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The Offline Group Seat Reservation Knapsack

Problem with Profit on Seats
Igor Deplano, Danial Yazdani, Trung Thanh Nguyen

Abstract—In this paper we present the Group Seat
Reservation Knapsack Problem with Profit on Seat. This
is an extension of the the Offline Group Seat Reserva-
tion Knapsack Problem. In this extension we introduce
a profit evaluation dependant on not only the space
occupied, but also on the individual profit brought by
each reserved seat. An application of the new features
introduced in the proposed extension is to influence
the distribution of passengers, such as assigning seats
near the carriage centre for long journeys, and close
to the door for short journeys. Such distribution helps
to reduce the excess of dwelling time on platform. We
introduce a new GRASP based algorithm that solves
the original problem and the newly proposed one. In
the experimental section we show that such algorithm
can be useful to provide a good feasible solution very
rapidly, a desirable condition in many real world sys-
tems. Another application could be to use the algorithm
solution as a startup for a successive branch and bound
procedure when optimality is desired. We also add a new
class of problem with five test instances that represent
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some challenging real-world scenarios that have not been
considered before. Finally, we evaluate both the existing
model, the newly proposed model, and analyse the pros
and cons of the proposed algorithm.

Index Terms—heuristic, GRASP, knapsack 2D, Two-
dimensional packing problem, Seat reservation.

I. Introduction

In this paper we extend the Offline Group Seat Reser-

vation Knapsack Problem (GSR-KP) presented in Clausen

et al. (2010). In the original formulation, a train with

W seats stops in H stations. It is required to allocate n

reservations. Each reservation i occupy a set of contiguous

seats for wi people from one initial station yi to a final one

hi. The profit is identified as to maximise the space occupied

during the journey. In our extension the value of the profit

of the reservation is dependent also on the profits assigned

to seats in which the reservation is eventually allocated.

Our extension makes the problem more realistic, allowing

the modelling of scenarios that were not possible to model

with the original formulation. The new scenarios cover the

cases where the ideal position of an item is affected by how

long the item must be kept in its position. We exploit the

original naming style and call the new extension Group

Seat Reservation Knapsack Problem with Profit on Seat

(GSR-KPPS). Moreover, solving realistically sized instances

is challenging for a general solver and often having a good

solution rapidly may be better than having an optimal

solution later, e.g. when there are fixed time constraints.

Thus, we suggest a new GRASP procedure that solves GSR-



KP and GSR-KPPS. Eventually, we adapt and improve the

original instances considered in Clausen et al. (2010) adding

a random profit on seats and proposing five new problems.

The GSR-KP is the problem of maximising the use of

seats in a train during its journey. In the offline version,

the passengers reserve a seat from a departing station until

their arrival station. Each reservation is known in advance

and before the train departs. A reservation can occupy on

one or more than one seats. Groups of people are considered

to be willing to sit on close seats, this is true especially for

long journey, e.g. business trips or family trips with children.

For example, according to a survey by Transport Focus

(Transport Focus, 2016) in a typical busy UK station that

is used for both long and short/commuting journeys, 29% of

passengers were travelling in groups, and 7% of passengers

were travelling with children.

GSR-KP belongs to the family of the packing problems in

two dimensions. In the packing terminology, the reservations

are the items, and the train is the bin. The bin and

items are rectangles. Packing rectangles into a rectangle is

a strongly NP-Complete class of problems (Leung et al.,

1990). Regarding the bin, the dimension of the side parallel

to the horizontal axis represents the number of seats, while

the dimension of the vertical side represents the journey

length of the train. For each item, the dimension of the

horizontal side represents the number of people in the reser-

vation, while the dimension of the vertical side represents

the journey length of the reservation. The dynamic of a

reservation consists of reserving a seat, or a group of seats,

from a departing station to an arrival station. This special

behaviour is modelled by a special constraint which forces

the vertical position of the item.

The GSR-KP has similarities with the Dynamic Storage

Allocation Problem (DSA) (Garey and Johnson, 1990), but

they can be considered two different problems. One of the

differences is on the definition of the bin. Both problems

consider a fixed height for the bin. However, while the bin

in the GSR-KP has a maximum width, the bin in the DSA

is generally an open bin. The second difference between the

two problems is their objective. The GSR-KP maximises the

space occupied, or equivalently minimises the wasted space.

The DSA on the other hand has the same objective as a bin

packing problem, i.e. it tries to compress the allocation of

memory space toward one side to ensure that the allocated

areas are contiguous.

