
1 
 

A critical review of electrochemical noise measurement as a 

tool for evaluation of organic coatings 
 

Sina S. Jamali* a,b, Douglas J. Mills a 

 

a School of Science and Technology, University of Northampton, St George’s Avenue, 

Northampton, NN2 6JD, UK, Tel 0044 1604 893005/3213 

b ARC Research Hub for Australian Steel Manufacturing, Faculty of Engineering & 

Information Sciences, University of Wollongong, Northfields Avenue, Wollongong, NSW 

2522 Australia 

E-mail: sjamali@uow.edu.au 

 

Abstract 

The simplicity of measuring equipment and versatility of data analysis makes electrochemical 

noise measurement an ideal technique for, relatively quickly, acquiring electrochemical 

information about the corrosion behaviour of a painted metal. Hence the method has great 

potential for use in the laboratory as well as in field situations. However, special care must be 

taken in choosing data acquisition parameters, reference electrodes and symmetry of 

electrodes in order to achieve reproducible measurements. These areas have been discussed 

in this review along with methods of data analysis, alternative electrode configurations for 

on-site measurements and novel applications of the technique. 
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DC Direct Current 

EN Electrochemical Noise 

AC Alternating Current 

OCP Open Circuit Potential 

Isk Skewness of Current 

Esk Skewness of Potential 

Eku Kurtosis of Potential 

Iku Kurtosis of Current 

LI Localization Index 

SKP Scanning Kelvin Probe 

SVET Scanning Vibrating Electrode Technique 

SECM Scanning Electrochemical Microscopy 

WBE Wire-beam Electrode 

SS Single Substrate 

NOCS NO Connection to Substrate 

ANN Artificial Neural Network 

SC Single Cell 

WE1 working electrode 1 

WE2 working electrode 2 

RE reference electrode 

ZRA zero resistance ammeter  

ENM electrochemical noise measurement 

SCE saturated calomel electrode 

σ(i) standard deviation of current noise 

σ(v) standard deviation of voltage (potential) noise 

FFT Fast Fourier Transform 

MEM Maximum Entropy Method  

PSD Power Spectral Density 

ECN Electrochemical current noise 

EPN Electrochemical potential noise 

 

1 Introduction 
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Electrochemical Noise Measurement is a non-destructive/non-intrusive technique capable of 

monitoring basic changes in an electrochemically active system. The principle of the method 

when applied to bare metal is to achieve a measure of the rate of the balancing 

electrochemical reactions via the anodic reaction, e.g. iron dissolution (2𝐹𝑒
 

→ 2𝐹𝑒++ + 4𝑒) 

and the associated cathodic reaction which is normally oxygen reduction (2𝐻2𝑂 + 𝑂2 + 4𝑒
 

→ 4𝑂𝐻−). This is achieved by a simultaneous measurement of potential and current 

fluctuations caused by the spontaneous electrochemical reactions followed by subsequent 

analysis. The simplest approach is to calculate the ratio of the standard deviations of these 

fluctuations. The value of noise resistance (Rn) has been shown to be comparable to 

polarisation resistance, the latter being directly related (using the Stern-Geary equation and 

given Tafel slopes) to the corrosion current [1–3]. Much work has been done e.g. [4,5] 

showing how Rn is a measure of corrosion resistance. Also mechanistic information about 

corrosion process of a bare (uncoated) metal has been acquired through analysis of 

electrochemical noise data using statistical methods [6–8]. Note that in this kind of work 

special care must be taken in normalizing the Rn per unit of exposed surface area as this is 

required for the calculation of an absolute corrosion rate [9,10]. 

 

When it comes to metal coated with an organic coating, although the above electrochemical 

reactions may well control the rate with a defective organic coating, what is more commonly 

found is that the rate of diffusion of ions (e.g. sodium and chloride) through the polymer film 

is the rate determining step in controlling the overall rate of the corrosion reaction. Hence the 

EN measurement of resistance becomes a measure of the rate of diffusion of ions through the 

polymeric structure. 

 

It should also be pointed out that ENM acquires mechanistic information about  metal loss in 

uncoated systems such as the corrosion uniformity/localization which may not be acquired by 

other bulk electrochemical techniques such as EIS and DC measurements [11]. Work 

showing the sensitivity of ENM to the local electrochemical activity and micro-pit formation 

on a steel surface has been corroborated using the scanning vibrating electrode technique 

(SVET) [12]. Considerations and applications of ENM for examining corrosion behaviour of 

uncoated metal surfaces has been extensively addressed elsewhere [6,13–17]. Note that 

although these studies are not directly applicable to a good or even moderately protective 
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organic coating system, the studies could be relevant when a coating has broken down or 

when the behaviour of the scribed or defective coating is studied using ENM.  

 

Despite its usefulness and its nearly fifty year history in electrochemical science [18], ENM 

was not introduced to the field of organic coatings until 1986 when Eden, Hoffman and 

Skerry, used ENM to monitor anti-corrosion performance of two identical painted steel 

panels during an immersion test [19]. In later work [20], Skerry and Eden examined a set of 

organic coatings and concluded that highly protective paint coatings exhibit relatively large 

σ(v) values (e.g. 2x1O-3 V) whereas less protective coatings show a small σ(v) (e.g. 2x10-5 V) 

. Conversely, a very small σ(i) value (e.g. 5x10-I3 A cm-2) was observed for highly protective 

coatings whereas a larger σ(i) (e.g. 5x10-9 A cm-2) was measured for less protective coatings. 

This was based on the hypothesis that a good barrier coating would effectively confine the 

penetration of electrolyte and current flow, thus resulting in relatively small σ(i) while it 

makes the measurement of a stable potential more difficult, resulting in relatively large σ(v). 

It was also shown that an estimation of coating delamination may be obtained by measuring 

the total charge passed through the ZRA, the larger the charge passed the greater the 

delamination. 

