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Abstract

Paediatric cerebral malaria is the most serious complication of Plasmodium falciparum

infection. While the majority recover, long-term cognitive impairment has been highlighted

as a significant and neglected problem. Persistent or serious deficits in processes such as

attention or behavioural inhibition should be manifest in changes to performance on oculo-

motor tasks. Therefore we investigated the impact of cerebral malaria on the development

of reflexive pro-saccades and antisaccades. In a longitudinal study, 47 children previously

admitted with retinopathy-confirmed cerebral malaria (mean age at admission 54 months),

were compared with 37 local healthy controls (mean ages at first study visit 117 and 110

months respectively). In each of three or four test sessions, over a period of up to 32

months, participants completed 100 prosaccade tasks and 100 antisaccade tasks. Eye

movements were recorded using infrared reflectance oculography; prosaccade, correct

antisaccade and error prosaccade latency, and antisaccade directional error rate were

calculated. Hierarchical linear modelling was used to investigate the effect of age and the

influence of cerebral malaria on these parameters. Data were also collected from an inde-

pendent, older group (mean age 183 months) of 37 local healthy participants in a separate

cross-sectional study. Longitudinal data exhibited the expected decrease in latency with

age for all saccade types, and a decrease in the antisaccade directional error rate. Hierar-

chical linear modelling confirmed that age had a statistically significant effect on all parame-

ters (p< = 0.001). However, there were no statistically significant differences between the

cerebral malaria and control groups. Combining groups, comparison with the literature

demonstrated that antisaccade directional error rate for the Malawi sample was significantly

higher than expected, while latencies for all saccade types were indistinguishable from pub-

lished. The high directional error rate was also confirmed in the older, healthy Malawian

participants from the cross sectional study. Our observation of similar oculomotor perfor-

mance in cerebral malaria and control groups at long follow-up periods suggests that cere-

bral malaria survivors are not at a generally increased risk of persistent cognitive deficits.
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Our data raise questions about the prevailing hypothesis that cerebral malaria has gross

impacts on the development of processes such as attention and behavioural inhibition. More

importantly, our novel finding of a clear difference in antisaccade performance between all of

the Malawi participants and published data suggests that the Malawian paediatric population

as a whole faces serious challenges to cognitive development beyond cerebral malaria.

Introduction

Malaria presents a substantial global health challenge, with an estimated annual incidence of
approximately two million cases and over 600 000 deaths per year[1]. Most deaths occur in
children under five years of age, particularly in sub-Saharan Africa. Paediatric cerebral malaria
is one of several severe malarial syndromes and is diagnosedwhen peripheral parasitaemia is
accompanied by impaired consciousness in the absence of another identifiable cause of coma.
Greatly improved diagnostic specificity is achieved if malarial retinopathy is observed [2,3].
The case fatality rate of cerebral malaria with treatment is approximately 15% and survivors
exhibit a range of neurological deficits at discharge [4–6]. More recently attention has turned
to cognitive impairment following infection (the “hidden burden of malaria” [7]). It has been
reported that impairments in aspects of executive function such as attention and working
memory are both relatively common and long term [8–10].

Studying cognition in cerebral malaria survivors is challenging. Neuropsychological tests
developed in one cultural context cannot simply be transferred to another, even once linguistic
barriers have been overcome [11,12]. Cognitive tests developed in theWest cannot be used in
sub-Saharan Africa without adaptation, the effects of which are not always clear [13–15]. Mea-
suring neural functionmore directly with electrophysiological techniques [15] or brain imag-
ing [16,17] is rarely an option in sub-Saharan Africa.

An alternative is the measurement of the parameters of saccadic eye movements, an
approach widely used to investigate cognition and specific neural circuits [18] [19] and devel-
opment [20–25]. There are well established links between specific oculomotor parameters and
cognitive processes [26], including attention [27,28], working memory [29,30] and inhibitory
control [31,32], all key aspects of executive function. Clinically, the antisaccade task (in which
participants are instructed to execute a saccade to the mirror-image position of a suddenly
appearing target [33]) has increasingly been used to detect neuropathological and cognitive
deficits in various patient groups [34,35] and has been used to investigate neuro-developmental
conditions such as ADHD [36–39].

