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Abstract Retinal vessel changes and retinal whitening, distinctive features of malarial

retinopathy, can be directly observed during routine eye examination in children with P. falciparum

cerebral malaria. We investigated their clinical significance and underlying mechanisms through

linked clinical, clinicopathological and image analysis studies. Orange vessels and severe foveal

whitening (clinical examination, n = 817, OR, 95% CI: 2.90, 1.96–4.30; 3.4, 1.8–6.3, both p<0.001),

and arteriolar involvement by intravascular filling defects (angiographic image analysis, n = 260,

2.81, 1.17–6.72, p<0.02) were strongly associated with death. Orange vessels had dense

sequestration of late stage parasitised red cells (histopathology, n = 29; sensitivity 0.97, specificity

0.89) involving 360˚ of the lumen circumference, with altered protein expression in blood-retinal

barrier cells and marked loss/disruption of pericytes. Retinal whitening was topographically

associated with tissue response to hypoxia. Severe neurovascular sequestration is visible at the

bedside, and is a marker of severe disease useful for diagnosis and management.

DOI: https://doi.org/10.7554/eLife.32208.001
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Introduction
Paediatric cerebral malaria (CM) is a frequently fatal complication of Plasmodium falciparum malaria

that disproportionately afflicts children in sub-Saharan Africa; the WHO Malaria Report estimated

that malaria killed 429,000 people worldwide in 2016, about 70% of whom were African children

under 5 years of age (World Malaria Report 2016). CM is clinically defined as peripheral parasitaemia

with coma not directly attributable to convulsions, hypoglycaemia, meningitis or any other identifi-

able cause (Newton et al., 1998). This definition is broad and is likely to over-diagnose a significant

proportion of cases. The presence of a retinopathy known as malarial retinopathy (MR), and

described by us with other colleagues (Lewallen et al., 1993; Hero et al., 1997; Beare et al., 2004;

Harding et al., 2006), increases specificity when included in the diagnostic criteria (Taylor et al.,

2004; Beare et al., 2011; Barrera et al., 2015).

Sequestration of parasitised red blood cells (pRBC) in the cerebral neurovasculature is the key

underlying pathophysiological feature in P. falciparum CM (Turner, 1997). Unlike in the brain, the

degree and location of neurovascular abnormalities can be observed clinically in the retina using rou-

tinely available ophthalmological techniques (Harding et al., 2006). Features comprise orange or

white retinal vessels, patchy or confluent retinal whitening and white centred retinal haemorrhages

(Figure 1). Severity of MR predicts the risk of death and duration of coma (Beare et al., 2004;

Lewallen et al., 2008; Beare et al., 2006).

The management of P. falciparum malaria is changing. The incidence has fallen but is notoriously

difficult to enumerate. Clearly, malaria is still causing significant numbers of deaths each year despite

widespread use of artesunate-based combination therapies and moves to improve the early diagno-

sis of CM in district general hospitals (World Malaria Report 2016). New diagnostic and therapeutic

interventions are being developed and tested. Our group has developed an automated algorithm

platform for detection of MR from colour photographs (Joshi et al., 2017).

We with other colleagues have previously reported descriptive pathological investigations of the

features of MR (Lewallen et al., 2000), including clinical associations (White et al., 2009) and sug-

gesting mechanisms. We have previously hypothesised that the orange vessels in the retina

(Lewallen et al., 2000) and the intravascular material seen on fluorescein angiography may indicate

sequestration (Beare et al., 2009), but definitive evidence is required. We have previously identified

that retinal whitening is caused by capillary nonperfusion, but the relationship of this nonperfusion

to sequestration is unclear.

We studied orange and white vessels and retinal whitening to understand sequestration and its

effects on the retina, and to inform clinical management of CM. We addressed these complex ques-

tions in a large series of children with CM recruited over 15 years all of whom had retinal examina-

tions (clinical dataset), and in two subgroups, one comprising children who died and from whom

eyes were available for histopathology (clinicopathology dataset) and a second of children who

underwent retinal angiography (image analysis dataset). Findings from other cohorts and subcohorts

from our programme have been reported previously by our group, addressing other research ques-

tions. The further analysis of our clinical dataset is an extension of our previous association study,

while all other analyses presented in this manuscript are new.

Results

Correlation of vessel discolouration with disease outcome (clinical
dataset)
We investigated the clinical significance of orange vessels seen in children admitted between 1999

and 2014 who had a retinal examination within 24 hr of admission and who were retinopathy-posi-

tive. Representative clinical photographs are given in Figure 1. Figure 1—figure supplement 1,

shows the patient allocation of 1684 children admitted to the paediatric research ward.

The groups of subjects who did (n = 1160) and did not (n = 515) have an admission retinal exam

were compared to assess possible selection bias (Supplementary file 1). Subjects who did not have

an admission retinal exam were likely to have a higher serum lactate concentration (p<0.001) and

were more likely to die (p<0.006). They were, on average, 5 months younger (p<0.001) and 0.2 kg

lighter (p<0.01) than those who had retinal examinations.
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On admission, 817 subjects had retinopathy-positive CM. Of these, 137 (16.8%) died with the

time from admission to death less than 24 hr for the majority. In 663 subjects, data were available

recording the time taken to recover consciousness, and of these 200 (30.2%) reached Blantyre Coma

Score (BCS) �3/5 within 12 hr, 214 (32.3%) did so between 12 and 24 hr, and 249 (37.6%) took over

24 hr. Missing data were low at <10% for most variables apart from: blood lactate (~20%), HIV status

(15%) and disc hyperaemia (12%).

Unadjusted associations between the presence and severity of clinical ophthalmoscopic features

(Figure 1) and death in n = 817 with MR-positive CM, and admission eye examination, are shown in

Table 1. Papilloedema (odds ratio (OR) 2.29, 95% confidence interval 1.55–3.38, p<0.001) and disc

Figure 1. Principal features of malarial retinopathy (MR). (A) Montage image showing MR pathological features, including orange vessels (asterisks),

white centred haemorrhages and whitening. (B) Corresponding fluorescein angiogram showing capillary nonperfusion (asterisks) mapping to retinal

whitening. (C–D) Colour fundus image of retinopathy positive eyes (C, right; D, left eye; eyes were from different cases) showing orange intravascular

material in large (arrowheads), small and postcapillary venules (asterisks), and capillaries; note retinal whitening also present.

DOI: https://doi.org/10.7554/eLife.32208.002

The following figure supplement is available for figure 1:

Figure supplement 1. Flow chart describing clinical dataset.

DOI: https://doi.org/10.7554/eLife.32208.003
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Table 1. Associations with death in 817 subjects with admission retinal exam and retinopathy-positive paediatric cerebral malaria,

137 of whom died and 680 survived.

Retinal features are presented for the worse eye. Estimates are from unadjusted logistic regression. p�0.01 is bold.