 

Since then ENM has found increasing use as an effective way of assessing the protection 

afforded by organic coatings on metals [21–24]. It has been shown frequently that the noise 

resistance conforms with the protection level afforded as measured by other well-established 

electrochemical techniques such as EIS [25–29] and DC techniques [30,31]. High sensitivity 

of ENM to the changes at the coating/metal interface and its ability to measure very high 

resistances, e.g. 10+10 to 10+12 Ω cm2, has been utilized for assessing the effectiveness of 

metal surface pre-treatment prior to coating and to distinguish the onset of corrosion [32,33]. 

The superior sensitivity compared with other electrochemical techniques of ENM to 

electrochemical changes in sacrificial (zinc rich) coatings and its capability for determining 

changes in the protection mechanism (cathodic protection and barrier) afforded by such 

coatings has been shown elsewhere [34]. 

 

The usefulness and simplicity of the ENM technique plus the relatively quick measurement 

and inexpensive instrumentation makes the method potentially ideal for in-situ corrosion 
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assessments. It has been successfully implemented as an effective electrochemical technique 

in combination with wire-beam multi-electrodes where a quick examination of a large 

number of electrodes is required [7,35,36]. It also offers the advantage of being a non-

interfering measurement compared to DC techniques that may alter the system from the 

steady state. Both DC (e.g. using an electrometer) and AC (EIS) measurements by definition 

apply an external potential/current, and this may alter the system. The consequent 

interference will not represent the characteristics of an equilibrium system in a self-

corroding/uninterrupted condition and also more time will be required to reach the steady 

state [25]. Similarly electrochemical measurements based on polarising the metal substrate 

would vary the concentration of ions and corrosion products, resulting in the measurement of 

in inaccurate values of coating resistance [37]. 

Although the usefulness of Rn for assessment of organic coatings e.g. to assist in producing 

improved formulations and for ranking their performance, has been frequently demonstrated  

[38–41], there is still some general uncertainty about the use of the EN method in this 

application and particularly whether it can really produce as accurate and reproducible results 

as other techniques such as DC or EIS. To address these uncertainties what follows is a 

critical look at a number of aspects of the EN method including data acquisition parameters, 

data treatment, reference electrodes, symmetry of electrode and alternative electrode 

configurations for on-site measurements. The overall aim of this review is to assist the user of 

the EN method to have confidence in its application for assessment of anti-corrosive organic 

coatings both in the lab and in the field. 

 

2 Acquisition and treatment of noise data  

2.1 Noise measurement method: acquisition parameters 

The standard method of collecting EN data is by measuring the current fluctuations between 

two nominally identical electrodes at their open circuit potential (OCP) which are connected 

by a ZRA. Simultaneously the potential fluctuations are measured between the two coupled 

electrodes and a stable reference electrode [42]. In practice, it is essential to eliminate the 

unwanted environmental and instrumental noise from the electrochemical noise. Some 

effective ways of eliminating this extraneous noise is to use shielded electrical 

connections/wires for connecting electrodes to the measurement device and also use of 
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Faraday cage to exclude electrostatic and electromagnetic influences. Implementation of 

analogue and digital filters, although they can be effective in removing systematic noise at 

frequencies lower and higher than the frequency of interest, will not be useful if the 

extraneous noise is within the range of frequency of interest for corrosion applications, e.g 1 

Hz. Guidelines for the calibration of noise measuring device, including the use of a dummy 

cell with a known level of noise and a sine wave signal generator is given in references 

[13,43]. It  should be noted that the level of current noise generated by coated metals with 

very high resistance coatings is often very low and could be in the order of 10-11 to 10-13 A 

[28,44,45]. Therefore it is essential to check the measurement limits of the ZRA to ensure it 

has sufficient sensitivity for such measurements. The currently available ZRAs in the market 

which can accurately detect currents at femtoamp level are expected to readily provide 

sufficient sensitivity. The dangling leads method in open circuit configuration was suggested 

by Kearns et al [43] to check the lowest levels of current noise that can be measured by the 

ZRA. However, since the current noise generated by instrument is a function of source 

impedance, the current noise of instrument should be checked using a dummy cell with 

comparable impedance to the system being studied. A protocol describing the procedure of 

measuring electrochemical noise with a dummy cell is given in reference [46]. In principle, 

the noise generated by the dummy cell is very low, in the thermal noise range of the resistor 

used in the construction of dummy cell which often cannot be measured by commercial noise 

measurement devices. Therefore the noise measured with the dummy cell is essentially the 

noise level generated by the instrument. For a valid electrochemical noise data, the noise 

level of electrochemical system should be significantly higher than the noise level measured 

with dummy cell of comparable impedance to the electrochemical system [46].  

Regarding sampling rate (frequency of data gathering), the rate of 2 Hz [47–52] and 1 Hz 

[46,53,54] have been commonly used. It has been suggested that where the reaction rates are 

relatively low (general corrosion situations under-coating versus, for example, pitting 

corrosion or acidic dissolution), the rate of data acquisition can be quite low, e.g. 0.5 Hz 

[19,23,40]. Satisfactory EN data collection at somewhat higher, e.g. 10 Hz, frequencies [55–

58] has also been reported. Regarding the number of data points, frequently a value of the 

power of two above 128, i.e. 256, 512, 1024, 2048 and 4096, has been used particularly to 

make the data transferable to the frequency domain (more details in section 2.5). However, 

there is compromise between the length of time to make the measurement and getting enough 

data to be confident that it is representative of the electrochemical processes occurring in the 
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system. It appears that 512 data points gathered over 256 seconds can be effectively and 

reliably used for calculation of noise resistance. Clearly more information regarding slow 

processes can be obtained by extending the sampling duration which results in valid data at 

lower frequencies that might be more beneficial in the case of organic coatings assessment. A 

discussion on the effect of surface area when two or three areas are involved can be found in 

section 5. Brief guidelines for conducting ENM on organically coated metal surfaces is being 

given in a soon to be published ISO standard, ISO/DIS 17093 [59] 