If cerebral malaria survivors are at risk of long-term impairments in cognition, particularly
related to executive function, then we would expect to see performance deficits in saccade tasks
compared to a non-cerebral malaria local control group. We therefore conducted a longitudi-
nal case control study of retinopathy-confirmed cerebral malaria using both prosaccade and
antisaccade tasks. As many of our participants were relatively young even at the end of the lon-
gitudinal study, a smaller cross-sectional study was conducted in a group of normally develop-
ing, older participants to confirm the developmental course of the parameters of interest in the
population we were examining.

Materials and Methods

Ethics Statement

All experiments were performed in accordance with the ethical standards laid down in the Dec-
laration of Helsinki and were approved by the University of Malawi College of Medicine
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Research Ethics Committee. Study information was provided to parents, guardians and partici-
pants in the local language and written, informed consent obtained.

Participants

Participants were recruited from two pre-existing cohorts of children from previous studies in
Blantyre, Malawi. The Blantyre Malaria Project Epilepsy Study (BMPES [40]) recruited reti-
nopathy-confirmed cerebral malaria survivors from children admitted to the Queen Elizabeth
Central Hospital (QECH), Blantyre, Malawi, between 2005 and 2007. The control group in
BMPES consisted of children who were admitted to general paediatric wards in QECH, with a
normal level of consciousness, and no history of unprovoked seizures or severe malaria. Chil-
dren from both of these groups who had not been lost to follow-up since the original study,
who did not suffer from epilepsy and who were a minimum of 6 years of age when testing in
the current study began (November 2011) were approached. Those without apparent gross
neurological or visual deficits were recruited to our longitudinal study. Once recruited, they
attended QECH for testing on multiple occasions.

We also examined a second group of participants who were originally recruited for the
Brain Imaging in Normal Kids (BRINK) study [41]. The BRINK study recruited a community-
based, representative sample of normally developing children from in and around Blantyre,
and each child underwent a neurological examination and brain MRI. From this cohort we
were able to contact, approach and recruit an older age-group compared to the longitudinal
study. We tested those participants who had not suffered any serious infection or injury since
participating in BRINK, and who were willing to consent.

Equipment

Horizontal eye movements were recorded binocularly with a miniaturised head-mounted
infrared saccadometer (Advanced Clinical Instrumentation, Cambridge, UK). This sampled
infrared reflectance signals at 1KHz, and low-pass filtered them at 250 Hz with 12-bit resolu-
tion. The device incorporated three low-power red lasers projecting red 13 cd/m2 target spots
subtending approximately 0.1°, in a horizontal line, centrally and at 10° to left and right of cen-
tre. As the stimuli moved with the head, participants were not head-fixed; they sat in a com-
fortable position approximately 1.5m in front of a near-white surface. For both pro- and
antisaccades the stimulus was identical. After a randomised fixation period (1s-2s), the central
fixation target was extinguished, and a single eccentric target appeared at 10° to either the left
or right (this was also randomised). Note that in both prosaccade and antisaccade tasks the tar-
get appeared immediately after fixation target extinction; synchronous rather than gap tasks
were used.

Procedures

In the longitudinal study, participants completed 100 prosaccade and 100 antisaccade trials in
two separate blocks in each testing session.While initially it had been hoped to counterbalance
block order, participants found this confusing. So for the bulk of testing the prosaccade block
was completed first. Prior to each block, participants completed 10 calibration trials, and were
given detailed task instructions and stepped through the task. They were asked to describe, by
pointing with their finger, what they had been instructed to do. For prosaccade trials, they were
instructed to look at targets appearing to the left and right of centre as soon as they saw them.
Other than this they were given no instructions about speed or accuracy. For antisaccade trials,
care was taken to explain that they were to look to the mirror image position of the target, that
is in the opposite direction to the target, but the same distance from fixation as the target. This
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was done while demonstrating the relative positions of the central fixation target, the target
position, and where they were required to look. Participants were carefully observed through-
out testing. If there was any doubt that they had understood the tasks instructions, the run was
stopped, and the task explained again. Exactly the same procedures were followed during the
single test session in the cross-sectional study on the BRINK cohort.

Analysis

Oculomotor data were stored on the Saccadometer handset, and downloaded using Latency
Meter 4 software. Parameters were collated using MS Excel. For each participant and each test-
ing session we computed the median prosaccade (Pro), correct antisaccade (CorAS) and error
prosaccade (ErrPS) latency. We also calculatedmean saccade amplitude for each type of sac-
cade. For each participant and session, the antisaccade directional error rate (DER) was
calculated.

