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Abstract

We present interferometric observations of six O-type stars that were made with the Precision Astronomical Visible
Observations beam combiner at the Center for High Angular Resolution Astronomy (CHARA) Array. The
observations include multiple brackets for three targets, λOriA, ζOph, and 10Lac, but there are only
preliminary, single observations of the other three stars, ξPer, αCam, and ζOriA. The stellar angular diameters
range from 0.55 mas for ζOriA down to 0.11 mas for 10Lac, the smallest star yet resolved with the CHARA
Array. The rotational oblateness of the rapidly rotating star ζ Oph is directly measured for the first time. We
assembled ultraviolet to infrared flux measurements for these stars, and then derived angular diameters and
reddening estimates using model atmospheres and an effective temperature set by published results from analysis
of the line spectrum. The model-based angular diameters are in good agreement with those observed. We also
present estimates for the effective temperatures of these stars, derived by setting the interferometric angular size
and fitting the spectrophotometry.
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1. Introduction

The fundamental properties of early O-type stars, such as mass,
radius, and temperature, are the essential parameters required to
place stars in the Hertzsprung–Russell diagram for comparison
with stellar evolutionary tracks. The derivation of these quantities
is usually reserved to members of eclipsing binary stars in which
combined radial velocity and photometric light curve analysis can
yield estimates of mass and radius (Torres et al. 2010). However,
some of these systems probably interacted at some point in their
evolution, and comparisons of their properties with evolutionary
tracks for single stars may not be entirely reliable. Instead, most of
the work on the fundamental parameters of individual O-type stars
is based on analysis of the line spectrum, in which the temperature
and gravity are derived from the He line ionization balance and
the pressure broadening of the hydrogen lines. These studies rely
upon detailed atmospheric models that must take into account
non-local thermal equilibrium (non-LTE) populations, line-
blanketing, and spherical winds. FASTWIND (Santolaya-Rey
et al. 1997; Puls et al. 2005), TLUSTY (Hubeny & Lanz 1995),
and CMFGEN (Hillier & Miller 1998) are all non-LTE models
that can be applied to O-star atmospheres and use different
methods to deal with the line-blanketing problem. FASTWIND
and CMFGEN also take into account the effects of winds
(important in more luminous stars) while TLUSTY does not.
These studies are often used to calibrate the MK-classifications of
O-stars in terms of temperature and gravity (Martins et al. 2005;
Holgado et al. 2018). However, although these calibrations serve
as a general reference to connect the spectral classifications of a
given star and its parameters, one has to use them carefully when
studying the properties of a specific individual target of interest.
For example, Simón-Díaz et al. (2014) applied spectral line fits

using FASTWIND models to investigate the effective temperature
relation with O-subtype. They found a significant scatter of
effective temperatures among O-stars of similar spectral type that
is partially due to the variation of glog within the O-dwarf
luminosity class.
It is important to test the atmosphere models for O-stars

because we now rely upon them so completely. The simplest
approach in principle is to determine the stellar effective
temperature Teff from the relationship between the extinction-
corrected bolometric flux, angular diameter θ, and effective

temperature: f T
1

4bol
2

eff
4q s= . This method was pioneered by

Hanbury Brown et al. (1974) who used the Narrabri Stellar
Intensity Interferometer to measure the angular diameters of 32
stars in the spectral range from O5 to F8 (including two stars
considered here). Code et al. (1976) used the early satellite
observations of the UV flux of these stars to record their
spectral energy distribution (SED) and determine effective
temperature. However, there were only three O-type stars in the
sample observed by Hanbury Brown et al. (1974), and the great
distances of the O-stars made other high angular resolution
measurements impossible until now.
Furthermore, there are a number of intrinsic problems in

using the flux and angular diameter method that were initially
discussed by Abbott & Hummer (1985) and Hummer et al.
(1988). The primary issue is that most O-stars radiate a large
fraction of their flux in the extreme UV, at wavelengths smaller
than the Lyman limit at 912Å. This part of the spectrum is
totally obscured by the local interstellar medium in general, and
consequently we must rely upon stellar atmosphere models to
predict the flux at short wavelengths. The region of spectrum
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we can observe is in the Rayleigh–Jeans tail where the
continuum shape is more or less independent of temperature, so
that the intrinsic shape of the UV continuum (Massa &
Savage 1985) and unreddened optical/IR colors (Martins &
Plez 2006) are similar among all O-stars. The second problem
is that the flux in the observed part of the spectrum has a
gravity dependence. The size of the Lyman jump in the SED
depends on the ionization state of H, and the higher ratio of
ionized to neutral H atoms among the supergiants results in a
smaller Lyman jump and lower flux at longer wavelengths
compared to those of the dwarf O-stars with the same Teff (see
Figure11 in Lanz & Hubeny 2003). Consequently, the star’s
gravity must be known from other means in order to fit the
observed continuum with an appropriate model. Finally, most
O-stars are very distant objects and their flux distributions are
altered by interstellar extinction. Thus, fits of their observed
flux must deal carefully with the details of dust extinction that
can vary with our line of sight through the interstellar medium
(Fitzpatrick 1999; Maíz Apellániz et al. 2014).

Four decades after the work of Hanbury Brown et al. (1974),
we are now able to renew the flux and angular diameter method
thanks to the advent of long-baseline optical interferometry.
Using measurements made possible with the Center for
High Angular Resolution Astronomy (CHARA) Array (ten
Brummelaar et al. 2005), we can determine the angular
diameters of the brighter O-stars that have good SED
measurements available and that have well-established gravi-
ties from detailed studies of their line spectra. The angular
diameter measurements need to be accurate in order to compare
the continuum and line results. The relation between the
emitted Fλ and observed fλ monochromatic flux is

F T g Z f, log , 10 2 ,A
eff

0.4 2q=l l
l( ) ( )

where Aλ is the extinction (in magnitudes) and θ is the angular
diameter (in radians). The monochromatic flux in the Rayleigh–
Jeans tail varies with temperature as Fλ∝Teff, so for a given
observed monochromatic flux and extinction, the derived
temperature will vary as Teff∝θ−2 and the fractional uncertainty
will be T T 2eff eff q q» . Thus, accurate, sub-milliarcsecond
angular measurements are needed to provide an effective test of
the spectral predictions of the current generation of atmospheric
models.