 

2.2 Discussion on Rn 

The basic quantitative derivative of noise data when examining organically coated metals is 

the noise resistance in the time domain, Rn, which is calculated in accordance with Ohm’s 

law, Equation (1).  
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where σ(v) and σ(i) are the standard deviations of potential and current fluctuations. This has 

been used mainly on the basis that it works although some theoretical justification of this 

equation is published by Bierwagen [60]. Mansfeld et al. [47,61] observed a decrease of σ(v) 

and increase of σ(i) as the organic coating degraded and argued that any estimation of coating 

degradation should involve both. However, the increase of both σ(v) and σ(i) as a result of 

coating degradation has also been reported [62]. It should be noted that coating degradation 

may not necessarily be accompanied by both a decrease of σ(v) and an increase of σ(i) but it 

is the ratio between the two that is decisive. 

 

2.3 Time domain data analysis   

The simplest approach to data analysis is a visual assessment of the noise data. With uncoated 

(bare) metals this can give mechanistic information about corrosion type, e.g. the shape and 

the frequency of occurrence of current and potential transients is considered to be an 

indication of corrosion pit formation and its repassivation/propagation [8,63]. These 

transients of potential and current are not normally found in noise data obtained from coated 

metal. When a paint coating is present and also under conditions of uniform corrosion (non-

biased electrochemical events) the data set is expected to follow a Gaussian or 
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normal distribution [64]. It has been suggested by Mills & Mabbutt [64] that for Rn to be 

accurate  as a  measure  of coating resistance in particular, the distribution of EN data should 

be as close as possible to Gaussian. This was based on experimental observations that 

Gaussian data sets gave values of Rn that were closer to the DC resistance or the 0.1Hz 

Impedance value than non-Gaussian data sets. It was shown that a bimodal distribution 

behaviour of EN data may appear when an artificial defect is introduced to the coated metal 

and this bimodality was attributed to two independent electrochemical processes. Similar 

bimodal distribution of EN data was observed by Gusmano et al for an electrode under pitting 

condition versus Gaussian distribution for a passivated electrode [27]. They attributed this 

bimodality to the shift in the mean value of current and potential which theoretically can be 

corrected by implementation of an appropriate DC trend removal. Figure 1 shows a raw noise 

data collected from a steel surface coated with a soya based alkyd in 0.5 M NaCl with Rn of 

approx. 2.7x10+9 Ω cm2. 

 

 

Figure 1 Time records of the potential and current signals from steel coated with a soya 

based alkyd varnish with thickness of 90 µm immersed in 0.5 M NaCl exhibiting Rn=2.7x109 

Ω cm2. 

 

Although not evident in the graph shown in Figure 1, the data set may contain a general drift 

that deviates the signal from the stationary state. This is quite commonly observed 

particularly in the early stages of ENM measurement [40]. The drift is usually in one 
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direction and is caused by a DC source, such as the potential shift of the sample during 

measurement, or (less often) from a small external potential/current arising from the 

instrumentation. It is essential for a valid analysis of EN data to remove this DC drift from 

the noise signal before any further statistical analysis of noise data [41] is performed. Drift 

removal is normally done by subtracting a linear regression line (linear method) or a 

polynomial trend (polynomial method) from the raw data resulting in a smaller variation 

around the mean value zero [48]. Moving average removal (MAR) is the other method of DC 

drift removal proposed by Tan et al. [52] and is commonly used in the literature 

[24,32,54,66–68]. In the MAR method, a certain number of data points are averaged and 

subtracted from individual data points to remove the DC part of the signal. However, this 

method has been criticised for removing the low frequency events (i.e. current and potential 

transients) and introducing artefacts (e.g. artificial linear drift) in the shape of the signal 

resulting in erroneous Rn depending on the number of data points used in the averaging 

process [53,65,69,70]. More recently the wavelet analysis, as a time-frequency based method, 

has been used by Homborg et al. [71]. This has been shown to effectively remove the DC 

drift from EN data while retaining the useful information in the EN time record. 

 

2.4 Other time domain analysis methods (mainly bare metal) 

Several statistical derivatives of the EN data such as skewness of current (Isk) and potential 

(Esk fluctuations and the corresponding kurtosis values (Eku and Iku) have been suggested in 

the literature for assessing corrosion mechanism of an uncoated (bare) metal [6,17,72,73]. 

Although these parameters have proven to be useful for examining statistical distribution of 

noise data, such parameters would not generate mechanistic information about corrosion 

behaviour of an organically coated metal such as they do for bare metal corrosion 

[6,17,72,73]. One should note that non-Gaussian (e.g. skewed distribution of noise data) in 

bare metal corrosion is typically brought about by localized corrosion events such as 

initiation and repassivation of corrosion pits which does not apply to the corrosion of 

organically coated metals. Similarly indexes for pitting and localization that are derived from 

EN data and indicate the form of corrosion would not generate a meaningful estimation. This 

is mainly because the parameters influencing the EN signals from a coated metal are more 

complex compared to the uncoated surface. As yet the modelling of these processes and how 

they lead to a value of Rn is poorly understood. Recent studies have shown the effect of 
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coating’s ionic resistance on attenuating current noise signal in the specific case of fully 

disbonded coating from the metal substrate [74]. Further theoretical and analytical work in 

this area is needed to explore the possibility of acquiring mechanistic information regarding 

under-film corrosion process by ENM.  