Variable name Units

Died Survived Association with death

Numerical
characteristics

Numerical
characteristics OR 95% CI p

Demographics

Age
(median, IQR)

months 35 23–59 136 39 27–58.75 680 0.99 0.00–1.00 0.43

Weight
(median, IQR)

kg 11 9–15 137 12 10–15 680 0.97 0.93–1.02 0.22

Height
(median, IQR)

cm 89 79–103 135 92 83–103 671 0.99 0.98–1.00 0.15

Sex
(%)

boy 48.9 66 50.29 680 1.06 0.73–1.53 0.77

girl 51.1 69 49.71

Clinical

Coma score
(%)

0 23.3 32 9.85 67 3.57 2.13–5.88 <0.001

1 41.6 57 37.7 256 2.13 1.28–3.57 0.003

2 35.0 48 52.5 357 reference

Respiratory distress
(%)

Present 48.9 67 39.0 265 1.5 1.04–2.17 0.03

Absent 51.1 70 61.0 415

Convulsions at admission (%) Present 12.4 17 14.9 98 0.83 0.45–1.44 0.51

Absent 87.6 120 85.4 574

Temperature
(median, IQR)

degrees C 38.7 37.8–39.5 137 38.9 38–39.7 680 0.89 0.77–1.03 0.12

Systolic BP
(median, IQR)

mmHg 100 90–110 127 100 90–110 652 0.99 0.99–1.01 0.63

Pulse
(median, IQR)

beats/min 156 136.5–170.5 137 152 136.75–169 678 1.0 0.99–1.01 0.98

Duration of coma
(median, IQR)

Hours 7 4–18 110 7 4–17 558 0.99 0.98–1.01 0.29

Duration of fever
(median, IQR)

Hours 48 33.25–72 130 60 43.25–72 652 0.99 0.99–1.00 0.09

Hypoglycaemia on ward (%) Present 14.6 20 7.81 53 2.02 1.16–3.5 0.012

Absent 85.4 117 92.1 626

Laboratory

Parasitaemia
(median, IQR)

#cells 79052 16695–357000 134 68076 11700–298000 649 1.0 0.99–1.00 0.27

White cell count
(median, IQR)

#cells 11300 6925–18225 120 9200 6600–13725 630 1.0 1.00–1.00 0.004

Haematocrit
(median, IQR)

% 19.5 15–24.75 136 20 15.8–25 673 0.99 0.97–1.02 0.69

Lactate
(median, IQR)

mmol/L 8.75 5.38–12.78 92 5.3 3.2–9.9 519 1.11 1.06–1.16 <0.001

HRP2
(median, IQR)

ng/ml 8838.5 4435.5–15102.3 120 5765 2471.5–10031 609 1.0 1.00–1.00 0.004

HIV
(%)

Positive 22.5 29 14.9 88 1.66 1.03–2.66 0.036

Negative 77.5 100 85.1 503

Ophthalmoscopy

Table 1 continued on next page
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hyperaemia (OR 1.73, 1.15–2.62, p<0.01), both indicators of brain swelling, were more likely in those

who died. White cell count and blood HRP2 concentration had statistically significant associations

with death, but with very small effect sizes (OR very close to 1).

The presence of visible orange vessels on ophthalmoscopy (Figure 1C–D) was significantly associ-

ated with death (OR 2.90, 1.96–4.30, p<0.001), as was severe foveal whitening (>2/3 foveal area; OR

3.40, 1.80–6.30, p<0.001; simple logistic regression; Table 1). When including potential confounders

(age, WCC, HRP2, lactate, papilloedema - see Materials and methods) in a multivariable regression

model for the presence of the two retinal features with death, we found similar ORs and significance

(orange vessels: OR 2.85, 1.72–4.74, p<0.001, n = 549; foveal whitening: OR 3.57, 1.57–8.13,

p=0.002, n = 615).

Clinicopathological characterisation of retinal intravascular material
(clinicopathology dataset)
Twenty-nine cases from the autopsy archive met the inclusion criteria for our clinicopathological

study of the nature and effects of retinal intravascular material; details of the dataset are given in

Table 2, and records of pre-mortem retinal clinical examination in Table 3. Of these cases, 21 had

Table 1 continued

Variable name Units

Died Survived Association with death

Numerical
characteristics

Numerical
characteristics OR 95% CI p

Retinal haemorrhage
(%)

>50 16.0 22 4.7 32 3.4 1.78–6.5 <0.001

21 to 50 11.0 15 6.50 44 1.69 0.85–3.34 0.14

6 to 20 13.1 18 19.0 129 0.69 0.38–1.27 0.23

1 to 5 32.9 45 42.9 291 0.76 0.48–1.23 0.27

None 27.0 37 27.0 183 reference

Macular whitening
(%)

>1 23.9 32 14.8 100 2.31 1.16–4.59 0.017

1/3 to 1 28.4 38 25.1 170 1.61 0.83–3.12 0.16

<1/3 37.3 50 45.2 306 1.18 0.63–2.22 0.61

None 10.5 14 14.9 101 reference

Foveal whitening
(% of foveal zone)

>2/3 23.3 31 11.5 78 3.39 1.83–6.26 <0.001

1/3 to 2/3 18.1 24 15.2 103 1.99 1.05–3.74 0.03

<1/3 42.8 57 46.8 316 1.54 0.90–2.62 0.11

none 15.8 21 26.5 179 reference

Temporal whitening
(%)

3 10.0 13 12.9 87 0.83 0.41–1.66 0.60

2 24.6 32 18.4 124 1.43 0.83–2.47 0.20

1 41.5 54 43.1 290 1.03 0.64–1.67 0.89

none 23.9 31 25.6 172 reference

Orange vessels, temporal quadrant (%) present 44.6 58 21.7 145 2.9 1.96–4.3 <0.001

absent 55.4 72 78.3 523

White vessels, temporal quadrant (%) present 25.4 33 24.3 162 1.06 0.69–1.64 0.78

absent 74.6 97 75.8 506

White capillaries
(%)

present 26.9 35 33.1 221 0.75 0.49–1.13 0.17

absent 73.1 95 66.9 447

Papilloedema
(%)

present 39.0 53 21.8 148 2.29 1.55–3.38 <0.001

absent 61.0 83 78.2 530

Disc hyperaemia
(%)

present 48.7 54 35.3 212 1.73 1.15–2.61 0.008

absent 51.4 57 64.7 388

DOI: https://doi.org/10.7554/eLife.32208.004
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MR (Grade 1 n = 5, Grade 2 n = 16). In all MR-positive cases, intracerebral and intraretinal sequestra-

tion of parasitised red blood cells (pRBC) post mortem exceeded 23% of capillaries and venules,

consistent with a histological diagnosis of CM (Taylor et al., 2004; Barrera et al., 2015). Autopsy

confirmed a cause of death different from CM in the eight MR-negative control patients (Grade 0).

Twelve out of the 29 autopsy cases were HIV-positive.

We investigated the nature of the intravascular material identifiable clinically and pathologically,

primarily by colour changes in venules and capillaries, in 12 out of 21 MR-positive patients

(Figure 2A–B). Intravascular filling defects (IVFD) within the blood column were identified in retinal

venules on all the five cases with fluorescein angiography (FA) available. Orange and white microves-

sels (cases = 12, vessels = 212) were sampled using manual microdissection techniques (marked

quadrant, Figure 2A), and compared microscopically with clinically normal vessels (cases = 8, ves-

sels = 200) in different retinal segments of the same case or from different specimens across Grade

1 and Grade 2 MR groups. All orange vessels exhibited pigmented pRBCs sequestered in layers on

the endothelium at the margin of the vessel lumen, with a blood column consisting of uninfected

RBCs in the centre of affected vessels (Figure 2C, Figure 3). These vessels were occasionally sur-

rounded by extravasated RBCs in the absence of clinically visible haemorrhage. White vessels (usu-

ally distended capillaries) contained primarily extraerythrocytic haemozoin (HZ) and some remnants

of pRBC; non-parasitised RBCs were absent. Fibrin polymers were detected in retinal capillaries and

venules (Figure 3—figure supplement 1). All vessels that appeared normal, during clinical and gross

examination, lacked these features (Figure 2D).

H&E analysis of orange intravascular material (n = 3 cases) showed aggregates containing both

abundant sequestered pigmented (late stage) pRBCs and non-parasitised RBCs in venules

(Figure 2C, Figure 3A–B). These clusters of pRBC were not observed in vessels without FA filling

defects from the remaining two MR-positive cases for which FA was available.

We investigated the relationship between severity/extent of late stage pRBCs and presence of

visible orange discolouration in nine MR-positive cases (n = 412 vessels studied; Table 4). Vessels

with sequestered late stage pRBCs involving 360˚ of the circumference of the vessel lumen were

strongly associated with the presence of orange discoloration (Table 4). Sensitivity and specificity for

orange discolouration as an indicator of this extent of sequestration were 0.97 (95% confidence

interval: 0.94 to 0.99) and 0.89 (0.84 to 0.93), respectively, with positive and negative predictive val-

ues of 0.88 (0.83 to 0.92) and 0.98 (0.94 to 0.99).