Thus, a solution of the DSA can be a solution of the GSR-

KP, but a solution of the GSR-KP may not be a solution of

the DSA. A DSA problem only has the same solution as the

GSR-KP if it is a special instance with an upper bound on

the available storage space, and if the amount of memory

space to be allocated is strictly greater than the available

storage space.

We propose to extend GSR-KP to create a new model

that can distribute the allocation of passengers based on

their journey length and the profit of the seats, e.g. allocate

reservations of long journeys or groups in the centre of

the carriage, and reservations of short journeys or unitary

groups near doors, reducing the excess of friction during the

boarding/alighting phases (Yazdani et al., 2019). Another

notable application is in the events industry, e.g different

stands may cost differently depending on their location and

size. Applications as such can also be modelled using this

newly proposed model, considering the lending requests as

reservations with time and size, while the price paid to the

lender is dependant on the position in which the request

will be placed. A similar problem exists also in the tourism

industry, for example in the booking system of an hotel,

different room may have a different profit.

Our work can be especially meaningful for the United

Kingdom (UK) rail industry (Hatano, 2004; UK, 2016).

The UK rail industry is an open market, Train Operators

are private, or a mix of private and public, companies in

competition on the main corridors. In longer journeys, i.e.

from Liverpool to London, booking a seat in advance is

the common rule of thumb to avoid standing up for the

whole journey. Train Operators are interested in reducing
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delays to improve the Public Performance Measure and gain

a competitive advantage over competitors.

The first novelty of this paper is the introduction of a new

problem extension, the GSR-KPPS, that binds seat-based

profit with the length of the reserved journey in a mixed

integer programming (MIP) model.

The second novelty is a GRASP based algorithm that is

suitable for both GSR-KP and GSR-KPPS. Such algorithm

is useful when the time to achieve a solution is fixed.

The third novelty is the adaptation and extension of the

instances used in Clausen et al. (2010). We introduced a new

group of problems that better represents some challenging

real world scenarios than the ones suggested in the original

paper.

The paper is organised as follows. In section II we outline

the consistent work found in the literature. Definitions and

terminology follows in section III along with the MIP model

in detail, section IV outlines the proposed algorithm. The

new instances are explained in section V, section VI shows

computational results and the paper ends with conclusions

in section VII.

II. Previous work

To the best of our knowledge, since the original publica-

tion of the problem in Clausen et al. (2010), none of the

follow-up study on the Group Seat Reservation Problem

has shown to be better than the original work. An online

version of the seat allocation problem was first published in

Boyar and Larsen (1999), and further analysis was made in

Goyal (2018). A real-time algorithm that aims to reduce the

boarding/alighting time by maintaining a uniform load on

carriages through systematic distribution of passengers with

flexible tickets has been recently proposed by the authors

in Yazdani et al. (2019).

Many papers have been published in the more general

packing problems context, some examples of new approxi-

mation approaches are genetic algorithms (Gonçalves and

Resende, 2011b; Gupta et al., 2017; Jegadeshwari and Jais-

ree, 2014; Wang and Chen, 2010) and their biased versions

(Gonçalves and Resende, 2011a, 2013), divide and conquer

algorithms (in which the solution space is partitioned and

searched independently) (Wei et al., 2013), neuro-genetic

approaches that mix neural networks and genetic algorithms

(Deane and Agarwal, 2013), GRASP algorithms (Resende

and Ribeiro, 2019) and GRASP/Path relinking (Alvarez-

Valdés et al., 2013), Tabu search (Ceschia and Schaerf, 2013;

Crainic et al., 2009) and other greedy randomized heuristics

(Crainic et al., 2012; Perboli et al., 2011).

The GSR is a specialised version of the bin packing prob-

lem in the two dimensional case, so every algorithm that has

been designed for orthogonal two dimensional rectangular

packing will work on a GSR problem. The difference in our

contribution is that none of them can exploit the nature of

the problem: in a two dimensional problem both dimensions

are free, while in a GSR problem the allocation toward one

dimension is constrained.

III. Definitions, terminology and MIP model

Using the usual terminology of the packing problems

and utilising as much as possible the terminology used in

Clausen et al. (2010), a train contains W seats and stops at

H stations. Let N = {1, . . . , n} be the set of reservations.

Each reservation asks to reserve wi seats from station yi

to station yi + hi. Without any loss of generality, we can

assume that wi ≤W .

