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ABSTRACT   

Determining control parameters of kinetic shading devices introduces a dynamic problem to 

designers, which can best be tackled by computational tools. Yet, excessive computational 

cost inherits in reaching near optimum solutions led to exclusion of many design alternatives 

and weather conditions. Addressing the issue, the current study aims to explore the design 

space adequately and evaluate the performance of responsive-kinetic shading devices 

(RKSD) by proposing a novel framework. Current framework adopts a surrogate-based 

technique for multi-objective optimization of control parameters of a RKSD on randomly 

sampled daylight hours. To test the plausibility of any results obtained by the proposed 

framework, a controlled experiment is designed. Empirical evidences suggest RKSD 

outperforms the static one in daylighting and view performance metrics. However, 

considering indoor temperature no significant differences observed.  

Key Words: Responsive, Kinetic, Shading, Daylight, Temperature, View, Simulation, 

Surrogate, Optimization   

INTRODUCTION  

Solar control has been historically a vital consideration in architectural design, since it is 

highly relevant with the concepts of energy and comfort. A proper control strategy by means 

of shading devices has dramatic influence on room temperature and natural lighting, 

accordingly, contributes to energy savings while providing comfort for the occupants [1]. 

Regulating the sunlight on the exterior of a facade, before solar beams enter the room and 

radiate its energy inside, is a much efficient strategy for sun control [1]–[3]. Conventionally, 

static shading devices are integrated to facades to perform this task. However, static devices 

fail in responding to fluctuating environmental and comfort demands. Lechner [4] put 

forward a critical question: 



“Is it logical that a static system can respond to a dynamic problem?” 

To tackle with the issue, responsive kinetic shading devices (RKSD), which forms the focus 

of the current research, were introduced. RKSD are defined as active shading systems. They 

consist of components with the ability to change themselves due to the change in the 

environment with help of kinetic movement in an automated manner. To be responsive, a 

shading device must possess moving parts, actuators, a control system, sensors and be 

programmed to respond in a certain way due to the sensor data. When designing a kinetic 

system, which accounts for change in time, the complexity of the design problem increases 

substantially. On the other hand, the developments in the computer technology along with 

new computational approaches, researchers gained the ability to deal with such complexity.  

As a specific domain of computer aided design – performance integrated parametric design 

and performance optimization help making well-informed design decisions. However, 

information feedback in the design process comes at a price, which is computation time. Most 

of the simulation engines that generate such design information are computationally 

expensive. In the study of solar control with help of kinetic shading devices that respond to 

its environment, the problem of high computational times is even more significant. Because 

the determination of the values for the shading control parameters requires to be based on 

minor fractions of time.  

A critical review of the literature on responsive kinetic shading devices revealed that most of 

the studies over-simplified the design problems due to the high levels of complexity and 

computational costs (i.e. [5]–[9]). Such simplifications may lead to deficiency in the 

exploration of the design space. For instance, El Sheikh & Gerber [10] and Sharaidin, Burry, 

& Salim [11] employed a meta-heuristic search method, namely genetic algorithm, towards 

exploration of design alternatives that have better daylight performance. Excessive number 

of simulations is required to converge optimum design alternatives. Therefore, computational 

cost was extremely high as each population member for the given number of generations 

must be simulated in simulation-based optimization. In response, Wortmann et al. [12] 

argued that surrogate model based optimization outperforms simulation-based optimization 

in solving architectural design problems, both at computational cost and finding better 

solutions. For instance, Kazanasmaz et. al. [13] developed a predictive model by using 

artificial neural networks in order to predict daylight intensity for the office buildings in 



Izmir, Turkey. Parallel, Hu and Olbina [14] utilized surrogate models for predicting the 

influence interior split-blinds on illuminance levels and achieved very low prediction errors. 

Both works [13] [14] focused only to daylight performance, by neglecting thermal and other 

visual comfort aspects such as view to the outside environment. In another instance, Skavara 

[15] implemented artificial neural networks for controlling the emergent behavior of an 

exterior shading system that is driven by cellular automata for daylight performance. 

However, her focus was more on the training techniques of the neural networks, than the 

comfort and energy related influence of the responsive-kinetic shading device that she 

proposed. 

Not only performance assessment using computational tools but also comparison between 

static and responsive-kinetic shading devices, have been considered by previous studies (i.e. 