Tissue effects of retinal neurovascular sequestration
We studied the effects of pRBC sequestration on cellular vessel wall components in MR-positive and

negative cases, in vessels with and without sequestered pRBCs in matched tissue sections assessing

presence/absence of continuous (annular) immunostaining. In both Grades 1 and 2 MR-positive

cases, intraretinal sequestration was significantly associated with reduced expression in retinal micro-

vessels of the endothelial cell membrane glycoprotein CD34, the pericyte structural protein smooth

muscle actin (SMA) and the signalling molecule platelet derived growth factor receptor b (PDGFRb)

(Figure 4, all p<0.005); SMA was only reported for venules as it does not produce an annular stain-

ing pattern in normal capillaries. The proportions of continuous immunostaining in capillaries and

venules, with and without pRBC sequestration, respectively (means ±SD), were: CD34, 14 ± 9% and

Table 2. Summary of clinicopathology dataset.

Clinicopathological investigation (per MR feature) Number of cases analysed Number of retinal layers analysed Number of vessels counted

Vessel changes (H and E; GFAP; FGN; ICAM-1)

PO block analysis 27 – 100

Calotte analysis 6 – 100

Punch biopsies 4 – 50

Retinal whitening (VEGFR1; AQP4)

Macular analysis 20 4 –

Peripheral retinal analysis 21 4 –

DOI: https://doi.org/10.7554/eLife.32208.005
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Table 3. Retinal pathological features and scores for 29 study subjects in the clinicopathology dataset

Case
n.

MR*
Grade Eye† Vessel changes

(Q)‡ Vessels§ Localization# Haem¶
Macular
whitening¥

Central retinal
whitening (overall
score)**

Peripheral
whitening
(score)

Whitening:
retinal
quadrants

Papill-
oedemah††

(score)

1 2 RE 4 Q Ven + Cap All quadrants >50 1/3–1 DA 4 3 4 Q 2

2 2 RE 4 Q Ven + Cap All quadrants 1–5 �1 DA 6 3 4 Q 2

3 2 LE 4 Q Ven All quadrants 1–5 �1 DA 6 1.75 4 Q 2

4 2 RE 4 Q Ven All quadrants >50 1/3–1 DA 5 1.5 T + N 0

5 2 RE 3 Q Ven + Cap T + N + S 1–5 �1 DA 6 2.7 T + N + S 0

6 2 RE 2 Q Ven T + S >50 <1/3 DA 2 0.75 T + S 2

7 2 LE None None 0 6–20 �1 DA 6 0.25 T 2

8 2 RE None None 0 0 �1 DA 6 2 4 Q 2

9 2 LE 4 Q Ven + Cap All quadrants 0 �1 DA 6 1 4 Q 0

10 2 LE None None 0 21–50 1/3–1 DA 4 1.5 4 Q 0

11 2 LE 3 Q NA NA 0 �1 DA 4 2 4 Q 0

12 2 LE None None 0 6–20 1/3–1 DA 4 0 0 2

13 2 LE None None 0 1–5 �1 DA 6 1 4 Q 0

14 2 RE NA NA NA 1–5 1/3–1 DA 4 NA NA 2

15 2 LE 3 Q Ven + Cap T + N + S 1–5 <1/3 DA 2 0.7 T + N + S 0

16 2 LE 3 Q Ven T + N + S 1–5 <1/3 DA 2 0.5 I + N 0

17 1 RE 1 Q None 0 0 <1/3 DA 2 1 T + S 2

18 1 RE 1 Q Cap T 0 <1/3 DA 2 1 4Q 0

19 1 RE None None 0 1–5 <1/3 DA 2 1 T + N 0

20 1 LE None None 0 1–5 <1/3 DA 2 0 NA 0

21 1 LE None None 0 None None 0 0.25 0 0

22 0 RE None None 0 None None 0 0 0 0

23 0 LE None None 0 None None 0 0 0 0

24 0 RE None None 0 None None 0 0 0 0

25 0 LE None None 0 None None 0 0 0 0

26 0 LE None None 0 None None 0 0 0 0

27 0 RE None None 0 None None 0 0 0 0

28 0 LE None None 0 None None 0 0 0 0

29 0 RE None None 0 >50 None 0 0 0 0

*MR = malarial retinopathy. Grade was defined based on percentage of retinal vessels with sequestration (Beare et al., 2004) as explained in Methods.

Last peripheral parasitaemia (expressed as asexual pRBCs/ml blood), geometric means reported) was: 42,200 (Grade 0), 43,212 (Grade 1) and 9357 (Grade

2).
†Eye: RE = right eye; LE = left eye vessel changes:
‡(Q)=number of retinal quadrants affected.
§Vessels: Ven = venules; Cap = capillaries.
#Localisation of vessel changes: I = inferior; N = Nasal; S = superior; T = temporal.
¶Haem = no. of retinal haemorrhages.
¥Extent of whitening is shown for macula in disc areas (DA).

**Central whitening (overall score)=sum of macular and foveal whitening scores assigned as: 1 =<1/3 DA or FA, 2 = 1/3–1 DA or 1/3-2/3FA, 3 =>1 DA

or >2/3FA.
††Papilloedema is the swelling of optic disc caused by increased intracranial pressure. The significance of papilloedema in cerebral malaria is not clear;

however, it is the strongest risk factor for poor outcome among comatose children with clinical cerebral malaria.

DOI: https://doi.org/10.7554/eLife.32208.006
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90 ± 10%; SMA 11 ± 10% and 65 ± 25%; PDGFRb 19 ± 15% and 77 ± 18% (all p<0.005). These find-

ings are consistent with marked altered cell function or loss of pericytes and endothelial cells of ves-

sels with pRBC sequestration. To explore the impact of pericyte dysfunction on vessel stability, we

tested for an association between reduced immunostaining and presence of retinal haemorrhages.

Figure 2. Vessel changes in malarial retinopathy. (A–B) Vessel colour changes (panels A-B) and intravascular filling

defects (panel B, arrowheads) were identified during gross pathology examination (representative images of

superior calotte and PO block from histology cases n. 5 and 7, respectively) N = 12. Abnormal vessels were

sampled during gross pathology examination and analysed separately (see marked quadrant in panel A). (C–D) H

and E staining of parasitised venules from MR cases sampled by punch biopsies from a retinal quadrant with

(panel C shows the same orange vessel as in panel A) and without (panel D, case n. 15) vessel discolouration. (C)

The margin of the vessel lumen has a near-complete layer of pigment-containing pRBCs (that stain less intensely

pink than the adjacent non-parasitised RBC) on the endothelium. (D) Mild sequestration of pRBCs which is marked

by an arrowhead. Scale bars (50 mm, (C–D).

DOI: https://doi.org/10.7554/eLife.32208.007
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Percentages of vessels with normal PDGFRb staining were significantly less in MR-positive cases with

haemorrhages (18%) than those without (39%; n = 21, p<0.05).

Glial cells (principally astrocytes and Müller cells) surrounding venules and capillaries affected by

severe pRBC sequestration were studied in 10 of 21 (48%) MR-positive cases (Figure 5A–D). There

were statistically significant increases in perivascular astrocyte intercellular adhesion molecule 1

(ICAM-1) (p=0.003) and Müller cell cytoskeletal component glial fibrillary acidic protein (GFAP)

(p=0.034), markers for early (4–12 hr) and late (after 24 hr) glial activation, respectively (Lee et al.,

2000; Hiscott et al., 1984). No MR-negative cases showed perivascular ICAM-1 or GFAP immunore-

activity. ICAM-1 tissue staining was also associated with the presence of discoloured vessels

(Figure 5A, all Fisher exact tests p<0.05), compared with normal vessels where ICAM-1 was

restricted to the endothelium (Figure 5B). Müller cell GFAP immunoreactivity was observed in 8 of

Figure 3. Severe pRBC sequestration in large venules and arterioles in MR with visible vessel discolouration. (A–B) Longitudinal section of large retinal

venule from retinal area affected by intravascular filling defects on fluorescein angiography (histopathology case no. 9) analysed by H&E staining (A)

and anti-fibrinogen IHC (B). Clusters of pRBC are seen within the vessel lumen and attached to the wall. (C) Cross section of a large retinal arteriole with

moderate pRBC sequestration (case n. 5). Arteriole is surrounded by haemorrhage, probably of a venular origin as arteriolar vessel wall appeared intact

(in multiple sections). Scale bars: 50 mm (all panels).