In an initial analysis of the longitudinal data, and to aid visualization, least squares linear
regressions of each participant’s session data on age were calculated, and the slope and Pearson
correlation coefficient used to summarize each regression. To explicitly investigate the influ-
ence of cerebral malaria, the latency of each type of saccade (Pro; CorAS and ErrPS from the
antisaccade task) and the DER were analysed using growth curvemodelling [42,43]. This
describes all of the data in a single analysis allowing the characterisation of general patterns,
tests for individual differences in growth curves and the further characterisation of within par-
ticipant differences. A hierarchical linear model (also referred to as a linear mixed-effects
model) was used. First, linear, quadratic and inverse unconditional growth curveswere fitted
to the data. The optimally fitting model was chosen using the Akaike Information Criterion
(AIC) and the fit confirmed using standard goodness-of-fit residual analysis. Using the analysis
of DER as an example, the final model selectedwas:

Level 1 : DERti ¼ p0i þ p1i Ageti þ p2 Malariaiþeti; eti � Nð0; s2Þ

Level 2 : p0i ¼ b00 þ r0i; p1i ¼ b10 þ r1i

Level 1 describes the values of DER on the level of all participants (i.e. the between partici-
pant differences), while Level 2 describes the values of DER at the level of individual partici-
pants (i.e. the within-participant differences). In this model Malaria is a dichotomous predictor
(0 = control, 1 = case) and Age is centered at 132 months. The parameter π1i reflects i-th child
slope of DER profile curve,π2 reflects the mean increase in DER due Malaria, β00 reflects the
grand mean DER at the centred age of the sample, and β01 reflects the grand mean slope of the
child’s DER profile. The variability of the random terms (r0i and r1i) show the amount of vari-
ability within participants (of their intercepts and slopes). The models were fit using the
restrictedmaximisation likelihood in the R statistical package (function “lme”).

Results

In the longitudinal study, data were available from 47 retinopathy-confirmed cerebral malaria
survivors and 37 control participants (Table 1), all with normal visual acuity. Cerebral malaria
survivors were tested on four occasions over a mean period of 31.2 months, or on three occa-
sions over 20.3 months. The controls were tested on either four occasions over 32.1 months, or
three occasions over 21.9 months. For the cerebral malaria group, the first test session took
place on average 68.1 months after their admission in a malaria coma, at which timemalarial
retinopathy had been confirmed.
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Latency Results

We observed the expected development in performance in prosaccade tasks (Fig 1A and 1B);
as age increased Pro latency tended to decrease. To capture within-participant development,
we calculated least-squares linear regressions of latency on age (in months). The mean (±SD)
slope of these functions was -1.27±2.20 for the cerebral malaria group compared to -1.92±2.69
in the control group (t = 1.2, p = 0.22, two-tailed), suggesting that on average there was a simi-
lar decrease in latency with age in both groups. Slopes were generally steeper and more variable
among younger participants consistent with more rapid development, which slowed at older
ages. Data from the antisaccade task followed the same pattern. For CorAS (Fig 1C and 1D) the
average slope of participants’ regression functions was greater than for Pro but very similar
between groups (cerebral malaria: -3.10±5.90; control: -3.13±5.12). ErrPS latency (Fig 1E and
1F) also exhibited the same general pattern of reductions with age both within and between
participants.

As it takes additional time to programme and execute an antisaccade compared to a prosac-
cade, CorAS latency is expected to be greater than ErrPS latency. This pattern was observed in
our dataset, and did not differ between groups (Fig 2A). We computed the difference between
each participant’s median CorAS and ErrPS latency, and examined the effect of age (using each
participant’s mean age across testing sessions) on this difference.While the general patterns
were similar between groups (Fig 2B) there were some cerebral malaria participants who gener-
ated negative differences in this analysis (ie did not exhibit, on average, shorter ErrPS latency
compared to the CorAS latency). However, where DER is either very high or very low, the ses-
sion estimates for these figures are based on very low numbers of observations.A very high
DER implies very few CorAS from which to compute a median latency; a very low DERmeans
few ErrPS.Within the small number of cerebral malaria participants who generated these nega-
tive differences, we observedboth of these phenomena.

As prosaccade errors in the antisaccade task are assumed to be ineffectively inhibited reflex-
ive responses toward target onsets, there should be a clear correlation across participants
between ErrPS latency and the latency of saccades in the prosaccade task itself (Pro). For both
groups we observed statistically significant correlations between the latencies of these two types

Table 1. Participant characteristics.