Here, we present the results of our angular diameter
measurements of a sample of six O-type stars. Section 2 discusses
the observations, calibration, and reduction methods to obtain the
interferometric visibility as a function of baseline and position
angle in the sky. In Section 3.1, we show fits of the visibility
measurements to obtain a limb-darkened angular diameter θLD,

and in Section 3.2 we collect the available spectrophotometry and
make fits of the SED as a function of temperature, angular size,
and reddening. In Section 4, we gather distance estimates in order
to transform the angular diameters into linear radii, and we
compare the angular size derived from interferometry with that
from model fits of the continuum flux for published values of
effective temperature.

2. Observations

The stars in our sample consist of six O spectral type stars
ranging from O7.5 to O9. There are two supergiants, two
giants, one sub-giant and one dwarf. Table 1 lists the
parameters of the objects. The effective temperature Teff given
in column 8 is the average of the recently published values that
are gathered in Table 2. The gravity glog listed in column 9 is
likewise the average from those papers noted in Table 2.
Four of the six O stars observed have close companions

reported from speckle, adaptive optics, and other studies listed
in the Washington Double Star Catalog.6 Parameters of the
companions are shown in Table 3. Most of these companions
are faint and have separations greater than the interferometric
field of view of 1″, so their flux has no influence on our
interferometric data. The exception is the close companion to
ζOriA, which is discussed below. The companions will,
however, contribute to the net flux measured in the SEDs (with
the exception of the negligible contributions from the very faint
companions of ξ Per and 10 Lac), and we deal with this
complication in Section 3.2 below.
Observations of our targets were made using the Precision

Astronomical Visible Observations (PAVO) beam combiner
(Ireland et al. 2008) at the CHARA Array (ten Brummelaar
et al. 2005), located at Mount Wilson Observatory in California.
The CHARA Array is an optical interferometer composed of six
1m telescopes arranged in a Y-shaped configuration. Combina-
tions of the telescopes allow for 15 different usable baselines
ranging in length from 34 to 331m. Combining the longest usable
baseline currently available in the world and the operating
wavelength range of the PAVO beam combiner (650–800 nm),
we were able to achieve an extremely high angular resolution for
our targets of about 0.2 mas.
The beams from the Array are fed into the PAVO combiner

by a set of lenses and mirrors (Ireland et al. 2008; Maestro et al.
2012). The final set is three small movable prisms that guide
the beams to the image plane. After being focused in the image
plane, the beams pass through a three-hole mask that spatially
filters the light (only two beams and two holes are used here).

Table 1
Parameters of Target Stars

Identifier Star HD Spectral V B−V V−K Teff glog V isin
Name Number Classification (mag) (mag) (mag) (kK) (c.g.s.) (km s−1)

a ξ Per 24912 O7.5 III(n)((f)) 4.06 0.02 0.11 34.3±0.8 3.49±0.12 230
b α Cam 30614 O9 Ia 4.29 0.05 0.05 29.4±1.0 3.03±0.19 113
c λ Ori A 36861 O8 III((f)) 3.47 0.01 −0.56 34.5±0.8 3.64±0.13 59
d ζ Ori A 37742 O9.2 Ib 1.88 −0.11 −0.44 29.5±1.0 3.25±0.25 124
e ζ Oph 149757 O9.2 IVnn 2.56 0.02 −0.06 32.1±1.3 3.66±0.13 311
f 10 Lac 214680 O9 V 4.88 −0.21 −0.62 35.5±0.5 3.97±0.08 16

Note.Effective temperatures and gravities are average values taken from the sources listed in Table 2. Spectral types are from the Galactic O-Star Spectroscopic
Survey (Sota et al. 2011). Projected rotational velocities V isin are from Simón-Díaz & Herrero (2014).

6 http://ad.usno.navy.mil/wds/
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The beams then interfere and produce fringes that are spatially
modulated in the pupil plane. Finally, a lenslet array divides the
pupil into 16 segments and a prism disperses the fringes in each
segment into 23 or more spectral channels. Throughout a night
of observing the alignments of the image and pupil plane are
checked for each new target, fringes are found, and adjustments
made to optimize the longitudinal dispersion corrector position.

Data for each target were taken using the standard “bracket”
method where one bracket is three scans in order of: calibrator–
target–calibrator. Observing in brackets allows the visibilities
recorded for the target to be properly calibrated and eventually
fit to obtain angular diameters. We obtained multiple brackets
for λOriA, ζOph, and 10Lac, but we were limited to a single
bracket with only one calibrator observation for ξPer, αCam,
and ζOriA, because of changing sky conditions over the
timespan of the bracket. The results on these latter three targets
are preliminary.

Calibrators were chosen to be unresolved, single, slowly
rotating stars that were close to the target in brightness and
position in the sky. The angular diameters were adopted from
the Jean-Marie Mariotti Center Stellar Diameter Catalog
(JSDC7) using values from Version 1 (Lafrasse et al. 2010)
for most and from Version 2 (Bourgés et al. 2014) for the three

calibrator stars associated with the 10Lac observations. The
JSDC diameters are listed in Table 4 and are estimated by
making a polynomial fit of the differential surface brightness of
a star as a function of spectral type (Chelli et al. 2016). The
JSDC diameters are generally in good agreement with
independent estimates from CADARS (Pasinetti Fracassini
et al. 2001) and Swihart et al. (2017) (see Table 4). The
exception is the calibrator for ζOph, HD154445, which has a
larger size in the JSDC Catalog. The angular diameter of
HD154445 is given as 0.16 mas by CADARS, 0.18 mas by
Swihart et al. (2017), and a spectroscopic study by Lyubimkov
et al. (2002) implies a diameter of 0.21 mas. These diameter
estimates are all significantly smaller than the JSDC value of
0.28 mas, so we adopted the angular diameter found by Swihart
et al. (2017) of 0.18 mas for this calibrator.
Observations of our targets with CHARA were accomplished

from 2013 November to 2017 June. For all observations only one
baseline, or two telescopes, was used at a time. Observing data,
including dates, baselines, and calibrated visibilities, are given in
Table 5 (given in full in the online version). Column 4 of Table 5
lists the spatial frequency of the observation, or baseline divided
by wavelength. Columns 5 and 6 give the positions in the u, v
plane of spatial frequency for each observation. Column 8 gives
the visibility squared and column 9 gives the uncertainty
associated with each V2 measurement.