 

2.5 Frequency domain data analysis  

Mansfeld and co-workers when conducting  ENM on a number of coating systems [47,75] 

emphasized a need for analysis of ECN data, not only in the time domain, but also in the 

frequency domain in order to extract mechanistic information  The time domain data can be 

transferred to frequency domain using the Fast Fourier transform (FFT) or Maximum Entropy 

Method (MEM) algorithms. The Power Spectral Density (PSD) plot may be used to calculate 

the spectral noise resistance, Rsn, according to the Equation (2): 
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where ΨV and ΨI are the PSDs of potential and current noise respectively. The minimum and 

maximum frequencies that can be resolved in the frequency domain are given by Equation 

(3): 
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with N being the total number of samples and Δt the time increment between samples. Figure 

2 illustrates PSD plot of potential and current noise (Fig. 2a) and the derived spectral noise 

(Fig. 2b) for steel electrodes coated with 30µm thick polyurethane coating after 122 h 

immersion in 0.5 M NaCl solution [76].  
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Figure 2 Potential and current noise PSD plots obtained using MEM and FFT methods of 

noise data analysis (a) and related plot of spectral noise resistance or Rsn(f) (b) (Reproduced 

from Ref. [76] 

 

As illustrated in Figure 2, MEM method produces a smoother fit of the spectrum that is 

favoured by some researchers particularly since it makes it easier to quantify Rsn at low 

frequency. However it has been argued by Mansfeld et al [77] that MEM might obtain 

erroneous results because it always produces DC limit of the noise spectra even if such a limit 

does not exist. Similar argument was made by Bagley et al [78] in that the MEM makes an 

estimate of the low frequency behaviour that is not necessarily accurate given the limits 

inherent in the quantity of data available and the limited order of analysis. Typical sampling 

times of 1024 s and sampling rates of 2 points/s that are commonly used in studies lead to a 

frequency range from 1 Hz to 2 mHz. In practice, the bandwidth (∆f = fmax – fmin) of PSD is 

limited at high frequencies by instrumentation noise, while the time needed for the collection 

of ECN data at very low frequencies limits fmin [48]. It has been suggested by Mansfeld et al. 
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[47] that at high frequency noise sampling, other sources of noise, e.g. generated by 

instrumentation and other electronic devices (environmental noise), become significant and 

therefore data collection at high frequencies should be avoided. However, given the date of 

this contribution, 1997, one would expect that the lower level of noise from current, more 

modern, devices to not interfere with EN data collection at high frequency. However there are 

insufficient studies in this area and there is a particular need for assessment of impact of 

environmental noise in future work. 

Calculating PSDs of the EN data collected from a dummy cell may also be implemented as a 

method of assessing the frequency characteristics of the noise measurement device and its 

calibration [13]. Using a Faraday cage has been shown to effectively reduce the 

instrumentation and human noise interferences when ENM is applied in the field [79,80]. It 

has been suggested that Rn is equal to Rsn and DC limit of impedance spectrum in the Bode 

plot only when a diffusion process dominates the corrosion process [81,82]. For highly 

protective coatings with capacitive behaviour, Rn is frequency dependant and therefore may 

not have a definite relationship to a particular coating property [51,81,82]. As with 

environmental noise, further work is required in this area. 

 

 3 Electrode configurations for ENM and area considerations   

ENM is unique among all electrochemical techniques from the point of view that no external 

perturbation of current and potential is required for conducting the measurement. This unique 

capability and simplicity of the measurement makes the technique particularly appealing for 

on-site measurement where a non-destructive and quick but sensitive measurement is desired 

[80]. 

 

3.1 Salt Bridge  

ENM with the original arrangement known as a salt bridge (presented in Figure 3) is well 

established and is commonly applied for studying electrochemical behaviour of corroding 

systems in laboratories. This method uses two nominally identical working electrodes and 

works effectively for both uncoated and coated metals. As stated earlier (beginning of section 

2) the current between the two working electrodes is measured via a zero resistance ammeter 

(ZRA) and simultaneously the potential of these electrodes (now in effect coupled together 
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by the ZRA) is measured with respect to a low noise standard reference electrode, the most 

commonly being a Saturated Calomel Electrode (SCE). In practice it is extremely rare to find 

two nominally identical but separate working electrodes in the real/site environment. 

 

3.2 Single Substrate 

A first step towards making the technique more practically useable for organically coated 

metals on site was taken by Mills and Mabbutt in 1998 [30]. The so-called “Single Substrate” 

(SS) (Figure 4) configuration is a re-arrangement of the original salt bridge configuration. It 

replaces the working electrodes (the two substrates) by SCEs and uses the substrate as the 

pseudo reference. Noiseless SCEs make electrolytic contact with the corroding surface and 

the current perturbation that is measured by the ZRA originates from the electrochemical 

activity of the two coupled areas of the specimen. This arrangement was also successfully 

utilized for in-situ monitoring of corrosion behaviour and degradation rate of coated 

substrates using embedded platinum electrodes by Bierwagen et al. [83]. There has been 

further work carried out on the validation of the technique, mainly by Mabbutt et al. [25,84–

86]. 

 

 

Figure 3 Standard “Salt-Bridge” electrochemical noise arrangement (left illustrative diagram, 

right schematic circuit) (reproduced from Ref. [30]). 

 



14 
 

 

Figure 4 Illustrative diagram for measuring ENM with SS arrangement (reproduced from 

Ref. [30]). 

 

3.3 NOCS (NO connection to the Substrate) 

Further development in this area was made by Woodcock et al. by eliminating the need for an 

electrical connection to the substrate which made the technique more practically useable 

[25,50]. In this new, so-called “No Connection to Substrate” (NOCS) arrangement, potential 

noise is measured against a third SCE which, similar to the working electrodes, is in 

electrolytic contact with the specimen. The NOCS arrangement is shown is Figure 5. The 

main advantage of this configuration is the elimination of wired electrical contact to the 

substrate which obviates the need for paint removal. This is a major advantage when the 

sample is fully coated. Also the use of highly stable reference electrodes as data collectors 

renders EN data less susceptible to DC drift. Unlike other ENM electrode configurations, the 

reference cell generates nominally identical level of noise similar to the other two cells which 

might be similar to the measurement method where an electrode identical to the working 

electrodes is used as a reference electrode for collection of potential noise data (see ref [42]). 

