
Acquisition and Maintenance of Constraints in 
Engineering Design 

 
Suraj Ajit1, Derek Sleeman1, David W. Fowler1, David Knott2 and Kit Hui1 

1
Department of Computing Science, University of Aberdeen, Scotland, AB24 3UE, UK 

{sajit, sleeman, dfowler, khui}@csd.abdn.ac.uk 
2
Rolls-Royce plc, Derby, UK, david.knott@rolls-royce.com 

 

ABSTRACT 
The Designers’ Workbench is a system, developed by the 

Advanced Knowledge Technologies (AKT) consortium to 

support designers in large organizations, such as Rolls- 

Royce, by making sure that a design is consistent with the 

specification for the particular design as well as with the 

company’s design rule book(s). Currently, to capture the 

constraint information, a domain expert (design engineer) 

has to work with a knowledge engineer to identify the con- 

straints, and it is then the task of the knowledge engineer to 

encode these into the Workbench’s knowledge base (KB). 

This is an error prone and time consuming task. It is highly 

desirable to relieve the knowledge engineer of this task, 

and so we have developed a tool, ConEditor, that enables 

domain experts themselves to capture and maintain these 

constraints. The tool allows the user to combine selected 

entities from the domain ontology with keywords and op- 

erators of a constraint language to form a constraint expres- 

sion. We hypothesize that to apply constraints appropri- 

ately, it is necessary to understand the context in which 

each constraint is applicable. We refer to this as “applica- 

tion conditions”. We plan to make these application condi- 

tions machine interpretable and investigate how they, to- 

gether with a domain ontology, can be used to support the 

verification and maintenance of constraints. 

 

Categories and Subject Descriptors 
I.2.6 [Artificial Intelligence]: Learning – knowledge acqui- 

sition; I.2.4 [Artificial Intelligence]: Knowledge Represen- 

tation Formalisms and Methods; J.2 Physical Sciences and 

Engineering- aerospace, engineering 

 

General Terms 
Design, Experimentation 

Keywords 
Constraints, Application conditions, ConEditor, Mainte- 

nance 

 

 

 
Copyright is held by the author/owner(s). 

K-CAP’05, October 2–5, 2005, Banff, Alberta, Canada. 

ACM 1-59593-163-5/05/0010. 

INTRODUCTION 
In this short paper, firstly, we briefly describe how ConEditor 

[1] helps design engineers in the acquisition of constraints 

that are then used by systems such as Designers’ Work- 

bench [2] to support the design activities. The main aim of 

ConEditor is to enable domain experts themselves to cap- 

ture and maintain the constraints, relieving the knowledge 

engineer from this tedious, error prone and time consuming 

task. Secondly, we give a sketch of our planned approach 

towards the maintenance of constraints. 

Acquisition 
ConEditor enables acquisition of constraints in the form of 

a high-level constraint language known as CoLan [3]. A 

simple constraint expressed in CoLan is as follows: 

Constrain each f in Concrete Feature 

to have max_operating_temp(has_material(f)) 

>= operating_temp(f) 

This constraint states “For every instance of the class Con- 

crete Feature, the value of the maximum operating 

temperature of its material must be greater than or equal to 

the environmental operating temperature.” ConEditor’s 

GUI (Figure 1) consists of five components, namely, key- 

words panel, taxonomy panel, central panel, tool bar and 

result panel. More details about each panel and how to ex- 

press a constraint using ConEditor can be found in [1]. 

 

Maintenance 
The engineering design process has an evolutionary and 

iterative nature as designed artifacts develop through a se- 

ries of changes before a final solution is achieved. A com- 

mon problem encountered during the design process is that 

of constraint evolution, which may involve the identifica- 

tion of new constraints and the modification or deletion of 

existing constraints. In order to tackle the various mainte- 

nance issues/problems, our proposed approach can be 

summarized as follows: 

• Capture the “context” of a constraint as an application 

condition 

• Represent the application conditions in a machine inter- 

pretable form 

• Use application conditions together with constraints to 

support maintenance 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by NECTAR

https://core.ac.uk/display/228125261?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:david.knott@rolls-royce.com


 

 

Figure 1 Screenshot of ConEditor’s GUI 

 

Representation of a sample constraint with its application 

condition: 

Constrain each k in Kite 

such that has_type(k) = “Flat” 

and has_shape(k) = “Diamond” 

to have tail_length(has_tail(k)) = 7 * 

spine_length(has_spine(k)) 

As shown in the above constraint, the application condition 

(in italics) is introduced by the clause “such that”. This 

constraint states that the length of a tail of a kite needs to be 

seven times the length of the spine of the kite; this con- 

straint is applicable for flat diamond shaped kites only. 

Due to restricted availability of designers’ time and for 

simplicity, we have used a kite domain for the case study. 

We tried to manually detect different kinds of inconsisten- 

cies among constraints and application conditions. These 

are explained as follows: 

Inconsistencies 
Subsumption, contradiction, redundancy are types of incon- 

sistencies that can be detected among the constraints and 

application conditions using the domain ontology as back- 

ground knowledge. For example, consider the following 

constraints: 

a) Constrain each s in Sled_kite 
such that has_size(s) = “standard” 

to have kite_line_strength(has_kite_line(s)) 

>= 15 

b) Constrain each c in Conventional_sled_kite 
such that has_size(c) = “standard” 

to have kite_line_strength(has_kite_line(c)) 

>= 15 

Conventional_sled_kite is a subclass of Sled_kite in the 

domain ontology. It can be inferred that a) subsumes b). 

The domain expert can be notified to remove or deactivate 

constraint b). Similarly, subsumption among application 

conditions occurs, when we have: 

c) Constrain each s in Sled_kite 
such that has_size(s) = “standard” or 

has_size(s) = “large” 

to have kite_line_strength(has_kite_line(s)) 

>= 15 

d) Constrain each s in Sled_kite 
such that has_size(s) = “standard” 

to have kite_line_strength(has_kite_line(s)) 

>= 15 

It can be inferred that c) subsumes d) as the application 

conditions in d) are included in those of c). Similarly con- 

tradiction and redundancy can be detected among con- 

straints and their application conditions. 

 

 

REFERENCES 
[1] Ajit S., Sleeman D., Fowler D. W. and Knott D., 

ConEditor: Tool to Input and Maintain Constraints, 

EKAW 2004, UK, pp. 466-468. 

[2] Fowler D., Sleeman D., Wills G., Lyon T. and Knott 

D., Designers’ Workbench, AI 2004, Cambridge, 

UK, pp. 209-221. 

[3] Gray P., Hui K. and Preece A., An Expressive Con- 

straint Language for Semantic Web Applications, E- 

Business and the Intelligent Web: Papers from the 

IJCAI-01 Workshop, 2001, pp. 46-53. 