Table 3
Companions of Target Stars

Star Separation ΔmV Teff gLog Spectrophotometric Interferometric
Name (arcsec) (mag) (kK) (c.g.s.) Correction Correction

ξPer 2.4a 9.8a L L N N
λ Ori A 4.2a 2.3a 25.4b 4.21b Y N
ζ Ori A 0.037d 2.2d 26.7c 4.0c Y Y

2.4a 1.9a 31.0e 3.8e Y N
10 Lac 3.6a 9.9a L L N N

Note.The last two columns indicate if it was necessary (Y=yes, N=no) to make corrections to the spectrophotometric or interferometric fits due to the
companions.
a Turner et al. (2008).
b Lyubimkov et al. (2004).
c Typical values for a B1IV star (Hummel et al. 2013).
d Hummel et al. (2013).
e Typical values for a B0III star (Hummel et al. 2013).

Table 2
Properties from the Literature: Teff (kK), glog (c.g.s.)

Source ξ Per α Cam λ Ori A ζ Ori A ζ Oph 10 Lac Code

Bouret et al. (2008) L L L 29.5, 3.25 L L CMFGEN
Herrero et al. (2002) L L L L L 35.5, 3.95 FASTWIND
Holgado et al. (2018) L 29.4, 2.90 35.2, 3.50 L L 35.2, 3.90 IACOB-GBAT
Marcolino et al. (2009) L L L L 32.0, 3.60 L TLUSTY
Markova et al. (2004) 34.0, 3.35 31.0, 3.19 33.6, 3.56 L L L FASTWIND
Martins et al. (2012) L L L 29.5, 3.25 L L CMFGEN
Martins et al. (2015) 34.0, 3.60 29.5, 3.25 35.0, 3.75 L 31.0, 3.60 35.0, 4.05 CMFGEN
Martins et al. (2017) 33.5, 3.50 L 35.0, 3.75 L L L CMFGEN
Mokiem et al. (2005) L L L L 32.1, 3.62 36.0, 4.03 FASTWIND
Najarro et al. (2011) L 28.9, 3.01 34.5, 3.70 L L L CMFGEN
Puls et al. (2006) 35.0, 3.50 29.0, 3.00 33.6, 3.56 L L L FASTWIND
Repolust et al. (2004) 34.0, 3.50 29.0, 2.97 L L 32.0, 3.65 L FASTWIND
Repolust et al. (2005) L 29.0, 2.88 L L 33.5, 3.85 L FASTWIND
Simón-Díaz et al. (2006) L L L L L 36.0, 3.90 FASTWIND

7 http://www.jmmc.fr/jsdc
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The data were reduced using the standard data reduction and
fitting pipeline written for use with the PAVO instrument
(Ireland et al. 2008; Maestro et al. 2012). This pipeline first
takes the raw data through a routine that allows for the rejection
of bad data frames. This allows the user to make cuts based on
values of signal-to-noise ratio and loss of lock on fringes. The
data undergo background subtraction and photon-bias subtrac-
tion, with foreground frames, ratio frames, and dark frames
taken during a shutter sequence that runs after fringe data are
saved. During a foreground frame all shutters are open but
fringe tracking is turned off, and during a ratio frame only one
shutter is left open at a time. The processed data are then sent
through a second routine that calculates the projected baseline
vectors for each observation, calibrates the brackets, and
outputs the calibrated visibilities. This routine allows the user
to define estimates and uncertainties on the calibrator

diameters, as well as provide a limb-darkening coefficient for
a linear limb-darkening law.
We generally assume spherical symmetry for the targets so

that the angular diameter is independent of the position angle of
the baseline projected on the sky. However, ζ Oph is a special
case as it is very rapidly rotating with a projected rotational
velocity Vsini=348 km s−1, and it will have a rotationally
distorted shape. We observed ζ Oph on two nearly orthogonal
baselines to obtain a range in (u, v) coverage and to ascertain
the angular size at different position angles across the star.
The target ζOriA has a close companion with an orbit

measured by Hummel et al. (2013), and the predicted angular
separation was 33 mas at the time of our observation with a V-
band magnitude difference of 2.2 mag. This companion is close
enough and bright enough to contribute extra light and a
periodic modulation to the observed visibility measurements

Table 4
Calibrator Stars

Star Spectral Target θLD(JSDC) θLD(CADARS) θLD(Swihart)
Name Class. ID (mas) (mas) (mas)

HD 27777 B8 V a 0.172±0.012 0.20 0.175±0.037
HD 29646 A2 V d 0.199±0.014 L 0.249±0.019
HD 34989 B1 V c 0.132±0.009 0.10 0.118±0.026
HD 37320 B8 III c 0.158±0.011 L 0.163±0.035
HD 38831 A0 Vs b 0.149±0.010 0.17 L
HD 154445 B1 V e 0.280±0.019 0.16 0.180±0.041
HD 204403 B3 V f 0.171±0.006 0.17 0.154±0.048
HD 212978 B2 V f 0.106±0.004 0.10 L
HD 213272 A2 V f 0.175±0.005 0.16 L

Note.Target ID is the star identifier given in Table 1.