First, we briefly describe the original GSR-KP as shown

in Clausen et al. (2010). The active stations are represented

as Y := {yi, |i ∈ N}
⋃
{yi + hi, i ∈ N}, and Ny := {i ∈

N | yi ≤ y < yi + hi} is the set of requests using a seat

at station y ∈ Y . Associated with each station y ∈ Y there

is a "height" Hy that represents the distance from station

y to the next active station in Y . Let δi = 1 if request i is

selected. Let xi be the first seat (from the left, horizontal

axis) of request i. Let E = {(i, j)} be the set of rectangle

pairs which in some way share a station (vertical axis).

Finally, let lij = 1 iff request i is located left of request j.
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The original model is shown in Eq: (1)-(8), the item profit

is identified with the item area (wi · hi), the objective (1)

is to maximise the profit. Constraint (2) enforces that the

number of allocated seats must not exceed the train capacity

in any station. Constraint (3) makes sure that two requests

i and j are selected, than only one must be on the left of

the other. Constraint (4) enforces that two selected items

must not overlap. Constraint (5) ensures that an item must

be allocated inside the train. The remaining constraints (6)-

(8) define the domains of the model variables. We refer the

reader to the original paper for a further explanation.

maximize
∑
i∈N

hi · wi · δi (1)

s.t.
∑

i∈Ny

wi · δi ≤W, y ∈ Y, (2)

δi + δj − li,j − lj,i ≤ 1, (i, j) ∈ E, (3)

xi − xj +W · li,j ≤W − wi, (i, j) ∈ E, (4)

0 ≤ xi ≤W − wi, i ∈ N, (5)

li,j ∈ {0, 1}, (i, j) ∈ E, (6)

δi ∈ {0, 1}, i ∈ N (7)

xi ≥ 0, i ∈ N. (8)

Our model extends the original one by considering also

a profit value associated to the seat. From the modelling

perspective, it translates in a two-dimensional knapsack

problem where the item profit is dependant on a com-

bination of its area and its position inside the bin. The

distribution of the passengers among and along the carriages

can be modelled by assigning profits on the seats, i.e.

considering the seats of each carriage, the central seats have

higher profit than the seats near to the doors (this profits

assignment will allocate reservation with longer journey or

more people in the center of the carriage).

Let Q := {1, . . . ,W} be the set of seats, and pk, k ∈ Q be

the profit pk associated to the seat k. Let γi,k, i ∈ N, k ∈ Q

be 1 iff reservation i occupies seat k.

The new formulation is shown in Eq: (9)-(19).

maximize
∑
i∈N

∑
k∈Q

hi · γi,k · pk (9)

s.t.
∑

i∈Ny

wi · δi ≤W, y ∈ Y, (10)

δi + δj − li,j − lj,i ≤ 1, (i, j) ∈ E, (11)

xi − xj +W · li,j ≤W − wi, (i, j) ∈ E, (12)

wi · δi ≤
∑
k∈Q

γi,k ≤ wi · δi,∀i ∈ N (13)

− (1− γi,k) · 2W + xi ≤ γi,k · k ≤

xi + wi · δi,∀i ∈ N, k ∈ Q (14)

γi,k ∈ {0, 1}, i ∈ N, k ∈ Q (15)

0 ≤ xi ≤W − wi, i ∈ N, (16)

li,j ∈ {0, 1}, (i, j) ∈ E, (17)

δi ∈ {0, 1}, i ∈ N (18)

xi ≥ 0, i ∈ N. (19)

The differences between the models are on the objective

(9), which now includes the profit associated on the seat,

and in three additional constraints (13)-(15). Considering an

unitary profit we will produce the same results of the origi-

nal model, thus, the proposed model can be considered as an

extension of the original problem. Constraint (13) represents

the total allocation of a reservation. If the reservation i is

booked, then wi seats must be allocated, otherwise none

has to be assigned. Constraint (14) enforces the contiguity

of the allocated seats k, for the reservation i. Constraint (10)

represents the knapsack constraint, which enforce allocation

inside the train. Constraints (11) and (12) represent the fact

that two items i,j must not overlap.

IV. Proposed algorithm

In this section we describe the proposed algorithm. The

algorithm is a GRASP procedure (Feo and Resende, 1989,

1995; Resende and Ribeiro, 2016, 2019) that exploits a
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percentage of the best bound found by the continuous relax-

ation of the problem (relaxing integer and boolean variables

to real variables) for enforcing a stopping condition. The

rationale to use a GRASP based method is to produce a

simple algorithm that produces good solutions in a very

limited time. Such algorithm can be used as a startup for

a successive branch and bound procedure, or can be used

directly when achieving a solution in the timelimit is more

important than achieving absolute optimality.