However, majority of work using NOCS configuration and validation of the technique has 

only been based on empirical confirmation of data against other well-established 

electrochemical methods. 
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Figure 5 Illustrative diagram of measuring ENM with NOCS arrangement (reproduced from 

Ref. [50]). 

 

3.4 General effect of area when multiple electrodes are used  

The effect of electrode surface area on Rn  value when two  electrodes were used was 

discussed by Cottis and Turgoose [87]. It was argued that the current noise power is 

proportional to the specimen area while the potential noise power is inversely proportional to 

the specimen area. Therefore these two effects would balance each other out with a two 

working electrode set up and the resultant Rn is expected to be equivalent to the resistance 

measured by EIS or DC methods on a single electrode. How is this? Well the current noise 

power is apparently proportional to the surface area of sample and therefore when two 

samples of the same size connect, the standard deviation of current noise will increase by √2. 

On the other hand potential noise power is inversely proportional to surface area so the 

standard deviation of potential noise will reduce by a factor of √2. Therefore the Rn 

calculated based on these two electrodes connected to each other will be equivalent to the R 

measured by EIS or DC on one of these electrodes. The same principle also applies to 

increasing the surface area of each sample, e.g. increasing the size of sample ten times will 

increase the current noise by √10 and will reduce the potential noise by a factor of √10 so 

the Rn should reduce 10 times. 

 

4 Mechanistic information  
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Additional complexity of corrosion mechanism in organically coated metal systems 

compared to the bare metal corrosion limits capabilities of ENM in acquiring mechanistic 

information such as degree of localization. However ENM can be implemented in order to 

acquire information about coating integrity and degradation mechanism in coated systems. 

Spectral noise resistance at 0.1 Hz (Rsn(0.1Hz)) was calculated by Sanchez-Amaya et al. [44] 

from noise data collected at 2.15 Hz and showed excellent agreement with Rn and AC 

impedance values for a highly protective epoxy coating. This was also shown by Mills et al. 

[88]. Rsn was successfully utilized to distinguish between the different stages of degradation 

of coatings. Hypothetically, the two components of ENM, ECN and EPN, may individually 

be used to monitor changes in film integrity (by ECN) and surface passivation (by EPN). This 

is based on the hypothesis that coating ionic resistance attenuates the flow of ions and 

therefore is an indicative of coating integrity. Potential (mean value of potential noise data) 

on the other hand might be indicative of active/passive state and chemical composition of 

electrolyte at the interface (e.g. by Nernst equation). However, this hypothesis needs further 

experimental and theoretical work to confirm it. Using small time records (e.g. 9.5 second) 

for calculation of Rn was practiced by Tan et al. for monitoring real-time changes such as 

formation of organic inhibitor film on a metal surface [52]. The small time record pockets 

were continues parts of a longer time record (i.e. 2000 seconds) and a trend line was fitted on 

the Rn values to track the changes. Use of relatively small time records of 60 seconds for 

calculation of Rn has also been practiced by Bierwagen et al. to monitor changes in resistance 

properties of organic coating in Prohesion test [89]. Assuming an ideal stationary EN data 

and the fact that EN data typically does not contain current or potential transients when 

measured for organically coated metal, a small time record can statistically represent a larger 

group of data for Rn calculation. However, in practice, the Rn values calculated based on 

limited data points have shown to be not sufficiently reproducible. Also extending the time 

record will benefit the frequency domain data analysis by extending the low frequency limit 

of spectral noise. 

 

ENM may be combined with multi-electrode embedded sensors in order to examine 

preferential corrosion attack and localized degradation of organic coating [90,91]. Embedded 

Pt leaf sensors have been also successfully used to monitor changes of coatings during failure 

that comes about by thermal cycling [92]. Greisiger and Schauer claimed that information 

regarding under-film corrosion initiation and formation of corrosion product can be obtained 
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by fractal analysis of EN data and Hurst and Lyapunov exponents [93]. An earlier study by 

Moon and Skerry also reported on the usefulness of fractal analysis [94]. Hurst exponent 

were used to propose a model capable of interpreting the physical significance of the values 

of 2H in terms of the persistence of the electrochemical reactions. However no physical 

evidence was presented to confirm this. Similarly Puget et al. attributed the changes of 

statistical functions, skewness (Sk) and kurtosis (Ku) of current noise, to the corrosion 

process taking place at the organic coating/metal interface [95]. It was suggested that Sk and 

Ku values can identify the transition of localized corrosion to uniform corrosion as well as 

local degradation of coating. It should be noted that in coated metal systems with even a 

moderately protective organic coating, the current flow and hence the current noise is mainly 

controlled by permeation of ionic species through the organic film. Therefore the shape of 

current noise signal does not contain meaningful information about corrosion localization 

unless the coating is severely damaged and corrosion process is kinetically under charge 

transfer control. Further attempts in correlation between mathematical derivatives of EN data 

and corrosion mechanism showed irrelevance of localization index (LI) while shot noise 

parameters, average charge of event and event frequency, showed significant relevance [83]. 