Table 5
Calibrated Visibilities

HD Telescope 10−6 B/λ u v Baseline
Number MJD Pair (rad−1) (arcsec−1) (arcsec−1) (m) V2 ΔV2

(1) (2) (3) (4) (5) (6) (7) (8) (9)

24912 57340 W1E1 391.03 −1857.16 −380.64 310.28 0.668 0.025
24912 57340 W1E1 394.91 −1875.60 −384.42 310.28 0.674 0.052
24912 57340 W1E1 398.87 −1894.40 −388.28 310.28 0.675 0.035
24912 57340 W1E1 402.65 −1912.35 −391.96 310.28 0.666 0.031
24912 57340 W1E1 406.50 −1930.64 −395.70 310.28 0.585 0.024
24912 57340 W1E1 410.21 −1948.25 −399.31 310.28 0.600 0.039
24912 57340 W1E1 413.93 −1965.92 −402.94 310.28 0.662 0.061
24912 57340 W1E1 417.72 −1983.92 −406.62 310.28 0.720 0.057
24912 57340 W1E1 421.58 −2002.25 −410.38 310.28 0.752 0.057
24912 57340 W1E1 425.51 −2020.92 −414.21 310.28 0.672 0.051
24912 57340 W1E1 429.58 −2040.23 −418.17 310.28 0.628 0.048
24912 57340 W1E1 433.42 −2058.47 −421.90 310.28 0.618 0.059
24912 57340 W1E1 437.33 −2077.03 −425.71 310.28 0.661 0.062
24912 57340 W1E1 441.05 −2094.75 −429.34 310.28 0.659 0.050
24912 57340 W1E1 444.72 −2112.16 −432.91 310.28 0.630 0.056
24912 57340 W1E1 448.51 −2130.18 −436.60 310.28 0.639 0.064
24912 57340 W1E1 452.31 −2148.19 −440.29 310.28 0.618 0.053
24912 57340 W1E1 456.03 −2165.87 −443.92 310.28 0.613 0.044
24912 57340 W1E1 459.68 −2183.19 −447.47 310.28 0.564 0.050
24912 57340 W1E1 463.32 −2200.47 −451.01 310.28 0.541 0.040
24912 57340 W1E1 467.08 −2218.36 −454.68 310.28 0.550 0.039
24912 57340 W1E1 470.84 −2236.20 −458.33 310.28 0.574 0.061
24912 57340 W1E1 474.73 −2254.67 −462.12 310.28 0.583 0.072

(This table is available in its entirety in machine-readable form.)

4

The Astrophysical Journal, 869:37 (13pp), 2018 December 10 Gordon et al.



which, if not accounted for, will make the fitted angular size
incorrect. The companion flux was taken into account in our
interferometric and spectrophotometric fitting of the ζOriA
measurements. Using our knowledge of the position of the
companion based on the measured orbit, we computed a binary
model to fit the visibilities (see Section 4.1).

3. Stellar Parameters

3.1. Interferometry

The visibility measurements we obtained for each star from
our interferometric observations were fitted with a single-star,
limb-darkened disk model. Linear limb-darkening coefficients
in the R-band were interpolated from the tables available in
Claret & Bloemen (2011) using the stellar parameters given in
Table 1. These limb-darkening coefficients were calculated for
model atmospheres that adopt a solar metallicity and a
microturbulent velocity of 2 km s−1, and they were derived
to maintain flux conservation. The effect of limb darkening is
minimal in O-type stars and any uncertainty in the fitted size
due to uncertainty in the adopted limb-darkening coefficient
will be much smaller than our other sources of uncertainty
discussed below. Figures 1 and 2 show the visibility
measurements for each star plus an error-weighted fit of all
the data with a limb-darkened disk model. Table 6 lists the
derived uniform disk (UD) and limb-darkened (LD) disk
angular diameters θ, the latter calculated for a linear limb-
darkening coefficient μ.

The fitting scheme assigned an uncertainty to the angular
diameter based upon the size of the residuals to the fit.
However, multiple-night observations of stellar diameters with
PAVO show an external night-to-night scatter that is larger
than indicated by the uncertainty from measurements within a
night by about 5% (Maestro et al. 2013). We checked this inter-
night variation with larger sample of 25 B stars observed with
the CHARA Array (to be presented in a forthcoming paper)
and found the average error to be consistent with the 5% quoted
by Maestro et al. (2013) for the PAVO data. Thus, we applied a
5% night-to-night scatter to our error budget. The other source
of uncertainty is related to the diameters of the calibrator stars.
Because some of our targets are very small (only 0.11 mas for
10 Lac), the calibrator stars may have sizes comparable to the
targets. These calibrators can still be used in the analysis but
the error in their sizes will play a much bigger role in the error
budget than is usually the case where the calibrators are much
smaller than the corresponding targets. To account for this
effect we fit the data for each star after adjusting the calibrator
sizes by plus and minus 1σ, and then derived the range in the
solutions. The final uncertainties given in Table 6 are the
quadratic sum of the uncertainties from the internal fit
uncertainties, the night-to-night external error, and the half-
range from varying the calibrator size.

The observations from different nights were not averaged for
ζ Oph as there is a true physical difference in size measured
along different baselines due to the star’s rotational distortion.
The results in Table 6 show that the angular size varies by 15%
between the S2W1 and S2E2 baselines. Below in Section 4.1
we present an ellipsoidal fit of the angular diameter as a
function of position angle.