The main procedure, Algorithm 1 (Algorithm will be

abbreviated as Alg from now on), is composed by the fol-

lowing steps: create a random candidate solution, evaluate

the candidate and update the best solution if the candidate

improves the current best solution. If the solution is not

improved then pick a uniformly random number c ∈ [0, 1]

and if c ≤ 0.5 try to improve the current candidate,

otherwise try to improve the best solution found so far.

The stopping criteria of the main procedure are met when

at least one of the following conditions is met. First, the

maximal number of iterations max_iterations has been

achieved. Second, a time threshold timelimit has been

reached. Third, a threshold has been reached on the best

candidate evaluation cbest. The last threshold is calculated

as the fraction bratio of the objective value relaxed_bound

of the continuous relaxation of the problem. The combina-

tion of these three stopping criteria has been chosen to keep

the running time of the algorithm balanced in borderline

conditions.

The return values of the main procedure are best, limit

and cbest. best is the sequence of indexes that represents

the best solution, limit is the position of the last fitting

reservation index in best, cbest is the evaluation of the profit

totalised in the feasible part of the best solution.

The evaluation procedure, Alg 2, requires as input the

candidate list. We remind that a candidate solution is a

permutation of the n indices that represent the reservations,

the evaluation procedure “cuts” the candidate up to the

last feasible element limit. There are two ideas behind

Algorithm 1 main_procedure(relaxed_bound,

bratio, timelimit,max_iterations)
cbest ⇐ epoch⇐ 0, start⇐ current_time(), best⇐ ∅

while (current_time()− start ≤ timelimit and

relaxed_bound · bratio > cbest and

epoch < max_iterations do

candidate, limit, bound⇐ generate_candidate()

if bound > cbest then

cbest, limitbest, best⇐ bound, limit, candidate

else

if uniform(0, 1) ≤ 0.5 then

candidate, limit, bound ⇐

local_search(candidate, limit)

if bound > cbest then

cbest, limitbest, best⇐ bound, limit, candidate

end if

else

candidate, limit, bound ⇐

local_search(best, limitbest)

if bound > cbest then

cbest, limitbest, best⇐ bound, limit, candidate

end if

end if

end if

epoch⇐ epoch+ 1

end while

return best, limit, cbest

the evaluation: firstly to exploit the corner point concept

presented in Martello and Toth (1990) and secondly to

to exploit the problem structure, and reduce the positions

to evaluate along the horizontal axis only. The evaluation

procedure keeps a list of candidate positions in corner.

The algorithm tries to place the items in the first feasible

candidate position. corner is initially initialised with the

position 0. After an item i fits in a position x ∈ corner,

the candidate positions list is updated with the corner of

the item i, corner := corner
⋃
{wi + x}. The evaluation
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procedure is a constructive first fit heuristic (Zhu et al.,

2012).

Algorithm 2 evaluate_candidate(candidate)
Require: candidate ordered list of indexes

Require: n number of items

Require: N ⇐ set of items

corner ⇐ {0}

positioned⇐ ∅

end = n

bound⇐ 0

for i ∈ candidate do

test⇐ false

if hi + yi ≤ H then

for x ∈ corner do

if x+ wi ≤W then

if isNotOverlapping(x, i, positioned) then

positioned⇐ positioned
⋃
{(x, i)}

corner ⇐ corner
⋃
{x+ wi}

test⇐ true

end if

end if

end for

end if

if test = true then

bound⇐ bound+
∑

j∈Q pj ∗ hi

else

end⇐ position of i in candidate

return candidate, end, bound

end if

end for

return candidate, end, bound

The candidate generation, Alg 3, makes use of a

shuffle(x) function, where x is the set to shuffle.

shuffle(x) returns a random permutation of x. After that,

the candidate is evaluated with the procedure in Alg 2.