Decrease in frequency event was attributed to a change from uniform corrosion to localized 

corrosion as the coating deteriorated while an increase in the charge per corrosion event was 

attributed to a uniform corrosion accompanied by coating failure. Other analytical approaches 

such as statistical modelling [96], wavelet analysis [97–99], fractal analysis [100], artificial 

neural network [72,101] and cluster and discriminant analysis [102,103] have also been 

implemented mainly in order to acquire mechanistic information about the active/passive 

state and the corrosion pattern of bare metals. Future work in this area may involve studying 

theoretical and physical models of ENM in controlled environments and use of 

electrochemical scanning techniques such as scanning Kelvin probe (SKP), scanning 

vibrating electrode technique (SVET) and scanning electrochemical microscopy (SECM) to 

further elucidate the relevance of these mathematical functions to the degradation mechanism 

of coating and under-film corrosion. 

 

A novel approach for extracting mechanistic information via ENM was pioneered by Tan and 

his co-workers by combining a wire-beam electrode (WBE) with ENM [104]. An auto-switch 

system was developed to monitor EPN and ECN for a large number of mini-electrodes 

embedded in an insulating material (WBE). Individual distribution maps of ECN and EPN 
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can be produced for identifying the anodic and cathodic areas [105]. Also combining these 

two maps resulted in the distribution map of Rn which was shown to conform nicely with 

local distribution of corrosion [7]. 

 

5 Asymmetry of electrodes   

The above arrangements use either two or three electrodes to obtain the measurement of Rn. 

Hence any asymmetry of the electrodes will be critical and this is very likely to occur because 

organic coatings are known to have an intrinsic inhomogeneity caused by several structural 

parameters such as variation in thickness, presence of micro defects and inconsistency of 

physical and/or chemical properties [106–108]. The inhomogeneous structure of coatings 

causes a variation of resistance value, with a random distribution across the film. 

Consequently, in practice, it is unlikely to find two or three areas of coating with identical 

resistance values to serve as standard measuring electrodes in any salt bridge, SS and NOCS 

configurations. It is therefore essential to understand the effect of electrodes asymmetry on 

ENM when utilized for measuring Rn (and Rsn) of an organically coated metal. 

The importance of electrode symmetry when measuring electrochemical noise on bare metal 

has been shown elsewhere [109]. Use of a noisy reference electrode was systematically 

investigated and compared to a standard noiseless RE set-up in a three or four electrode 

configurations by Bertocci et al. [110–113]. Their model revealed the necessity of symmetry 

between RE and WEs in order to avoid systematic error when a noisy RE was used. The 

experimental work was performed on bare metal where the impedance values are necessarily 

much lower than coated substrates and the current flow is not impeded by a barrier coating. It 

was also assumed that the corrosion process takes place under activation control which is 

highly unlikely in the case of polymer coated metal. These studies also showed that the 

accurate calculation of Rsn depends on the assumption that both working electrodes have the 

same corrosion rate. However, these assumptions, which may be hard to fulfil in practice for 

bare metal and hence lead to error, are less critical in the case of coated substrates where the 

high impedance of the coating is what dominates.  

Bautista and Huet [114] discussed the theoretical aspects of ENM on asymmetric coated 

electrodes when one has higher impedance than the other. It was shown that the current tends 

to be controlled by the electrode with higher impedance while the other electrode controls the 



19 
 

potential fluctuation. Mansfeld et al. [115] investigated noise measurement on asymmetric 

electrodes consisting of a highly protective coating and a defective coating by the salt bridge 

arrangement. They observed slightly lower σ(v) and significantly higher σ(i) on defective 

coatings when coupled together. On the other hand, Rn measured for a coupled defective 

coating with an undamaged coating was almost identical to that of two undamaged coatings. 

They concluded that Rn is dominated by the current flow which is hindered when one 

electrode is a good barrier and this renders the contribution from the defective coating 

insignificant [48]. They made a suggestion for future work to measure current noise data for 

one polymer coated electrode coupled with bare metal of the same type or a small platinum 

wire by a ZRA as a measure of coating performance. 

The effect of asymmetric coated electrodes on EN data acquired by the NOCS arrangement 

was studied by Jamali et al. [116]. ENM was performed with the NOCS arrangement on three 

samples where one of the three resistances forming the group in the NOCS measurement 

differed significantly from the other two. It was observed that the level of current noise when 

two electrodes with dissimilar resistances are coupled via a ZRA is attenuated by the coating 

with higher resistance. A similar observation was reported earlier by Bos et al. [117]. In 

terms of potential noise, it is the passive state of the electrodes that controls the potential 

noise and it is not directly controlled by either the high or low resistance coatings. The 

changes of Rn therefore mostly follow the changes in potential noise. A later study by Mills et 

al investigated the reproducibility and frequency dependence of Rn when measured by the 

NOCS arrangement [88]. It was found that the NOCS arrangement may result in an erroneous 

value of Rn when used on very low resistance coatings, e.g. R≈4x10+4 Ω cm2. It was also 

shown that in an asymmetric configuration with one low resistance sample and two high 

resistance samples, the effect of the low resistance sample is more pronounced when 

connected to either of the WEs  rather than when it is connected to the RE. In an even more 

recent study by the same group, NOCS was utilized to identify the “odd” electrode among the 

three, when the other two had similar resistance [118]. Individual resistance values of 

electrodes were identified by exchanging samples between WE1, WE2 and RE in an 

asymmetric electrode arrangement. It was found that when the value of one “cell” was 

different to the other two, it dominated the Rn when this cell was connected to WE1. This 

opened up the possibility of exchanging the electrodes as part of the measurement with 

NOCS in order to check on the symmetry of the arrangement and when they differed, 

produce from the results the individual values of the three areas. Therefore, this would render 
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the method more useful given the fact that a low resistance area which is potentially less 

protective would be picked up and its value would become obtainable. Note that in principle 

a similar approach could be made with the SS arrangement. This would be done by 

introducing a third area (e.g. C, the original areas being A and B), and then measuring 

electrochemical noise for AB, BC and AC sets and calculating the individual values of A, B 

and C. Further developments of field instruments could offer both arrangements (SS, NOCS) 

as either a single (S) or a multiple measurement (M). Generally though the problem of 

asymmetric electrodes is inherent in the “normal” ENM method. Below is discussion of a 

new development which gets around this problem. 