CM CONTROL BRINK

N 47 37 37

Age at T1 (Range) 117 (82–206) 110 (73–206) 183 (138–222)

Follow-up (N, mean duration in months):

3 visits 23, 20.3 15, 21.9

4 visits 24, 31.2 22, 32.1

Coma data:

BCS (Median) 2

Age at Admission 53.6

Time between admission and T1 68.1

Serious sequelae at discharge 3/42 (7%)

T1: first test session. All ages are presented as mean in months. Follow-up: Participants in the longitudinal

study attended either three or four sessions for testing. Coma data is provided for cerebral malaria group;

BCS: Blantyre Comma Score. Data on neurological sequelae at discharge were available for 42/47 (89%) of

the CM group; sequelae could include: paresis, ataxia, aphasia, or blindness. For the BRINK group, only the

number and ages of participants are shown.

doi:10.1371/journal.pone.0164885.t001
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Fig 1. Effect of age on the latency of three types of saccade. Prosaccades: A,B; correct antisaccades: C,D; error prosaccades from antisaccade tasks:

E, F. Control (CON A,C,E) and Cerebral Malaria (CM B,D,F) groups. Data from each participant in each testing session is plotted, and summarised using a

Saccades and Cerebral Malaria
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of saccade across participants (Fig 2C; cerebral malaria: r = 0.53, p<0.001; controls: r = 0.56,
p<0.001). The slope of the least squares linear regression lines was 0.59 for both, consistent
with ErrPS latency being consistently less than Pro latency. There was no difference between
the groups.

Antisaccade Directional Error Rate

Antisaccade DER also tended to decrease with age, both within and between participants, as
expected (Fig 3). For the cerebral malaria group, individual regression slopes were negative in
39 of 47 participants (83%), and the overall mean of all regression slopes was -0.48±0.72. For
the control group, 26 of 37 individual participants had negative regression slopes (70%) with a
mean of -0.54±0.85.

We used a hierarchical linear model to confirm that ageing had the expected general effects
on all the parameters investigated both within and between participants, and to assess in a
more criticalmanner whether there was evidence of significant differences between the cerebral
malaria and control groups (Table 2). The linear model provided the most optimal fit for the
growth curves of DER, and Pro, CorAS and ErrPS latency (Table 2) as guided by the AIC val-
ues. The mean DER, Pro, CorAS and ErrPS of a participant of 11 years (based on the intercept
of the model centered at this age) was 56.76±2.09%, 241.13±8.42ms, 387.38±14.13ms and
246.62±8.44ms, respectively. All four of these parameters were affected significantly by age
(p< = 0.001; Table 2). However, there was no statistically significant effect of malaria (ie no sta-
tistically significant difference between the two groups) for DER, or Pro and CorAS latencies.
The effect on ErrPS latency reached a marginal level of significance (p = 0.04). This was insig-
nificant after Bonferroni correction for multiple comparisons with a family-wise level of signif-
icance α = 0.05, which provided a correctedα = 0.0125. On this basis, none of the parameters
reached significance.

least-squares linear regression line. Where data is available for four test sessions it is plotted in red, data from participants tested over three sessions is

plotted in blue. On each plot the mean (±SD) Pearson correlation coefficient (r) and gradient of the regression lines (m) is shown, averaged over all

participants in the group. Note that the y-axis scale differs for C and D.

doi:10.1371/journal.pone.0164885.g001

Fig 2. The latency of different types of saccade and their relationships. A. Intersubject mean (95% CI–upper or lower error bars plotted for clarity)

averaged across each testing session. CM: Data plotted in red. CON: Data plotted in blue. ● correct antisaccades (CorAS); ■ error prosaccades

(ErrPS). B. Plot of the difference between mean correct antisaccade latency (averaged over testing sessions) and mean error prosaccade latency for

each participant against their age (calculated as the mean age over testing sessions). CM: red, CON: blue as in A. C. Correlation between prosaccade

(ProSac) latency and error prosaccade (ErrPS) latency for all participants and sessions. CM: red, CON: blue as in A. Parameters of least-squares

linear regression functions and correlation coefficients are shown.

doi:10.1371/journal.pone.0164885.g002
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Cross-sectional results from the BRINK cohort

The average age of 37 participants recruited from the BRINK cohort was 183±23months, with
12/37 (32%) aged 192 months (16y) or over at the time of testing. The intersubject mean of
individual median Pro latencies was 237±45ms, while CorAS and ErrPS latencies were 351

Fig 3. Effect of age on antisaccade directional error rate (DER). Presented calculated as a percentage for control (A) and cerebral

malairia (B) groups. Plotting conventions as for Fig 1.

doi:10.1371/journal.pone.0164885.g003

Table 2. Analysis of data from the longitudinal study comparing cerebral malaria and control groups.