3.2. Spectrophotometry

The goal of our spectrophotometric analysis was to compare
our results from directly measured angular sizes and observed
spectra to predictions of parameters from a stellar atmospheric
model. Given the spectral flux across a wavelength range and
an estimate of the stellar effective temperature Teff from
spectral line studies, the models can predict what the angular
size should be. We can then compare this against our
interferometrically determined angular sizes to test the
consistency of model line and flux predictions.
We used fluxes from multiple sources for our targets to create

SEDs that span the wavelength range from UV to IR. Sources
used for each part of the spectrum are given in Table 7. UV
spectra obtained from the International Ultraviolet Explorer (IUE)
satellite were recalibrated with a routine by Massa & Fitzpatrick
(2000) to correct the flux values. Longer-wavelength IR fluxes
were omitted for the supergiant and giant O-stars because their
winds create an excess flux in the far-IR that is absent from
models without winds. We rebinned the UV and optical spectra to
a low resolving power of R 60l l= = on a logl grid in
order to better balance the sampling across the whole spectrum.
All flux values in the spectra were assigned a uniform 3% error to
ensure our fitting program fit all points equally and did not give
more weight to any one part of the spectrum. The exception to this
was the case of 10Lac, a target which has very good data
available in the UV and optical from HST/STIS (Bohlin et al.
2017). The errors on these flux values were lower than 3% and the
original error values were used for the fitting.
The spectra were compared to the TLUSTY OSTAR2002

stellar atmosphere models which adopt solar metallicity and a
microturbulent velocity of 10 km s−1 (Hubeny & Lanz 1995;
Lanz & Hubeny 2003). Our fitting routine used a grid search
method to fit the SED using three parameters: limb-darkened
angular size (θLD), effective temperature (Teff), and reddening
(E(B− V )). For any given set of parameters, a spectrum was
extracted from the O-star grid through interpolation in Teff and

glog (the latter from the adopted gravity given in Table 1). The
model spectrum was rebinned to R=60 in the same way as the
observed SED, and then the fluxes were attenuated for interstellar
extinction using the IDL Code fmrcurve.pro for a ratio of total-to-
selective extinction of 3.1 (Fitzpatrick 1999). Adopting an R value
greater than 3.1 would result in the model fit predicting a larger
angular diameter. Recent extinction fits by Maíz Apellániz &
Barbá (2018) give an R value close to 3.1 for all our stars with the
exception of α Cam with R=4.0. Finally the model spectra were
rescaled according to the assumed angular diameter and
interpolated to the observed wavelength points for direct
comparison with the observed SED.
In cases where there was a close, bright companion (Table 3),

the extra flux from the companion was included in our fitting. The
effective temperature and surface gravity of the companion were
used to calculate a model companion spectrum in the same way as
above using either the TLUSTY OSTAR2002 (Lanz & Hubeny
2003) or BSTAR2006 models (Lanz & Hubeny 2007), depending
on the temperature of the companion. The companion flux was
then rescaled according to the V-band magnitude difference mV
(Table 3) and added to the model flux calculated for the primary.
This combined flux spectrum was then used for spectrophoto-
metric fitting of the observed SED.
We began the SED modeling process by creating a grid of

angular size and effective temperature, the latter over a range
and step size chosen to match the models in the TLUSTY grid.
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For each pair of θ and Teff, models were calculated over a grid
of reddening values, and the best-fit E(B− V ) was found by
making a parabolic fit around the reddening grid point with the
lowest value of reduced 2cn . The best-fit E(B− V ) and 2cn
values were stored in matrices as functions of θLD and Teff.

Contour maps were created by plotting the 2cn matrix for each
star, and these are shown in Figure 3. Overplotted as vertical
lines are the angular size obtained from our interferometry
with 1σ error margins, and horizontal lines show the average
temperature from the literature from Table 1 with 1σ error

margins. The shape of the contours shows that there is generally
a valley of low 2cn where the effective temperature has an inverse
square dependence on angular size, as expected from our
discussion in Section 1. The contours for the best-fit E(B− V )
values (not shown) are parallel lines that follow the curve of the
minimum in 2cn space. Therefore, any temperature and angular
size combination chosen along the minimum valley will have a
very similar associated E(B− V ) value.
We first consider what angular size is predicted from the 2cn

diagrams for estimates of Teff from published studies of the line

Figure 1. Squared visibility vs. spatial frequency for five target stars. The solid line indicates the best fit for a single-star, limb-darkened disk model.
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spectra (Table 1). We examined the horizontal line associated
with the average temperature from the literature for each star,
and found the angular size where the line crossed the minimum

2cn . The derived angular sizes for these best fits are listed in the
final column of Table 6 under the heading θLD (Teff).

We next consider estimates for effective temperature and
reddening that rely on the observed interferometric sizes and
the 2cn the contour plots. We followed the vertical line
along the value of our observed angular size and found the
temperature where the lowest 2cn was attained (marked by a
diamond symbol). These interferometrically determined
temperatures and the associated reddening estimates are given
in Table 8, along with comparisons to previously determined
values. The range in acceptable values of Teff can be large
because the fractional errors in temperature are about twice as
large as the fractional errors in angular size (which may be
significant).

The SEDs and the model best fits are shown in Figure 4. The
symbols represent the observed spectral data while the solid
green line shows the model SED for our interferometric size and
best-fit temperature and reddening. For comparison, the dashed
line (often overlapping the solid line) shows the model SED
based on the temperature from the literature and the angular size
corresponding to the local minimum of the 2cn contours. A
comparison of our interferometric angular size and the model-
predicted size is shown in Figure 5 and discussed in Section 4.2.
We assume for simplicity that there is a 4% uncertainty
associated with θLD(Teff), which is an approximate estimate
based upon flux uncertainties of 3%, reddening uncertainties of
2%, and line-based temperature uncertainties of 3%.

