, e.g.
(Lishchuk, Care, and Halliday, 2003; Halliday et al., 2017), for free-energy model,
e.g. (Pooley and Furtado, 2008; Connington and Lee, 2012), and for phase-field based
model, e.g. (Liu et al., 2014a), to name but a few. However, it should be noted that
the reduction or even elimination of the spurious currents achieved by these methods
typically occurs long after equilibrium has been reached, and none of them work ef-
fectively to eliminate the spurious current during the transient part of simulation. It
is beyond the scope of this thesis, however, to propose any improved multicomponent
LB model for spurious current reduction. Instead, we explore the consequences of the
spurious current in the dynamic simulations and provide the research community with
the guideline of what the appropriate LB surface tension parameters are to be used,

and what the associated trade-off would be in practical LB simulations
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Generally, the magnitude of the spurious current is proportional to the LB surface
tension, and inversely proportional to the LB viscosity (Shan, 2006). However, in a
practical porous medium simulation given by a set of uCT images with known image
resolution and fluid properties, the LB surface tension and viscosity are always coupled
and cannot be adjusted independently (see more in section 2.2). More specifically, for
a given two-fluid displacement experiment, we aim at matching two key dimensionless
numbers: the viscosity ratio (or the mobility ratio, M) and the capillary number (Ca),
which together characterise the experiment. One can choose to first match the physical
surface tension ypnys (or physical viscosity vnw phys) by selecting an appropriate surface
tension parameter a (or viscosity parameter 7; for i € {nw, w}), from which the
time converting factor dtpnys can be calculated; then the viscosity parameter 7 for
i € {nw, w} which satisfies the prescribed viscosity ratio (or surface tension parameter
«) is automatically determined.

Based on McClure, Prins, and Miller (2014), an appropriate range of the surface
tension parameter a for our MRT-RK model is 107° ~ 1072, and the viscosity pa-
rameter should be 7, > 0.5 for i € {nw, w}. In practice, it is more convenient to
first match the physical surface tension by selecting a proper « and calculate the re-
sultant LB viscosity parameters. For the following characterisation tests, we choose
two representative a = {107%,1072}. Given the relation Vphys = monoét;fys’YLB, for
the same 7ppys, the time converting factor dtpnys of a = 1072 is 10 times larger than
that of o = 107, In other words, every LB iteration step in a = 1072 is equal to 10

steps in @ = 1074, i.e. the case of & = 10~ has a higher temporal resolution. On the
-1

phys
smaller LB viscosity (to match the same physical viscosity). Since the LB viscosity

other hand, according to the relation vppys = h26t} vip, a smaller Otphys leads to a
is directly linear to the relaxation parameter 7 as v = (7 — 0.5)/3, a T too close to
0.5 will also trigger numerical instability. Therefore, we choose Thw = 7w = 1.0 for
a = 1072, so that according to the unit conversion restriction the relaxation param-
eters are Thy = Tw = 0.55 for & = 10™%. Overall, there is an obvious trade-off in the
practical simulations, because the use of a smaller « gives a higher temporal resolution
which could have a better account on the initial transient part of the simulation, but
it also requires significantly longer computation time.

We use the same water-oil system as in Chapter 3 with an interfacial tension
of 32 mN/m, and the same pCT image resolution of h =4.95um/l.u.. For a =
{1074, 10_2}, we perform spontaneous imbibition test and drainage test in a square
tube with various tube sizes, and drainage test in a small sub-domain (643 l.u.) of the
Bentheimer sample, same as the one used in the previous section 5.1.2. The advantage
of using simple geometry such as a square tube is that the measured velocity field can
be directly examined by comparing to the known theoretical relation (e.g. Hagen-
Poiseuille relation). The results in the square tube are discussed in this section, and

simulations in the Bentheimer sandstone sample is presented in the next section.
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5.2.1 Capillary Filling in Square Tube

In this sub-section, the capillary filling, i.e. spontaneous imbibition, in a square tube
using periodic boundary condition is discussed. A 2D schematic of the simulation set-
up is shown in Figure 5.6. The domain again consists of a square tube, sandwiched by a
NW phase and a W phase reservoir. The periodic boundary condition is applied to all
boundaries of the reservoirs. By using the periodic boundary condition we can examine
the spontaneous evolution of the phase field subject to the spurious current, without
the influence of any external dynamic boundary conditions (e.g. constant pressure or
flux boundary conditions). As the W phase invades the capillary tube, the interface
between NWR and WR (connected by the periodic boundary condition) is allowed to
spontaneously shift from the very left end of the simulation domain. Three tube sizes
are tested: Rgype = {3.0,5.0,10.0} l.u., and the corresponding domain sizes, (L, Ly,
L,), are (18,18,280), (30,30,280) and (60,60,280), respectively, in order to keep the
ratio Ry /h constant. Also, three different contact angles are used, which is realised
by setting fluid-solid phase field parameter ¢s = {—0.4,—0.7,—1.0}. According to
the calibration in McClure, Prins, and Miller (2014), at high resolution®, for ¢, =
{—0.4,—0.7} it gives the static contact angle of {63°,41°}; and for ¢s = —1.0 it
gives complete water-wet condition, i.e. the solid is coated with wetting phase film.
Although ¢s = —1.0 might be considered as an overshoot especially at high resolution,
it is used previously in the drainage simulations in Chapters 3 and 4 to eliminate the
non-physical transport of dissolved NW phase and prevent the fake bubble generation,
and thus it is also of interest to investigate the kinematics of the phase field at such

a value.

y l X non-wettingphase  BZZZ7Z solid wall
z

wetting phase

FIGURE 5.6: Schematic of the capillary filling in a square tube. The

length of the tube L and the length of the reservoir Ry are kept as

constant of 100 l.u. and 90 l.u., respectively. Three tube sizes are

tested: Ryype = h/2 = {3.0,5.0,10.0} l.u., and accordingly the widths

of the reservoir are Ry = {18,30,60} l.u., where the ratio h/R; is a

constant for different tube sizes. The periodic boundary condition is
applied to all boundaries of the reservoirs.

2The calibration was taken in a large cylindrical tube with Riybe = 16 l.u.. However, according
to the low resolution study in Chapter 3, in different tube sizes the actual contact angles given by
these ¢s values can vary significantly.
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As is mentioned before, in order to model the same physical system, the LB
viscosity parameter must be adjusted according to different a: for o = 1072, 7y =
Tw = 1.0; and for a = 1074, 7, = 7w = 0.55. Given the unitary viscosity ratio, it is
expected that the fluid advancement occurs at a constant speed, i.e. the filling length
[ scales linearly with time (Washburn, 1921; Zacharoudiou and Boek, 2016). Figure
5.7 shows the W phase saturation S, within the tube during the capillary filling, as a
function of LB time step. Neglecting the data points during the initial transition, it
indicates that the filling length indeed scales linearly with time for both o®. By fitting
to the slope of the steady-state part of the data in Figure 5.7, an average advancing
speed of the W phase can be obtained, and this speed is a ‘genuine’ reflection of how
the interface moves given the existence of spurious currents. This interface speed and
its relation to the dynamic contact angle will be studied together with the data from

the drainage in the next sub-section.
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FIGURE 5.7: The wetting phase saturation as a function of simulation
time for the capillary filling in a square tube of Riybe = 5 L., for (a)
a=1072, and (b) a = 107%.

3Tt is noted that, due to different LB temporal resolution given by different c, the case of o« = 1074
generates much more data points than the case of & = 1072, such that the initial nonlinearity is
highlighted in o = 10™*. If only the data points at the same physical time steps were extracted
for both cases (i.e. only plot the saturation at 10,000, 20,000, etc. for a = 1074, in line with
the data points of 1000, 2000, etc. for @ = 1072), the data curve of a@ = 10™* will appear less
nonlinear. Overall, linearity during the initial transition is not expected because LB method is an
explicit numerical method and it takes finite amount of time steps to form a well-defined fluid-fluid
and fluid-solid interfaces, and mean-while the system is subject to an external flow field.
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FIGURE 5.8: Three-dimensional vector plot of the velocity field for the
capillary filling process in a square tube of Riype = 5.0 l.u. with ¢ =
—0.7, with the two-dimensional cross-sectional view of the magnitude
of the velocity field at the central plane of the domain. The velocity
fields are extracted from the same physical time step for each «. The
colour of the velocity vectors represents the magnitude of the velocity.
The zero-level contour of the phase field in light grey is also included
to highlight the NW /W interface, which from the top to the bottom
figures, indicates the advancement of the W phase.

Figure 5.8 shows three groups of 3D vector plots of the velocity field (in the physical
unit m/s) during the capillary filling process, with each group being extracted at the
same physical time for both «; the magnitude of the velocity (i.e. \/m)
at the central plane of the domain is also included to highlight the spurious current
disruption; the zero-level contour of the phase field in light grey is used to indicate
the actual interface. Here the velocity is presented in physical units instead of in LB
units, such that the extent to which the spurious currents disrupt the bulk velocity
field for different o can be compared on equal footing. It is redundant to show velocity
in LB units as it has been demonstrated that by using a smaller LB surface tension
the entire magnitude of the LB velocity field is scaled down, which is shown in the
bubble test in Figure 3.4 of section 3.3.



5.2. Influence of Interfacial Spurious Currents 121

Figure 5.8 shows that the major spurious current disruption appears at the fluid-
fluid interface within the tube, and at the interface between WR and the tube, i.e. the
tube exit, whose order of magnitude is much larger than the major flow field within
the bulk NW and W phases inside the tube. This is expected since these places are
where the most unbalanced discretised interfacial forces (either fluid-fluid or fluid-solid
forces) are present. The use of a smaller o does not mitigate the physical spurious
currents, because, to comply with the unit conversion restriction and to match the
capillary number, the LB viscosity must be scaled to the LB surface tension, i.e. a big
« is always paired with a big 7. This means that for a large « that gives a stronger
interfacial tension, the fluid is also more viscous, thus more viscous damping ensues
which can offset the supposedly high spurious current to a level that is about the same
as the case with a weaker interfacial tension®.

Given the spurious current present at the interface, it is important to check to
what extent the spurious current disrupts the major flow field within each fluid phase.
Figures 5.9 and 5.10 compare the measured velocity components in the cross-section
within each bulk phase to the theoretical Poiseuille profile for two « at Riype = 5.0 l.u.
and ¢s = —0.7: the sub-plot on top shows the 2D z-components of the velocity in the
central plane of the domain, where the W phase is half-way through as indicated by
the apparent interruption at NW /W interface; the slice-by-slice averaged LB pressure
along the flow axis is shown below, from which the pressure gradient within each bulk
phase can be extracted and is used as input to calculate the Poiseuille flow profile,
according to the theoretical solution, equation 5.1; the measured z-component of the
velocity is shown against the theoretical profile in the bottom sub-plots, together with
the x- and y-components of the velocity, all of which are extracted from the middle
line of the tube cross-section within the bulk phase®.

Excellent agreement between u, and the theoretical profile are obtained within the
bulk NW and W phases for both «, and similar results are also seen for all other tube
sizes and ¢, values. Theoretically, u, and u, should be zero in such flow condition,
but this is only observed within the bulk W phase, because the phase field here
(= —1.0) is close to that of the solid wall (¢s = —0.7); on the other hand, apparent
disturbance in w, and u, is seen within the bulk NW phase (¢nw =~ 1.0), due to the
spurious current at the NW-solid interface caused by the large phase field gradient.
Nevertheless, the disruption in the u, and u, does not seem to affect the major flow
field of u,. Incidentally, we observed no apparent dependency of the magnitude of
spurious currents on tube size. Overall, for both «, it seems that the influence of the

spurious current is quite limited and does not extend to the major flow field, i.e. the

4The fluid with a smaller LB surface tension is also less viscous. Hence an alternative view is that
a weaker interfacial tension is supposed to generate less spurious current, but the fluid is also less
viscous, i.e. less viscous dissipation, such that the resultant spurious current is as bad as that in the
case of a stronger interfacial tension.

5In the 2D central plane view of the z-component of the velocity in Figures 5.9 and 5.10, it can
be seen that u, is uniform within the bulk phase, thus it gives essentially the same 1D w. profile at
any slice normal to z-axis.
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FIGURE 5.9: For a = 1072: (a) Two-dimensional cross-sectional view
of the z-component of the velocity for the capillary filling in a square
tube of Riype = 5.0 l.u. at ¢s = —0.7, when the advancing W phase is
halfway through the tube. (b) The corresponding slice-by-slice aver-
aged LB pressure field along the flow direction. Different colours are
filled to highlight different regions of the domain, with WR denoting
the W phase reservoir, WP denoting the W phase inside the tube,
NWP denoting the NW phase inside the tube, and NWR denoting the
NW phase reservoir. Because of the periodic boundary condition, it
can be seen that part of NWR is shifted to the left-end of the domain
where was initially occupied by the W phase. The velocity components
across the middle line of the tube cross-section extracted within (c) the
W phase, and (d) the NW phase, are plotted against the theoretical
Poiseuille profile, which is calculated according to the viscous pressure
gradient measured within each phase in the sub-plot (b). Note that
due to the LB half-way bounce back boundary condition, the actual
location of the wall nodes should have been 0.5 voxels shifted towards
the centre of the tube, thus there would not have been any ‘kink’ in
the theoretical Poiseuille profiles near the wall.
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FIGURE 5.10: For o = 107*: (a) Two-dimensional cross-sectional
view of the z-component of the velocity for the capillary filling in a
square tube of Riype = 5.0 l.u. at ¢ = —0.7, when the advancing
W phase is halfway through the tube. (b) The corresponding slice-
by-slice averaged LB pressure field along the flow direction. Different
colours are filled to highlight different regions of the domain, with
WR denoting the W phase reservoir, WP denoting the W phase inside
the tube, NWP denoting the NW phase inside the tube, and NWR
denoting the NW phase reservoir. Because of the periodic boundary
condition, it can be seen that part of NWR is shifted to the left-end

of the domain where was initially occupied by the W phase.

The

velocity components across the middle line of the tube cross-section
extracted within (c) the W phase, and (d) the NW phase, are plotted
against the theoretical Poiseuille profile, which is calculated according
to the viscous pressure gradient measured within each phase in the
sub-plot (b). Note that due to the LB half-way bounce back boundary
condition, the actual location of the wall nodes should have been 0.5
voxels shifted towards the centre of the tube, thus there would not have
been any ‘kink’ in the theoretical Poiseuille profiles near the wall.
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axial velocity, and the LB model is still able to capture the right physics law even
under the disruption of the spurious current.

Lastly, we examine the Young-Laplace relation during the capillary filling, by plot-
ting the phase pressure difference across the fluid interface, p, — p,, (normalised by
LB surface tension), against the measured mean curvature of NW-W interface, as
shown in Figure 5.11. An example of how the pressure difference near the interface
is measured is illustrated in Figure 5.10(b) for which the invading W phase is half-
way through; the pressure difference is measured for all of the time steps within the
steady-state part of the simulation, and the average is calculated, thereby giving the
horizontal coordinate of a data point in Figure 5.11. The mean curvature is measured
by the in-situ analysis facility of the LB code based on the porous media marching
cube (PMMC) algorithm by McClure et al. (2007), and similarly only the steady-state
part of the simulation is used for calculating the average of the mean curvature, giving
the vertical coordinate of a data point in Figure 5.11. It can be seen that a qualita-
tively good linear relation between mean curvature and phase pressure difference is
obtained for both a. The in-situ measured interfacial mean curvatures for all cases
are slightly greater than the derived curvatures from the phase pressure difference.
This deviation is likely due to: (i) the particular (mean curvature measurement) al-
gorithms implemented in the LB code, since the curvature values measured by the
surface fitting method give better one-to-one correspondence, see Appendix [; (ii) the
effect of the confined space on the pressure which is explored in section 3.5.3, and
(iii) the limited resolution of the narrow tube, especially for the case of Ryype = 3.0
l.u.. Overall, given that both the mean curvature and the phase pressure difference
are measured near the interface, the presence of the spurious current does not appear
to play a disruptive role, and the correct Young-Laplace relation is captured by our
LB model throughout the dynamics filling of the tube.