 

6 Field configurations and considerations   

An overview of different ENM electrode configurations and their comparison to EIS and DC 

resistance method has been given by Mills [119]. The NOCS  arrangement was also 

investigated in a recent study by Mills et al. [118]. This work, which was a follow-up on an 

earlier report [55], also successfully implemented a pseudo reference electrode, namely a 

“copper pad” instead of the reversible SCEs.  In order to provide electrolytic connection 

between the electrode and coated panel, an ionically conductive pad was made by cutting 

filter paper into 3×3 cm pieces, soaking it in 0.5 M NaCl and placing it between the copper 

and the coated surface. Figure 6 shows the suggested construction design of a copper pad for 

on-site ENM. ENM with the NOCS arrangement in combination with artificial neural 

network (ANN) data analysis has been successfully utilized elsewhere for examining 

corrosion behaviour of metallic coatings [101]. NOCS arrangement has also been used by 

Bos et al. in combination with EIS for in situ examination of organic coatings in the ballast 

tank of a submarine and the results acquired by the NOCS method showed good agreement 

with those from  measurements obtained using EIS [117]. 
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Figure 6 Assembly of a copper pad used as a pseudo reference electrode for on-site 

measurement by ENM (reproduced from Ref. [118]). 

 

Looking now at important practical considerations e.g. the location to place the electrodes on-

site, it is recommended that selected “representative” areas of the structure, e.g. a tank, are 

chosen for examination. Some “normal” areas and one or two more vulnerable areas should 

generally be chosen. It should be noted that despite the fact that there are different numbers 

of electrodes and surface areas involved in the measurement, using different electrode 

configurations will not affect the Rn value.  

Regarding the influence of environmental and instrumental noise, the limited reports in this 

area from the literature suggest a significant impact of “stray signals” and even the 

appearance of low frequency noise resulting  from  waving a human arm four feet from the 

coated sample [79]. Figure 7 demonstrates application of ENM for examining protective 

performance of an anti-corrosion coating on an aircraft carrier bottom on site [80]. Potential 

sources of environmental noise such as high voltage power cables, transformer as well as 

human operators can be seen. It was however reported that placing the samples and the 

measuring device in a Faraday cage considerably reduced the environmental noise. But this 

may not be practical for on-site measurements. However recent work (unpublished) has 

shown that earthing the instrument and the structure being investigated can lead to a big 

reduction in adventitious noise. Also in on-site measurements, the use of well screened leads 

is essential to reduce the environmental noise. The significance of instrumental noise when 

conducting measurement at high frequency sampling rate has also been pointed out by Cottis 

and Turgoose [120]. However these reports did not provide any quantitative analysis of the 

noise sources. There is still need for a mechanistic study of environmental and instrumental 
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noise to better understand their sources and to produce methods to effectively eliminate them. 

Regarding the actual size of the area examined there is some evidence that this does not make 

too much difference to the Rn value obtained but somewhere between 4 and 20 cm2 would be 

recommended. 

 

 

Figure 7 ENM instrumentation positioned under an aircraft carrier bottom for examination of 

organic coating. 

 

Field evaluation still offers a significant challenge, particularly in the case of submerged 

structures and items with complicated shapes, where providing and isolating the two or three 

working electrodes (for SS and NOCS arrangements respectively) may be impractical.  Also 

in contrast with usual laboratory experiments, field measurements are performed on random 

surfaces with unknown resistance values. In practice, it is fairly rare to find two or three 

organically coated surfaces with identical resistance values and therefore, practically, all the 

proposed noise data collection arrangements introduce a significant uncertainty in regards to 

which area has dominated the measured Rn. It was partly to get around these drawbacks that 

the single cell method was developed discussed in the next section. 

 

7 New configuration: Single Cell method  
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If two or three nominally identical (but not in practice) identical electrodes pose a problem, 

can just one electrode be used? Recent work indicates that this may be possible and a new 

electrode configuration for ENM has been proposed in an attempt to make noise 

measurement on a single working electrode [121]. The so-called “Single Cell” (SC) 

configuration was introduced to enable Rn to be measured for immersed objects or inside 

storage tanks without the need for two isolated working electrodes. 

A critical appraisal of the published literature on the use of asymmetric electrodes in ENM 

and possibility of acquiring meaningful electrochemical information on single electrodes was 

published by Cottis [122]. It was concluded that only under certain circumstances with 

correct assumptions useful information may be acquired when two dissimilar electrodes are 

used as working electrodes. In particular the electrochemical emission spectroscopy was 

discussed which was a method previously introduced by Chen and Bogaerts [123] and uses a 

platinum micro-probe as the second working electrode against the working electrode of 

interest to gather current noise data. It was shown that the small platinum probe with high 

resistance dominates the ECN flowing through the ZRA while a large platinum probe will 

render the working electrode a large anode thus significantly affecting the EPN. This makes 

the accurate and independent measurement of both elements of noise, ECN and EPN, 

impossible. However, the situation is different with coated metal. It is believed that in the SC 

configuration [121], the high impedance of the coating governs the current noise (similar to 

that proposed by Bautista and Huet [114], Mansfeld et al. [115] and Cottis [122]) while the 

very low noise level of SCE does not contribute to the potential noise leading to a relatively 

independent noise signal mainly reflecting characteristics of the sole working electrode. This 

brings about the possibility of accurate measurement of current and potential noise and a 

valid calculation of Rn in good agreement with resistance values obtained by other 

electrochemical techniques (e.g. EIS, DC). 

In this SC method the electrochemical potential noise (EPN) and electrochemical current 

noise (ECN) are measured sequentially between one working electrode and the SCE. The 

EPN is first measured in an open circuit set up similar to the standard arrangement for EPN. 