DOI: https://doi.org/10.7554/eLife.32208.008

The following figure supplement is available for figure 3:

Figure supplement 1. Detection of thrombi in post-mortem retinal periphery using a combination of MSB staining (panels A,B; arrows: intravascular

thrombi are stained bright pink), and anti-CD61 platelet marker immunostaining (panel C, red stained).

DOI: https://doi.org/10.7554/eLife.32208.009

Table 4. Relationship between severe sequestration (pigmented/late parasitised RBCs sequestered

around 360˚ of the lumen circumference) and orange discoloration visible clinically and on gross

pathology in 412 venules (diameter 10–50 mm) from nine cases

Orange discolouration

+ -

Severe sequestration + 188 5

- 24 195

DOI: https://doi.org/10.7554/eLife.32208.010
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the 21 (38%) cases with MR (Figure 5C) versus MR-negative cases (Figure 5D) where staining was

restricted to the first retinal layer.

Pathogenesis of retinal whitening
To test the hypothesis that retinal whitening is caused by hypoxia-induced cellular oedema

(Kaur et al., 2008a), we compared the proportions and distribution of the tissue hypoxia and intra-

cellular oedema markers VEGFR1 and AQP4, respectively (Marti et al., 2000; Medana et al., 2011),

in MR-positive and negative cases.

MR-positive cases showed increased expression of VEGFR1 immunoreactivity in both central and

peripheral retina. VEGFR1 immunostaining was primarily localised in the inner retina (Figure 6A,B)

Figure 4. Vascular changes in retinal vessels in malarial retinopathy. (A–I) Expression of endothelial CD34 (panel A: case n. 3, inset: case n. 25 and D:

box plot), pericytic SMA (panel B: case n. 12, inset: case n. 27 and E: box plot) and pericytic PDGFRb (panel C: case n. 13, inset: case n. 26 and F: box

plot) markers. Insets show normal annular staining in absence of pRBC sequestration, whereas this annular pattern is lost in the sequestrated vessels

seen in A-C. SMA was only reported for venules as it does not produce an annular staining pattern in normal capillaries: panel E. N = 17 for CD34;

N = 29 for SMA and PDGFRb immunostaining. ANOVA was used to compare means. **p<0.005. Scale bars: 20 mm (A–C), 5 mm (insets).

DOI: https://doi.org/10.7554/eLife.32208.011

The following source data is available for figure 4:

Source data 1. Vascular changes in retinal vessels inmalarial retinopathy.

DOI: https://doi.org/10.7554/eLife.32208.012
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(ganglion cell (primarily in the macula) and inner nuclear cell bodies and synapses) and values were

positively correlated with increasing severity of whitening for all these cells (Figure 6C p<0.05,

p<0.001) and for macular ganglion cell layers with worse MR (Figure 6D, p<0.001).

AQP4 expression levels were generally more intense in MR-positive cases with whitening

(Figure 1B) than those without (Figure 7, Figure 7—figure supplement 1). High AQP4 staining lev-

els were found in glial cells, including Műller cells, in the nerve fibre layer (NFL) and outer plexiform

layer (Chen et al., 2012) in the macula (Figure 7A,B) and temporal periphery (Figure 7—figure sup-

plement 1A,B). Densitometry analysis showed significantly higher AQP4 levels for macula and tem-

poral periphery (Figure 7C and Figure 7—figure supplement 1, ANOVA test, p<0.05 except

moderate whitening). There were statistically significant associations also between AQP4 staining

pattern and MR grade (Figure 7D and Figure 7—figure supplement 1). In addition to the associa-

tion found between tissue whitening, VEGFR1 and AQP4 expression levels, in 44% and 68% of MR-

Figure 5. Activation of retinal glial cells in malarial retinopathy (MR). (A–B) Anti-ICAM-1 staining of MR-positive cases with (case n. 16, panel A) and

without (case n. 13, panel B) vessel discolouration. Haematoxylin (blue) counterstain was used. (C–D) Anti-GFAP staining of orange-discoloured vessels

in punch biopsy from MR-positive case n. 5, and in MR-negative case n. 25. Haematoxylin counterstaining was omitted here. In A and C, peri-vascular

activated astrocytes and Műller cells are marked with arrowheads, and asterisks label Műller cell bodies. Scale bars: 50 mm (all panels).

DOI: https://doi.org/10.7554/eLife.32208.013
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positive cases (macula and periphery respectively) intravascular thrombi were co-localised with reti-

nal whitening (Figure 3—figure supplement 1A–C; p<0.05 for periphery only).

Fluorescein angiography and image analysis study of retinal
sequestration (image analysis dataset)
Between 2009 and 2014, 260 subjects with MR-positive CM underwent retinal FA on the day or day

after admission. A representative FA of IVFD is shown in Figure 1B, with the dataset in Figure 8 and

the rates and location of IVFD in Table 5. The topographical correlation between ophthalmoscopic

and angiographic features of IVFD is illustrated in Figure 9. IVFD occurred frequently in the retinal

venules (large 80.2%, small 98.0%, post capillary 98.3%). There was no association between seques-

tration in post-capillary venules and survival (OR 0.23, 0.054–1.02, p=0.053). Conversely, sequestra-

tion was infrequent in the arterioles but with significant associations with death for large arteriole

Figure 6. Clinicopathological association between retinal whitening in the macula and increased VEGFR1

expression in malarial retinopathy. (A–B) Immunostaining pattern in macula affected by whitening (case no 9) (low

(A) and high (B) magnification; VEGFR1 +ve ganglion cell bodies indicated by arrowheads). (C) Cluster column

chart showing densitometrically assessed intensity of immunoreactivity (‘value’) of VEGFR1 expression plotted by

retinal layer against whitening severity, compared with MR –ve cases. Ganglion cell layer = GCL (blue); inner

plexiform layer = IPL (green); inner nuclear layer = INL (light brown); outer plexiform layer = OPL (purple). (D)

VEGFR1 levels in the GCL plotted against MR severity classification groups (grade 0 = none, 1 = mild, two

moderate/severe). Means ± SD are reported in both charts; ANOVA was used to compare means (N = 26).

*p�0.05 and **p�0.001. Scale bars: 50 mm (panel A); 20 mm (panel B).

DOI: https://doi.org/10.7554/eLife.32208.014

The following source data is available for figure 6:

Source data 1. Clinicopathological association between retinal whitening in the macula and increased VEGFR1

expression inmalarial retinopathy.

DOI: https://doi.org/10.7554/eLife.32208.015
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sequestration (OR 2.81, 1.17–6.72, p<0.02), and non-significant association for precapillary arterioles

(OR 2.47, 0.94–6.45, p=0.065) (see Table 5 and Figure 9). Similar findings were found for time to

recovery of consciousness (binomial regression coefficient, 95% CI): precapillary arterioles (0.32,

0.094–0.55, p<0.01), small arterioles (0.30, 0.093–0.51, p<0.01), large arterioles (0.38, 0.076–0.68,

p<0.02). Sequestration in the capillaries was frequently seen but was ungradeable in 62% of cases.