DER Pro CorAS ErrPS

Fixed effects

Intercept 56.76 241.13 387.38 246.62

(2.09) (8.42) (14.13) (8.44)

[52.63,60.88] [224.5,257.7] [359.5,415.2] [229.98, 263.25]

p<0.001 p<0.001 p<0.001 p <.001

Malaria 3.57 16.91 -17.89 23.25

(2.82) (11.35) (18.82) (11.08)

[-2.03,9.17] [-5.64,39.47] [-55.32,19.53] [1.21,45.28]

p = 0.21 p = 0.14 p = 0.34 p = 0.04

Agea -0.41 -1.11 -1.74 -0.97

(0.04) (0.16) (0.31) (0.22)

[-0.49,-0.32] [-1.43,-0.80] [-2.34,-1.10] [-1.39,-0.54]

p<0.001 p<0.001 p<0.001 p <.001

Random effects (variance components)

Variance in individual means 8.12 1839 4261 1133

p = 0.26 p = 0.08 p = 0.01 p = 0.18

Variance in individual slopes 0.000 0.000 2.1 0.8

p = 1 p = 1 p<0.007 p = 0.2

Variance within individuals 21.14 2286 8638 3710

Linear mixed model results for antisaccade directional error rate (DER), prosaccade latency (Pro), correct antisaccade latency (CorAS) and error

prosaccade latency from the antisaccade task (ErrPS). Values for each term included in the model and their significance. The estimated regression

coefficients, their standard errors (in round brackets), the 95% confidence intervals (in square brackets) and the p-values are reported.
aThe Age predictor is centred at age 132 months so that the 0 reflects the grand mean for a participant of 132 months old.

doi:10.1371/journal.pone.0164885.t002
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±117ms and 253±51ms respectively. The mean DER was 58±22%.We compared these data
with older participants from the longitudinal study. Given that there was no difference in the
performance of cerebral malaria and control groups, we calculatedmean latencies and DER for
all participants whose average age over testing sessions was greater than 144 months (N = 15;
Fig 4). The group mean age for the participants from the sub-group from the longitudinal
study was 173±24 months, and not statistically different from the age of the group from the
BRINK cohort (t = 1.4, p = 0.16).

For all of the saccade parameters, performance in the BRINK group tended to be worse
(longer latencies, higher DER). For Pro and CorAS latency the group differences were not sta-
tistically significant (t = 1.72, p = 0.09 and t = 0.66, p = 0.51 respectively; p values uncorrected
for multiple comparisons). For ErrPS latency and DER the differences were statistically signifi-
cant (t = 3.83, p<0.001 and t = 2.64, p = 0.01 respectively).

Comparison with data in the literature

Given the absence of a difference between the cerebral malaria and control groups for DER, we
fitted a single function to all of the raw data to provide a single description of the influence of
age on DER. For this we used the mean from the linear hierarchical model (±95% CI) because
it was our best fitting model of DER (Fig 5A). This single fit was very similar to the LOESS fit
of the same data, which is shown for comparison.We identified a small number of studies in
which a synchronous antisaccade task had been used (as opposed to either gap or overlap
tasks), and which reportedDER for specific age groups. Using a weightedmixed-effect linear
model (with a random effect for the study to allow for correlations between data from same
study) we generated a comparison plot of DER against age (±95% CI; Fig 5B). These two linear
models had very different slopes; the DER was consistently higher in the longitudinal Malawi
dataset than would be expected based on the literature.

