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Abstract 17 

To cope with the post-fire challenges of decreased availability of food and shelter, brown 18 

antechinus (Antechinus stuartii), a small marsupial mammal, increase the use of energy 19 

conserving torpor and reduce activity. However, it is not known how long it takes for animals 20 

to resume pre-fire torpor and activity patterns during the recovery of burnt habitat. Therefore, 21 

we tested the hypothesis that antechinus will adjust torpor use and activity after a fire 22 

depending on vegetation recovery. We simultaneously quantified torpor and activity patterns 23 

for female antechinus from three adjacent areas: (i) the area of a management burn one year 24 

post-fire, (ii) an area that was burned two years prior and (iii) a control area. In comparison to 25 
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shortly after the management burn, antechinus in all three groups displayed less frequent and 26 

less pronounced torpor while being more active. We provide the first evidence that only one 27 

year post-fire antechinus resume pre-fire torpor and activity patterns, likely in response to the 28 

return of herbaceous ground cover and foraging opportunities. 29 

 30 

Keywords: antechinus, behaviour, heterothermy, marsupial, physiology, predation 31 

 32 

1. Introduction 33 

As large and destructive wildfires are increasing worldwide [1], management burns are 34 

employed in many forested areas with the aim of reducing fire fuel loads. However, the time 35 

between fires and their intensity can alter assemblages of plant and animal species [2,3]. 36 

Importantly, while leaf litter and some grasses/herbs often reappear quickly after a fire, 37 

others, such as woody vegetation and tree hollows, can take up to 30-40 years to re-establish 38 

[4].  39 

 In the long-term fires can help to increase habitat complexity, which is beneficial for 40 

many small terrestrial mammals [2]. However, the initial loss of ground cover after a fire can 41 

be detrimental because it leads to reduced foraging opportunities due to increased predation 42 

pressure [5]. This is exacerbated for insectivorous mammals, as the abundance of ground-43 

dwelling arthropods often decreases after fire [6]. Hence, in the short to medium-term after 44 

fire, some terrestrial mammals have been found to substantially curtail activity and enhance 45 

the use of torpor - a pronounced reduction in energy expenditure via a controlled fall of 46 

metabolic rate and body temperature (Tb) [6-9].  47 

Given the slow recovery of some habitat features it remains unclear over what time 48 

period such behavioural and physiological adjustments have to be employed for individuals 49 

and populations to survive. While an increase in torpor use is beneficial during detrimental 50 
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conditions, it may reduce fitness by curtailing territorial defence and reproduction. Therefore, 51 

as conditions improve animals should employ less torpor. We tested the hypothesis that 52 

following the recovery of an herbaceous understory after a management burn, torpor use and 53 

activity in brown antechinus (Antechinus stuartii), a small heterothermic terrestrial marsupial 54 

[10], will return to pre-fire levels in response to more profitable and safer foraging 55 

opportunities.  56 

 57 

2. Material and methods 58 

Our work was undertaken during May-June 2015, one year after a management burn at Guy 59 

Fawkes River National Park, Australia (30°04’58.6”S, 152°20’0.9”E). We compared data 60 

collected during the current study to those from our previous study in 2014 [9], with a total of 61 

six groups of female antechinus (defined in table 1). All groups were measured in areas that 62 

were in close proximity, ensuring that the general habitat and climate of the sites was the 63 

same. The areas that burnt in 2013 and 2014 are burnt regularly to reduce fuel levels and the 64 

intensity of wildfires, whereas the control area last burned in 1994 due to a wildfire and no 65 

management burns have been implemented since [11]. Ambient temperatures (Ta) were 66 

recorded with data loggers (± 0.5°C, iButton thermochron DS1921G, Maxim Integrated 67 

Products, Inc., Sunnyvale, California, USA). We visually determined the percentage of 68 

ground cover in 12 randomly selected 1m2 quadrats in each of the three study areas (36 69 

quadrats total).  70 

 To measure Tb patterns including torpor and also to infer activity we implanted 71 

temperature-sensitive radio-transmitters (2g, Sirtrack, Havelock North, New Zealand) into the 72 

intraperitoneal cavity of each animal (for surgical details see [12]). A receiver/data logger 73 

[13] was placed near each nest to record the presence/absence of animals and their Tb. 74 

Throughout the study each individual used between 1 and 8 nest sites (mean = 3.7 nests) and 75 
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loggers were repositioned whenever antechinus moved to a new nest. Activity periods within 76 