The local search procedure, Alg 4, swaps half of the

positions of the feasible region with positions picked ran-

Algorithm 3 generate_candidate()
Require: n number of items

candidate⇐ shuffle([1, . . . , n])

return evaluate_candidate(candidate)

Fig. 1. An example of a local search procedure. a) shows the swap
sequence between the feasible and unfeasible region, b) reports the
array consequence of the swapping sequence, the limit of the feasible
region is removed because the new array requires a new evaluation.
The reader should note that since the swapping sequence is random,
the combination of multiple swaps may result in a swap of elements in
the feasible region.

domly. The method exploits the solution structure: items

that belong to feasible regions are located in the initial

part of the solution array. So swapping half of the items

forces the method to evaluate new solutions while keeping

parts of the solution. An example is shown in Fig 1. The

local search procedure is in fact reducible to the 2-opt local

search (Croes, 1958), with the identification of the sets of

the candidates to swap with the feasible and unfeasible

region.

The Alg 1-4 are designed to be a very fast procedure that

can be used to determine lower bounds for a branch and

bound framework. The component with varying computa-

tional cost is the evaluation procedure Alg 2, since Alg 3

and Alg 4 have a constant number of operations.

Let n be the number of items and W be the maxi-

mal number of seats. The worst case scenario for Alg 2

is having groups of one element, the procedure will

make n·(n+1)
2 isNotOverlapping(x, i, positioned) opera-

tions. isNotOverlapping(x, i, positioned) can be imple-

mented as a loop with a check if the new item overlaps

with the others already placed. In the worst case it has to

compare N items. Summarising, the evaluation procedure

6



Algorithm 4 local_search(candidate, limit)
Require: n, numberofavailableitems

Require: candidate ordered list of indexes from 1 to n

Require: limit index of the candidate list that indicate the

first element that does not fit in the bin

s⇐ round(limit/2)

if s = 0 then

s⇐ 1

end if

counter ⇐ 0

while counter ≤ s do

source⇐ uniform(1, limit)

target⇐ uniform(1, n)

if source 6= target then

swap(candidatesource, candidatetarget)

end if

end while

return evaluate_candidate(candidate)

Alg 2 has a worst case scenario with a time complexity of

O(N3).

This complexity can be reduced to O(log2(n) · N2)

by using a balanced binary tree to represent the al-

ready placed objects, and a dichotomy search for the

isNotOverlapping(x, i, positioned) procedure.

V. Class instances

The original paper (Clausen et al., 2010) considers prob-

lem instances used in the literature of the two-dimensional

packing, in a total of 190 experiments in five main classes,

namely CGCUT (Christofides and Whitlock, 1977), WANG

(Wang, 1983), GCUT (Beasley, 1985), OKP (Fekete et al.,

2007), GXON and GXOU (Clausen et al., 2010). The

instances can be downloaded from the author’s repository
1.

Table I shows a comparison between the main features.

For each feature we report the minimum and maximum

1http://hjemmesider.diku.dk/~pisinger/codes.html

values for each parameters to show a broad picture of the

problem class.

Experiments number shows the number of instances avail-

able in the class, stations reports the journey length mea-

sured as number of stations, seats is the number of seats

available in the train, journey represents the journey length

for the reservations, reservation stands for the number of

reservations for each instance and groups are the group

dimension in the reservations.

DEPL is the new class of instances that we propose,

considering also the recent work of Smith-Miles and Lopes

(2012). The idea behind is to provide a challenging problem

class inspired by a real-world scenario that can be hard to

solve. DEPL has an high number of reservations to represent

a busy connection between cities, and a range of limits for

the other features compatible with a broad range of railway

journeys. Most of the details of the proposed instances are

based on the real statistics, facts or observations from the

UK industry. Specifically:

• The reason for consider up to 50 stations only is that

a journey lasting 50 stations is unlikely to happen bar

exceptional cases. An example of an exceptional case

could be the Trans-Siberian Railway (the longest in the

world), which stops in 157 stations during the journey

from Moscow to Vladivostok.

• The range of available seats (400-750) is based on the

actual number of seats available on the dominant inter-

city trains in Great Britain West coast line, such as the

Virgin Trains fleet.

• The large number of reservations is based on statistics

of the Rail Executive (Rail Executive, 2015). This

statistics showed that for the InterCity West Coast

lines (the major north-south rail connection in Great

Britain) with over 100 miles journey distance, at least

60% of tickets purchases are reservations (these are

advanced tickets, with which seat reservation is manda-

tory). This 60% figure is just the lower bound. The

actual percentage of reservation should be much higher,

7
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because the rest of ticket purchases (near 40% for this

type of journeys) are peak and off-peak tickets, which

also offer optional or default seat reservations. For

peak and off-peak tickets, passengers normally choose

reservations to make sure that they have a seat.

• The group size is shaped considering the most likely

number of people in a group in a train journey. Based

on observations, we have limit the typical number of

people in a group to 9 or less, since bigger groups

may prefer to reserve directly a bus or a private driver

especially in long journeys like the case considered here.