5.2.2 Drainage in Square Tube

In this section, another type of dynamic simulation, drainage, is studied in square
tube, with the external flux boundary condition added (see section 5.1.2). The layout
of the domain is the same as the case of capillary filling, except that the length of the
reservoir Ry is shortened to 10 [.u. since it no longer needs large space to accommodate
the shifted phase from the other side due to the periodic boundary condition. The
boundary of NWR is applied with the flux boundary (section 5.1.2) and a constant
pressure boundary condition is applied to the boundary of WR. Again there are three
tube sizes: Riybe = {3.0,5.0,10.0} l.u., and for each Ryype, three contact angles with
¢s = {—0.4,—0.7,—1.0} are tested. For each testing case, three boundary flux values
are applied to generate a wide enough span of the advancing velocity of the NW
phase, with the objective to cover the range of the peak speed during Haines jumps
in the sandstone studied in the later section 5.4. For more experimentally relevant
conditions at low Ca, readers are referred to the work by Latva-Kokko and Rothman
(2007) and McClure et al. (2016). The boundary flux values are different for different
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FIGURE 5.11: Young-Laplace test where the interfacial mean cur-
vature is plotted against the phase pressure difference normalised by
the LB surface tension, for capillary filling in a square tube, for (a)
a=1072, and (b) a = 10~%. Both the mean curvature and the pres-
sure difference are measured from the steady-state part of the simula-
tion, and the mean values are calculated and presented in the figure,
with the error bars indicating the standard deviations of the mean (it
may be too small to see).

tube sizes, which give the prescribed global capillary numbers (see equation 5.5) of
Ca={45x1073,9 x 1073,4.5 x 1072}

Figure 5.12 shows several snapshots of the 3D vector plots of the velocity field
during the drainage, at the equivalent physical time for both «. Again to highlight
the spurious current disruption, the magnitude of the velocity in the central plane of
the domain is also included. The zero-level contour of the phase field is shown in light
grey to indicate the NW /W interface. The spurious current primarily appears at the
phase interface within the tube, and at the interface between NWR and the tube,
i.e. the tube entrance, where the most unbalanced fluid-fluid or fluid-solid forces are
present.

With the spurious currents present at the interface, we again examine whether
or not their influence significantly affects the overall flow. First, for the case of the
lowest prescribed global Ca = 4.5x 1073, Figures 5.13 and 5.14 compare the measured
velocity components to the theoretical Poiseuille profiles in the tube of Riype = 5.0
lau. with ¢5 =
of the velocity in the central plane of the domain in the top sub-plot highlights the

—0.7, for @ of 1072 and 10™%, respectively: the 2D z-component

uniformity of u, within each bulk phase; the slice-by-slice averaged LB pressure shown
in the middle is again used as input to calculate the theoretical Poiseuille profiles given
by equation 5.1, and the comparison is shown at the bottom. Very good agreement
between wu, and the theory is obtained, despite the spurious current present at the
NW /solid interface which disrupts the - and y-components of the velocity, primarily
within the bulk NW phase due to the large phase field gradient (i.e. ¢nw ~ 1.0
and ¢, = —0.7). Similar good agreement in u, is obtained for the case of mediate
Ca =9 x 1072 as well.
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FIGURE 5.12: Three-dimensional vector plot of the velocity field for
the drainage process in a square tube of Ryype = 5.0 l.u., with the
two-dimensional cross-sectional view of the magnitude of the velocity
field at the central plane of the domain. The data are from the case
of the prescribed global Ca = 5 x 10~* with ¢, = —0.7, and for each
«, the velocity field is extracted at the same physical step. The colour
of the velocity vectors represents the magnitude of the velocity. The
zero-level contour of the phase field in light grey is also included to
highlight the NW /W interface, which from the top to the bottom of
the figure, indicates the intrusion process of the NW phase.
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FIGURE 5.13: For o = 1072 (a) Two-dimensional cross-sectional view
of the z-component of the velocity for the drainage in a square tube
of Riype = 5.0 Lu. at ¢ = —0.7, when the advancing NW phase is
halfway through the tube. (b) The corresponding slice-by-slice aver-
aged LB pressure field along the flow direction. Different colours are
filled to highlight different parts of the domain, with WR. denoting the
W phase reservoir, WP denoting the W phase inside the tube, NWP
denoting the NW phase inside the tube, and NWR denoting the NW
phase reservoir. The velocity components across the middle line of the
tube cross-section extracted within (c) the NW phase, and (d) the W
phase, are plotted against the theoretical Poiseuille profile, which is
calculated according to the viscous pressure gradient measured within
each phase in the sub-plot (b). Note that due to the LB half-way
bounce back boundary condition, the actual location of the wall nodes
should have been 0.5 voxels shifted towards the centre of the tube,
thus there would not have been any ‘kink’ in the theoretical Poiseuille
profiles near the wall. .
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FIGURE 5.14: For o = 10~%: (a) Two-dimensional cross-sectional view
of the z-component of the velocity for the drainage in a square tube
of Riybe = 5.0 l.u. at ¢ = —0.7, when the advancing NW phase is
halfway through the tube. (b) The corresponding slice-by-slice aver-
aged LB pressure field along the flow direction. Different colours are
filled to highlight different parts of the domain, with WR. denoting the
W phase reservoir, WP denoting the W phase inside the tube, NWP
denoting the NW phase inside the tube, and NWR denoting the NW
phase reservoir. The velocity components across the middle line of the
tube cross-section extracted within (c) the NW phase, and (d) the W
phase, are plotted against the theoretical Poiseuille profile, which is
calculated according to the viscous pressure gradient measured within
each phase in the sub-plot (b). Note that due to the LB half-way
bounce back boundary condition, the actual location of the wall nodes
should have been 0.5 voxels shifted towards the centre of the tube,
thus there would not have been any ‘kink’ in the theoretical Poiseuille
profiles near the wall. .
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FIGURE 5.15: For a = 1072: (a) Two-dimensional cross-sectional view
of the z-component of the velocity at the central plane of the domain
for the drainage test at Ryupe = 5.0 l.u. and ¢, = —0.7 with the largest
prescribed global Ca = 5 x 10~3. The NW phase is halfway through
the tube. (b) The corresponding one-dimensional z-component of the
velocity along the central line in the central plane of the domain.
The z-component of the velocity across the middle line of the tube
cross-section, which are extracted at several locations within (c) the
NW phase, and (d) the W phase, are plotted against the theoretical
Poiseuille profile. The Poiseuille profile is calculated according to the
viscous pressure gradient within each bulk phase. The red dash lines
in sub-plot (b) highlight the locations from which the z-components of
the velocity are extracted. Note that due to the LB half-way bounce
back boundary condition, the actual location of the wall nodes should
have been 0.5 voxels shifted towards the centre of the tube, thus there
would not have been any ‘kink’ in the theoretical Poiseuille profiles
near the wall. .

However, for the case of the largest global Ca = 4.5 x 1072, u, is not uniform
within each bulk phase for the case of & = 1072, which is illustrated in Figure 5.15:
on top the sub-plot shows the 2D view of u, at the central plane of the domain; in the
middle the 1D profile of u, along the central line in the central plane is shown, where
an apparent variation of u, along the flow direction can be seen, especially within
the bulk NW phase; we extract 1D w, profiles (across the middle line of the tube
cross-section) at several locations as highlighted in the red dash lines and compare

them to the theoretical Poiseuille profiles, which are shown in the bottom sub-plots
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(c) and (d). The deviation on average from the theory, primarily within the bulk NW
phase, is of only 5% of the maximal value of u. Since it has been demonstrated from
Figures 5.9, 5.10, 5.13 and 5.14 that the influence of the spurious current is limited
near the fluid-fluid and fluid-solid interfaces, the deviations seen here are more likely
due to the low temporal resolution brought by a large o, which prevents the system
from operating in a quasi-equilibrium manner, especially when being applied with a
large boundary (), value. This is also proved by checking the u, field at the same
Riube, ¢s and prescribed global Ca = 4.5 x 1072 for o = 10~* (not shown here),
where an uniform w, within each bulk phase is obtained, which looks similar to the
top sub-plot (a) in Figures 5.14. The issue of the LB temporal resolutions given by
different o will be revisited in section 5.3.

Next, the Young-Laplace relation during the drainage processes is examined. Fig-
ure 5.16(a) and (b) show the interfacial mean curvature against the phase pressure
difference (normalised by LB surface tension) for o of 1072 and 10~%, respectively.
Again, both the curvature and pressure data are measured from the steady-state
part of the simulation. The phase pressure difference is measured across the NW-
W interface the same way as in the capillary filling process exemplified in Figure
5.10(b), and the mean curvature is measured by the in-situ analysis facility of the
LB code. For each Riune case, the colour of the symbol, from dark to light, cor-
responds to the prescribed global Ca from low to high. It can be seen that with
Ca = {4.5 x 1073,9.0 x 1072}, for both «, a good linear relation is obtained for all
Riupe and ¢ values; moreover, at the same Riype and ¢4, both the directly measured
interfacial curvature and the derived one from the pressure difference barely varies
for different C'a, since it is only the boundary flux rate (), that is changed, and the
capillary pressure across the NW-W interface should remain the same. However, for
the case of prescribed global Ca = 4.5 x 1072, there are apparent deviations in the
phase pressure difference, especially for o = 107* at Riupe = 3.0 l.u., although the
directly measured interfacial mean curvature remains largely unaffected. The large
deviations is caused by the very high-flow condition, at which the system is being
constantly driven out of a quasi-equilibrium process; also, it is further exacerbated
by the very narrow tube size, with which it is challenging to accurately obtain the
pressure profile. It should also be noted that, the less severe deviation for a = 1072
at Ca = 4.5 x 1072 and Riupe = 3.0 l.u., does not necessarily mean that o = 1072
has a better performance: the instantaneous Ca for o« = 10~2, which is calculated by
directly measuring the interface advancing speed, is in fact much smaller than that
of a = 107%; thus the case of @ = 1072 is subject to a slower flow field, and the
requirement of quasi-equilibrium process is less compromised, giving a smaller devia-
tion®. Overall, similar to the observation in the capillary filling, the spurious current
does not appear to play a disruptive role for the drainage process, and the correct

Young-Laplace relation is captured for both a with the flow condition of global Ca

5In other words, the case of e = 1072 fails to achieve the required flow condition given by the
prescribed global C'a. See more in Figure 5.17
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as large as ~ 1072, The phase pressure difference across the fluid interface starts to
deviate from the theory when an even larger Ca is imposed; nevertheless, it should
be noted that, for Ca ~ 5 x 1072, at which the breakdown of the Young-Laplace
relation is observed, it is about one order of magnitude greater than the equivalent
peak C'a during the Haines jumps, from both reported experiment (Berg et al., 2013;
Armstrong and Berg, 2013) and simulation (Zacharoudiou and Boek, 2016), and it is
also much larger than the peak Ca in our results (which can be directly converted
from the velocity data in Figures 5.39 and 5.41). Therefore, our LB model should still
be capable of capturing the fast phenomena such as Haines jumps with an accurate

Young-Laplace relation.

(a) (b)
1.0 1.0
_ 08 @, O _ o8 .— @
T 7
0 06 ' D 06 [ ] =
5 O A 5
Soa pA s o,
g @ g l:_’}‘ O A
= A = o
02 ;& 02 “ =
KadN AL
0‘81; 0.2 0.4 0.6 0.8 1.0 0'8.[; 0.2 04 0.6 0.8 1.0
(Pn *Pw)/'ywn [l<”~71] (Pn - Pw)/Y\\'n [l~u~71]
Symbols: Colours: Colour from dark to light:
¢ #=-10 ¢ R =10 p— ]
B ¢, =-07 ® Rupe=5
A ¢, =-04 ® Ry =3 Q:<Q;<

FIGURE 5.16: Young-Laplace test, where the interfacial mean curva-
ture is plotted against the phase pressure difference normalised by the
LB surface tension, for drainage in a square tube, for (a) a = 1072,
and (b) @ = 107%. Both the mean curvature and the pressure differ-
ence are measured from the steady-state part of the simulation, where
the mean values are calculated and presented in the figure, with the
error bars indicating the standard deviations of the mean. For each
Riupbe case, the colour of the symbol, from dark to light, corresponds
to the prescribed global Ca from low to high.

Lastly, we examine whether or not the spurious current influences the movement
of the NW-W fluid interface, for both capillary filling and drainage processes. Figure
5.17 shows the directly measured interfacial mean curvature versus the instantaneous
Ca, which characterises the evolution of the interface and is calculated as: (McClure

et al., 2018) 55
- nw VLBPLB
Co=L7% i

where L is the total length of the tube, and the NW phase saturation Sy, is calculated

, (5.6)

based on the local phase field such that a voxel of ¢(x) > 0 is considered as being
occupied by the NW phase. The value of 0S,,,/0t is obtained by fitting to the slope
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of the steady-state part of Sy, v.s. time profile (e.g. Figure 5.7), and for both
capillary filling and drainage a linear relation between Sy, and time is obtained. In
the capillary filling, the NW phase is retreating from the tube, thus the corresponding
instantaneous Cla is considered as negative. As a reference, a so-called static mean
curvature at C'a = 0 is also presented, which is obtained by performing the square
tube tests with periodic boundary condition (see section 3.4.1) at the same Riype and
¢s as each of the dynamic case. For both capillary filling and drainage, it is expected
that the interfacial mean curvature should well retain the same value as in the static
case’, independent of the flow condition. This is indeed observed for a = 107%:
Figure 5.17(b) shows the flat lines for almost all of combinations of Riype and ¢s;
and furthermore, for the drainage process, the measured instantaneous Ca agrees well
with the prescribed Ca, even for the case of the largest prescribed Ca. For a@ = 1072,
as shown in Figure 5.17(a), some discrepancy is seen for the largest instantaneous Ca,
and only for the biggest tube size Riype = 10.0, the instantaneous Ca agrees with
the prescribed flow condition. Nonetheless, as we mentioned previously, the case of
largest prescribed C'a is much more than enough to cover the normal range of Haines
jumps, hence we consider that both a are competent to deliver accurate simulations,
so long as the imposed global flow condition follows Ca < 102, which is common in

the pore-scale two-phase flow experiments.
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FIGURE 5.17: Mean curvature as a function of instantaneous capillary
number calculated for the same physical system with (a) o = 1072 and
(b) 10~%. The instantaneous Ca is calculated based on the evolution
of the phase field, i.e. by fitting to the slope of S,,,, vs. time profile.
Positive and negative Ca in the filled symbols indicate the drainage
and capillary filling processes, respectively. The mean curvature at
Ca = 0 in the empty symbols is obtained by performing the square
tube test (similar to the tests in section 3.4.1) at the same Rgype and
¢s values.

"The mean curvature is averaged over the fluid-fluid interface; instead, if it is the contact angle
that is compared here, the dynamic contact angle is expected to be smaller than the static one.
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In summary, based on all the characterisations at different resolution and wettabil-
ity, it indicates that our MRT colour-gradient based model gives accurate simulation
results, despite large spurious currents near the interface: the bulk velocity field is
preserved and complies well with the Hagen-Poiseuille relation; the phase field evolves
correctly according to the imposed global flow condition; and the interface does not
significantly deform and does not give derailed mean curvature values. The range of
the flow condition well covers the peak Haines jump velocity, and hence we conclude
that both small and large alpha are potentially suitable for dynamic simulations for

studying fast pore-scale phenomena such as Haines jumps and snap-off.