Subsequently the ECN is measured by connecting the SCE as the second working electrode 

with potentiostatic control.  Figure 8 represent the schematic SC electrode configuration for 

ENM. Further efforts have been made to develop a testing protocol for on-site ENM by 

examining the effect of using different pseudo reference electrodes, i.e. platinum, copper and 

carbon electrodes. Also the effect of electrolyte composition, equilibrium time and EN data 
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sampling rate [124] has been investigated. It was shown that shortening the time of data 

collection by using high frequency EN sampling, e.g. >10 Hz, tends to overestimate Rn. Also 

it was shown that for dry and non-degraded paint film a relationship exists between Rn and 

equilibrium time (time required to reach steady state for ENM) which is consistent with an 

earlier report [55].  

 

 

Figure 8 Illustrative diagram of for ENM with Single Cell (SC) arrangement (reproduced 

from Ref. [121]). 

 

8 Role of the reference electrode 

Concerning the potential noise of the reference electrode, this should be as small as possible 

so that the measured potential noise signal reflects only the sample perturbation. Ag/AgCl 

reference electrodes are well known to be light sensitive and may generate a significant level 

of noise [121];  thus it is suggested that they should be avoided for ENM [120]. By design, 

most SCE reference electrodes are non-polarisable and produce a very low level of potential 

noise [120]. However, due to the dynamic nature of electrochemical process in a reference 

electrode, it may evolve significant levels of current perturbation when coupled with a noisy 

electrode. It is also noteworthy that in all non-standard electrode configurations of ENM (i.e. 

SS [30], NOCS [50] and SC [121]), the contribution of the RE to the current noise signal is as 

important as its contribution to potential noise. This is unlike the traditional salt-bridge 

arrangements where the RE is only involved in measuring the EPN. Therefore, it is suggested 

that when non-standard ENM electrode configurations are applied to low impedance 
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specimen the level of ECN generated by the RE should be monitored carefully and compared 

to the ECN of the WEs. This can be done by measuring ECN via ZRA between two similar 

REs. It is recommended to place resistors with comparable resistance value to the coating 

system in series with the REs for such measurements as the very low impedance of the circuit 

may result in high values of ECN that are unrealistic for the electrochemical systems under 

study. The current noise power is dependent on the resistance in the circuit and is given by 

𝐸𝑛,𝑟𝑒𝑓
2̅̅ ̅̅ ̅̅ ̅̅ /𝑍𝑠

2, where  𝐸𝑛,𝑟𝑒𝑓
2̅̅ ̅̅ ̅̅ ̅̅  is the potential noise power of the reference electrode and 𝑍𝑠 is the 

impedance of the circuit between the two REs. Therefore an insufficient resistance that is not 

comparable with the resistance of coating being studied will not reflect the real contribution 

of RE in current noise in the actual electrochemical system. 

  

9 Future trends 

In the area of REs further progress is required in order to build low noise and low impedance 

REs for on-site measurements. This will bring about a more accurate application of non-

standard ENM electrode configurations to low impedance and noisy specimen such as 

severely degraded organic coatings. Studies on noise level and calibration of other REs, such 

as Cu/CuSO4, may be undertaken to find a better RE that does not impede the current noise 

generated by very low resistance specimens. 

One of the less explored avenues of ENM is its application as an assessment method for 

implantable electrodes in wireless monitoring of coatings. A similar methodology was 

employed by Mansfeld et al. for monitoring the effect of microorganisms on degradation of 

the protective properties of polymer coatings in a far-off marine environment [125]. ECN and 

EPN data were collected remotely and transferred to a lab via a modem where the data was 

analysed. The new generation of mobile and accurate ZRA/potentiometers opens up many 

opportunities for field application of ENM using data acquisition configurations that have 

been proved useful in the laboratory. Major developments are particularly required in regards 

to the effective isolation of the noise measuring device and data collection signal in order to 

become less affected by environmental, electrical and electromagnetic noises. New electronic 

communication methods such as Bluetooth (short range) and other wireless communication 

protocols show great potential for providing an effective and isolated way of communication 

between the electrodes, data logger and the computer. EN data can be translated into 

computer coded signals, transmitted unaffected over a long distance and de-coded before 
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being transferred into a computer where the data is analysed. Use of specialized solid state 

electrodes (e.g. ion selective electrodes) will also significantly expand the application of 

ENM for monitoring certain changes in environment and/or biomedical applications. 

 

Conclusion 

The electrochemical noise method applied to organic coatings has come a long way since the 

pioneering work of Skerry et al. As a quantitative (or under less than ideal conditions semi-

quantitative) way of measuring the protection level afforded by an organic coating, enough 

work has been done such that the technique is now robust enough so that it can move out of 

the laboratory e.g. from providing data to assist formulation or quality control on laboratory 

panels, to being used in the field. It still appears the “standard” conditions of 512 data points 

gathered a 2Hz are the best for field work. The latter application will normally involve a 

configuration that is not the normal bridge method e.g. either Single Substrate or NOCS. 

Note that for these arrangements the level of noisiness of the reference electrodes (sensors) 

used becomes more critical. However these configurations offer the possibility of obtaining 

in several measurements the individual values of each area (working electrode) whether they 

are the same or different. Improvements in data analysis techniques are needed and should 

make it possible to obtain a more reproducible value of Rn. Also further research is needed to 

confirm the preliminary work which showed that ENM might have the ability (using a 

specific data analysis method) to pick up corrosion under the coating which is the holy grail 

of electrochemical measurements on coated metal. Mechanistic information about how the 

coating is degrading could also be obtainable. The single cell method is also worthy of further 

investigation as it eliminates the problems caused by asymmetry of the two electrodes and 

would enable the ENM method to be directly compared with EIS. 
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