Figure 7. Clinicopathological association between retinal whitening in the macula and increased AQP4 expression

in malarial retinopathy. (A–C) Immunostaining pattern in the macula with (A-B, case no 13) and without whitening

(C, case no 21). Parasitised vessels are marked by arrows. The vertical linear pattern indicates Műller cell

immunoreactivity for AQP4. (D) Cluster column chart showing densitometrically assessed intensity of

immunoreactivity (‘value’) of AQP4 levels measured by IHC in the macula by retinal layers: nerve fibre layer = NFL

(red), ganglion cell layer = GCL (blue), inner plexiform layer = IPL (green), outer plexiform layer = OPL (purple). (E):

AQP4 levels in the nerve fibre layer plotted against MR severity classification groups (grade 0 = none, 1 = mild,

two moderate/severe). Means ± SD are reported in all graphs; ANOVA was used to compare means (N = 26).

*p<0.05 and **p<0.001. Scale bars: 50 mm (panels C, E, F and G); 10 mm (panel D).

DOI: https://doi.org/10.7554/eLife.32208.016

The following source data and figure supplements are available for figure 7:

Source data 1. Clinicopathological association between retinal whitening in the macula and increased AQP4

expression inmalarial retinopathy.

DOI: https://doi.org/10.7554/eLife.32208.018

Figure supplement 1. Clinicopathological association between retinal whitening in the peripheral retina and

increased AQP4 expression in malarial retinopathy.

DOI: https://doi.org/10.7554/eLife.32208.017

Figure supplement 1—source data 1. Clinicopathological association between retinal whitening in the peripheral

retina and increased AQP4 expression inmalarial retinopathy.

DOI: https://doi.org/10.7554/eLife.32208.019
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Quantitative image analysis of retinal sequestration
The results of our semi-quantitative image analysis to investigate the value of retinal sequestration

to predict disease outcome are shown in Figure 10, including an example of the output from the

algorithm (Figure 10A). Data were available on 251 eyes (one eye per case), and there were 33

(13.1%) deaths. The mean ratio of affected:unaffected vessels was 41.9% in children who died and

37.8% in survivors. The distribution of ratios across the 251 eyes is shown in Figure 10B; the amount

of IVFD in retinal vessels was higher in the patients who died in our study, but the difference did not

reach statistical significance (OR 18.05, 0.74–211.33, p<0.08).

Discussion
The clinicopathological findings from our unique cohort provide strong evidence that the orange

appearance of retinal vessels in comatose children with a clinical diagnosis of CM is caused by

sequestered late-stage pRBCs. Our dataset of clinical outcomes, the largest to date, and our inde-

pendently graded angiographic data show that this visible sequestration is strongly associated with

death, with an increased risk when arterioles are involved. The tissue effects of sequestration are

widespread within the neurovascular unit, including novel findings of severe loss/disruption of peri-

cytes. Retinal whitening, also strongly associated with death, is associated with features of cytotoxic

oedema, consistent with sequestration causing ischaemia.

We used three datasets to investigate if the features seen clinically in the retina represent seques-

tration, which is the principal underlying pathophysiological event in P. falciparum malaria. Our data

from 817 children point definitively to the importance of sequestration seen clinically as visible

orange vessels, associated with a 2.71-fold increased odds of death. Our data add to previous work

by us (Beare et al., 2004) but with greater confidence and with specific reference to orange vessels

rather than all retinal vessel abnormalities.

The orange colour of the sequestered intravascular material appears to be a result of a mix of

sequestered late-stage pRBCs (containing haemozoin) adherent to the endothelium, surrounding a

central narrowed blood column consisting of uninfected RBCs. Our numbers of cases and controls

Figure 8. Flow chart describing fluorescein angiography dataset.

DOI: https://doi.org/10.7554/eLife.32208.020
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are typical for this type of pathological study and the numbers of vessels sampled were high. Our

findings add to those reported by some of us previously (Lewallen et al., 2000), which described

dehaemoglobinised RBCs in sequestration, by adding new topographical clinicopathology data. We

found that sequestration involving 360˚ of the circumference of the vessel lumen was strongly

Figure 9. Visible sequestration in the retinal neurovasculature. (A–D): Orange intravascular material is seen in the retinal venule (A, C) which co-localises

to the intravascular filling defects on fluorescein angiography (D) (see arrows). Chart (B) shows the frequency of visible sequestration in six microvessel

types in 259 subjects with retinopathy +ve CM and the odds ratios of death within the admission.

DOI: https://doi.org/10.7554/eLife.32208.021

The following source data is available for figure 9:

Source data 1. Visible sequestration in the retinal neurovasculature.

DOI: https://doi.org/10.7554/eLife.32208.022
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associated with the presence of orange discolouration clinically. We think orange vessels can be con-

sidered as an indication of severe sequestration and, as such, are clinically extremely valuable. This

severe sequestration is easily visible with indirect ophthalmoscopy after pupil dilation. Less severe

sequestration may be detectable with the newly available technology of hand-held optical coherence

tomography (OCT) of the retina.

Retinal capillary involvement, in contrast to orange vessels, appears to be a phenomenon in CM

not associated with death. Clinically, this is visible as white vessels and histologically predominantly

as ruptured RBCs and extra-erythrocytic haemozoin, with no intact or non-parasitised RBCs. This fea-

ture was associated with non-perfusion on FA.

Our large fluorescein angiography (FA) study, which extended over eight seasons, shows that the

retinal intravascular material was seen in nearly all MR-positive cases, especially the post-capillary

and small venules (98.3% and 87.9% of gradeable vessels, respectively). These findings are novel,

whereas our and others’ earlier data have been descriptive. The limitations of imaging in comatose

young children mean that our grading method was unable to reliably identify capillaries, and so we

were unable to robustly investigate the capillaries angiographically. We believe that capillary involve-

ment is typical of pRBC sequestration in the neurovasculature. The presence of intravascular material

in the arterioles was much less likely (pre-capillary 58.4%, small 43.9%, large 15.3%). However, arteri-

olar intravascular material was associated with longer recovery times (p<0.01- < 0.02) and greater

risk of death, with involvement of the large arterioles conferring a 2.81-fold increased risk of death.

It appears that the involvement of the arteriolar side can be taken as a clinical marker of severity,

indicating a greater extent or load of sequestration. We have previously described the features of

intraretinal material coining the term ‘intravascular filling defects’. This FA term can now be replaced

by ‘retinal sequestration’.

We identified an association between sequestration and profound changes in the cells of the reti-

nal neurovascular unit. These cells are critical to the preservation of BRB function (Kaur et al.,

2008b) and the changes have important parallels in the brain, especially for swelling (Seydel et al.,

2015). Reduced expression of CD34 in endothelial cells and of SMA and PDGRFb in pericytes indi-

cates significant dysfunction of both cell types. Our pericyte data are novel; pericytes have not been

extensively studied in malaria before, with only one study reporting pericyte vacuolation in adult

fatal CM (Pongponratn et al., 2003). Reduction of SMA immunoreactivity may be related to two

pathological mechanisms: vessel dilatation with altered pericyte function, or pericyte loss. PDGF-sig-

nalling is critical for the survival of endothelium in physiological conditions (Armulik et al., 2005).

Pericytes are highly sensitive to hypoxia (Kamouchi et al., 2012), especially in brain and retina where

they are most abundant, and when vessels lose or develop abnormal pericytes they become hyperdi-

lated, show signs of vessel dysfunction, and haemorrhage may occur (Bergers and Song, 2005).

Within the MR cases, we found more retinal vessels with abnormal pericyte staining in those cases

presenting with retinal haemorrhages than those cases without. The retina and brain present similar

pathological features in CM, including haemorrhages (Greiner et al., 2015). We found the same sig-

nificant loss of pericytic SMA and PDGFRb in a further small analysis comparing brain microvessels in

the presence of pRBC sequestration (median %, min-max% of vessels with SMA intact: 15%, 9–20%;

PDGFRb: 13%, 6–24%) with non-parasitaemic vessels (SMA intact: 92%, 79–100%; PDGFRb: 96%,

91–100%) (p<0.001 for all) (n = 5; Barrera V et al, unpublished). These data suggest that retina and

brain may have similar dysfunction/loss of pericytes in fatal paediatric CM.