5.3 Influence of LB Temporal Resolution

Based on the characterisations in the previous section, we see that for a wide range of
interfacial velocity, the colour-gradient based model can still capture the right physics
during dynamic processes despite the spurious current disruption at interfaces; choos-
ing a different LB surface tension parameter o cannot mitigate the spurious currents,
which can be ultimately resolved only by implementing an improved multicomponent
LB models. However, what different o does bring are different temporal resolutions,
which turns out to play an important role in how the system copes with the initial
transient part of the simulation. The lattice-Boltzmann method is an explicit nu-
merical method, meaning that information takes a finite number of iteration steps to
propagate through the domain. For a large a that gives a poor temporal resolution,
the time scale such as the one that takes to develop a well-defined fluid-fluid interface,
is competing against the time scale given by the characteristic flow field subject to
the external boundary condition or the body force; on the other hand, for a smaller
a the former time scale is better resolved, and is generally finer than the latter one.

In the previous section of square tube tests, because the geometry of the medium
is simple, the different responses to the initial transition given by different o« do not
manifest themselves clearly. However, in Figures 5.8 and 5.12 where the 3D snapshots
of the NW phase distributions for both a are shown, it can already be seen the
saturation of both a does not match exactly for the equivalent physical system at the
equivalent physical time step.

In this section, we perform a series of drainage tests in a small sub-domain (643
l.u.3) of a Bentheimer sandstone sample (the same one as in section 5.1.2), to demon-
strate the consequence of different temporal resolutions due to different ««. Three LB
surface tension parameters a = {107%,1073, 1072} are used, and the flux boundary
condition is applied with two global Ca = {107*,1073}%. For each a, the LB viscosity
parameter 7; for i € {nw, w}, as well as the injection flux at the inlet are adjusted
accordingly to retain the same physical surface tension, physical viscosity, and capil-
lary number. In other words, the physical systems being modelled by different o are

exactly same. For simplicity only the case of unitary viscosity ratio is investigated.
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The wetting parameter ¢ = —1.0 is used to eliminate the non-physical transport of
the dissolved NW phase.

For the case of global Ca = 1072, Figure 5.18 shows the NW phase distribution for
three o extracted at the equivalent physical time, where it can be seen that the fluid
configurations are very different, and the saturations are S,, = {0.897,0.821,0.803}
for o = {1072,1073, 1074}, respectively. The discrepancy between each « in this more
complicated geometry is much larger than that in the square tube case (see Figures
5.8 and 5.12). Furthermore, for all three cases of a the local fluid morphologies in
the narrow throat (highlighted by the black arrows) present slightly different mean

curvatures.
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@ = 1072; LB Time = 25,000 /. a = 10-3; LB Time = 79,000 Lt. @ = 10~%; LB Time = 250,000 Lt.

FIGURE 5.18: For prescribed global Ca = 1073: NW phase distri-

butions during drainage with different LB surface tension parameter

«a but at the same physical time. The NW phase is in red, the solid

matrix is in light grey, and for visual clarity the W phase is not shown.

It can be seen the portion of NW fluid highlighted between the black
arrows presents slightly different curvature for three a.

Instead of extracting the data at the equivalent physical time step, we continue
to examine the phase distribution at the same saturation’, which is shown in Figure
5.19: from the top row to the middle row, for which the saturation S,, goes down from
0.803 to 0.799, not only are the fluid configurations different, a snap-off event occurs in
o = 107* but not in the other two cases. We ran the simulations of o = {1073, 1072}
for longer time until the most advanced NW phase front breaks into the W phase
reservoir, but still did not observe any snap-off events, as shown by the bottom row.

For the case of prescribed global Ca = 10~#, we again examine the evolution of the
phase field at the same saturation, as shown in Figure 5.20: with a smaller global Ca,
thus a larger time scale of the characteristic flow field, the phase distributions of three

« show much better resemblance as indicated by the first two rows. At S,, = 0.810,

8The objective of this section is to examine the two competing time scales, namely, the time of
information propagation and the time scale associated with the external flow field (imposed by either
body force or dynamic boundary conditions). Therefore, two relatively large C'a cases have been
chosen; for smaller C'a the time scale of the external field is relaxed, and thus it is less relevant to
the objective of this section.

9The saturation S,, is calculated based on the phase field: a voxel of ¢(z) > 0.0 is considered as
being occupied by the NW phase, and ¢(x) < 0.0 is considered as being occupied by the W phase.
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both a of 10~* and 1073 show snap-off, whereas for & = 1072, it is not until S,, = 0.80
the snap-off occurs.

Overall, based on the above characterisations, it indicates that, when the domain
geometry is complex and the characteristic flow field is large, the influence of the
temporal resolution given by different ov becomes critical. Even though different pairs
of a and 71,5 are set such that the equivalent physical system is modelled, the simulated
drainage displacement pattern can become different. The obvious cost of using a
smaller « is the prolonged computation time, hence considering the balance between
computational efficiency and accuracy, a moderate alpha such as 1073 could be an

appropriate choice.

5.4 Results and Discussion

5.4.1 Overview of All Cases

After reviewing the capacity of our MRT-RK model to model various viscosity ra-
tios and to match experimental condition with the flux boundary condition, as well
as validating the minor influence of spurious current disruption on the interfacial
kinematics, we now apply the model to study the dynamics of Haines jumps and as-
sociated snap-off phenomena. Based on the investigation of the LB surface tension
parameter «, it is now known that the choice of «, which gives different LB tempo-
ral resolutions, strongly affects the computation time and can present different flow
patterns under certain circumstances'’. Therefore, we perform the drainage simula-
tions in a realistic porous medium using two sets of LB surface tension parameter
a = {3.57 x 1072,1 x 1074} to explore the consequences in a larger-scale practical
applications.

The medium used is the same 2563 [.u.? sub-domain (~ 1.3 mm?) of the Ben-
theimer sandstone pCT image that is also used in sections 3.6, 4.3 and 5.1.2. The
drainage tests are performed for a range of capillary numbers (Ca) and viscosity ratios
(M). The flux boundary condition introduced in section 5.1.2 is applied to achieve the
prescribed capillary numbers, and a constant pressure is applied at the outlet based
on the implementation of Hecht and Harting (2010). A range of inlet volumetric flow
rate and the LB viscous parameters are assigned which in total give five testing cases
for each . All key parameters (and parts of key results) are summarised in Table 5.1
and 5.2, for a of 3.57 x 1072 and 10~*, respectively. Incidentally, the strongly wetting
boundary condition (¢s = —1.0) is used to avoid the potential non-physical attraction
of dissolved NW phase and the generation of ‘fake’ NW bubbles.

Among these cases, we in fact choose the case 3 as the baseline case, which
matches the high flow-rate case (i.e. the inlet pump rate @), = 435uL/hr) of the n-
decane/water system in the experiment of Herring et al. (2018): in order to match the

n-decane/water interfacial tension of 32 mN/m, the density of n-decane (i.e. 729.88

107t is also one of the key advantages in LB method that the temporal resolution can be flexibly
manipulated, and a higher temporal resolution than that can be achieved experimentally can be set.
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FIGURE 5.19: For prescribed global Ca = 1073: NW phase distri-
butions during drainage at same S,, (in each row) for the equivalent
physical system, but with different LB surface tension parameter o.
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FIGURE 5.20: For prescribed global Ca = 10~%: NW phase distri-

butions during drainage at same S, (in each row) for the equivalent

physical system, but with different LB surface tension parameter «.

The last row indicates the drainage and associated snap-off occur at a
slightly lower W saturation for a = 1072,
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kg/m?) which is less than that of water, is approximated as 1000 kg/m? to give a
unitary density ratio. Given the image resolution of 4.95um/l.u., and considering
the time conversion relation between LB and physical units (equation 2.49), the LB
simulation has temporal resolution dtppys of 8.86 x 1077 s/l.t. and 4.69 x 1078 s/I.t.,
for o of 3.57 x 1072 and 1074, respectively. The in-situ analysis module of our LB
code reports physically and morphologically averaged quantities every 1000 l.t. (i.e.
0.89 ms and 0.047 ms, for a of 3.57 x 1072 and 10~%, respectively). The fluid phase,
pressure and velocity field data are also saved in every 1000 [.t. for a = 3.57 x 1072,
and in every 10,000 [.t. (i.e. 0.47 ms) for o = 10™* for post-analysis''. Once Ot phys 18
determined, the LB kinematic viscosities v1,g for NW and W phases can be calculated
accordingly, to match the n-decane dynamic viscosity of 0.922 mPa-s. Then using the
parameters in case 3 as a baseline, we varied the NW and W phase viscosities and the
inlet pump rate to generate all other cases. It is noted that physical system modelled
by the other testing cases might be largely artificial, whose significance of guiding the
experiment may be limited. In this work, the capillary number is defined in terms of
the more viscous fluid, thus denoted as C'a*, which may be different from the usual
one that is defined in terms of the invading fluid.

It should be noted that only the case 3 is equivalent for both «, as all of the
macroscopic physical parameters (i.e. surface tension and viscosity etc.) are exactly
the same. For the cases 1, 2, 4, and 5, although the physical surface tension, capillary
number, and viscosity ratio are the same for both «, the dynamic viscosity used in
a = 107" is on average one order of magnitude higher'?than that in a = 3.57 x 1072.
Therefore, in terms of other dimensionless number, e.g. the Ohnesorge number (Oh =
i/ v/ pywn L), which relates the viscous forces to inertial and surface tension forces, the
cases 1, 2, 4 and 5 between two « are apparently not equivalent. In a = 1074,
more viscous fluids are used because too small viscosity would lead to the relaxation
parameter T being very close to the critical value of 0.5, which could potentially cause
numerical instability.

During the drainage processes, the Haines jumps constantly happen as the NW
phase tries to enter a large pore body via a narrow throat, and some of them lead to
(Roof-type) snap-off (Roof, 1970). To better trace the individual snap-off event, we
partitioned the pore space of the uCT image into numbered labels based on a novel
geometry-topology analysis via persistent homology (Robins et al., 2015; Herring,
Robins, and Sheppard, 2019) (see section 5.4.4 for more discussion), so that we can

designate an identifier for each of the snap-off events as follows:
Case number /pore body labels/throat labels

where the throat labels indicate the throat through which the NW phase invades and

snaps off, and pore body labels indicate where the ganglion resides after snap-off;

"The data access frequencies of 0.89 ms and 0.47 ms for « of 3.57 x 1072 and 10~*, respectively,
are good enough to capture the rapid drainage events such as Haines jumps (Armstrong and Berg,
2013; Zacharoudiou and Boek, 2016).

'2Such situation is achieved by manipulating the inlet pumping rate.
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TABLE 5.1: Simulation Parameters of Primary Drainage for Haines
Jumps and Snap-off Study with o = 3.57 x 1072

- Snap-off Invading Snap-off
Case Ca® M How Frw Snap-off Time Pore ]IBOdiesT Throatng Ideniiﬁerf
134 ms 5 8 752 1/(5; 8)/752
1 5x107% 0.2 0922 mPas 4.610 mPa.s 220 ms 5; 49; 55 752 1/(5; 49; 55)/752
229 ms 5; 49; 55 752 1/(5; 49; 55)/752
2 5x107° 0.2 0922 mPas 4.610 mPa.s N/A N/A N/A N/A
1,575 ms 5; 8 752 3/(5; 8)/752
1,579 ms 5; 8 752 3/(5; 8)/752
1,611 ms 5:8: 49; 55 752 3/(5: 8; 49; 55)/752
3 1.25x107° 0.8 0.922 mPa.s 1.153 mPa.s 1,655 ms 5; 8; 49; 55 752 3/(5; 8; 49; 55) /752
1,689 ms 5:8: 49; 55 752 3/(5: 8; 49; 55)/752
1,733 ms 5; 8; 49; 55 752 3/(5; 8; 49; 55) /752
1,767 ms 5; 8; 49; 55 752 3/(5; 8; 49; 55) /752
, ) , , 175 ms 15; 16 832 4/(15; 16)/832
4 5 x 10 10 4.610 mPa.s 0.461 mPa.s 190 s 3 759 1/8/752
520 ms 2 627 5/2/62
1,394 ms 15; 16 646 5/(15; 16)/646
. E. ) =/
5  5x107° 10 4610 mPas 0.461 mPa.s ﬁgz - i?’gég gig ;Ef%lig; gig
1,422 ms 15; 16 616 5/(15; 16)/646

1,435 ms 4; 15; 16; 262 646 5/(4; 15; 16; 262) /646
¥ The total simulation time (at which the NW phase breaks into the W phase reservoir) for case 1 to 5 are: 240ms, 1,648ms, 1,608ms, 204ms,
and 1,435ms, respectively.
T The pore bodies and throats, as well as the combined ‘snap-off identifier’, are classified into the numbered labels by the geometry-topology
analysis via persistent homology (Herring, Robins, and Sheppard, 2019). See more in section 5.4.4.

together with the case number, a snap-off event can be uniquely identified'. All
snap-off events are summarised in Tables 5.1 and 5

To obtain qualitative understanding of the two—phase flow regime that different
testing cases might involve, the commonly used (M, Ca*) phase diagram, originally
proposed by Lenormand, Touboul, and Zarcone (1988), is shown in Figure 5.21. The
displacement pattern classified by the more recent work of Zhang et al. (2011) is also
drawn in dash lines for reference. However, it is noted that such a classification is
based on the experimental 2D micromodels, and we include a few representative 2D
examples to illustrate each flow pattern shown in Figure 5.22. More recently, Tsuji,
Jiang, and Christensen (2016) performed LB drainage simulations on a 3D sample of
Berea sandstone pCT image with various Ca and M and obtained the flow pattern
classification very different from the 2D micromodels: the most pronounced observa-
tion is that capillary fingering occurs even at high Ca and high M, for which is deemed

as the stable displacement regime according to the experiments in micromodels.

13 As can be seen in Tables 5.1 and 5.2, there are some repeated snap-off events in the same pore
body via the same throat for the same testing case. In such situation our identifier does have some
degeneracy. More future work is needed to further explore the geometric significance of these pore
bodies and throats.
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TABLE 5.2: Simulation Parameters of Primary Drainage for Haines
Jumps and Snap-off Study with o = 10~
. Snap-off Invadin; Snap-off
Case Ca M Hw Hhw Snap-off Time? Pore godicsT Throats} Idcnlt)iﬁeﬁ

149 ms 12" 336 1/12/836
502 ms 2* 836 1/12/836
671 ms 60 909 1/60/909

1 5x 1074 0.2 17.4 mPa.s 87.1 mPa.s 736 ms 60 909 1/60/909
901 ms 60; 334 909 1/(60; 334)/909
901 ms 5; 8; 49; 55 786 1/(5; 8; 49; 55) /786
948 ms 5; 8: 49; 55 786 1/(5; 8; 49; 55) /786
490 ms 57; 86 775
831 ms 12 836

2 5x 107° 0.2 174 mPa.s 87.1 mPa.s 872 ms 12 836
1,184 ms 60 909
1,318 ms 60 909 2/60/909
285 ms 2 627 3/2/627

3 1.25x107° 08 0.922mPas 1.153 mPas ggg :E; 41;512’6 gjg 3‘3’(,(%‘31521]63')?356
1,011 ms 4; 15; 16; 29; 97; 262 646 3/(4; 15; 16; 29; 97; 262) /646
381 ms 12 836 1/12/836
114 ms 2 836 4/12/336
677 ms 60 909 1760/

4 5x107% 10 87.1 mPas 8.71 mPa.s 724 ms 60 909 /
1,024 ms 24; 39 728 1/(24; 39)/728
1,054 ms 71 1315 1/71/1315
1,093 ms 71 1315 4/71/1315
1,241 ms 5 786 1/5/786
584 ms 12 836 5/12/836

5 G F /19 /K3

5  5x10° 10 87.ImPas 871 mPas fsgg“;s éi ggg ;éiggg

1,546 ms 24; 39 728 5/(24; 39)/728

# The total simulation time (at which the NW phase breaks into the W phase reservoir) for case 1 to 5 are: 956ms, 1,547ms, 1,125ms, 1,294ms, and 1,715ms,
respectively.

f See the same footnotes in Table 5.1.

* The repeated pore body labels indicate that the snap-off occurs repeatedly in the same pore bodies. The detailed snap-off processes of all cases for a = 107*
have been made into videos and can be accessed upon request.