24 h (sunrise to sunrise) were calculated as the time animals spent away from the nest 77 

site/logger for >30min. Days when an individual moved nests were excluded as the time the 78 

animal arrived at the new nest was unknown. We calculated the torpor threshold of 31.5°C 79 

using equation 4 [14] as previously [9]; torpor bouts were calculated from the time Tb fell 80 

below and rose above this threshold for > 30 min.  81 

We used R [15] to perform statistical analyses. As the duration of activity and torpor 82 

are significantly correlated with Ta in antechinus [10], only data recorded when Ta was within 83 

daily maxima (20.0°C) and minima (2.0°C) of our previous study were included [9]. We 84 

employed linear mixed-effects models [16] to test for differences among the six groups for 85 

the measured variables: torpor frequency, torpor bout duration, daily minimum Tb, time spent 86 

active [17]. We used body mass and daily minimum Ta as covariates, individuals were 87 

included as a random effect to account for repeated measures and we accounted for temporal 88 

autocorrelation [17]. We used a residual plot to test for homoscedasticity and a normal Q-Q 89 

plot to test for normal distribution. We employed a post-hoc Tukey test [18] to determine 90 

which groups differed from each other. All proportions were arcsine transformed before 91 

analysis. We assumed significance at p < 0.05.  92 

 93 

3. Results 94 

While ground cover had somewhat recovered a year after the burn in 2014 (figure 1), it was 95 

patchy in those areas where the one year post-fire 2015 (range = 10-100%, mean = 50%, n = 96 

12) and two years post-fire 2015 (range = 5-100%, mean = 39%, n = 12) groups were 97 

measured. In contrast, the area where the control 2015 group was measured consisted of thick 98 

and even ground cover unchanged from 2014 (range = 60-100%, mean = 87%, n = 12). 99 
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In all 2015 groups torpor was employed approximately half as often as by the post-100 

fire 2014 group, and torpor frequency was therefore statistically identical to the pre-fire 2014 101 

and control 2014 groups (figure 2a; table 2). Furthermore, in all 2015 groups mean torpor 102 

bout durations and the longest torpor bouts recorded per individual were significantly shorter 103 

(~50%) compared to the post-fire 2014 group (figure 2b; table 2). The mean daily minimum 104 

Tb displayed by groups in the 2015 study was ~3°C higher, and the lowest Tb recorded 105 

>3.4°C greater, than that of the post-fire 2014 group (figure 2c; table 2).  106 

Antechinus from all three groups measured in 2015 spent an additional three hours 107 

active each day in comparison to individuals from the post-fire 2014 group (figure 2d; table 108 

2). Further, while daytime activity was almost absent in the post-fire 2014 group (4.4% of 109 

total daily activity), it encompassed ~20% of the total daily activity of antechinus in 2015 and 110 

of those in the pre-fire 2014 and control 2014 groups (figure 2d). 111 

 112 

4. Discussion 113 

Our study provides the first evidence that within one year after a management burn a 114 

population of brown antechinus had resumed pre-fire torpor and activity patterns. Torpor 115 

bouts were shorter and shallower in individuals in the post-fire recovered landscape in 116 

comparison to shortly after the fire when ground cover was largely absent. Further, this 117 

decrease in torpor use one year after the fire was accompanied by an increase in total and 118 

especially daytime activity over levels measured just after the burn.  119 

The late autumn management burns employed for our study were of low-intensity, but 120 

inflicted some mortality amongst antechinus nevertheless [9]. As the fires primarily 121 

consumed dead vegetation and dry leaf litter leaving the mid and upper storeys largely intact, 122 

a relatively quick recovery of some vegetative ground cover ensued. In particular Lomandra 123 

spp. (native Australian perennial herbs) had re-sprouted vigorously in the areas that had 124 
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burned both one and two years prior (figure 1). However, Lomandra is encouraged by fire, 125 

and other types of ground cover such as small shrubs and decaying timber were still largely 126 

absent. Yet, brown antechinus persisted and during early winter resumed daily torpor and 127 

activity patterns similar to those recorded at the same time of year before the fire and in 128 

unburnt habitat [9].  129 

Firstly, it therefore appears that even sparse vegetation of limited diversity is 130 

sufficient for antechinus to manage their daily energy needs without extensive torpor use. 131 

This vegetative cover likely aids in protecting antechinus from predation while foraging. 132 

Secondly, as the abundance of terrestrial arthropods often increases in the year following a 133 

fire [6], for antechinus the prey base might have been elevated. Thirdly, it is likely that the 134 

insulating properties of a tussock ground cover alters the microclimate of foraging areas. For 135 

example, the retention of a boundary layer of warm air near the ground during the night 136 

would reduce thermoregulatory costs while foraging, further decreasing the need to save 137 

energy via torpor.     138 

 Our results highlight the importance of even sparse ground cover for small terrestrial 139 

mammals while foraging [19]. The general association of torpor with low Ta and the 140 

reduction of torpor use as habitat conditions improve suggests that antechinus mostly employ 141 

torpor in response to detrimental conditions, which is similar to other marsupials such as 142 