We also compared Pro and CorAS latency from our data with data from the literature. This
analysis was limited because, particularly for the antisaccade literature, latency is reported less
consistently than DER. As listed in Table 3, we identified a small number of studies using syn-
chronous saccade tasks, from which we could extract latency centred at the age of 132 months.
From these we calculated a weightedmean (Table 3). Prosaccade latency from our data was
241.13ms (95% CI: 224.5, 257.7) compared to a weightedmean from the literature of 230.5 ms
(95% CI: 223.6, 237.4). Given the observedoverlap of the confidence intervals, we conclude
that the two means are similar with at least 90% confidence. Ourmean CorAS latency was
387.4ms (95% CI: 359.5, 415.2), compared to the literature weightedmean of 376.5ms (95% CI:
357.2, 395.9). Again, given the observedoverlap of the confidence intervals, we conclude that
the two means are similar with at least 90% confidence.

Discussion

The developmental trajectory of reflexive prosaccade (Pro) latency, correct antisaccade
(CorAS) and error prosaccade (ErrPS) latency, and of antisaccade directional error rate (DER)
have been widely reported. Latencies steadily decrease with age, reaching a minimum in mid to
late adolescence; the antisaccade directional error rate begins to decline around the age of 8
years, and shows a particularlymarked decrease up to the age of approximately 14 years
[19,20,22,44]. These behavioral changes are related to the structural and functionalmaturation
of the frontal and parietal cortices, and their interconnection with other structures such as the
basal ganglia [45,46].

Longitudinal analysis of saccade data from retinopathy-confirmed cerebral malaria survi-
vors and age-matched local controls, demonstrated the expected decrease in latency with age
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Fig 4. Comparison of cross-sectional and longitudinal data. Cross-sectional data from the participants from

the BRINK cohort (C) is compared to data from participants aged >144 months in the longitudinal study (L). In each

plot individual participants’ data is shown, with the mean±95% CI. A. Prosaccade latency. B. Antisaccade

directional error rate (DER). C. Correct antisaccade latency. D. Error prosaccade latency from the antisaccade

task. Note different axis scales between A and C, D.

doi:10.1371/journal.pone.0164885.g004
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Fig 5. Effect of age on DER in combined Malawi group, and comparrision with data from the literature. A.

Combined analysis of data from cerebral malaria (blue) and control (red) groups in the longitudinal study. Both

hierarchical linear model (solid lines) and LOESS fits (dotted lines), ±95% CI are shown. B. Comparison of

hierarchical linear model (solid lines) from longitudinal Malawi dataset, with a weighted mixed-effect linear model

constructed from data extracted from four published studies in which a synchronous antisaccade task was used

(dashed lines). Central estimates ±95% CI shown.

doi:10.1371/journal.pone.0164885.g005

Table 3. Comparison data from the literature.

Reference Prosaccade Latency (ms) N Antisaccade Latency (ms) N

Luna et al (2004) 246 29 452 29

Fukushima et al (2000) 268 3 325 12

Kramer et al (2005) 202 20 298 20

Bucci and Seassau (2012) 231 16

Weighted Mean 230.5 68 376.5 61

Average prosaccade (PS) and antisaccade (AS) latency, and number of participants contributing vlaues (N), from studies using a synchronous task for

participants aged approximately 132 months (11y).

doi:10.1371/journal.pone.0164885.t003
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for all saccade types examined and no difference in saccade behaviour or in its longitudinal
development between the groups. We confirmed detailed relationships between saccade
latency parameters and again found that they did not differ between the groups. Antisaccade
DER also declinedwith age with no apparent difference between the groups. Hierarchical linear
modelling confirmed that age had a statistically significant effect on all parameters, while hav-
ing had cerebral malaria did not.

While there is a clear qualitative (Figs 1 and 3) and statistical similarity in performance
between groups, two related issues need to be addressed. Firstly, what magnitude of difference
would have constituted a biologically or clinically significant difference between groups? Sec-
ondly, on the basis of our data, how confident can we be that there really is no functionally
important difference? In ADHD, differences in antisaccade DER between cases and controls of
the order of 12% to 14% have been reported in large studies of children aged approximately
11y, and have been taken to be relevant to understanding cognitive function in this condition
[36,37]. In a smaller study of children aged around 10y, in which we were investigating the
effect of preterm birth on antisaccade performance, we observed a difference of 20% between
groups [47]. In studies of adults, proportionately larger group differences have been reported.
In summarising the schizophrenia literature, Hutton [48] quotes a healthy control DER range
of 2% to 25%, with 20% being typical of larger studies, compared to 25% to 70% in patients
with schizophrenia. In much of this literature DER in cases is often two or three times that
observed in controls. For current purposes therefore, had we observed a difference of the order
of 10% to 15% then we would have concluded an important performance deficit was present,
consistent with impaired cognition.