107 . ,
Viscous 1 : Stable Displacement
Fingering : Lo o e e -
1
1
-3
10 :
1
:0 * ® Casel
| B Case?2
* 1
8 10+ ] > Case 3
’ 75
// ] R4 ¢ * Case 4
’ L4
. i ¢ Cases
s
10 7 R
7’
/, 4
s
e Pid Capillary
’ ’ . .
4 R Fingering
10 .
107 10" 10° 10t 10°
M

FI1GURE 5.21: Classification of drainage flow patterns based on the

capillary number Ca and viscosity ratio M for all the primary drainage

simulations. The dash lines depict the flow regime boundaries accord-
ing to Zhang et al. (2011).
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FIGURE 5.22: Schematic illustration of the flow patterns based on the
2D micromodels. The figure is adapted from Ewing and Berkowitz
(2001).

Figures 5.23 and 5.24 show the corresponding ‘end-state’ NW phase distributions
for o of 3.57 x 1072 and 10~*, respectively, where the most advanced NW phase front
reaches the W phase reservoir. According to the classification of Zhang et al. (2011),
both case 1 and 2 are in the crossover regime close to viscous fingering; case 3 and 5 are
in the capillary fingering regime, and case 4 is in the crossover regime. However, for
a = 3.57 x 1072, all of the end states shown in Figure 5.23 exhibits capillary fingering
feature, in the sense that the finger front moves not only in the injection direction, but
also presents some backward movement, i.e. against the injection direction towards
the inlet. Although we use a different rock type, our observation largely agrees with
the work by Tsuji, Jiang, and Christensen (2016), that is, based on the range of Ca
and M, all cases are in capillary fingering regime. Likewise, for the case of a = 1074,
case 2, 3, 4 and 5 all present capillary fingering patterns; however the case 1 resembles
more closely a viscous fingering pattern. Overall, although our observation on the
end-state of the NW phase distributions seems to agree more with the recent work
by Tsuji et al., which may highlight the difference in fluid behaviour between 3D
natural rocks and 2D homogeneous models (potentially due to the heterogeneity of
the complex 3D pore geometry and connectivity), it should be noted that our current
domain size is still too small to make any definite conclusion, since the classification of
the flow pattern is indeed length-scale dependent, and future work with much larger

domain size is needed.
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5x 1074

ca’

Ca*=5x%10"5

Ca’ =1.25x%x107°

M=0.2 M=0.8 M=10

FIGURE 5.23: The end-states of NW phase configurations of a =
3.57 x 1072, The capillary number Ca* is redefined in terms of the
more viscous fluid.

Ca*=5x10"*%

5% 1075

ca”

Ca*=125x1075

M=0.2 M=0.8 M=10

FIGURE 5.24: The end-states of NW phase configurations with the
same layout as in Figure 5.23, but for o = 1074,
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5.4.2 Drainage Displacement Patterns

In this subsection, we primarily investigate the capillary pressure-saturation relation-
ships as well as the NW phase distributions along the drainage process at several
saturations. As is mentioned in the previous sub-section, only for case 3, the exactly
same physical system is modelled by a = {3.57 x 1072,10~*}. Therefore, the P.-S,,
relations and the NW phase configurations of case 3 will be firstly compared. Then
the results and discussion for case 1, 2, 4 and 5 are presented, for which it is noted
that although both a model the same physical surface tension, capillary number and
viscosity ratio, the NW and W phase viscosities in a = 10~* are on average one order

of magnitude higher than those in a = 3.57 x 1072.

Results

First, for case 3 of both «, the capillary pressure normalised by the surface tension
is plotted against the NW phase saturation in Figure 5.25. Both the saturation
and the capillary pressure are obtained from the in-situ analysis module of the LB
code, where the normalised capillary pressure is simply the interface-averaged mean
curvature data. For each P,-S),, curve, the data points of which the snap-off occurs
are highlighted in different colours. Snap-off events are grouped according to different
invading throat labels. The vertical dash lines along the curves highlight four NW
phase saturation at which the corresponding 3D NW phase configurations are shown
in Figure 5.26, together with the ‘end-state’ configurations when the NW phase front

breaks into the W phase reservoir.
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Snur

FIGURE 5.25: The Capillary pressure (normalised by surface tension)
is plotted against the saturation for the primary drainage simulations
of case 3. Parts of the P./vun-Snw curves are plotted in diamond
and plus symbols in different colours, showing the time period when a
disconnected NW phase component exists associated with a Roof-type
snap-off. Each symbol colour corresponds to a particular invading
throat through which the snap-off happens (see more in Table 5.1
and 5.2). The black dash lines indicate the saturation at which the
corresponding 3D NW fluid distributions are drawn in Figure 5.26.
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a=327x%x10"2

S, = 0.2661 S, = 0.1975 S = 0.0911 S, = 0.0127

End State

FIGURE 5.26: Three-dimensional non-wetting fluid distributions of
case 3 for a = {3.57 x 1072,107%}, at a series of non-wetting phase
saturations. The solid matrix is in light blue and the wetting phase is
made transparent. The first four saturations correspond to the dash
lines in Figure 5.25. The ‘End State’ refers to the state where the most
advanced NW phase front reaches the W phase reservoir. The num-
bers in the end-states are the throat labels identified by the persistent
homology analysis.
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Moreover, Figure 5.27 illustrates some of Haines jump events that occur during
drainage for the case of & = 3.57 x 1072, which are captured as sudden P, drop
in the P.-S,, curve. The same P.-S,,, curve is shown in Figure 5.27(a)14, with five
Haines jumps being labelled by the titles of the rest sub-plots. Figure 5.27(b) to
(f) shows the corresponding 3D NW phase distributions, each of which represents
the difference in NW fluid distribution between the beginning and the end states of
the Haines jump. The colour convention for the NW fluid at different states follows
Helland et al. (2017), in which gold indicates fluid that is present for both “before”
and “after” states; cyan indicates the fluid advancement, whereas the portion in red
is an indication of retraction. Overall, it can be seen that Haines jumps are non-
local phenomena, which agrees with the experimental observation of 2D micromodel
in Armstrong and Berg (2013): the Haines jump (highlighted in cyan) is accompanied
by temporary imbibition nearby or a few pores away (highlighted in red).

For case 1, 2, 4, and 5, the P.-S,, relationships are shown in Figure 5.28 for
both «, with the snap-off events being highlighted in different colours as per invading
throat labels. Again, the vertical dash lines locate several NW phase saturations, and

the corresponding 3D NW phase configurations are shown in Figure 5.29 to 5.36.

MNote that the ending Sp. point here is greater than that in Figure 5.25. The simulation was
running for a longer time after the NW phase front reaches the W phase reservoir, in order to collect
more Haines jump data.
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FIGURE 5.27: Visualisation of Haines jumps during drainage from LB
simulation. (a) shows the (normalised) capillary pressure as a function
of NW phase saturation (S,,,,), with P, drops indicating Haines jumps
highlighted in blue ellipse, and the corresponding three-dimensional
NW fluid distribution for each event can be identified by the title of
each sub-plot. For sub-plots (b) to (f), the evolution of the NW phase
fluid occupancy is shown: gold, cyan and red indicate the unchanged
part, advancement, and retraction of the NW fluid throughout the P,
drop, respectively. The W phase is made transparent, and the rock
matrix is in light grey.
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FIGURE 5.28: The Capillary pressure (normalised by surface tension)
is plotted against the saturation for the primary drainage simulations
of case 1, 2, 4 and 5. Parts of the P./~,n-Snw curves are plotted in
diamond and plus symbols in different colours for a of 3.57 x 1072
and 1074, respectively, to highlight the snap-off events. Each symbol
colour corresponds to a particular invading throat through which the
snap-off happens (see more in Table 5.1 and 5.2). The black dash
lines indicate the saturation at which the corresponding 3D NW fluid
distributions are drawn for visual inspection.
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Ca*=5x10""*

Ca*=5x%x10"°

M=0.2 M=10

FIGURE 5.29: NW fluid distributions for a = 3.57 x 1072, at S, =
0.026.

Ca*=5x10"*

Ca*=5x107°

FIGURE 5.30: NW fluid distributions for a = 3.57 x 1072 at Sy, =
0.123.
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FIGURE 5.31: NW fluid distributions for a = 3.57 x 1072 at S,,,, =
0.197.

FIGURE 5.32: NW fluid distributions for a = 3.57 x 1072 at S,., =
0.273.
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FIGURE 5.34: NW fluid distributions for o« = 10~* at S, = 0.123.
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FIGURE 5.36: NW fluid distributions for a = 10~ at S,,,, = 0.273.
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Discussion

As is mentioned previously, the case 3 is the only truly equivalent case modelled
by both «, characterised by the same dimensionless numbers (i.e. Ca and M) as
well as the same physical surface tension and viscosity Such condition is achieved by
adjusting the LB relaxation time parameters of each o accordingly. Hence the case 3
modelled by both « is only different in terms of the temporal resolution. Comparing
the P.-S,. relationship between two « in Figure 5.25, the discrepancy exists at the
very beginning of the displacement, and the case of & = 10™* presents on average
higher mean curvature than the case of & = 3.57 x 1072. This can be explained by
the accompanying 3D NW phase distributions in Figure 5.26, where it can be seen
the flow path starts to deviate as early as Sp,, = 0.0127, at which on the top left
there is a pore that is invaded in & = 107 but not in a = 3.57 x 1072. As the
draining goes on, the overall flow patterns of both « still look qualitatively similar
until Sy, = 0.2661, after which one of the NW phase branch chooses different sets of
pores to invade, giving different end-state configurations. Furthermore, the snap-off
sites are completely different: for the snap-off 3/(5; 8)/752 in a = 3.57 x 1072, and
the snap-off 3/(15; 16)/646 in a = 10~*, both of which only occur in one case but not
in the other, we can see from the end-states of Figure 5.26 that due to the completely
different flow path, throat #752 is not invaded in o = 10™* and throat #646 is not
invaded in o = 3.57 x 1072, Although throat #627 is invaded in both «, only in
o = 107 there is a snap-off event 3/2/627.

Overall, considering also the discussion in section 5.3, we can see that once the
medium geometry becomes complicated, despite the (relatively) low global flow field,
the flow paths can be influenced significantly at different LB temporal resolutions.
The lower temporal resolution brought by a larger a does not mean that it could
be ‘overcome’ by saving the phase field data more frequently, since the low temporal
resolution issue starts to affect the interfacial evolution right at the initial transient
part of the simulation. More future work is needed to systematically explore the
influence of the different temporal resolution with a larger domain size and different
medium types.

Although the use of different « will affect the flow patterns and even the accuracy,
the dynamics of the Haines jumps are still well captured by both «a. For example,
Figure 5.27 shows a good correspondence between the capillary pressure drop and
the Haines jump for a = 3.57 x 1072, Not all of the Haines jumps lead to snap-off
events; here in this case only the Haines jump (e) gives rise to a snap-off 3/(5; 8)/752
(see also Figure 5.25); however all Haines jumps share the similar P, increase-decrease
process: P, first increases as the NW fluid is pushed into the narrow throat, until the
NW phase front passes through the throat where peak P. is reached; the meniscus is
unstable at this stage and it rapidly enters the wider pore body, where the curvature
of meniscus decreases suddenly corresponding to a P. drop.

For the case 1, 2, 4 and 5, the two a model the system with the same Ca and M,

but the viscosity in o = 107 is around one order of magnitude larger than those in
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a = 3.5772. Figure 5.28 shows P,-S,,, curves for both a. In a = 1074, case 1 and 2
with the same M shows much resemblance qualitatively, and so do case 4 and 5, which
is also reflected in the 3D NW phase configurations in Figure 5.33 to 5.36; whereas
for = 3.57 x 1072, each case presents a distinctive trend in the P.-S,, relation. It is
also interesting to note that, the distribution of the snap-off sites is more uniform in
a = 10~*: the snap-off events occurring through the throats #836 and #909 are seen
in all four cases; on the other hand, in o = 3.57 x 1072, only the snap-off through
the throat #752 is shared by case 1 and 4 (as well as case 3). Moreover, the case 2 in
a = 3.57 x 1072 does not show any snap-off events, which might again be linked to the
flow path discrepancy caused by LB model’s different initial transient behaviour due
to different temporal resolutions. Overall, irrespective of resemblance of P.-S,, trend
(or not) among different testing cases, the displacement patterns can vary, which is
to some extent expected, due to the sensitivity of local displacement to small changes
in fluid properties for an arguably homogeneous porous medium. The P,-S,,, curve
alone is of course insufficient to characterise the flow behaviour, and it is currently
under extensive research to include more measures to better characterise the fluid
topology and the pore-scale flow (Herring et al., 2013; Schliiter et al., 2016; McClure
et al., 2018; Armstrong et al., 2018).

5.4.3 Preliminary Study: Haines Jump Velocity

In this sub-section, we study the interfacial velocity of the Haines jumps that lead
to snap-off as reported in Tables 5.1 and 5.2. To author’s knowledge, there is only
few work on investigating the detailed dynamics in 3D natural rocks using LB mod-
elling, e.g. (Zacharoudiou, Boek, and Crawshaw, 2018), and none for the detailed
evaluation of the Haines jump velocity profiles. Nevertheless, it is important to know
such velocity since it can serve as a validation of the LB model (e.g. given the fast
dynamic pCT imaging techniques, the experimental fluid velocity field is possibly
back-calculated and can be compared against the LB results), and also allows ex-
ploration of the influence of geometry on snap-off. The current interfacial velocity
results are still preliminary, which are measured by two methods that will be intro-
duced as followings. Future work is needed to give more in-depth discussion and more
comprehensive conclusions.

Most straightforwardly, we could simply rely on the saved velocity data as an
estimation of the Haines jump velocity (though it needs some extra calculation to
get from phase velocity to interfacial velocity), which can be called a direct method.
However, due to the complex medium geometry and fluid-fluid interface distributions,
the spurious currents significantly disrupts the velocity near both fluid-fluid and fluid-
solid interfaces. Figure 5.37 shows examples of the saved 2D-sliced velocity fields of
both « at the end state of case 3, whose full NW fluid distributions can be found in
Figure 5.23 and Figure 5.24 for a = 3.57 x 1072 and 107, respectively. Noting that
the fluid properties and the reservoir conditions in case 3 are exactly same for two

«, the physical magnitude of the spurious current, concentrated at the inlet (i.e. the
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a =3.57x 1072 a=10""*

F1GURE 5.37: 2D sliced velocity field in physical units for case 3 of &« =

{3.57 x 1072,10~*}, where spurious velocity can be seen concentrated

at the entrance, the NW-W phase interface as well as the NW-solid

interface. The 2D slice in z-z plane is extracted from y = 220 l.u., of

the end states (where the most advanced phase front reaches the W

phase reservoir). The red line highlights the pore space-solid boundary,
and the black line indicates the boundary of NW phase.

bottom of the figures), the NW-solid interface as well as the NW-W phase interface,
are the same as well, despite the fact that LB spurious current scales with different «.
Given the disruption of interfacial spurious currents, at this stage it is very challenging
to use the existing velocity field to calculate the Haines jump velocity. Therefore, an
indirect method is needed to measure the interfacial movement. In this work, the
local interface velocity is measured by rearranging the level-set equation(Osher and
Sethian, 1988; McClure et al., 2016):

9o + (|Ve| =0, (5.7)

where ¢ is the phase field, and ( is the interface velocity in the direction normal to
the interface. The temporal gradient of the phase field is evaluated by the central

difference approximation:

o(t + 6t) — o(t — 6t)

8“;5% 25t )

(5.8)

where 6t is 1000 and 10,000 LB time steps for a of 3.57 x 1072 and 1074, respectively,
which is the frequency of which the phase filed data is saved. The spatial gradient
of the phase field is also calculated based on the central difference algorithm using
Python-Numpy library (Oliphant, 2015). For this method to work most effectively, the
region of the pore-filling event (and the following snap-off event) is manually selected

and isolated from the rest of simulation domain'®. The isolated region is cropped to

5The isolated local regions for all of snap-off events are illustrated in Appendix H, where the
detailed processes of snap-off events are shown for the case of o = 3.57 x 1072,
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an ‘irreducible minimum’ such that over the consecutive time steps (i.e. dt) the most
interfacial movement primarily happens around the phase front of interest.