We also identified effects on astrocytes and Müller cells indicating wider effects on neural retinal

cells than previously identified. Late reactive (Hiscott et al., 1984) GFAP was upregulated, but the

greater effect was seen for the early-responsive (Ortinski et al., 2010) perivascular ICAM-1 perhaps

reflecting the short survival time of children with fatal CM. Our group has also previously identified

upregulation of b-amyloid precursor protein as evidence of axonal damage (White et al., 2009).

These neuroglial effects of retinal sequestration are likely to be widespread and include disturbance

of tight junction regulation causing BRB/BBB breakdown with vasogenic oedema, an implicated

pathway for brain swelling and death (Taylor et al., 2004; Mohanty et al., 2017).

Retinal whitening is a key feature of MR. Our finding of whitening at the fovea conferring a 3.4-

fold increased risk of death strengthens our previous findings (Beare et al., 2004). We have previ-

ously shown that retinal whitening is topographically associated with capillary non-perfusion and is

found in watershed zones of the retina, sites of high metabolic demand (Beare et al., 2009), sug-

gesting that tissue hypoxia is a principal pathogenic pathway (White et al., 2009).
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Our immunohistochemistry data provide further evidence that the inner retina is affected by tis-

sue hypoxia and intracellular oedema. Ganglion cells showed increased expression of VEGFR1,

which, in combination with VEGF, is neuroprotective during ischaemia (Saint-Geniez et al., 2008).

Glia in retinal zones where whitening is mainly localised were found to express AQP4, a water chan-

nel protein linked to hypoxic oncotic swelling. This observation is supported by our previous electro-

physiologcal study, which showed abnormal B wave implicit time indicating inner retinal dysfuction

in retinal whitening (Lochhead et al., 2003). This all supports inner retinal neuronal ischaemia as

opposed to dysfunction of the outer retinal photoreceptors and choroidal circulation. Further studies

with the OCT may shed new light on the retinal whitening.

We have some conflicting evidence on the importance of capillary non-perfusion (CNP). There are

undoubted tissue effects of sequestration-induced hypoxia in the vessel and extending into the neuro-

retina causing tissue swelling and opacification. However, the whitening seen in capillaries was not

associated with death, and sequestration seen in the post-capillary venules on FA, a frequent associa-

tion with CNP, showed a trend for survival. Sequestration in post-capillary venules is more common

than arterioles, and this suggests these children as a group were not as critically ill as those with

sequestration extending additionally into arterioles.

So how can our findings affect the clinic management and future research directions in CM? The

detection of orange vessels on clinical examination has a high sensitivity and specificity for a severe

degree of sequestration, which is associated with death. Sequestration detectable on FA in the arterio-

les, and especially the large arterioles, is also predictive of death and probably indicates a high para-

site load. Orange vessels can be seen clinically with the indirect and direct ophthalmoscope through a

dilated pupil by a trained physician (Taylor et al., 2004), but these skills are mainly available in

research or tertiary centres in malaria endemic areas (Swamy et al., 2018). We have with others

recently developed MR detection algorithms offering a potential automated diagnostic tool for severe

malaria in district hospitals (Joshi et al., 2017). Our new clinical markers of severe disease and poor

outcome (visible orange vessels and arteriolar involvement indicating severe sequestration, and severe

foveal whitening) should be a focus for diagnosis and management. It should be recognised that

including children without MR in clinical trials is likely to reduce their power to detect an effect of an

intervention on CM outcomes.

There is good evidence that the clinicopathological features of CM in the retina parallel those seen

in the brain (Barrera et al., 2015;MacCormick et al., 2014): ring-shaped haemorrhages (White et al.,

2009; Dorovini-Zis et al., 2011), pathology of sequestration, associations between retinal features

Table 5. Frequency of intravascular filling defects (worse eye) on fluorescein angiography manual grading by involvement of retinal

vessel in 259 children with MR-positive disease and FA within 24 hr of admission and unadjusted association with death (n = 35) and

coma recovery of consciousness (BCS �3; n = 225)

Retinal vessel Sequestration

Died* Survived* Association with death

N % Total N % Total OR 95% CI p

large venules present 26 86.7 30 172 79.3 217 1.70 0.56–5.12 0.35

absent 4 13.3 45 20.7

small venules present 29 96.7 30 211 98.1 215 0.88 0.71–1.09 0.23

absent 1 3.33 4 1.86

post-capillary venules present 25 96.2 26 201 98.5 204 0.37 0.04–3.70 0.4

absent 1 3.85 3 1.47

pre-capillary arterioles present 19 76.0 25 109 56.2 194 2.47 0.94–6.45 0.065

absent 6 24.0 85 43.8

small arterioles present 15 51.7 29 93 42.9 217 1.43 0.66–3.11 0.37

absent 14 48.3 124 57.1

large arterioles present 9 30.0 30 29 13.2 219 2.81 1.17–6.72 0.02

absent 21 70.0 190 86.8

DOI: https://doi.org/10.7554/eLife.32208.023
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and that key neurological pathways seem to be non-functioning (’pathways to neural cell death’). Men-

dis K and others (Mendis et al., 2009) have argued that the long-term goal of eliminating malaria

remains dependent on continuing research and the development of new drugs and therapeutic strate-

gies to sustain control programmes. Better identification and treatment of severe malaria will also be

needed. Our findings from manual and semiautomated image analysis provide an indication that

quantification of the load of retinal sequestration is promising as a useful metric in clinical trials and

merits further development to identify a severity cut-off.

The results we have presented in this paper from our long-term programme of research strongly

support the concept that sequestration can be identified clinically in the retina at the bedside, and

offer important new insights into the widespread effects of sequestration on the neural microvascula-

ture and cells of the neurovascular unit. This sequestration can be seen in clinical practice at a critical

time in the management of the comatose child in malaria endemic areas offering opportunities to

study the effects of new therapies, as well as an early concrete diagnosis and a marker of severe

disease.

Materials and methods

Key resources table Antibodies used for immunohistochemistry analysis of the clinicopathology dataset

Antigen Specificity MR feature
Manufacturer
(clone); RRID* Host† (class) Ag retrieval‡ Dilution§ Chromogen#

Staining
quantification Ref

VEGFR1 Retinal cell Retinal
whitening
Tissue
effects

Abcam (Y103);
AB_778798

Rb mAb
(IgG)

Heat
(High pH)

1:2,000,
30 min RT

DAB Automated (Kaur
et al.,
2008a)

Aquaporin
4 (AQP4)

Neuroglia Retinal
whitening
Tissue effects
Intracellular
oedema

Abcam (EPR7040);
AB_11143780

Rb mAb
(IgG)

Heat
(Low pH)

1:500,
60 min RT

AEC Automated (Medana
et al.,
2011)

Glial fibrillary
acidic
protein
(GFAP)

Neuroglia
(late
activation)

Vessel
discolouration

Dako;
AB_10013482

Rb pAb Proteinase
K

1:2,000,
o.n. 4˚C

AEC Manual (Hiscott
et al.,
1984)

ICAM-1 Endothelium
Neuroglia
(early
activation)

Vessel
discolouration

Abcam (EP1442Y);
AB_870702

Rb mAb
(IgG)

Heat
(High pH)

1:100,
30 min RT

DAB Manual (Lee
et al.,
2000)

CD61 Platelets and
precursors

Retinal
whitening
Vessel
discolouration

Thermo Scientific;
AB_929194

Ms mAb
(IgG1)

Heat
(High pH)

1:100,
32 min RT

DAB
or AEC

Manual (White
et al.,
2009)

CD34 (II) Endothelium Vessel
discolouration

Dako
(QBEnd-10);
AB_2074478

Ms mAb
(IgG1k)

Heat
(High pH)