4. Discussion

4.1. Notes on Individual Stars

ξPer (HD 24912) is one of three O-type runaway stars in the
list (along with α Cam and ζOph), and these are usually single
stars (Gies & Bolton 1986). The observed angular size is
smaller than expected (Table 6; Figure 3); however, given that
the measurements are preliminary and that the minimum 2cn lies
at a diameter only 1.4σ larger than measured, we do not
consider the difference significant. The 2cn minimum valley has

a steep slope in Figure 3, so the derived uncertainty in Teff is
large and we list only an upper limit in Table 8.
α Cam (HD 30614) presents a case where the observed angular

size is somewhat larger than expected from model predictions
(Table 6), but θLD and θLD(Teff) agree within the uncertainties.
λ Ori A (HD 36861) represents an example with excellent

agreement between θLD and θLD(Teff) (Table 6). During the data
analysis one of the stars used as a calibrator, HD35149, was
found to be a binary and was thus rejected from the calibration
process. The final data for λOriA are calibrated with only one
calibrator star, and the visibilities are slightly more noisy than
otherwise expected.
ζ Ori A (HD 37742) has a larger angular size than expected

from model predictions (Table 6; Figure 3). The star is the
brightest component Aa of a triple system with a close
companion Ab, which had a predicted separation of 33 mas at
the time of our observations (Hummel et al. 2013). The light
from this companion will affect the spectrum and the visibility
curve of ζOriA, and we accounted for the extra flux of the
companion for both the fits of the visibilities and the SED
(Section 2). We calculated a binary model for the visibilities,
shown in Figure 2, using the predicted position angle, separation,
and radius ratio R/Re=0.365 given by Hummel et al. (2013).
The model shows fast, low-amplitude oscillations of the
visibility curve that are roughly consistent with the observations,
and the binary fit yields θLD=0.556±0.029 mas. ζOriA was
recently observed with the FRIEND beam combiner at the
CHARA Array (Martinod et al. 2018) yielding angular
diameters of 0.54±0.01 and 0.45±0.12 mas for Aa and Ab,
respectively. Their angular diameter measurement agrees within
errors with ours for ζ Ori Aa. The estimate of Teff associated with
the observed angular diameter attains a 2cn minimum at the lower
boundary of the OSTAR2002 grid (Figure 3), so only an
approximate upper limit is given in Table 8.
ζ Oph (HD 149757) is a well-known, rapidly rotating star.

According to the analysis by Howarth & Smith (2001), it has
an equatorial, angular rotational velocity that is 90% of the
critical value, and it is viewed in an equatorial orientation with
a spin inclination axis angle of 70°. Consequently, its shape
should appear oblate due to its rapid rotation. We observed
ζOph on different baselines with different position angles
(S2W1 at −42°.8 and S2E2 at 17°.9) to measure directly this
deviation from a perfect sphere. Our measurements were
insufficient to make a full ellipsoidal model of the size
variation, but we could make a restricted fit by setting the
position angle of the rotational axis from earlier polarimetric
work. ζ Oph sometimes appears as an Oe star with H Balmer
line emission from a circumstellar disk. At the times of
observation (2016 July and 2017 June), it did not show Hα
emission in its spectra, so it is reasonable to assume that any
disk gas has dissipated and we are measuring the angular size
of the star itself. However, during a past epoch when a disk
was present, Poeckert et al. (1979) used spectropolarimetry
to determine the position angle of the disk minor axis as
132.5±6.0 deg east from north. We assume that the
circumstellar disk axis is parallel to the stellar rotation axis,
so that this is also the position angle of the projected minor axis
of the star’s shape. We made a fit of the limb-darkened angular
diameter for each V2 measurement, and then we fit an ellipsoid
to the diameter as a function of position angle in the sky with
the position angle of the minor axis set from the spectro-
polarimetric result. This gave a major axis of 0.56 mas and a

Figure 2. Visibility measurements for ζ Ori A with the solid line showing an
error weighted single-star fit. An error-weighted binary fit to the visibility data
is shown in the inset.
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minor axis of 0.48 mas. The fitted ellipse is shown in Figure 6.
The ratio of minor to major axis of 0.86 is similar to the polar
to equatorial radius ratio of 7.5 Re/9.1 Re=0.82 found by
Howarth & Smith (2001), although the absolute radii we find
are slightly larger because we adopt a larger distance (Table 9).
This star is a good target for future interferometric imaging to
better determine the rotational distortion and the associated
gravity and limb darkening (Che et al. 2011). ζOph is a
runaway star that may have been launched from a supernova
explosion in a binary. Its path has been traced back with that of
a pulsar that was ejected during the supernova (Hoogerwerf
et al. 2000).

10 Lac (HD 214680) has the smallest angular diameter
(θLD= 0.11± 0.02 mas) that has been measured with CHARA
to date. Because this is below the nominal resolution limit of
PAVO of 0.2mas, we need to check carefully the associated
uncertainty of our measurement. Three calibrators were used
for the observations of 10Lac. The fitted angular size is very
sensitive to the error in the calibrator size when the target star is
smaller in angular size than the calibrator, as in this case. To
account for this, we varied each calibrator in size by plus and
minus 1σ, then refit the data with the new calibrator size. We
then took the range between the fits as part of our error budget.
This method was subsequently applied to all stars in the sample
(Section 3.1). Working close to the resolution limit of PAVO
resulted in some non-physical (V2>1) visibility estimates. We
retained these points except in one case where an entire bracket
yielded visibilities greater than unity. Both spectroscopic

observations and our interferometric results arrive at relatively
high effective temperatures, 40.0 kK and 35.5 kK, respectively,
which are well above the 31.9 kK temperature associated with
its classification of O9V (Martins et al. 2005). It has been
noted in other studies (Simón-Díaz et al. 2014; Holgado et al.
2018) that the Teff values from the calibrations in Martins et al.
(2005) are too low for O9 V stars. However, the extended
minimum valley in the 2cn diagram (Figure 3) does encompass
the lower temperature (as does the uncertainty region of
measured angular diameter).