Given the finite-difference nature of this indirect method as shown in equation
5.8, the essential prerequisite for this method to work accurately is that the overall
movement of the relevant interface should be around or less than 1 voxel per 6¢'6,
otherwise this method tends to underestimate the actual interface movement. This
condition is satisfied by the cases 1, 2, 4, and 5 of & = 10™* because of the relatively
higher LB temporal resolution and the use of more viscous fluids. For the case 3 of
a = 10*, where much less viscous fluids are used, and for all cases of & = 1072,
it is found (by simply the visual inspection) that the interface of interest usually
moves more than 1 voxel per dt increment during the Haines jump, and the indirect
method fails to give accurate estimation on the actual jump velocity. To overcome
such difficulty, we also manually track the interfacial movement and measure the
velocity. An example of the manual measurement of a Haines jump is illustrated in
Figure 5.38. As shown in Figure 5.38(c) and (d), a 2D slice oriented normal to the
advancing direction of the NW phase front is manually set; as the NW fluid moves,
the interception of the slice with one of the orthogonal axes is recorded, which in this
case is the y-axis; then the phase front advancement d can be calculated based on
simple trigonometry, such as d = Ay cos# as shown in Figure 5.38(b).

In the future work, the manual selection of the local region where the Haines jump
happens could be automated by monitoring the temporal change of local saturation
in the partitioned pCT image: the pore bodies of the porous medium is first par-
titioned by either the conventional water-shed segmentation method or the recently
developed persistent homology method (Herring, Robins, and Sheppard, 2019); then
the temporal evolution of the phase field in each labelled pore body can be monitored
and the pore-filling rates can be calculated. This automated method is still under
development during the writing of the thesis.

Figure 5.39 shows the interfacial velocity data measured by the manual method
for all cases of @ = 3.57 x 1072 and the case 3 of a = 10~%, where the colour codes
are consistent with what is shown in P.-S,,,, curve in Figure 5.28, i.e. the same colour
indicates the snap-off occurs via the same throat'”. The Haines jump velocity of
the snap-off event 1/(5; 49; 55)/752 is not measured, because prior to this event,
the pore body #5 has been filled by the previous snap-off event 1/(5; 8)/752 (for
more details see the footnote under Table 5.1). Figure 5.39(a) shows the interfacial
velocities through the throat #752 for case 1, 3 and 4 of a = 3.57 x 1072. For case
1 and 3, given the same NW phase viscosity, the peak Haines jump velocity agrees
quite well, despite the different global C'a and viscosity ratio; in case 4 where the NW

phase is more viscous, the peak Haines jump velocity is smaller. Figure 5.39(b) shows

16This is because the assumption of the level-set method is that the local image difference is related
to the interface movement, i.e. assuming that the phase field gradient is constant.

17 Again, note that the reason of including the results of case 3 of & = 10~ in Figure 5.39, is
not only that it models the same physical surface tension as in o = 3.57 x 1072, but also because
the physical viscosity of case 3 of & = 10™* is around the same order of magnitude as the cases of
a = 3.57 x 1072, Thus the comparison is on an equal footing.
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(b)

Phase front
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Phase front advancement:
d =Aycosf

Time=1,583,000 I.t.

(c) (d)

Time=1,583,000 .1, Time=1,588,000 L.t,

FI1GURE 5.38: Ilustration of manual measurement of local interfacial
velocity for the Haines jump followed by the snap-off event 5/(15;
16)/646 occurring at 1408 ms (i.e. LB time of 1,589,000 [.t.) in
a = 3.57x 1072 (see Table 5.1). (a) The overall NW fluid distribution
(in red) at LB time step of 1,583,000 [.t. prior to snap-off. The rock
matrix is in light grey and W fluid is not shown. (c¢) and (d) show the
beginning and the (almost) end of the Haines jump, respectively. A
2D plane which is in the normal direction to the phase front advance-
ment is used for the manual measurement. (b) illustrates the simple
geometry of how the manual measurement is performed and how the
phase advancement d can be calculated based on simple trigonometry.

the interfacial velocity for two consecutive Haines jumps in case 5 of o = 3.57 x 102
via the same throat #646'%, and a Haines jump from the case 3 of @ = 10~%. Because
the NW fluid viscosity in the case 3 of a = 10* (i, = 0.922 mPa-s) is much smaller
than that in the case 5 of & = 3.57 x 1072 (u,, =4.610 mPa-s), the peak Haines jump
velocity is higher correspondingly. Figure 5.39(c) shows un-grouped Haines jumps
through the throats #832 and #627, and for the latter one, the result of case 3 of
o = 107* is also presented. For the two Haines jumps via throat #627, again due to
the lower viscosity in o = 10™* (y,, = 0.922 mPa-s), the peak Haines jump velocity is
greater than the counterpart of o = 3.57 x 1072 (u,, = 4.610 mPa-s). For the Haines
jump via throat #832, a distinctive feature is that there are two peaks during the

event. If checking the detailed process of the jump in Figure H.5 in Appendix H, it

¥ More specifically, for the two Haines jumps of case 5, the circles correspond to the Haines jump
happens from LB time 1,567,000 [.t. to 1,573,000 [.t. (i.e. the physical time from 1,388 ms to 1,393
ms), and the squares correspond to the Haines jump happens between LB time of 1,583,000 [.t. and
1,588,000 I.t. (i.e. the physical time from 1,402 ms to 1,407 ms).
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suggests that these two peaks are real and well captured by the manual measurement.
Lastly, Figure 5.39(d) shows all of the data for a direct comparison. The peak Haines
jump velocity in this work is also (qualitatively) compared to the experimental data
in 2D micromodel by Armstrong and Berg (2013), and the order of magnitude of the

Haines jump velocity data agrees well with the published work.
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FIGURE 5.39: Local interfacial velocity of Haines jumps followed by
the snap-off events in & = 1072. The data is presented according to
the labels of pore bodies and invading throats, which can be identified
by the snap-off identifiers (see Table 5.1). Grouped data with same
filling pore bodies and same invading throats is shown in (a) and (b).
Un-grouped data with different pore bodies and throats is shown in
(¢). For direct visual comparison, all data are plotted together in (d).
The estimated error in the manual measurement is 0.1 voxel per 1000
LB steps, which is equivalent to 5.6 x 107 m/s.

Overall, all results in Figure 5.39 are quite straightforward: the viscosity of the
invading phase (i.e. the NW phase) plays a predominant role in determining the peak
Haines velocity, and less viscous the invading phase is, the higher the peak Haines
jump velocity could be. However, at this stage, without more data on numerous other
Haines jumps that do not give rise to snap-off, it is hard to tell whether or not the
presented interfacial velocity data is statistically distinguishable or in fact falls into
the same class, and of course future work is needed to include as much local interfacial
velocity data as possible, before any in-depth and comprehensive conclusion can be
drawn.

Moreover, as a direct comparison, Figure 5.40 shows the full evolution of the 2D
sliced velocity field for the Haines jump 3/(5; 8)/752 against the indirectly measured
velocity profiles (shown in Figure 5.39(a)). The most prominent feature is that the
peak velocity field in the throat indeed dominates the flow field during the jump, and
has a reasonable correspondence to the indirectly measured interface velocity profile;

but the magnitude of such peak velocity field is much greater than the (indirectly
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measured) peak Haines jump velocity. The supplementary vector presentation of the
velocity field again shows highly irregular pointing directions near interfaces. The
fact that spurious currents dominate the flow field in dynamic simulations is generally
overlooked by literature, and here it is important for us to point this out. To author’s
best knowledge, there are so far no effective means of reducing spurious currents
during dynamic processes for any of the multicomponent LB models, and future work

is definitely needed to resolve this problem.
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FI1GURE 5.40: Direct comparison between indirectly measured interfa-
cial velocity and the LB velocity field for the Haines jump 3/(5; 8) /752
of case 3 of a = 3.57x 1073, (a) the Haines jump velocity profile same
as the one in Figure 5.39(a), which is measured by the manual front
tracking, with 3D NW fluid configurations showing the jump process
and the associated snap-off. At the bottom is a top view of the NW
fluid, with the red dash line highlighting the position of the extracted
2D velocity field. From (b) to (g), the 2D velocity field together with
the vector presentation is shown for the Haines jump. The red line
indicates the pore space-solid boundary, and the yellow line highlights
the NW phase boundary.

Figure 5.41 shows the Haines jump velocity data measured by the automated level-
set method for all cases of @ = 1074, Again the same colour of the plots indicates
the Haines jumps via the same throat. Because of the use of more viscous fluids,
it can be seen that, compared to Figure 5.39, the overall time scale is one order of
magnitude longer, and the velocity is one order of magnitude smaller. Furthermore,
the results shown in Figure 5.41(a) and (b) seem to some extent counter-intuitive:
about the same peak Haines jump velocity is achieved for different cases, irrespective

of the viscosity of the invading NW phase. To confirm that it is not the automated
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level-set method giving the misleading results, we selected two Haines jump events,
1/12/836 and 4/12/836 from Figure 5.41(a) which shows about the same peak Haines
jump velocity, although pu, in case 1 is smaller than that in case 4, and performed
the manual interfacial velocity measurement. The manual measurement confirms the
assumption of the automated level-set method is not violated, i.e. the average inter-
facial movement is less than 1 voxel per 6t (i.e. 10,000 LB steps), and gives very close

19Tt suggests that the viscosity of the defending

results as the automated one does
phase may also play a role in determining the peak interfacial velocity. Again, since
what is presented so far is still a preliminary study, more work is needed to analyse as
many Haines jumps (including the ones not giving snap-off) as possible to give more
comprehensive conclusion on what fluid properties play a more bottle-neck role under
what circumstances. Nonetheless, the (measurement) methods used in this work serve
as the basis for the future larger-scale study and can be extended potentially to other

more advanced and efficient measuring techniques.

5.4.4 Preliminary Study: Impact of Medium Geometry

In this section we present a preliminary study exploring the potential geometric causes
for the snap-off events listed in Tables 5.1 and 5.2. This geometric impact is char-
acterised by a novel method, persistent homology, which provides some insightful
correlation of the pore space geometry of the medium with the snap-off sites. The in-
vestigation is still preliminary because in order to achieve any statistically meaningful
conclusion, a large amount of snap-off events from much larger domains are needed,
which is the future work that not only the LB simulations, but also the experimental
snap-off data extracted from various reservoir rock types will be examined.

To better characterise the porous media, there have been numerous methods of
partitioning the pore space of the porous medium into pore bodies and throats. For
example, the watershed partition is one of the commonly used methods, from which
the pore body and throat size distributions and body-throat aspect ratios can be
derived from the corresponding pore-network statistics (Beucher and Lantuéjoul, 1979;
Sheppard, Sok, and Averdunk, 2004; Thompson and Reed, 2005). Recently, persistent
homology provides an alternative approach to correlate the length scale of the features
of porous media to the topological features (Robins, 1999; Edelsbrunner, Letscher,
and Zomorodian, 2002; Delgado-Friedrichs, Robins, and Sheppard, 2015). For details
of how persistent homology is applied to the pore-space topological characterisation,
readers are referred to Robins et al. (2015) and Herring, Robins, and Sheppard (2019),
and here only the necessary details of the method are introduced.

The persistent homology approach of characterising the pore space of media is
closely related to a topological quantity, Euler characteristic, which is defined as the
alternating sum of the first three Betti numbers (3): x = 8o — 81 + B2, where [y is the

number of individual objects present in the volume, 3; is the number of redundant

19The manual and level-set measurements agree both in the peak Haines jump velocity and the
trend of the velocity profile, i.e. at which time step the peak velocity is reached.
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FIGURE 5.41: Local interfacial velocity of Haines jumps followed by
snap-off events for o = 10™*. The data is presented according to the
labels of pore bodies and invading throats, which can be identified by
the snap-off identifiers (see Table 5.1). Grouped data with same filling
pore bodies and same invading throats is shown in (a), (b) and (c).
Un-grouped data with different pore bodies and throats is shown in
(d). For direct visual comparison, all data are plotted together in (e).

loops within the objects, and B2 is the number of cavities within the object (Mecke
and Wagner, 1991; Vogel and Kretzschmar, 1996; Wildenschild and Sheppard, 2013;
Herring et al., 2013). Here in this section, 3y is the most relevant quantity for char-
acterising the topology of the pore space of the medium. The persistent homology
analysis is implemented as following: (Herring, Robins, and Sheppard, 2019) given a
segmented two-phase pCT image (i.e. pore phase and grain phase), a signed Euclidean
distance map (SEDM) of the image is computed, where the value on each grid point
represents the FEuclidean distance from the point to the solid-pore space boundary,
with the convention that negative distance value representing the pore space and the
positive representing the grain phase. Then the changes in the topology of the level
sets (i.e. the contours of the signed distance values in both phases) can be monitored,
by scanning from the largest negative values (i.e. the largest pore body centres) pro-
gressively to the largest positive values (i.e. the largest grain centres). The appearance

of a new topological feature is termed as ‘birth’, the disappearance of the feature is
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termed as ‘death’, and the difference between the two values is the ‘persistence’ of the
topological feature (Robins et al., 2015; Herring, Robins, and Sheppard, 2019). Using
these three measures, namely recording the level-set threshold values when certain
features are born, die, as well as their persistence, the pore space of the medium can
be partitioned.

Commonly, the results of performing persistent homology analysis are presented
in a so-called persistence diagram, where the counts of topological features in each
Betti number are plotted as a function of birth and death level-set threshold values.
In our analysis herein, only the pore phase By features are of interest, which all have
negative birth values since they are born in the pore space. When a pore phase (g
feature dies, it can have either negative or positive death value: if such By feature is
born in connected pore bodies, its death value is also negative because it will merge
with other §y features in the pore body; alternatively, if such gy feature is born in the
disconnected pore bodies, it will die in the grain phase with a positive death value. In
short, for connected pore bodies, the birth value characterises the maximal inscribed
sphere radii (which also gives an estimation of the size of the pore bodies), whereas
the death value measures the largest pore throat size, of which throat connects to the
pore body. Overall, the ensemble of 3y features that are identified in the persistent
homology analysis corresponds to the partitioned pore bodies, each of which is labelled
with a number, e.g. the labels in Tables 5.1 and 5.2.

One of the key advantages of using persistent homology to do the pore space parti-
tioning, as was reported in the recent work by Herring, Robins, and Sheppard (2019),
is that topological features with very low persistence (i.e. features with very similar
birth and death level-set distance values) can be easily identified and thus removed?,
in contrast to the conventional watershed partitioning method which usually tends to
over-partition the pore space if without fine tuning of the input parameters or without
extra region-merging filters. The process of removing the low-persistence feature is
termed ‘simplification’: an one-voxel simplification was applied in this work, which
means any [y features with death minus birth values smaller than one voxel (i.e. 1
l.u.) has been removed from analysis.

Figure 5.42 shows the (birth, death) pairs for all of partitioned pore bodies of the
2563 l.u.3 sub-domain, where each data point corresponds to a labelled pore body.
The pore bodies in which snap-off occurs are also highlighted in bold and red colour
(and some other colours for highlight) using the snap-off identifiers in Tables 5.1 and
5.2. The snap-off identifiers of & = 10™* starts with the double-dagger. Note that
to maximise the visual clarity, the identifiers of repeated snap-off in the same pore
bodies within the same testing case is not shown, unless such snap-off reoccurs via a
different throat. In Figure 5.42 on the left it also shows three two-dimensional slices
of the partitioned porous medium along the z-axis.