1:100,
30 min RT

DAB Manual (Kaur
et al.,
2008a)

Smooth muscle
actin (SMA)

Pericyte
(venules only)

Vessel
discolouration

Dako (1A4);
AB_2223500

Ms mAb
(IgG2ak)

Heat
(Low pH)

1:2,000,
o.n. 4˚C

AEC Manual (Kaur
et al.,
2008b)

Platelet derived
growth factor
receptor b
(PDGFRb)

Pericyte
(signalling)

Vessel
discolouration

Abcam (Y92);
AB_777165

Rb mAb
(IgG)

Heat
(Low pH)

1:100,
30 min RT

DAB Manual (Armulik
et al.,
2005)

*RRID: Research Resource Identifiers.
†Host: Rb = rabbit; Ms = mouse; mAb = monoclonal antibody; pAb = polyclonal antibody.
‡Ag retrieval: heat-mediated antigen retrieval was performed in high pH solution (10 mM Tris/1 mM EDTA, pH 9.0) or low pH solution (trisodium citrate 10

mM, pH 6.0). Proteinase K was from Dako (ready-to-use solution).
§Dilution and incubation time: RT = room temperature; o.n. = over night.
#Chromogen: AEC: 3-amino-9-ethylcarbazole; DAB = 3,3’-diaminobenzidine. Reported references are from main manuscript.
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Study design and setting
A research programme based in Queen Elizabeth Central Hospital (QECH) and the College of Medi-

cine in Blantyre, Malawi since 1996 provided the setting for the study. A prospective cohort of chil-

dren (clinical dataset) was recruited between 1999 and 2014. A subcohort was selected for ocular

histopathology (clinicopathology dataset, 1999–2011) and a second recruited for retinal photogra-

phy (image analysis dataset, 2006–2014).

Ethics
The core and specific studies all received approval from the research ethics committee at the Univer-

sity of Malawi College of Medicine P. 11/07/593, Michigan State University and the Royal Liverpool

and Broadgreen University Hospital Trust n. 3690. Research was performed in accordance with the

Declaration of Helsinki. Written consent for the clinical eye examination was sought in English or in

the language of the parent/guardian who gave permission on the patient’s behalf. If a patient died,

additional informed written consent for autopsy was sought from the parent/guardian (Taylor et al.,

2004; Milner et al., 2013).

Subjects
Clinical dataset
Children admitted to the Paediatric Research Ward of QECH with coma and suspected CM who met

the definition of CM: presence of coma (Blantyre Coma Score (BCS) <2) and P. falciparum parasitae-

mia, in the absence of any other identifiable cause of coma (including meningitis, hypoglycaemia or

postictal state of �2 hr) (Taylor et al., 2004). After initial stabilisation by the admitting paediatrics

team, cases had pupils dilated and were examined by binocular indirect ophthalmoscopy with stand-

ardised data recording (Harding et al., 2006). Demographic, clinical and outcomes data (survival,

death, time to recovery of consciousness (BCS �3)) were recorded and analysed (Table 1) after dual

entry as previously described (Seydel et al., 2015). Peripheral parasitaemia, haemoglobin levels and

HIV-1 serological status were determined as previously described (Taylor et al., 2004).

Figure 10. Semiautomated quantitative analysis of sequestration by length of affected vessel. (A) Example image of semiautomated system to show

vessels affected by sequestration (red). (B) Chart showing distribution of proportion of detected vessel affected by sequestration related to survival in

251 eyes (one eye per case).

DOI: https://doi.org/10.7554/eLife.32208.024

The following source data is available for figure 10:

Source data 1. Semiautomated quantitative analysis of sequestration by length of vessel involved.

DOI: https://doi.org/10.7554/eLife.32208.025
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Clinicopathology dataset
Clinicopathological cases were identified from an autopsy study performed between 1996 and 2010,

which enrolled children who died of CM and parasitaemic children who died of other causes.

Autopsy was performed to international standards within 12 hr of death. Clinical diagnosis of CM

was from post-mortem brain analysis (Taylor et al., 2004). Specimens were obtained from the

archive with: a full clinical eye examination performed during life, available severity grading of spe-

cific MR features, a clinical diagnosis of CM (see above) and evidence of valid consent (see below).

Key pathology methods are given here, with further details available in Appendix 1.

Cases were allocated to three severity groups shown previously to reflect maturation stage and

pigmentation of sequestered pRBC in the retinal capillaries and venules (Barrera et al., 2015):

. Grade 0 - pRBC sequestration 0–20% of retinal microvessels post mortem (and no extra-eryth-
rocytic HZ deposition in retinal vessels), which also represents the cut-off value in the brain to
confirm CM as the cause of death (Taylor et al., 2004)

. Grade 1 - pRBC sequestration in 20–60% of retinal microvessels and extra-erythrocytic HZ
in �15% of retinal vessels

. Grade 2 - severe pRBC sequestration (>60% of retinal microvessels) and >15% contain extra-
erythrocytic HZ (Barrera et al., 2015)

Eye specimens were anonymised, coded and, after fixation in 10% v/v neutral buffered formalin,

processed as previously described (Barrera et al., 2015; White et al., 2009). Specimens were

opened either horizontally in the pupil-optic nerve (PO) plane, or vertically. Retinal pathological fea-

tures, such as orange/white vessel discoloration and intravascular material, were photographed and

sampled using punch biopsies before wax embedding. Classification of the retinal zones used to

compare levels of histological markers with severity of MR features detected during grading is

described in Appendix 2.

All histopathological observations were performed masked to MR status. Up to 100 sequential

sections were cut for each specimen and stained for H&E, Martius-Scarlet-Blue or immunohistochem-

istry. For detection of parasitic stage and elements in retinal vasculature, H&E stained sections were

assessed for presence of pRBCs, and intra- and extra-erythrocytic HZ (Barrera et al., 2015). Percen-

tages of capillaries and venules parasitised were calculated per MR grade (means ±SD reported): 6 ±

5% (grade 0); 54 ± 12% (grade 1); 87 ± 16% (grade 2).

Vascular endothelial growth factor receptor 1 (VEGFR1) and aquaporin-4 (AQP4) immunostaining

were quantified by retinal layer, using a densitometry-based automated analysis method on eight

randomly selected fields per section (see Appendix 1). For the vascular-related antigen markers (see

Key Resources Table), the numbers of immunoreactive retinal vessels or segments were counted

manually by one of the authors (VB) and at least one second independent observer (TF, SM or DG,

see Acknowledgments). At least 100 capillaries and venules were analysed in each case and an inter-

observer error count of less than 10% considered acceptable, otherwise a third observer assessed

the case.

Image analysis dataset
Children deemed by the admitting paediatrician to be sufficiently stabilised clinically underwent col-

our photography and FA following previously published protocols (Beare et al., 2004;

Harding et al., 2006; Beare et al., 2009). Subjects were excluded if their guardians withdrew con-

sent, if their clinical condition was deteriorating or rapidly improving to normal consciousness, or if

the ophthalmologist was not available. A trained ophthalmologist graded the FA images against

previously published protocols developed by the Liverpool Ophthalmic Reading Centre

(MacCormick et al., 2015). Classification of retinal zones is described in Appendix 2 and used stand-

ardised validation procedures. The following were included: presence/absence, extent and distribu-

tion of whitening, vessel discolouration (divided into orange and white vessels as per analysis),

haemorrhages and papilloedema. An automated segmentation algorithm was developed (method

described elsewhere [Zhao et al., 2015]) to identify vessels with IVFD, applied to the macular image

with best field definition and clarity from one eye of each case and analysed by proportion of vessel

affected by IVFD/proportion not affected.
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Statistics
Relationships between clinical dichotomous outcome and studied variables was first analysed using

simple logistic regression. To test for confounding, a multivariable logistic regression model was fit-

ted within the clinical dataset, adjusting for variables significant at p<0.01 (Table 1) and including

age. We did not include variables not fulfilling those described by Greenland et al.