VI. Experimental results

The experiments are divided in two main groups, group

one considers unitary profits while group two considers

random profit. For each group we evaluated all the instances

of the classes in Table I: a total of 195 problem instances

per group.

In each experiment we reported the gap, defined as the

best bound of the continuous relaxation of the model.

The formula is reported in Eq: (20), where bestbound is

the best bound of the continuous relaxation of the model,

bestinteger is the best solution found so far, and ε = 1
1010 is

a small numeric constant to avoid a division by zero error.

We applied the same formula to calculate the gap in the

heuristic results as well.

gap = |bestbound− bestinteger|
ε+ |bestinteger| (20)

The model in Eq:(9)-(19) has been implemented in OPL

and solved using IBM CPLEX R© 12.7. The proposed Al-

gorithm 1-4 have been implemented in Python 3.6.7. The

machine used for running the experiments is an Intel R©

CoreTM i7-7700HQ @ 2.80GHz, 16GB DDR4 RAM. The

operating system is UbuntuTM 18.04. The time limit for

solving each instance is 20 minutes. This choice is reasonable

if we consider 1) a booking system that accepts reservation

up to one hour before departure and 2) the seats must

be comunicated before people arrive at platform, e.g. by

email, by printing the seat number at the station gate, or

by a smarthphone application. The proposed algorithm has

been run three times for each instance to avoid potential

bias due to a lucky initialisation. The stopping criteria for

Algorithm 1-4 are: bratio = 0.95 (95% of the result of

the continuous relaxation), max_iterations = 15000, and

timelimit = 1200 seconds. In most of the experiments the

max_iterations and the bratio are the triggering stopping

criteria, while in the DEPL class, since the massive number

of items considerably slow down the evaluation procedure,

the timelimit becomes the only stopping criterion.

Table II and Table III report the experiments of group

one. Table IV and Table V report the experiments of group

two. For CPLEX, the tables report average and standard

deviation of the gap, calculated using as baseline the con-

tinuous relaxation, and time (reported in seconds). For the

algorithm, the tables report the average and standard devia-

tion of computational time (seconds), and average, standard

deviation, minimum and maximum. The last column is

the difference between the mean gap achieved by CPLEX

and the mean gap achieved by the algorithm. This column

highlights the degradation of the objective. We highlight

any gap degradation lower than 10% in bold font.

In all the instances solved in Tables II-III-IV-V, our

algorithm achieved a maximum running time of 6.35 seconds

and a minimum of 5.67E-05 seconds. The average running

time in the first group is 1.95 seconds, while in the second

group is 2.32 seconds.

The experiments of group one, apart from G40U20,

G50U20 and GCUT13, are relatively easy to solve for

CPLEX: 50% of the experiment classes in the first group

have an average gap difference lower than 10%.

The second group is more difficult to solve for CPLEX:

57.89% of the classes ran an average of more than 16

minutes, while the objective degradation was averagely less

than 10% in 26.31% of the experiment classes.

DEPL experiments with random profit are reported in
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TABLE I
Main features of the original instances compared with the proposed one

stations seats journey reservations groups
class experiments
name number min max min max min max min max min max

CGCUT 15 15 40 10 70 2 33 16 62 1 43
GXON 60 100 100 100 100 1 45 20 50 1 45
GXOU 20 100 100 100 100 1 35 20 50 6 37
GCUT 65 250 3000 250 3000 62 970 10 50 63 1890
OKP 25 100 100 100 100 1 100 30 97 1 99
WANG 5 70 70 40 40 11 43 42 42 9 33
DEPL 5 6 50 400 750 1 48 2000 2500 1 9