The most pronounced feature of this persistence diagram is that snap-off occurs in

all of the three most ‘persistent’ pore bodies, namely the pore body #2, #4 and #5

20In this context, ‘remove’ means merging pore bodies and removing the throat between them.
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for both . These pore bodies are most persistent because their birth values are the
three largest (i.e. their 5y features were born at the very beginning), while their death
values are very small (i.e. their 3y features die only in the end). This indicates that
these pore bodies have the largest (effective) sizes, but connect to other neighbouring
pore bodies via narrow throats. Second, for all of the snap-off pore-bodies found in
a = 3.57 x 1072, snap-off also happens for a = 1074, but not vice versa: for example,
there are some pore bodies, #12, #60, (#24; #39), (#57; #86), and #71 are unique
to the case of @ = 10™%, although these pore bodies present less prominent persistence
features. Note that a major difference between the cases (i.e. case 1, 2, 4 and 5) of
o = 3.57 x 1072 and o = 10~% is that the viscosity in o = 10~% is about one order
of magnitude higher, though the viscosity ratios are the same between two «a. At
this stage, however, it is beyond the scope of this work to draw a definite correlation
between the fluid properties and the potential speciality of these pores, without using

larger domain sizes and more snap-off data (from both simulations and experiments).
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FIGURE 5.42: Persistent homology diagram of /3y topological feature
in the LB sub-domain, with partitioned two-dimensional slices of yCT
image highlighting the labelled pore bodies in which the snap-off events
for a = {3.57 x 1072,10~*} take place. Each data point in the per-
sistence diagram corresponds to a labelled pore body. The snap-off
identifiers from Tables 5.1 and 5.2 are used to highlight the relevant
pore bodies in bold and red (and some other colours), with the case
of a = 10~* beginning with a double-dagger.

Among the identified pore bodies, pore body #2 is the most persistent pore body
of the current sub-domain and there are two snap-off events from different cases of
different «. Pore body #4 is the second most persistent pore body and there are in
total four snap-off events involving this pore, two for each «, and the snap-off usually

occurs not only in this single pore body, but within a group of interconnected pore
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bodies, e.g. in the pore-body group (#4; #15; #16; #262) in a = 3.57 x 1072, or in
an even larger conglomerate of (#4; #15; #16; #29; #97; #262) in a = 10~4, where
the neighbour pore bodies #15 and #16 are in direct contact with pore body #4
as shown in the 2D labelled porous medium at z = 182 of Figure 5.42 (left column,
second row). The pore-body group (#15; #16) itself also contributes several snap-off
events for both «. Pore body #b5 is the third most persistent pore body, which is in
direct contact with pore body #8, #49 and #55 (pore bodies #49 and #55 are not
shown in the 2D slice in Figure 5.42; they are located at farther end of the medium
close to the W phase reservoir). There are in total 10 and 2 snap-off events, for «
of 3.57 x 1072 and 1074, respectively, involving pore bodies #5, #8, #49, and #55,
which clearly indicates the important geometric signature of this pore-body group,
noticing the pore body #05 being the third most persistent pore body.

Overall, based on these preliminary results, it can be seen that most of the
snapped-off ganglia reside in the most highly persistent pores or their directly neigh-
bouring pores, and it also suggests that potentially the persistent homology analysis
can be an effective approach to characterise the snap-off phenomena in the multiphase
flow in porous media. In the recent experiments by Herring et al. (2018) (our case 3
for both o matches the high flow-rate condition of this work), significant and prevalent
snap-off of NW phase during drainage were observed in a much larger domain with
more geometric heterogeneity; though the discussion of the experimental results is be-
yond the scope of this thesis, more future work is needed to include more simulation
data (and possibly the simulations in a larger domain at lower resolution, which can
also partly determine if lower resolution simulations than what were performed here

are plausible) and experimental data into the persistence diagram.

5.5 Conclusions and Future Work

The two-phase fluid drainage process in a 3D Bentheimer sandstone sample were
studied under various reservoir conditions. The main results are summarised as the

followings, with future work being also proposed wherever relevant.

1. Based on a series of careful characterisations, from the non-unitary viscosity
test, the implementation of flux boundary condition that mimics realistic ex-
perimental setup, to the examination of the impact of large interfacial spurious
velocity on the fluid kinematics, it suggests that our current multicomponent
Lattice-Boltzmann model is a potentially suitable candidate for investigating
the key pore-scale dynamics such as the Haines jump and snap-off phenomena,
at various viscosity ratios and capillary numbers. One of the advantages of
performing LB simulations is it can provide a much higher temporal resolution
than that can currently be extracted from experiments, so that a more detailed
physical process can be resolved and more insights can be obtained, despite the

large interfacial spurious velocity reported in the next item.
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2. The zone of influence of the spurious velocity is confined only near the interface,

and the bulk velocity field is still preserved and complies well with the Hagen-
Poiseuille relation, according to our characterisations in the simple geometry
such as square tube. However, in a much more complex porous medium, there
can be numerous narrow throats and small pore bodies (further exacerbated by
the low-resolution uCT image), and the fluid-fluid and fluid-solid interfaces can
be everywhere, the widespread spurious currents really dominate the real veloc-
ity and make the velocity field near-meaningless; for our current Haines jump
velocity measurement this only has minor effect since the interfacial velocity is a
separate quantity different from the bulk velocity; however, the severe spurious
currents become more of a hindrance during the steady-state relative permeabil-
ity calculation where the bulk velocity field is directly used. Moreover, although
LB interfacial spurious velocity scales with the LB surface tension parameter «,
due to the coupled LB-to-physical unit conversion relation, the corresponding
physical spurious velocity does not change by different «. Therefore, future work
is needed to revise the multicomponent LB model in order to truly reduce the

spurious velocity.

Different LB surface tension parameter «, however, does give different temporal
resolution, i.e. the physical time per LB iteration step, and the smaller the «, the
higher the temporal resolution. Different temporal resolutions will significantly
influence the initial transient behaviour of the LB simulation. For simulations in
3D heterogeneous rock, this could lead to very different displacement patterns,
even if different « is set such that the equivalent physical system is modelled. A
potential downside of using a smaller « is it is computationally more expansive,
but such issue is gradually mitigated by the growing computer power and more

efficient LB algorithms.

. The drainage simulations are performed on a 2563 l.u.3 (~ 1.3 mm?) sub-domain

of a Bentheimer sandstone sample, under various reservoir conditions (i.e. Ca
from 107° to 5 x 10™* and M = {0.2,0.8,10}). Examining the flow patterns
from the end state of each testing case (when the NW front reaches the W phase
reservoir), it suggests that capillary fingering occurs even at high Ca and high
M, which, according to the commonly seen classification for 2D micromodels,
is deemed as in the stable displacement regime. In fact, all of the cases in o =
3.57 x 1072 resemble capillary fingering pattern, and so is the case for a = 1074,
except for the case of Ca* = 5 x 107* and M = 0.2, which resembles more
of a viscous fingering feature. Nonetheless, since the flow-pattern classification
is scale dependent, simulations in much larger domain size is needed before
more definite conclusion can be reached. The use of (Ca, M) phase diagram
to characterise the displacement regimes for the flow in 3D natural rocks might
be insufficient, and currently extensive research has been done to explore the

alternative approaches, for example, the recent work by Schliiter et al. (2016)



5.9.

Conclusions and Future Work 165

demonstrated the classification of the flow regime by fitting to a power law of

the saturation dependent Euler characteristics.

. During the drainage processes, constant Haines jumps have been observed for

all of the cases, and some of the Haines jumps lead to (Roof-type) snap-off. The
velocity profiles of these Haines jumps were measured. At this stage, due to the
relatively small sample size, a clear correlation between the fluid properties and
the peak Haines jump velocity is not yet achieved: for the case of v = 3.57 x 1072
where the average NW and W phase viscosities are on the order of 107! ~
10%mPa-s, it suggests that the invading NW phase plays a more dominant role
and a less viscous NW fluid leads to higher peak Haines jump velocity, despite
the various viscosity of the defending phase; for the case of & = 1074, where
the average NW and W phase viscosities are on the order of 10! ~ 10?mPa-s,
it seems that the viscosity of the W phase is also important, and the increase
in NW fluid viscosity is balanced by the decrease in W phase viscosity, such
that it gives the same peak Haines jump velocity as in the case of a less viscous
NW phase. Future work is needed to measure more Haines jump velocity data
(including non-snap-off Haines jumps) both from simulations and experiments,
using potentially more advanced automated front tracking techniques or others,

to achieve more comprehensive conclusions.

. All of the snap-off events are characterised by the invading throats and the pore

bodies where the ganglia reside, each of which is assigned with a throat label and
single/groups of pore body labels. These labels are obtained by partitioning the
pore space using a novel geometry-topology analysis via persistent homology.
More specifically, each labelled pore body is assigned with a ‘birth’ and ‘death’
values to indicate its topological signature, i.e. the so-called ‘persistence’ (see
more in section 5.4.4). We find that most of the snapped-off ganglia reside
in the most highly ‘persistent’ pores or their directly neighbouring pores. At
this stage, we were unable to make a more quantitative statement due to the
small sample size. Future work is needed to include more snap-off data either
from simulations (using a larger domain) or experiments so that more insightful

information can be extracted from the topological persistence analysis.
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Chapter 6

Conclusion and Future Work

The research presented here was focused on improving our understanding of multi-
phase lattice-Boltzmann modelling in practical applications. Based on the develop-
ment of a numerically stable and convenient flux boundary condition that is capable
of replicating the experimental condition more realistically, we calculated the drainage
displacement patterns under various reservoir conditions to explore the consequence
of using different sets of key LB parameters to model the same physical system and
associated issue of different LB temporal resolutions, as well as the influence of large
spurious velocity on the interface movement. These studies are of critical importance
as they enable us to better evaluate whether the pore-scale LB modelling is a robust
technique giving reliable results. Given the higher temporal resolution by LB method
than that can be currently obtained from experiments, we also had a ‘zoomed-in’
investigation of the Haines jumps and snap-off, measured the Haines jump velocity,
and characterised the geometric feature of the porous medium where the snap-off fre-
quently happens. Moreover, from a pragmatic perspective, we explored the behaviour
of multiphase LB models at low-resolution limit, since in practice, the 3D uCT im-
ages of natural rocks (used as the LB simulation domain) rarely have both sufficient
resolution and good field of view; the low-resolution behaviour of LB models has been
qualitatively grouped into several types, and was carefully characterised to evaluate
the potential consequence on the larger-scale porous media applications. Additionally,
throughout our study, it was found that two major unresolved issues in the current LB
models are the large interfacial spurious velocity and the non-physical attraction of
dissolved NW phase on the solid surface. These two issues are not limited to low reso-
lution cases, but they are not completely resolution independent, either. Although the
two issues have been identified separately by some reported works, this thesis brings
them together with other potential problems, and identifies them as being the most
serious. The main results of each chapter are as follows:

Chapter 2 gave an introduction of the theoretical framework of lattice-Boltzmann
methods. I first reviewed briefly the different levels of description of motion in the
classical context of transport phenomena, and where the continuum Boltzmann trans-
port equation, the predecessor of lattice-Boltzmann equation, fits in the hierarchy. I
then discussed the derivation of the LB equation from the continuum Boltzmann equa-

tion based on the Gaussian-Hermite quadrature, and also incorporated a systematic
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analysis of the unit conversion between physical and LB systems. The algorithmic im-
plementation of two commonly used single-relaxation-time based multicomponent LB
models, Shan-Chen and Rothman-Keller models, were introduced, which were used
later in the low-resolution study in Chapter 3. I also discussed the multiple-relaxation-
time based colour-gradient model, with a detailed Chapman-Enskog analysis recover-
ing the macroscopic Navier-Stokes equation for momentum transport and continuity
equation for mass transport. The Chapman-FEnskog analysis also revealed some lim-
itations of the current MRT model: (a) the pressure variation is currently coupled
with the phase density, which may limit the use of the model on non-unitary density
ratio applications; (b) the error terms in the recovered mass transport equation still
needs rigorous examination to quantify its potential influence.

In Chapter 3 I explored the discretisation limits of two commonly used SRT-LB
models, Shan-Chen (SC) and Rothman-Keller (RK) models, by pushing the fluid-
fluid interfacial radius of curvature and the feature size of the simulation domain
down to the discrete unit size of the computation grid. More specifically, I performed
a series of small-scale artificial-geometry tests, with and without solid boundary, and
qualitatively characterised the models’ breakdown behaviour into three subgroup as
listed in Table 3.1. Overall, both SRT-SC and SRT-RK models show reasonable
accuracy in the Young-Laplace relation, with the interfacial mean curvature being
pushed as big as ~1.0 [.w.~!. This indicates that both models are capable of simulating
dynamic process such as drainage in an effective throat radius down to ~2.0 l.u..
On the other hand, the simple-geometry tests did reveal several limitations of both
models. For SC model, the most severe problem is its inherent miscibility, which not
only violates the Kelvin solubility relation in most cases, but also causes numerical
instability especially in narrow tubes; in contrast, the RK model promotes better
phase separation and is generally more stable. Nevertheless, the wetting boundary
condition in RK model causes non-physical attraction of the dissolved NW phase near
the solid surface, and in some circumstance, the accumulated dissolved NW phase layer
can lead to non-physical transport. Based on the characterisations, it indicates that
RK model is more suitable for the practical applications with better immiscibility
and numerical stability, and larger flexibility of matching various fluid properties.
At the end of the chapter, RK model is thus used to perform drainage tests in a
Bentheimer sandstone pCT image, whose results largely confirm the observations of
previous simple-geometry tests, with discrepancies in pressures in the porous medium
consistent with the predictions from special geometries. The low-resolution behaviours
of the two models were categorised into different breakdown types, and the detailed
conclusion for each individual test can be found in section 3.7.

The dissolved NW phase problem found in the simple-geometry tests in Chapter
3 turns out to be a serious consideration for real porous medium simulations. There-
fore, Chapter 4 is dedicated to study the cause of such non-physical attraction, the
associated consequences as well as the proposed improved wettability models. For
SC model, the non-physical behaviour of dissolved NW phase in the bulk W phase is
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due to the imbalance between fluid-fluid cohesion force and fluid-solid adhesion force;
and in RK model, the attraction is caused by the non-zero phase field gradient be-
tween bulk W fluid and the solid surface. In practical porous medium applications,
the transport of non-physically accumulated thin NW phase layer eventually gener-
ates numerous ‘fake’ NW phase ganglia, which is apparently different from the known
physical processes such as snap-off during Haines jump. Researchers have been well
aware of such non-physical behaviour and have proposed several improved wettability
models. Generally speaking, there are two major methods, i.e. the energy-based ap-
proach and the geometry-based approach, with the current problematic model falling
into the former category. One of the state-of-the-art geometric methods is introduced
in this chapter. Typically the energy-based method is algorithmically simpler, which
is why it has been widely used, but it gives rise to the non-physical attraction. On
the contrary, the geometric method can satisfy the prescribed contact angle with suf-
ficient image resolution (and its low-resolution behaviour is yet to be validated), at
the cost of complicated algorithm with extra computations of various surface normal
vectors. Therefore, in the end, an alternative energy-based model with much simpler
algorithm is also proposed; however, the new wetting model has not been validated
through tests, and future work is needed to implement the model and characterise its
behaviour.

In Chapter 5, the influence of spurious velocity on the interfacial movement was ex-
amined, after which a series of primary drainage simulations in a Bentheimer sandstone
pCT image under a range of viscosity ratios and capillary numbers were performed,
with the focus of improving our understanding on the dynamics of Haines jumps and
associated snap-off. It was found in the simple square tube characterisations that the
zone of influence of the spurious velocity is confined only near the interface, and the
bulk velocity field is preserved and complies well with the Hagen-Poiseuille relation.
However, in real porous media, where there can be numerous narrow throats and
small pore bodies, the widespread interfacial spurious currents dominate the velocity
field; hence the Haines jump velocity must be measured indirectly either through the
manual front tracking or the level-set method. A key point during the investigation
is that, although LB spurious velocity scales with the LB surface tension, due to the
coupled LB-to-physical unit conversion constraint, the physical spurious velocity does
not change by different LB surface tension. What LB surface tension changes is the
time conversion factor, i.e. the temporal resolution in the unit of physical time per LB
iteration step. Different temporal resolutions significantly affect the initial transient
behaviour of the simulation, which in complex 3D natural rocks, can lead to different
displacement patterns, even if the same physical system is being modelled by different
LB temporal resolutions.