(Greenland et al., 1999): coma score (part of the causal pathway to death) and retinal haemor-

rhages (orange vessels can evolve to haemorrhages because of sequestration affecting vessel stabil-

ity). Potential bias because of missing data was investigated by comparison between subjects

examined and not examined. Coma recovery time was truncated at zero and highly skewed with

over dispersion, and so we used truncated negative binomial regression to estimate unadjusted

associations with this outcome. Clinicopathological correlation analyses used data from the last clini-

cal examination before death and one eye per subject. After quantitative evaluations were com-

pleted, specimen codes were broken and results compared with the clinical data. Continuous scale

data were assessed for normal distribution with the Shapiro-Wilk test. When normality was satisfied,

one-way ANOVA (with Bonferroni post-hoc correction) was used to compare continuous scale data

across MR severity groups, or retinal layers. Spearman correlation (with significance at p<0.01) was

used to correlate a continuous scale variable with severity grades for macular and peripheral whiten-

ing. Fisher exact test was used to compare categorical variables (e.g. ICAM-1 or GFAP perivascular

staining, discoloration presence/absence) and p values < 0.05 were considered significant after

adjustment where appropriate for multiple comparisons. SPSS Statistics 22 was used throughout.

Data availability
The anonymised datasets for this study – clinicopathology dataset (author: Valentina Barrera), clinical

dataset (author: Ian MacCormick) and FA dataset (authors: Ian MacCormick and Yalin Zheng) – are

stored at the University of Liverpool Research Data Management Archive (datasets archive created

on 20/02/2018). Given the confidential nature of these data (clinical and histology images and clinical

examination forms of the patients (with DOB, date of death, clinical parameters, cause of death),

access is subject to reasonable request through the senior author, Simon P. Harding (sharding@liver-

pool.ac.uk), and to approval by the Malawi Malaria Consortium Data Oversight Committee (Terrie E.

Taylor Director, Blantyre Malaria Project (ttmalawi@msu.edu) and SJ Gordon, Director and Chair

Research Strategy Group, MLW Clinical Research Programme (sgordon@mlw.mw)).
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Appendix 1

DOI: https://doi.org/10.7554/eLife.32208.029

Supplementary pathology methods
Pupil-optic (PO) nerve wax blocks were cut into sections, and H&E stained to identify retinal

areas for topographical correlation and subsequent histopathology (Appendix 1 Figure 1).

Appendix 1—figure 1. Orientation and topographical association in whole eye histology blocks

(A) and in eye sections (B), used to perform correlation studies between fundal images and

histology.

DOI: https://doi.org/10.7554/eLife.32208.030

Histology photographs were taken from randomly selected fields in each retinal area

(macula, nasal posterior, nasal and temporal periphery) in sequential sections stained for

immunohistochemistry markers, and used to measure marker intensity (see VEGFR1 and AQP4

analyses).

The macula is clearly identifiable histologically, due to a higher density of ganglion cell

nuclei compared to other retinal areas (see section below). Optic nerve head and optic disc

were used as matching references in histological and clinical photographs respectively. The

retinal area on the nasal side of the optic nerve head (nasal posterior, also defined as near

periphery; Appendix 2—figure 1 panel B) corresponding to retinal zone 1 in the periphery

(Appendix 2). Nasal and temporal anterior areas were considered matches for zone 2–3.
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Gross pathology
Eyes were examined macroscopically in 70% v/v ethanol with a dissecting microscope and

orange/white discoloration of retinal vessels, intravascular material and retinal haemorrhages

were recorded photographically. Punch biopsies (N = 4, see Table 2, main manuscript) were

performed post-mortem to obtain individual retinal lesions. Calottes were also used to sample

individual retinal features, after sectioning into small tissue strips (N = 7).

Tissue samples were dehydrated and embedded in paraffin wax. Sections, 3–4 mm thick,

were cut with a manual rotary microtome for staining.

Immunohistochemistry and microscopic pathology
Sections were deparaffinised, rehydrated and stained with standard hematoxylin-eosin (H&E)

or with the indirect immunoperoxidase technique (see Key Resources Table for antigen

retrieval treatment and list of antibodies). Endogenous peroxidases and non-specific binding

were blocked by treating rehydrated sections with 0.3% v/v hydrogen peroxide (15 min; Dako)

and 20% v/v goat serum (Sigma Aldrich) respectively. Ready-to-use Dako EnVisionTM + System

HRP was used for immunostaining (Key Resources Table). Anti-rabbit-HRP and anti-mouse-

HRP secondary antibodies were incubated for 30 min. Negative and positive control

experiments were run in parallel using, respectively, isotype control antibodies on retinal

samples or tonsil. Other ocular tissues, such as optic nerve, choroid and ciliary body, were

used as internal positive or negative controls. Microscopic investigations were carried out with

an Olympus BX60 system microscope. Images were taken with an Olympus DP71 microscopic

digital camera and cell imaging software (Olympus).

Retinal layers
The retina is customarily divided into ten layers identifiable on H&E stained light microscopy

(Appendix 1—figure 2).

Appendix 1—figure 2. Panel A: retinal structure on light microscopy (H&E staining). Panel B

shows the specific feature of >1 cell thickness in the ganglion cell layer, used to identify the

macula.

DOI: https://doi.org/10.7554/eLife.32208.031

Retinal layers from inner to outer are: inner limiting membrane, nerve fibre layer (NFL),

ganglion cell layer (GCL), inner plexiform layer (IPL), inner nuclear layer (INL), outer plexiform

layer, outer nuclear layer (ONL), outer limiting membrane, photoreceptor outer segments (rod

and cone), retinal pigment epithelium. The retinal neurovasculature is localised in the GCL and

INL, with a capillary network in each and it forms the inner blood retinal barrier (BRB)

comprising endothelial tight junctions and maintained by additional perivascular cells

(astrocytes, Müller cells and pericytes. RPE tight junctions form the outer BRB. The macula is

identified in histological sections by the presence of more than one ganglion cell nucleus in

the GCL (Appendix 1—figure 2B).
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Immunohistochemistry (IHC)
The antibodies used to investigate the tissue effects of intravascular material are listed in Key

Resources Table. IHC staining was quantified per retinal layer in each image by Image J 1.49 v

(NIH, http://rsb.info.nih.gov/ij/). RGB images were converted to grey scale images without

changing brightness or contrast, and regions of immunolabelling were selected by density

thresholding. Low and high thresholds were selected by comparison of the staining intensity

on similar sections from MR negative cases, and the thresholds were kept constant between

cases for each marker using internal standards. Data were reported as area of

microphotographs covered by the immunolabelling, normalised against the background (eye

vitreous intensity).
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Appendix 2
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Classification of retinal zones in grading of malarial
retinopathy
Definitions of retinal zones for grading of clinical photographs and for the topographical

clinicopathological study are shown in the Figure below.

Appendix 2—figure 1. Retinal zones used for clinical grading.

DOI: https://doi.org/10.7554/eLife.32208.033

Macula: defined as the zone of retina within a circle centred on the centre of the fovea,

which is the central retinal area with highest photoreceptor density. Macular boundaries are

defined by vessels arcades.

Peripheral retina: defined as all retinal tissue lying outside the macular borders, divided

into quadrants (temporal, superior, nasal, inferior) which are all graded separately during

ophthalmoscopy. Gradeable peripheral retina was measured using zones (zones 1–3).

Retinal whitening was graded separately from the MR grade, yielding four severity grades.

In order to assess the extent of macular involvement in whitening, macular zones of

involvement were compacted into a notional circle using the optic disc as the nominal

equivalent of a disc area (DA). Macular whitening severity grades are: none,<1/3 DA, 1/3–1

DA and >1 DA.

Peripheral whitening was also graded into four categories: none, Grade 1, Grade 2 and

Grade 3 for each retinal quadrant, with a summation score to allow for the possibility of one or

more quadrants being unobservable.
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