TABLE II
Experiment group one, comparison with unitary profit, first part

instance CPLEX algorithm
gap time gap time

name mean std mean std mean std min max mean std difference

CGCUT01 1.38 3.08 0.04 0.01 28.52 11.61 18.18 42.11 1.92 0.09 27.14
CGCUT02 1.52 1.77 0.73 0.27 9.06 6.83 1.23 22.22 1.69 1.34 7.54
CGCUT03 4.66 4.49 1.09 0.3 20.38 16.02 1.83 47.87 1.92 0.83 15.72
G20N10 1.42 1.28 2.73 2.33 6.43 3.17 2.85 11.90 1.64 1.21 5.01
G20N20 0.18 0.24 1.54 1.41 4.88 3.39 0.43 12.37 1.26 1.52 4.70
G20N30 0 0 0.54 0.05 6.25 5.77 0.90 16.51 0.86 1.86 6.25
G20U20 1.73 2.63 3.14 2.85 34.61 18.87 10.39 62.57 2.27 0.48 32.88
G30N10 4.32 2.96 7.81 3.94 11.41 2.19 6.68 17.57 3.15 0.16 7.09
G30N20 0.79 0.71 5.52 2.91 11.23 4.19 2.40 18.37 3.05 0.63 10.44
G30N30 0 0 1.97 1.3 3.69 0.89 0.78 5.17 0.32 0.36 3.69
G30U20 0.9 0.83 40.3 43.59 42.21 5.52 33.67 55.40 2.55 0.38 41.31
G40N10 4.59 4.18 9.36 7.9 23.94 3.41 13.81 36.68 3.21 0.12 19.35
G40N20 0 0 13.9 10 10.03 5.26 3.09 23.81 2.90 1.11 10.03
G40N30 0 0 5.26 2.37 8.99 6.21 2.99 20.00 2.55 2.22 8.99
G40U20 2.01 0.95 70.19 71.48 53.11 11.08 28.18 73.76 2.72 0.15 51.10
G50N10 3.36 1.87 22.96 27.98 29.19 3.74 21.77 35.92 3.48 0.29 25.83
G50N20 1.69 2.36 12.1 3.96 19.45 10.18 8.46 38.86 3.49 0.11 17.76
G50N30 0 0 6.03 3.55 8.95 4.96 4.40 22.22 5.28 0.83 8.95
G50U20 0.99 1.11 195.36 303.41 64.08 12.06 43.03 84.65 2.66 0.20 63.09
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TABLE III
Experiment group one, comparison with unitary profit, second part

instance CPLEX algorithm
gap time gap time

name mean std mean std mean std min max mean std difference

GCUT01 27.62 5.23 0.19 0.02 76.96 75.95 23.32 257.14 0.87 0.79 49.34
GCUT02 11.45 8.7 0.84 0.1 74.73 42.07 17.65 185.71 0.34 0.75 63.28
GCUT03 13.17 11.46 1.78 0.96 69.64 77.38 1.42 259.12 0.84 0.90 65.47
GCUT04 1.71 1.59 4.75 2.76 12.78 7.60 2.64 31.25 1.54 0.90 11.07
GCUT05 5.16 7.77 1.11 0.5 5.29 7.67 0.45 18.46 0.69 0.93 0.13
GCUT06 10.37 12.67 2.3 1.27 11.49 11.67 1.27 24.53 0.70 0.90 1.12
GCUT07 8.49 5.63 3.94 1.45 8.84 5.26 4.60 18.06 1.43 0.71 0.35
GCUT08 1.06 1.09 14.05 3.46 4.82 1.53 0.20 9.41 1.02 0.84 3.76
GCUT09 10.62 10.64 1.82 0.8 11.10 10.11 0.35 24.53 0.97 0.88 0.48
GCUT10 1.99 1.6 3.63 0.78 2.62 1.21 0.81 4.44 0.06 0.08 0.63
GCUT11 7.31 7.75 14.04 10.55 11.56 6.29 0.60 17.79 1.46 0.68 4.25
GCUT12 1.36 0.7 18.67 6.94 5.77 3.31 0.70 18.98 0.86 0.65 4.41
GCUT13 21.3 22.02 864.27 0.16 14.98 2.59 9.64 21.63 3.60 0.11 -6.32
OKP01 6.13 2.48 1.13 0.41 38.46 9.86 17.33 68.38 2.07 0.03 32.33
OKP02 12.55 1.51 0.67 0.16 19.27 7.95 12.52 35.08 1.86 0.06 6.72
OKP03 6.26 1.3 0.39 0.06 7.95 2.26 5.41 22.64 1.83 0.05 1.69
OKP04 8.7 2.73 1.83 0.35 44.10 9.66 25.51 74.96 2.26 0.04 35.40
OKP05 17.57 2.95 6.99 2.13 75.39 18.04 36.19 123.60 2.90 0.03 57.82
WANG20 11.22 5.75 0.43 0.11 34.56 9.42 13.93 56.44 1.91 0.03 23.34