4.2. Consistency with SED Fits from Model Atmospheres

Our primary goal was to test whether the angular diameters,
spectroscopically determined temperatures, and SEDs led to a
consistent set of stellar parameters. If so, then the intersection
of the observed angular diameter (vertical lines) and estimated
effective temperature (horizontal line) would cross near the
minimum 2cn contours in Figure 3. We find that the angular
diameters estimated from the published effective temperatures
and fits of the SEDs (θLD(Teff) given in the final column of
Table 6) are generally in good agreement with the interfero-
metric angular diameters. A comparison of observed θLD and
the predicted angular size θLD(Teff) is shown in Figure 5. This
figure shows that the average ratio of θLD(Teff) to θLD is
approximately 0.99±0.03. Note that the three stars with the
greatest discrepancy in angular size are ξPer, ζOriA, and ζ
Oph. However, the results for the first two of these, ξ Per and ζ

Table 6
Angular Diameters

Star Telescope θUD θLD θLD(U79) θLD(HB74) θLD(CADARS) θLD(Teff)
Name Pair NV2 (mas) μ (mas) (mas) (mas) (mas) (mas)

ξPer W1E1 23 0.216±0.016 0.174 0.218±0.016a L L 0.26 0.245±0.010
α Cam S1E1 23 0.250±0.014 0.250 0.256±0.014a 0.292±0.003 L 0.29 0.245±0.010
λ Ori A S1E1,W1E1 168 0.219±0.015 0.253 0.226±0.015 0.235±0.003 L 0.24 0.228±0.009
ζ Ori A W1E1 23 0.546±0.029 0.203 0.556±0.029a 0.527±0.010 0.48±0.04 0.47 0.485±0.019
ζ Oph S2W1 69 0.454±0.010 0.204 0.462±0.010 0.494±0.003 0.51±0.05 0.54 0.539±0.021

S2E2 161 0.532±0.010 0.204 0.540±0.010
10 Lac S1E1 119 0.11±0.02 0.183 0.11±0.02 0.123±0.002 L 0.13 0.121±0.005

Note.
a
θLD represents preliminary results that are based upon only a single data bracket. NV

2=number of visibility measurements. U79=Underhill et al. (1979),
HB74=Hanbury Brown et al. (1974), CADARS=Pasinetti Fracassini et al. (2001), Teff=diameter derived from temperature and SED.

Table 7
Spectrophotometry Sources

Star Far UV Near UV Optical IR

ξPer SWP45474 LWP23809 SP1 2MASS
α Cam HUT LWP17592 SP2 2MASS
λ Ori A OAO OAO SP1 2MASS
ζ Ori A SWP33049, SWP33050 LWP11671, LWP12826 SP3 2MASS
ζ Oph SWP06776, SWP18252 LWP12637, LWR14381 SP1 2MASS, WISE, AKARI, Spitzer, IRAS
10 Lac SWP*+STIS HST/STIS HST/STIS 2MASS, WISE, AKARI, IRAS

Note.The UV spectra are primarily from the archive of the IUE (low dispersion, large aperture) where the file number is related to the camera: SWP=short
wavelength prime, LWP=long wavelength prime, and LWR=long wavelength redundant. SWP* refers to the average of 52 SWP spectra covering the
1160–1646 Årange. All the fluxes were corrected using the algorithm from Massa & Fitzpatrick (2000). Other UV fluxes are from HUT=Hopkins Ultraviolet
Telescope (Buss et al. 1995), OAO=Orbiting Astronomical Observatory 2 (Code & Meade 1979), and HST/STIS from the CALSPEC database (Bohlin et al. 2017).
Optical spectrophotometry sources are coded as SP1=Burnashev (1985), SP2=Kharitonov et al. (1988), and SP3=Krisciunas et al. (2017). IR fluxes are from
2MASS (Cutri et al. 2003), WISE (Cutri et al. 2012), AKARI (Ishihara et al. 2010), Spitzer (Ardila et al. 2010), and IRAS (Helou & Walker 1988).
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Ori A, are preliminary because the diameters are based upon
one data bracket. ζ Oph is rotationally distorted, so gravity
darkening will complicate the meaning of θLD and the
comparison to a model-predicted size may not be entirely
valid. The targets with many observations, λ Ori A and 10 Lac,
show good agreement between the interferometric and spectro-
scopically derived angular diameters.

We can use the angular size and distance to obtain the stellar
radius. In Table 9 we list distance estimates from the six
sources. The columns labeled d1 and d2 give distances based
upon a calibration of absolute magnitude and spectral
classification from Shull & van Steenberg (1985) and Underhill
et al. (1979), respectively. The next estimate d3 is based upon
the interstellar Ca II line strengths (Megier et al. 2009). The

Figure 3. Contour maps of the 2cn differences between fitted TLUSTY stellar atmosphere model and observed spectra for each star. Contours are drawn at equal
intervals of 2cn . Overplotted are vertical lines showing angular size obtained from our interferometry and horizontal lines showing the average temperature from the
literature. Dotted lines show an error margin of 1σ for the angular size and temperature. Diamonds indicate the best-fit model temperature for our directly determined
angular size.
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fourth estimate d4 is derived from the Hipparcos parallax
(van Leeuwen 2007) with a correction term for the Lutz–Kelker
bias (Maíz Apellániz et al. 2008). The next estimate d5 is the
distance to the host cluster (Kharchenko et al. 2005) or
association (de Zeeuw et al. 1999) if the target is a known
member. The final value d6 is derived from the parallaxes from
Gaia DR2 (Gaia Collaboration et al. 2018). The DR2 coverage
is incomplete for bright stars (no measurements for ξ Per and
ζOri A) and the errors are relatively large and probably
underestimated (Luri et al. 2018). Consequently, we adopted

the parallax of fainter, physical companions whenever possible.
The DR2 parallaxes for λOri A, B have large errors, so we
adopted the mean of the parallaxes for components C and D.
There is no parallax given for ζOriA, so we used the listing
for the C component. We applied the parallax of component B
for 10Lac, because of the much larger error associated with
component A. There was no faint companion available to use
for α Cam, so the formal Gaia DR2 parallax error is large.
Columns 7 and 9 give the stellar radius corresponding to the
Gaia and mean distance, respectively, as derived from our

Figure 4. Spectral energy distributions (SEDs) for targets stars with the best-fit model shown as the solid green line. Best-fit models were chosen using our observed
angular diameter from interferometry combined with the best-fit temperatures and reddening values found from our contour maps (Figure 3). The dashed line indicates
the SED derived by setting the average published Teff and determining the best-fit angular size θLD(Teff).
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angular size measurements (Table 6). Note that the standard
deviation of the mean distance may underestimate the total
uncertainty if some subsets rely upon the same spectroscopic
calibration of spectral type and MV. The radius range listed for
ζOph (HD 149757) relates to the smaller and larger angular
sizes found at different position angles. The derived radii
generally agree within the range associated with their spectral
classifications as given by Martins et al. (2005), except for the
two giants, ξPer andλOriA, which have radii closer to those
of main sequence stars.