After the characterisation of interfacial spurious currents, the drainage simulations
were performed on a 256 l.u.3 (~ 1.3 mm?) sub-domain of a Bentheimer sandstone
sample, with capillary number Ca ranging from 1072 to 5 x 10™%, and viscosity ratio
M = {0.2,0.8,10}; the strongly wetting boundary condition (¢s = —1.0) is used to
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avoid the potential non-physical attraction of dissolved NW phase and the generation
of ‘fake’ NW bubbles; also, two sets of LB temporal resolutions were used for all Ca
and M, which in total gave ten testing cases. Examining the flow patterns of the end
state for each case suggests that capillary fingering occurs even at high Ca and high
M, which, according to the classification for 2D micromodels, is deemed as in the
stable displacement regime. Nevertheless, the flow-pattern classification is generally
scale dependent, thus simulations in much larger domain size is needed before more
definite conclusion can be reached. During drainage for all cases, Haines jumps have
been constantly observed, some of which lead to (Roof-type) snap-off. The velocity
profiles of these Haines jumps were measured indirectly by front tracking and level-set
method. At this stage, due to the small sample size, a clear correlation between the
fluid properties and the peak Haines jump velocity is not yet achieved: for the case
of lower LB temporal resolution, where the average NW and W phase viscosities are
on the order of 107! ~ 10%mPa-s, it suggests that the invading NW phase plays a
more dominant role and a less viscous NW fluid leads to higher peak Haines jump
velocity, despite the various viscosity of the defending phase; for the case of higher LB
temporal resolution, where the average NW and W phase viscosities are on the order of
10 ~ 10?mPa-s, it appears that the viscosity of the W phase is also important, and the
increase in NW fluid viscosity is balanced by the decrease in W phase viscosity, such
that it gives the same peak Haines jump velocity as in the case of a less viscous NW
phase. Furthermore, the location of all snap-off events were characterised by a novel
geometry-topology analysis via persistent homology, which partitions the pore space
of the medium into regions with numbered labels: each invading throat and the pore
bodies where the ganglia reside were assigned with a throat label and single/groups of
pore body labels. The labelled pore body is further assigned with a ‘birth’ and ‘death’
values to indicate its topological signature, i.e. the so-called ‘persistence’. The key
finding was that most of the snapped-off ganglia reside in the most highly ‘persistent’
pores or their directly neighbouring pores, but due to the small sample size, it still
needs more work to make a more quantitative statement.

Overall, the multiple-relaxation-time colour-gradient based LB model (introduced
in section 2.4 and exclusively investigated in Chapter 5) is potentially a good candidate
for the pore-scale simulation. However, there are still several issues in the current LB
model that may limit its applicability and robustness, and the following future work

is needed to address those issues:

1. Further investigation of the influence of the high-velocity spurious currents on
the pore-scale displacement pattern and Haines jump dynamics through narrow

throat is needed.

2. Immediately following the item above, future work of developing improved mul-
ticomponent LB models with reduced spurious current is also highly desirable.
For another popular multicomponent LB model, the free-energy model, there

are several published works reporting largely reduced spurious current or even
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elimination to machine precision when the system reaches equilibrium (Con-
nington and Lee, 2012). However, in terms of the dynamic behaviour, to the
author’s knowledge, there has not been any comprehensive study for the free-
energy models. Therefore, more work is needed to explore the influence of the
spurious current during the transient part of simulation and in dynamic simula-
tions in general. For new users of LB methods, the free-energy model seems to
be a good starting point, given its good behaviour (i.e. low spurious currents)
in static simulations; but users should also be aware that free-energy model’s

dynamic behaviour is still subject to further examination.

3. Improved wettability model which can achieve the prescribed contact angle
and more importantly eliminate the non-physical attraction of dissolved phase
is another future direction. Recently there have been several reports on the
geometric-based methods which claim that non-physical behaviour has been
fixed when the domain resolution is sufficient; however there still lacks study on
the low-resolution behaviour of such proposed models, since small geometry fea-
tures and limited resolution are constantly encountered in practical applications.
More importantly, future work is also needed to develop newer energy-based wet-
tability model, since this model can be implemented more easily in terms of its

algorithm.

4. For the current MRT-RK multicomponent model, more theoretical work is
needed to decouple the pressure variation and the phase density (see more in
section 2.4.1), so that the model can work more appropriately under non-unitary
density ratios. In addition, the error term in the recovered macroscopic mass
transport equation (see more in section 2.4.2) also needs further examination to

evaluate its influence on the simulated fluid dynamics.

In terms of the study of the pore-scale displacement, there also needs some future

work to advance our understanding, which includes as follows:

1. More Haines jump velocity profiles, including the non-snap-off Haines jumps,
need to be measured so that more statistically meaningful, comprehensive cor-
relation among fluid properties, reservoir conditions and peak Haines jump ve-
locity can be concluded. This also requires the development (or find the existent
ones) of more advanced phase front tracking techniques, instead of using the

‘home-made’ approaches implemented in this thesis.

2. In order to draw more insights of the connections between the geometric sig-
natures of porous media and the snap-off frequency, more snap-off data, both
from experiments and simulations (ideally performed in a larger domain size) is

needed.

3. One of the big challenges in carbon dioxide sequestration is how the experiment

can be managed to trap large NW clusters via non-Roof type snap-off. The
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LB simulations can be a good candidate to address this issue from a theoretical

perspective and can be used to guide the experiments.
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Methods of Measuring Interfacial

Curvature

Once the simulation data is generated, one of the key properties to be measured is
the mean curvature of the interface, since if the simulation satisfies the Laplace’s
law, the capillary pressure between non-wetting (NW) and wetting (W) phases will
be proportional to the mean curvature. In this work, we implemented two different
approaches, the surface fitting and level-set methods, to measure the mean curvature,

since measuring curvature is difficult for small radii.

A.1 Surface Fitting Method

The surface fitting method proceeds by thresholding the input fluid density function
to localise the isosurface, which defines the fluid-fluid interface on the voxel grid. The

input fluid density function is defined as:

_ Pow(X) — pw(x)
209 = ) T pulx) (A1)

where ppyw(x) and ppyw(x) are NW phase and W phase densities when the system
reaches the equilibrium state. In fact, the definition of this input function is con-
sistent with the phase field introduced in the RK model. In the neighbourhood of
voxels on this isosurface, point clouds of sets of points are constructed by linear inter-
polation (seed points near the outer edges of the isosurface are disregarded). Then,
a biquadratic surface is fitted to each point cloud, through Monge fitting using the
CGAL library (The CGAL Project, 2017). The biquadratic surface is sufficient to de-
termine the principal radii of the curvature. The calculated mean curvature values on
all of the cloud points (on the isosurface) are averaged to obtain the mean curvature
and associated standard deviations. More details of the surface fitting method can be
found in Herring et al. (2017).
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A.2 Level-set Method:

The level-set method is widely used in fluid mechanics, computational geometry and
computer vision to track the front of a moving interface, perform shape and surface
smoothing, and achieve shape detection and recognition etc. The method takes an
implicit interface representation, also known as the implicit function ¢(x), as the
input to calculate the curvature. For example, the implicit function for a 3D bubble
with the radius of R centred at the origin of the Cartesian coordinates is simply
#(x) = 22 + 9% + 22 — R, and we have ¢(x) = 0 at the interface, ¢(x) > 0 inside
the bubble, and ¢(x) < 0 outside the bubble, respectively. To be consistent with
the surface fitting method, the phase field defined in Eq.A.1 is used as the implicit
function for the level-set method, which theoretically has the properties that ®(x) = 0
at the interface, ®(x) < 0 inside the W fluid and ®(x) > 0 inside the NW fluid.

The mean curvature calculated in the level-set method depends on the first- and
second-order spatial gradients of the implicit function ®(x), which is given by (Osher
and Fedkiw, 2003):

Ka(x) = (02 + B2 + 2)2 ($2D,, — 20,D, B, + D20,
+ 2D, — 20,P. Dy + PIDpy + PLD.. — 20D, Dy, + PID,,), (A2)

where ®, and ®,, are the first and second partial derivatives of ®(x) with respect
to x-axis, respectively, and this applies similarly in the other two dimensions. Given
the finite lattice size, there is no precisely defined phase interface which gives exactly
®(x) = 0, but an abrupt transfer from a positive ®(x) at the inner interface (on
the side of NW fluid) to a negative ®(x) at the outer interface (on the side of W
fluid). Therefore the mean curvature values are extract from both the inner and outer
surfaces. By averaging the extracted curvature values, the final mean curvature as well

as associated standard deviations (over the inner and outer surfaces) can be obtained.
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Appendix B

Challenge of Low-Resolution

Contact Angle Measurement

As is mentioned in the main text, the contact angle in this work is derived from
the mean curvature. When the tube size is big and the resolution is not a limiting
factor, it is feasible to manually measure the contact angle. For example, the contact
angle can be determined by measuring the angle between the tangent to a contour
line representing the fluid-fluid interface and the side-wall of the tube, such as the
ones shown in Figure B.1(a) and (b), where the cross-sectional profiles of the phase
field of RK model at Riype = 30.0 l.u. with the model parameters ®y211 = —0.32 and
D211 = —0.84 are shown respectively. The corresponding contour lines represent the
zero phase field.

However, for small tube sizes such as Riype < 4.0 [.u. in the main text, it is
challenging to consistently identify the intersection between the fluid-fluid and the
fluid-solid boundaries, from which the contact angle can be measured. For example,
Figure B.1(c) and (d) show the cross-sectional phase field profiles at Riwpe = 4.0
l.u. with the same model parameters as in (a) and (b), respectively. Based on the
curvature measurement by the surface fitting method, the mean curvatures in Figure
B.1(c) and (d) are ~0.16 l.u.~! and ~0.47 l.u.~!, corresponding to contact angles
of 71° and 0°, respectively. If the contact angle were measured manually, we first
need to find a well-defined intersection point between the fluid-fluid interface and the
part of the contour line aligned with the side-wall of the tube. It can be seen that
inconsistently choosing an intersection point for different wetting condition in Figure
B.1(c) and (d) can lead to the same contact angle result. Firstly fitting a circle to the
major fluid-fluid interface away from the fluid-solid boundary, and using the radius
of the fitted circle as the radius of the mean curvature to derive the contact angle
is a more accurate way of determining the contact angle for small tubes such as in
Figure B.1(c) and (d). In fact, this is exactly how the contact angle is determined in
the current work: the fundamental mechanism in the surface fitting method is to fit

a sphere to the phase interface to find the mean curvature.
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FI1GURE B.1: The cross-sectional profile of the phase field of RK model
at Reype = 30.0 l.u., with the contour line showing the zero phase field
at (a) Pya11 = —0.32, and (b) Py = —0.84. Also, the cross-sectional
profiles with the contour lines at Ryype = 4.0 l.u. are shown in (c¢) with
D11 = —0.32, and (d) with ®ya13 = —0.84. The simulation domain
for (a) and (b) has a dimension of (N, N,, N.) = (62,62, 160), and for
(c) and (d) has a dimension of (N, Ny, N,) = (10, 10, 80). The profile
is extracted from the central plane at y = 5 for (a) and (b), and at
y = 31 for (c) and (d).
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Appendix C

Pressure Boundary Condition in
Shan-Chen Model

In section 3.5.2, it has been introduced that for SC model, in order to maintain a
relatively constant surface tension of the system during the fluid displacement process,
the density components extracted from the flat tube test is used as the boundary
conditions. However, for Riype = {1.5,2.0}, it is very difficult to maintain a constant
surface tension, even though the boundary conditions are calibrated from the flat tube

test, due to the large compressibility in the density.
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Ficgure C.1: Component densities of NW and W phase in the SC

model as a function of wetting parameter Gags nw (Gaas,w is fixed at

0.0), extracted from the flat tube test at Rywe of 1.5 and 3.0 lu.,
respectively.

The density components against the model wetting parameter Gags,nw, extracted
from the flat tube test at Riype = 1.5 and 3.0 l.u. are shown in Figure C.1. The case
of Riwpe = 3.0 l.u. is used as the boundary conditions for the primary drainage test
for Riype of 3.0 and 4.0 l.u., and it resembles the trend shown in Schaap et al. (2007)
(i.e. Figure 3.3 of the main text) until Gags aw = 1.5. However, as Gags,nw becomes
larger, which corresponds to an increasing capillary pressure P, the (approximately)
linearity correspondence between the density compressibility and P, is gradually bro-
ken (especially for py minor), With the case of Reuype = 1.5 l.u. having an earlier onset.

It can be seen that the trend in py minor at Reuwve — 1.5 l.u. is inverted after Gags, nw
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= 0.7, indicating the actual surface tension keeps increasing for Gags,nw > 0.7. There-
fore, no matter how high the capillary pressure is set, the NW phase will not break
through since the actual entry pressure keeps increasing correspondingly. Figure C.2
shows the PD curves at Riupe = 1.5 and 2.0 [.u., where the density components at the

boundaries are extracted from the flat tube test of Rywe = {1.5,2.0}, respectively.
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FiGURE C.2: Primary drainage curves for SC model at the tube size
Riwwe = {1.5,2.0} l.u., where the boundary conditions are extracted
from the flat tube test of Rewe = {1.5,2.0}, respectively. P€ is the
capillary pressure and o is the surface tension. The W phase saturation
Sy is calculated based on the grey-scale method (i.e. method (iv), see
section 3.5.1). The entry pressure of the reference line is obtained
from the flat tube test of Riwe = 20.0 [.u. of the SC model. The S,,
beyond the entry pressure in the reference line is calculated according
to equation (3.8).

Moreover, as is mentioned in the main text, the displacement will occur provided
that py minor is fixed at a much smaller value than those extracted from the flat tube
test. An example of a PD curve is shown in Figure C.3, where it shows that, although
a displacement does take place, the system reaches several non-physical equilibrium
states at 0.5 < 5, < 0.8, which indicates that the surface tension is changed along
the length of the tube (i.e. type II breakdown behaviour)
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F1Gure C.3: Primary drainage curves for SC model at the tube size
Riwe = 2.0 l.u., where the density components pnu majors Paw,minor and
Pu,major at the boundaries are extracted from the flat tube test of

Riwe = 1.5 l.u., and py ninor is fixed at 0.0005.