For our samples, over the age range of 138 to 150 months, the mean antisaccade DER was
58.9% and 56.9% for cases and controls respectively, with a standard deviation of 19.4%. If anti-
saccade DER between groups is compared using a 1-tailed alternative hypothesis t-test, assum-
ing a level of significance of 0.05, then group differences of 10%, 15% or 20%, would be
detectable with powers of 75.2%, 96.7% and 99.9% respectively. This provides some assurance
that we have sufficient statistical power to detect a magnitude of group difference (15%) that
would generally be considered functionally important. Note that this reduces the power calcu-
lation to point estimates at a specific age. The growth curvemodelling extends this by taking
the longitudinal nature of the data into account.

This lack of effect of cerebral malaria is surprising, and seemingly at odds with a body of lit-
erature suggesting a range of sequelae following cerebral malaria. However, there are important
differences between this and previous studies. Many cerebral malaria studies have used stan-
dard clinical criteria [1,49] for participant recruitment: otherwiseunexplained coma in a child
with peripheral parasitaemia [8,9,50,51]. It has been known for some time that in up to 25% of
children meeting these criteria, the cause of the coma may not be malaria [2]. We used the
presence of malarial retinopathy on admission to improve diagnostic accuracy [52].

We also excluded participants with epilepsy in contrast to a number of studies reporting
persistent neurocognitive impairments post-infection [53,54]. The evidence of poorer cognitive
outcomes in those cases who suffer from seizures is mixed [55]; it has been suggested that it is
specifically this group who needmonitoring and management the most [56]. However, only
5% to 10% of cerebral malaria survivors develop epilepsy [40,57,58], and concern has been
expressed about those survivors who do not suffer from obvious impairments, and yet may
have difficulties that remain undetected [7]. Our motivation was therefore to study a group of
children with a clear diagnosis of cerebral malaria (aided by the detection of retinopathy) but
without gross impairments.

Studies also differ with respect to both the age of infection and coma in cases, and the timing
of assessments post-coma. In malaria endemic areas in sub-Saharan Africa with high rates of
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transmission, cerebral malaria mainly occurs in children aged less than 4 years. The average
age at admission in our cerebral malaria group was approximately 4.5y. This was partly deter-
mined by the timing of our study relative to the original recruitment of participants into the
BMPES study, and our need to test participants in the age range where saccade behaviour is
developing. In children<3 years of age, cerebral malaria (and severe malarial anemia) has
been reported to adversely affect general cognition and attention [51], as well as in older chil-
dren relative to local controls [8,59]. We cannot exclude the possibility that children who are
younger at the time of infection and coma are impacted differently from older children, since
we only recruited older children.

The timing of post-coma or post-discharge assessments and follow-up periods vary across
studies; this may be important as there is a temporal pattern to the emergence of sequelae. Across
a number of studies [9,51,60] a range of severe neurological sequelae that may be observedat dis-
charge have been reported to resolve by 12 months, while it has been suggested cognitive impair-
ments persist over longer periods.As noted in Table 1, in 3/42 (7%) of our cases serious sequelae
were noted at discharge, which were not present at recruitment to the study. In many studies the
age at the time of testing is lower than in our study, while the length of follow-up (typically 6
months to 2 years for those noted above) is less than our 5.5 years (the average period between
coma and the first test in the longitudinal study). Our participants were therefore both older and
examinedmuch longer post-coma than has typically been the case. In one other previous study
with a relatively long average follow-up period of 3.7 years there was no difference between the
cerebral malaria and control groups on a battery of neurological and cognitive tasks [50].

Two studies examined outcomes in retinopathy positive cerebral malaria survivors from
Blantyre, Malawi [40,61]. Birbeck et al [40], followed participants for a mean of 544 days
(approximately 1.5y) using both an epilepsy and a neurological screening questionnaire. They
reportedmultiple neurological sequelae which emerged sequentially (gross motor and sensory
deficits first, then behavioural disorders, then epilepsy) affecting 32% of their cerebral malaria
group. Boivin et al [61] used the Malawi Development Assessment Tool and the Auchenbach
Child Behaviour Checklist a mean of 1.43 years post-discharge and reported that a statistically
significantly higher proportion of cerebral malaria survivors exhibited evidence of develop-
mental delay compared to controls. On the Auchenbach CBCL, used to investigate psychiatric
and psychosocial symptoms, there was no statistically significant difference between groups.
These studies are consistent with those performed elsewhere, suggesting that cerebral malaria
survivors in Blantyre, when examined within 1–2 years of coma, exhibit a similar range of neu-
rological and cognitive sequelae as found in other malaria endemic areas. However, this is not
incompatible with our results. It leaves open the possibility that these various sequelae resolve
subsequently leaving no detectable group differences after longer periods.