Our interferometric survey of O-star diameters yields results
that are comparable to the expected diameters based upon the
published temperatures and model fits of the SED (Table 6;
Figure 5), except in the cases of two evolved stars, ξPer and
ζOriA, where our data coverage is quite limited. Additional
interferometric observations are needed to confirm the smaller
and larger diameters found in these two cases, respectively.
There are several possible explanations for such discrepancies.
First, it is possible that some of our calibrator stars have yet
undetected binary companions. If such companions added

incoherent flux to the visibility measurements, then the
calibrator visibilities would be depressed and we would infer
smaller diameters for the targets. Additional observations with
different calibrators would test this idea. Second, it is possible
that the quoted diameters of the calibrators have larger than
expected uncertainties. The JSDC diameter estimates (Chelli
et al. 2016) rely on relations based upon colors and spectral
classification that are set by measured angular sizes. However,
there are relatively few measurements among the B-type and
early A-type stars that form our set of calibrators (Table 4), so
the relations may need more thorough testing.
Finally, it is possible that the model atmospheres that we used

to fit the SEDs underestimate or overestimate the flux over the
observed range (1200Å to 2 μm), so that the angular diameters
inferred from the SED fits are too large or small. All our fits rely
on the TLUSTY grid of models (Lanz & Hubeny 2003) which
assume a plane-parallel geometry and neglect stellar winds. We
made a spot check of the models against the predictions of the
non-LTE code CMFGEN (Hillier & Miller 1998) that can account

Table 8
Effective Temperature and Reddening Estimates

Star Teff(Best Fit) Teff(Literature) E(B − V ) (a) E(B − V ) (b) E(B − V ) (c)
Name (kK) (kK) (mag) (mag) (mag)

ξPer <40 34.3±0.8 0.291 0.25 0.278±0.007
α Cam 28.0±1.5 29.4±1.0 0.298 0.26 0.262±0.006
λ Ori A 36.0±0.9 34.5±0.8 0.107 0.12 0.177±0.011
ζ Ori A <28 29.5±1.0 0.067 0.08 0.044±0.007
ζ Oph 33.5±1.3 32.1±1.3 0.350 0.29 0.297±0.006
10 Lac 40.0±1.3 35.5±0.5 0.096 0.08 0.077±0.006

Note.E(B − V ) estimates: (a) best fit, (b) Savage et al. (1977), (c) Maíz Apellániz & Barbá (2018).

Figure 5. Observed angular size θLD compared to θLD(Teff) derived from the
published Teff and fit to the SED. The solid line shows a line with a slope of
unity for reference, and the dashed line shows the trend for the mean ratio of
these diameters. Blue points indicate diameter estimates based upon only a
single data bracket or an extremely small angular size in the case of 10 Lac.

Figure 6. Simple ellipse fitted to our interferometric data for ζ Oph. Each
symbol shows the derived angular size of a limb-darkened star whose visibility
equals the observed value, and each is plotted at a position angle derived from
the (u,v) spatial frequencies of the observation. The fit was made of the major
and minor axes with the position angle of the latter set by published
polarimetry. The dashed line shows the adopted rotational axis of the star at a
position angle of 132°. 5.
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for spherical geometry and outflows. The initial comparison was
made assuming Teff=34.4 kK, glog 3.5= , solar abundances,
and a microturbulent velocity of 10 km s−1. A comparison of the
predicted fluxes between a plane-parallel model from CMFGEN
and one from TLUSTY showed better than 1% agreement in flux
ratio over the observed range. This confirms earlier results
showing excellent agreement between TLUSTY and CMFGEN
(Hillier & Lanz 2001). Additional tests indicated that the mean
flux over the observed range was about 1% higher for a
CMFGEN spherical model with wind loss and was about 2%
higher in models with the microturbulent velocity increased to
20 km s−1. Thus, while model differences may account for
angular size discrepancies of a few percent, the larger difference
seen in the supergiant ζOriA may require other explanations.
Interferometric observations at longer wavelengths would help test
models that include winds, because of the increasing proportion of
wind flux into the IR regime. We will extend this investigation in
a subsequent paper to the cooler B-type stars to further explore the
differences between interferometrically and spectroscopically
determined parameters for massive stars.
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Table 9
Distance and Radius Estimates

Star d1 d2 d3 d4 d5 d6 RGAIA d< > R
Name (pc) (pc) (pc) (pc) (pc) (pc) (Re) (pc) (Re)

ξPer 398 L 486±57 416±158 L L L 433±46 10.1±1.3
α Cam 1010 1175±118 1607±275 L 821 731±175 20.1±4.9 1068±346 29.4±9.7
λ Ori A 501 398±40 L 361±90 438 417±10 10.0±0.6 423±51 10.2±1.3
ζ Ori A 501 350±35 297±45 239±48 391 381±10 22.8±1.3 359±89 21.5±5.4
ζ Oph 154 188±19 222±22 112±11 145 172±31 8.5–10.0 165±37 8.9–10.5
10 Lac 603 631±63 579±76 542±108 L 478±10 5.7±1.0 566±59 6.7±1.4

Note.Distance references: 1. Shull & van Steenberg (1985), 2. Underhill et al. (1979), 3. Megier et al. (2009), 4. van Leeuwen (2007) and Maíz Apellániz et al.
(2008), 5. de Zeeuw et al. (1999) and Kharchenko et al. (2005), 6. Gaia Collaboration et al. (2018).
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