Table VI. CPLEX ran out of memory in all the experiment

made. We were not able to provide the solution of the

continuous relaxation, thus we were not able to calcu-

late the gap between the relaxation and the best solution

found. Consequently, we decided to run the instances with

the proposed algorithm only at different time limits, one

minute, three minutes and one hour. Table VI reports the

average number of iterations made, maximum, minimum

and average objective with standard deviation value found

with three different time limits for the heuristic. The result

shows that considering a much large number of items, the

algorithm’s chances to improve an already good solution

by remixing part of the best solution or part of the actual

solution are less. The evaluation process becomes much

slower. For example, with the instance DEPL_0, tripling

the time from 60 to 180 seconds only produced a gain in

the average objective of 1.64%, and when we increase the

time limit from 1 minute to 60 minutes, the gain in the

objective was only 5.07%. A similar pattern can be seen

in the other cases, where the best gain after an hour of

computation was 12.17% in the objective value. To sum it

up, the experimental results have shown that the proposed

heuristic is a useful tool to provide good, feasible and quick

solutions for the challenging instances that CPLEX fails.

However, letting the heuristic run for an extended period

will not improve performance significantly.

VII. Conclusions

In this paper we have developed a mixed integer pro-

gramming model for the Group Seat Reservation Knapsack

Problem with Profit on Seat. It is an extension of the

Offline Group Seat Reservation Knapsack Problem that

introduces a profit evaluation dependant on reservation

profit, journey lenght, group size, and the profit of reserved
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TABLE IV
Experiment group two, comparison with random profit, part one

instance CPLEX algorithm
gap time gap time

name mean std mean std mean std min max mean std difference

CGCUT01 46.80 13.36 0.47 0.25 118.66 17.27 117.93 120.10 1.70 0.09 71.86
CGCUT02 58.84 12.23 1200.39 0.84 82.06 15.02 80.62 84.49 2.47 0.27 23.22
CGCUT03 64.91 14.20 580.02 409.21 106.61 27.69 101.06 114.82 1.98 0.08 41.70
G20N10 60.69 9.27 827.67 477.01 78.81 7.14 77.53 80.71 2.70 0.24 18.11
G20N20 60.46 9.04 946.67 347.33 88.37 12.94 86.22 90.43 2.65 0.30 27.91
G20N30 53.84 13.73 1141.04 131.85 91.99 11.63 91.68 92.19 4.57 0.78 38.15
G20U20 67.83 11.86 1042.28 216.89 133.10 28.98 127.70 139.59 1.97 0.45 65.28
G30N10 70.59 10.41 1029.90 252.47 93.82 6.27 87.39 99.70 2.80 0.16 23.23
G30N20 64.13 7.36 1008.56 337.22 95.74 12.98 90.78 100.44 2.82 0.17 31.61
G30N30 54.73 14.48 1200.01 0.00 82.83 9.72 81.74 83.61 4.87 1.16 28.10
G30U20 81.32 3.34 665.11 312.73 151.91 11.82 144.30 160.55 2.25 0.37 70.59
G40N10 68.56 8.22 1177.32 52.17 110.12 14.65 104.02 115.68 2.85 0.17 41.56
G40N20 75.04 10.48 1099.03 226.54 101.28 7.28 96.85 105.63 3.01 0.19 26.25
G40N30 57.90 13.72 1200.26 0.54 97.77 21.76 93.40 101.14 4.88 0.78 39.88
G40U20 157.29 97.61 924.14 275.48 182.74 25.11 168.71 193.63 2.32 0.15 25.45
G50N10 78.02 8.25 1121.18 177.59 128.50 18.86 119.13 140.83 3.03 0.31 50.48
G50N20 75.50 7.91 1149.88 112.31 120.58 17.31 113.41 128.85 3.11 0.10 45.08
G50N30 57.06 8.72 1092.70 239.96 99.18 11.33 95.14 103.16 4.81 0.55 42.12
G50U20 172.74 79.85 937.84 263.62 199.80 12.50 190.17 209.26 2.34 0.16 27.05

seats. The proposed extension covers situations where the

ideal position of an item is affected by how long the item

must be kept in its allocated position.

We have developed a new GRASP based algorithm that

solves the original problem version and the newly proposed

one.

We have improved the instances considered in the orig-

inal paper with five new problems that better represent

challenging real world scenarios and we have evaluated the

limitations of the proposed algorithm.

In the experimental section we have shown that the

proposed algorithm can be useful to provide a first lower

bound very rapidly, which can be used as a startup for a

successive branch and bound procedure. It can also be very

useful in the cases where achieving a solution within a short

time limit is more important than achieving an absolute

optimality.
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