Timing of assessments is important because, particularly for cognitive functions such as
attention, development continues into late adolescence and early adulthood [62,63]. It is
important to recognize therefore, that measurement of these aspects of cognition in very young
participants (as in a number of cerebral malaria studies), will miss much of this development.
At the minimum, distinguishing between permanent deficits and developmental delays is
made more difficult without data from older age groups.

The other surprising result the emerges from our analysis is that when we combined the sac-
cade data from cerebral malaria and control participants in the longitudinal study into a single
“Malawi” dataset, we found that antisaccade DER was much higher than expected. This was
confirmed using a weightedmixed-effects linear model to compare our data with data
extracted from the literature. Not only was DER in the Malawi data higher across the range of
ages we studied, but for that part of the age range for which we have most data, the lack of over-
lap of the 95% confidence intervals suggests that the difference is robust. This was not
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replicated for prosaccade and antisaccade latency where comparisons demonstrated that pro-
saccade and antisaccade latency at 11 years of age was statistically indistinguishable between
the Malawi dataset and data drawn from the literature. The main weakness in this analysis is
the relatively small number of studies we were able to identify which had used a synchronous
antisaccade task as opposed to a gap task. The type of task used is an important consideration
as DER is higher in gap tasks. However, agreement between the studies we were able to identify
was reasonable despite a degree of methodological heterogeneity.

Antisaccade DER reaches a plateau in late adolescence, as does saccade latency [21,64]. In
the longitudinal study we had relatively few older participants meaning that estimates of per-
formance at older ages were necessarily uncertain.However, by recruiting participants from
the BRINK cohort [41] we were able to test older participants drawn from the same general
population. These participants had been recruited from the community and screened as devel-
oping normally. Given this, and their older age, we would have expected lower DER and
latency in this group. In fact, DER was higher compared to the 15 oldest participants from the
longitudinal study, and the latencies were longer. These data are important and provide confir-
mation that performance on the antisaccade task in this population was worse (ie higher error
rates) than would be expected from the saccade literature.

Our motivation in testing saccade development, and in particular in testing antisaccades,
was to investigate cognition. It might be argued that saccade tasks are not associated closely
enough with the aspects of cognitive function reported to be affected by cerebral malaria, com-
pared to other types of neuropsychological testing. However, deficits in attention [10,59,65],
working memory [51,65] and behavioural inhibition [10,66], all key aspects of executive func-
tion, have been reported to be affected by cerebral malaria. Deficits in precisely these aspects of
cognition should impair performance on the antisaccade task which is dependent on all three
[26]. Much higher rates of disruptive behaviour (akin to ADHD) have also been reported in
cerebral malaria survivors compared to controls[61]. Antisaccade DER is increased in ADHD
[36,37,39] as well as in other conditions in which attentional, working memory and inhibitory
deficits are prominent (eg autism [67]; schizophrenia [68,69]). If therefore there were persistent
deficits in one or some combination of attention, working memory and inhibition, we would
expect this to be manifest in an increased antisaccade DER, and be particularly clear in older
participants (ie>12y) in whom error rates should be approaching adult values.

Further complementary testing of cognition at older ages in well-characterised cerebral
malaria survivors will be required to establish precisely the long-term risks of cerebral malaria in
early childhood, particularly in those apparently making good recoveries. It would also be useful
to have saccade data from other populations for comparison both with ourMalawi data and that
published in the literature which is dominated by participants drawn fromWestern populations.

While malaria in general and cerebral malaria in particular continue to pose serious health
challenges, there is a need to study factors beyond cerebral malaria that might explain the poor
antisaccade performance we have uncovered.While there are some population differences in
saccade processing that do not appear to have an environmental cause [70–72], these relate pri-
marily to patterns of prosaccade latency, where there is little difference between the Malawi
data and published values. In the population from which our participants were drawn, non-
malaria factors that might have a bearing on cognitive development (eg poverty, nutrition
[73,74]), along with the impact of other diseases, need to receive further attention.
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