P¢ is the capillary

pressure and o is the surface tension. The W phase saturation S,, is
calculated based on the grey-scale method (i.e. method (iv), see sec-
tion 3.5.1). The entry pressure of the reference line is obtained from
the flat tube test of Riype = 20.0 l.u. of the SC models. The S,, be-
yond the entry pressure in the reference line is calculated according to

equation (3.8).
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Appendix D

Characterisation of Bentheimer

Sandstone Sample

Pore and throat size analyses have been performed for a sub-domain of size 2563 [.u.3
from the Bentheimer sandstone samples in Herring et al. (2017). The resolution of
the image is 4.95um/l.u., and the porosity of this sub-domain is 0.22. The dry image
of the sample is processed based on the watershed partitioning and network statistical
analysis; the detailed workflow is not repeated here, and readers are referred to Her-
ring, Robins, and Sheppard (2019) for more details. In Figure D.1, the distribution
of the pore and throat radii are shown in the lattice unit [.u., and distributions are

normalised by the total number of pores and throats, respectively.
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FIGURE D.1: The Pore and throat size distributions of the sub-domain
of 256 l.u.® of the Bentheimer sandstone sample in (Herring et al.,
2017).
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Appendix E

Effect of Resolution on Dissolved

Non-wetting Phase

It has been discussed that the generation of the non-physical non-wetting phase ganglia
in the drainage simulation in the Bentheimer sandstone sample is irrelevant to the
boundary condition, but is related to the contact angle. Here it shows that the non-
physical phenomenon is also irrelevant to the resolution. It is already known that the
ganglion comes from the transport of dissolved non-wetting phase at the solid surface,
thus for nodes highlighted in the inset of Figure E.1, the dissolved non-wetting phase
densities of RK model are plotted for contact angles from 0° to 90°. For all tube sizes,
the density on corner nodes are generally larger than that on the normal fluid boundary
nodes, since the corner boundary nodes have more solid neighbours and attract more
dissolved non-wetting phase. Also, the dissolved non-wetting phase density becomes
smaller as the contact angle becomes smaller. The dissolved densities on the normal
fluid boundary nodes vary slightly for different tube sizes. For the corner boundary

nodes, at the same contact angle, the dissolved density is larger for a larger tube size.
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F1GUurRE E.1: The dissolved non-wetting phase density of RK model
is plotted against the wetting boundary control parameter |®ya11]| for
different tube sizes. |®ya11| goes from 0.0 to 1.0, corresponding to the
contact angle from 90° to 0°. The inset of a cross-section of the square
tube illustrates the corner fluid nodes (in red) and the normal fluid
boundary nodes (in blue). All solid symbols indicate the dissolved
density on the corner nodes, and blank symbols indicate the dissolved
density on the fluid boundary nodes.
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Appendix F

Mean Curvature Measured by
Level-set Method

F.1 Bubble Test

In section 3.3, the mean curvature results measured by the surface fitting method and
the method proposed by Hou et al. (1997) are shown. Here the results measured by
the level-set method and the surface fitting method are presented for completeness.
The data is summarised in Figure F.1. For the surface fitting method, the error bars
come from the standard deviations by averaging the measured mean curvature values
at cloud points on the iso-surface ( i.e. the fluid-fluid interface). For the level-set
method, the standard deviations are due to averaging the curvature values over both
the inner interface (on the side of NW phase) and the outer interface (on the side of
W phase). As a result, it can be seen from Figure F.1 that the standard deviations
of the level-set method is generally greater than those of the surface fitting method.
In Figure F.1(b) for RK model, it can be seen that the mean curvature of the
smallest bubble given by the surface fitting method is greater than 2.0 l.u.~!, corre-
sponding to a bubble radius of less than one voxel. For such a small bubble, the NW
phase density pau major is severely degraded, such that the region where ®(x) > 0.0
(indicating the region occupied by NW phase) is limited in a cube of 2 x 2 x 2 L.u.3;
the surface fitting algorithm relies on both the input function ®(x) and a segmented
phase domain calculated based on ®(x) (i.e. 1 for NW phase if ®(x) > 0.0, and 2 for
W phase if ®(x) < 0.0). This is why the surface fitting algorithm gives an unrealisti-
cally high curvature value. Whereas for the level-set method, the final mean curvature
value is averaged out because both the surface of the cube of 2 x 2 x 2 L.u.? (i.e. the
inner interface) as well as the surface of the cube of 4 x 4 x 4 [.u.? (i.e. the outer
interface) are considered; the outer interface usually gives smaller curvature values
than the inner interface, therefore such an averaging process tends to even out the
unrealistically high curvature values given by the inner interface. This is why in Fig-
ure F.1(d), the mean curvature of the smallest bubble given by the level-set method is
not as large as in the case of the surface fitting method, but the associated standard
deviation is inevitably big since the averaging is taken from two surfaces. Overall,

the measured curvature values given by the surface fitting and the level-set method
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FIGURE F.1: The test of the Laplace’s law, where the mean curvature
is measured by the surface fitting method for (a) SC model, and (b)
RK model. The mean curvature measured by the level-set method is
shown for (c) SC model, and (d) RK model. The measured capillary
pressure is normalised by the fitted surface tension for each G, and
Ag . For RK model, the measured mean curvature for the smallest
bubble given by both methods is greater than 1.2 [.u., so the insets are
used in (b) and (d), respectively, to show the full range of curvature
values.

tend to converge for low curvature values, which is expected since the resolution is
not a limiting factor. At large curvatures, the NW phase density degrades and this
will affect the input function ®(x), so the difference in the algorithms of two methods

starts to play a role and the results begin to diverge.

F.2 Flat Tube Test

In this section, the capillary pressure - mean curvature relations measured by the
surface fitting and the level-set methods are presented. The results are summarised
in Figure F.2. The error bar of the capillary pressure is due to the calculation of
the volume-averaged pressure. The error bar of the mean curvature in the surface
fitting method is due to the averaging process of mean curvature values measured

from all cloud points on the iso-surface. For the level-set method, this averaging
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process is taken over both the inner interface (i.e. on the side of the NW phase) and
the outer interface (i.e. on the side of the W phase), which is why the corresponding
standard deviations are much greater than those in the surface fitting method. For
Rewpe < 2.0 lu., the resolution is too low for the surface fitting method to extract
enough cloud points, therefore the linear interpolation is applied to the original density
data before the measurement is taken. For consistency, the level-set method uses the
same interpolated density data. Based on the Figure F.2, it can be seen that the

measurement results given by two methods have good agreement.
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FIGURE F.2: The mean curvature - capillary pressure measurements

for (a) SC model, and (b) RK model. The black line in each sub-plot

is a prediction line, assuming a one-to-one correspondence between

the mean curvature and the normalised capillary pressure. Note that

for Regpe = 1.5 and 2.0 [.u., the linear interpolation is applied to the

original density data before the surface fitting and level-set method
are performed.

F.3 Tilted Tube Test

For the tilted tube test, the capillary pressure - mean curvature relations measured
by the surface fitting and the level-set methods are presented in Figure F.3. The
averaging process in the level-set method involves both the inner and outer phase
interface, whereas the surface fitting method takes averages over the reconstructed
iso-surface. This explains why the standard deviations in level-set method is greater

than those in the surface fitting method.
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FIGURE F.3: The mean curvature - capillary pressure measurements

for (a) SC model, and (b) RK model. The black line in each sub-plot

is a prediction line, assuming a one-to-one correspondence between

the mean curvature and the normalised capillary pressure. Note that

for Ryi1tea — 1.85 Lu., the linear interpolation is applied to the orig-

inal density data before the surface fitting and level-set method are
performed.
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Appendix G

Breakdown Examples of Primary

Drainage in Square Tube

As is discussed in the main text, both Shan-Chen (SC) and Rothman-Keller (RK)
models present some breakdown behaviour in the primary drainage tests in a square
capillary tube. More specifically, in section 3.5.2, we investigate the influence of the
pressure boundary condition on SC model’s behaviour, and found that the invading
non-wetting (NW) phase may snap off if the required entry pressure is high. This
is a side effect of using density values from the static flat tube test as the pressure
boundary condition. More discussion on this can be found in Appendix C. Figure G.1
shows an example of such snap-off process during the drainage of a square tube of
Riwpe = 4.0 Lu..

Also, as is discussed in section 3.5.4, if the surface-to-volume ratio of the porous
plate is too large, once the phase front of the invading NW phase approaches the
porous plate, there is a leakage of the NW phase through the porous plate and NW
phase bubble is generated in the wetting phase reservoir on the other side. This is due
to non-physical attraction of the dissolved NW phase near the solid surface and more
discussion can be found in Chapter 4. Figure G.2 shows an example of such leakage

process during the drainage of a square tube of Riype = 4.0 l.u..
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FIGURE G.1: Screen-shots of a breakdown process for SC model where
the invading non-wetting phase snaps off after the entry in a primary
drainage in square capillary tube. The black arrow indicate the time
flow of the simulation. The two-dimensional phase distribution is ex-
tracted from three-dimensional simulations. The inscribed radius of
the capillary tube is Ryye = 4.0 l.u.. The inscribed radius of the sin-
gle pore of the porous plate (Ryore) is 0.5 [.u., and the thickness of the
porous plate (Lpore) is 3.0 l.u.. The pressure values being applied to
the inlet and the outlet of the domain come from the density values of
static flat tube tests (Rewpe = 1.5 l.u.). The snap-off of the non-wetting
phase occurs at the dimensionless capillary pressure P2 of 4.62 (See
Table 3.4 of the main text).
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F1GURE G.2: Screen-shots of a breakdown process for RK model
where the invading non-wetting phase leaks through the porous plate
after the entry in a primary drainage in square capillary tube. The
black arrow indicate the time flow of the simulation. The two-
dimensional phase distribution is extracted from three-dimensional
simulations. The inscribed radius of the capillary tube is Ryype = 4.0
l.u.. The inscribed radius of the single pore of the porous plate (Rpore)
is 0.5 L.u., and the thickness of the porous plate (Lpore) is 3.0 l.u..The
non-physical leakage of the invading non-wetting phase through the
porous plate occurs at the dimensionless capillary pressure P2 of 1.77,
whereas theoretically the entry (dimensionless) pressure for Rpere =
0.5 l.u. is 14.16 (See Table 3.4 of the main text).
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Appendix H

Snap-off Events During Drainage

In this appendix, the detailed snap-off processes are shown for all cases of o = 3.57 x
1072, according to Table 5.1 in Chapter 5. For the cases of o = 10, due to the use of
more viscous fluids, the total time scale of the snap-off process is around one order of
magnitude longer, and it is infeasible to simply ‘dump’ every pictorial-format snapshot
of the saved data in here. Therefore, videos have been made for all of snap-off events
of & = 107*, and the media data can be accessed upon request.

The snapshots of the case 1, 3, 4 and 5 for a = 3.57 x 1072 is per 1000 LB time
steps (i.e. ~0.89 ms), and the snap-off events are identified by identifier with the

format as follows:
Case number /pore body labels /pore throat labels

where the pore body and throat labels are characterised based on geometry-topology
analysis via persistent homology (Robins et al., 2015; Herring, Robins, and Sheppard,
2019).

For case 1, there are three snap-off events observed during drainage, and the
snapshots of these events are shown in Figure H.1, H.2 and H.3, respectively. For
case 3, there are in total seven consecutive snap-off events; since those snap-off events
all occur in the same pore-body group via the same throat, only the first snap-off is
shown in Figure.xx. For case 4, there are two snap-off events, which are shown in
Figure H.5 and H.6, respectively. Lastly, for case 5, there are in total six snap-off
events according to Table 5.1, and for snap-off events occurring between LB time of
1,589,000 [.t. and 1,620,000 [.t., since it is in fact a series of break-up and coalescence
events all occurring in the same pore bodies, the entire process is shown in Figure H.9,
and the rest of two snap-off events are shown in Figure H.7 and H.8, respectively. It
is noted that, the global capillary number that is used to specify each case is defined
with respect to the more viscous fluid (consistent with the main body of the thesis),
thus the notation Ca*.
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Tirme=150,000 1.1, Time=151,000 |.1. Time=152,000 ..

Ficure H.1: Visualisation of snap-off process for LB primary

drainage simulation with the snap-off event identifier 1/(5; 8)/752,

which means it is case 1 (Ca* = 5 x 1074, M = 0.2), and the pore

filling occurs in pore bodies with labels 5 and 8, through the invading
throat with label 752.
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Time=248,000 |t

FiGure H.2: Visualisation of snap-off process for LB primary

drainage simulation with the snap-off event identifier 1/(5; 49; 55) /752,

which means it is case 1 (Ca* = 5 x 1074, M = 0.2), and the pore

filling occurs in pore bodies with labels 5, 49 and 55, through the
invading throat with label 752.

Time=257.000 Lt

Ficure H.3: Visualisation of snap-off process for LB primary

drainage simulation with the snap-off event identifier 1/(5; 49; 55) /752,

which means it is case 1 (Ca* =5 x 107*, M = 0.2), and the pore

filling occurs in pore bodies with labels 5, 49 and 55, through the
invading throat with label 752.
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L — L —
Time=1.776,000 1. Time=1,776,000 1.1 Time=1.777,000 L.

Time=1,778,00011.

FiGure H.4: Visualisation of snap-off process for LB primary

drainage simulation with the snap-off event identifier 3/(5; 8)/752,

which means it is case 3 (Ca* = 1.25 x 1075, M = 0.8), and the pore

filling occurs in pore bodies with labels 5 and 8, through the invading
throat with label 752.

— ]
Time=194,000 1.£ Time=195,000 1.1 Time=196.000 11, Time=197.000 L1, Time=198.000 11

FIGURE H.5: Visualisation of snap-off process for LB primary

drainage simulation with the snap-off event identifier 4/(15; 16),/709,

which means it is case 4 (Ca* = 5 x 107*, M = 10), and the pore fill-

ing occurs in pore bodies with labels 15 and 16, through the invading
throat with label 709.
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o — CGE— G
Time=212,000 1. Time=213.00011. Time=214,000 |1, Time=215.000 1.

FiGURE H.6: Visualisation of snap-off process for LB primary

drainage simulation with the snap-off event identifier 4/8,/752, which

means it is case 4 (Ca* = 5 x 1074, M = 10), and the pore filling

occurs in pore bodies with label 8, through the invading throat with
label 752.
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Time=S8T 000 Lt,

Ficure H.7: Visualisation of snap-off process for LB primary

drainage simulation with the snap-off event identifier 5/2/627, which

means it is case 5 (Ca* = 5 x 1075, M = 10), and the pore filling

occurs in pore bodies with label 2, through the invading throat with
label 627.
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[ S S
Tera=] ST200LE Tira=] STA0001L Trran=1 ST4000 Lt

Tersra 1 STS000 L1

Ficure H.8: Visualisation of snap-off process for LB primary

drainage simulation with the snap-off event identifier 5/(15; 16)/646,

which means it is case 5 (Ca* = 5 x 107°, M = 10), and the pore

filling occurs in pore bodies with labels 15 and 16, through the invad-

ing throat with label 646. The process shown here corresponds to the

snap-off event occurring at LB time of 1,574,000 I.t. (see Table 5.1 in
Chapter 5).
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FIGURE H.9: Visualisation of the consecutive snap-off/reconnection

cycle for LB primary drainage simulation with the snap-off event iden-

tifier 5/(15; 16)/646, which means it is case 5 (Ca* = 5 x 107°,

M = 10), and the pore filling occurs in pore bodies with labels 15 and

16, through the invading throat with label 646. The events shown here

correspond to the snap-off events occurring from LB time of 1,605,000
I.t. to 1,620,000 I.t. (see Table 5.1 in Chapter 5).
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Appendix 1

Young-Laplace Relation for

Drainage in Square Tube

In this appendix, the supplementary results for section 5.2.1 and 5.2.2 are presented, to
examine the Young-Laplace relation during the capillary filling and drainage processes.
The phase pressure difference across the fluid interface, p, — p,, (normalised by LB
surface tension) is plotted against the NW-W interface mean curvature, where the
mean curvature is measured by the surface fitting method for Ryype = {5.0,10.0} l.u..
For Riypbe = 3.0 l.u., however, the mean curvature measured by the in-situ facility of
LB code is extracted, since there are not enough surface cloud points for the surface
fitting method to work, unless the interpolation is used. Figure 1.1 and 1.2 show the
results for the capillary filling and the drainage processes, respectively. In particular,
for the case of drainage, the colour of the symbols, from dark to light, corresponds to

the prescribed global Ca from low to high.
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FIGURE I.1: Mean curvature measured by the surface fitting method

is plotted against the phase pressure difference normalised by the LB

surface tension, for capillary filling in a square tube, for (a) a = 1072,

and (b) a = 10~%. Both the mean curvature and the pressure differ-

ence are measured from the steady-state part of the simulation, where

the mean values are calculated and presented in the figure, with the
error bars indicating the standard deviations of the mean.
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FI1GURE 1.2: Mean curvature measured by the surface fitting method

is plotted against the phase pressure difference normalised by the LB

surface tension, for drainage in a square tube, for (a) a = 1072, and

(b) @ = 10~%. Both the mean curvature and the pressure difference

are measured from the steady-state part of the simulation, where the

mean values are calculated and presented in the figure, with the error
bars indicating the standard deviations of the mean.
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