sugar gliders (Petaurus breviceps) [9,10,13]. Importantly, antechinus are somewhat unusual 143 

in being semelparous, reproducing only once a year towards the end of winter [20]. It is 144 

therefore likely vital for them during autumn and early winter to invest time in protecting 145 

resources, such as food and nests, to ensure reproductive success, and torpor decreases the 146 

time available for these activities.  147 

Nevertheless, it is evidently possible that fires do not pose a significant challenge for 148 

some mammals, especially those that can avoid fires like volant bats [21]. Indeed, the only 149 
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other study we are aware of focussing on how individuals recover physiologically and 150 

behaviourally in the years after a fire was conducted on bats [21]. Therefore, further studies 151 

on different mammals are needed to understand how other species on other continents 152 

respond physiologically and behaviourally to fires, including severe wildfires, in the short- to 153 

long-term, particularly on longer-lived and homeothermic species that do not have the ability 154 

to employ torpor for energy conservation.  155 
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 225 

Figure 1. Photos of the study site depicting ground cover in the same area shortly after the 226 

management burn in 2014 (a) and one year later in 2015 when Lomandra had recovered (b). 227 

 228 
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 229 

Figure 2. Comparison of variables for female Antechinus stuartii from 2014 (white bars) and 230 

2015 (grey bars). (a) torpor frequency (number of days with torpor/days measured), (b) mean 231 

torpor bout duration (min), (c) mean daily minimum Tb (°C) and (d) time spent active (min). 232 

For activity (d) the solid portion of the bar represents daytime (sunrise-sunset) activity and 233 

the hatched portion nocturnal (sunset-sunrise) activity. Means are shown ± 1 standard 234 

deviation, which for (d) represents whole day (24h, sunrise-sunrise) activity. Only the post-235 

fire 2014 group differed significantly, denoted by the asterisk. 236 
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Table 1. Descriptions of each of the groups measured, including number of individuals and 237 

animal days measured. 238 

group name group description individuals animal days 

pre-fire 2014 individuals measured in 2014 
before the burn 4 25 

post-fire 2014 individuals measured in 2014 
after the burn 4 56 

control 2014 individuals measured in 2014 in 
an unburnt area 2 17 

one year post-fire 2015 
individuals measured in 2015 
one year after the management 
burn in 2014 

7 136 

two years post-fire 2015 
individuals measured in 2015 in 
an area that was burnt two years 
prior in 2013 

4 89 

control 2015 individuals measured in 2015 in 
an unburnt area 6 135 

239 
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Table 2. Torpor variables, body temperatures (Tb) and time spent active (whole day) of female Antechinus stuartii and ambient temperatures 240 

(Ta). Means are shown ± 1 standard deviation and significant differences between groups are identified by different letters. 241 

 pre-fire 
2014 

post-fire 
2014 

control 
2014 

one year  
post-fire 
2015 

two years 
post-fire 
2015 

control 
2015 

torpor frequency (proportion of days) 0.52 ± 0.27a 0.92 ± 0.07b 0.43 ± 0.35a 0.57 ± 0.22a 0.62 ± 0.16a 0.50 ± 0.28a 

torpor bout duration (min) 120.8 ± 80.8a 274.2 ± 79.2b 137.5 ± 102.5a 142.6 ± 81.4a 126.7 ± 33.1a 121.9 ± 69.1a 

longest torpor bout recorded (min) 330 650 310 380 340 340 

minimum Tb (°C) 31.3 ± 2.2a 27.4 ± 1.9b 31.2 ± 2.8a 30.1 ± 1.9a 29.5 ± 1.4a 31.1 ± 2.3a 

lowest Tb recorded (°C) 24.3 19.8 27.6 24.0 23.2 25.1 

time spent active (min) 693.2 ± 62.7a 408.2 ± 137.6b 617.1 ± 107.0a 599.6 ± 106.6a 661.2 ± 68.1a 629.3 ± 75.7a 

daily Ta (°C) 8.3 ± 2.8a 11.1 ± 1.2b 10.9 ± 1.1b 9.6 ± 1.1b 9.9 ± 1.0b 9.9 ± 1.3b 

maximum Ta (°C) 13.5 ± 2.6a 16.5 ± 1.7b 16.3 ± 2.0b 15.8 ± 0.8b 15.4 ± 1.2b 15.7 ± 1.3b 

absolute highest maximum Ta (°C) 17.5 20.0 19.5 18 18.5 18 

minimum Ta (°C) 4.8 ± 2.8a 7.4 ± 1.4b 7.0 ± 1.4b 6.8 ± 1.5b 7.1 ± 1.4b 7.1 ± 1.7b 

absolute lowest minimum Ta (°C) 2.0 5.5 5.0 5.5 5.5 5.0 

 242 