[7], [9], [16], [17]). In all cited studies, researchers concluded that kinetic shading devices 

outperform static ones. However, the static shading systems that they examined was not 

optimized for better performance. Additionally, in none of the works cited, view – one of the 

most important consideration in architectural design – has been considered as a performance 

objective, along with thermal and daylight objectives in the same problem. Finally, a single 

point in time was considered as a basis for comparison. Specifically, only a time-point in a 

year, i.e. July at 11:00 A.M., was studied for comparison aims. Therefore, any results 

obtained by such limitations can reach to restricted conclusions.  

To address the gap in the literature, the current study aims to explore the design space and 

evaluate the performance of RKSD, adequately by proposing a novel framework. Current 

framework adopts a surrogate-based technique for multi-objective optimization of control 

parameters of a RKSD on randomly sampled daylight hours. To test the plausibility of any 

results obtained by the proposed framework, a controlled experiment is designed, which is 

detailed profoundly in Methodology section. Empirical evidences suggest RKSD 

outperforms the static one in daylighting and view performance metrics. However, 

considering indoor temperature no significant differences observed. 

METHODOLOGY 

The current research employed a quantitative approach for assessing the performance of 

shading devices. To achieve, a novel computational framework was proposed (see Figure 1). 

Next, the framework was tested in a comparative study between annually optimized-static 



and hourly optimized responsive-kinetic shading devices. It was hypothesized that 

responsive-kinetic shading devices would outperform optimized-static shading devices on 

the given performance metrics. To test the hypothesis, a controlled experiment was designed 

using the computational tools which aims at measuring the influence of quantitative 

independent variables on selected performance metrics.  

 

Figure 1. The computational tools used and the flow-chart of the experimental design 



The current work considered three performance metrics. The first one is denoted by |∆𝑇𝑇| 

which is defined as the absolute value of the difference between the air temperature simulated 

inside the hypothetical box model and 23 °C threshold. The second performance metric is 

denoted by |∆𝑙𝑙𝑙𝑙𝑙𝑙| which is the absolute value of the difference between the average 

illuminance what was simulated inside the hypothetical box model and 500 lux thresholds. 

Finally, last performance metric is the average of the 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 percentage from a given point 

inside to the view frame at the outside.  

Box Model Properties 

Within the content of experiment design, first, a test box was defined for the study of the 

exterior shading devices. At each of the shading device scenarios, parameters of this test box 

were kept constant. The dependent variables of annually-optimized and responsive-kinetic 

shading systems on the base building were examined. The location of the Box-Model was 

Izmir, Turkey. Crucial to underline, to eliminate the influence of other confounding factors 

and thus measuring the sole impact of shading device on selected performance metrics; heat 

transfer was allowed only from the south-facing façade in the current experimental design. 

Furthermore, it was assumed that there were no internal heat loads. Table 1 demonstrates the 

initial parameters of the box model. 

Parametrization of Shading Device – Independent (Decision) Variables 

Shading device’s parameterization was conducted by using Grasshopper, an algorithmic 

modeling platform. The geometry of the shading was generated by subdividing a surface that 

was 5 cm away from the south façade into six parts. This would allow controlling of the 

conceptual shading system with zones. Subsequently, each of these parts was subdivided 

again into 30 parts. These operations generated a data tree with six lists each having 30 items. 

Each of the surfaces would form horizontal slats of the shading devices with a dimension of 

0.03 m ×1.49 m. An axial rotation operation was defined for all the surfaces in six different 

lists. Shading surfaces in separate lists were controlled by independent rotation parameters 

(X1 to X6), which could have a value within the range of 0.00 to 180.00 degree. Recall that, 

the designs of shading devices were identical for both responsive kinetic and static types to 

facilitate fair comparison.  

 

 



Table 1. Parameter initiation of the box-model  
Parameters Values 
Location   Izmir /Turkey 
Dimensions  
 
 

Width 
Depth 
Height 

3 m 
6 m  
3 m 

Reflectance 

Floor 
Ceiling 
Walls 
Shading (exterior) 

30 % 
80 % 
50 % 
40 % 

U Values  
 
 
 

Walls (except South) 
Roof 
Floor 
Window 
South Wall 

Adiabatic 
Adiabatic 
Adiabatic 
2.39 W/m2×K 
0.49 W/m2×K 

Internal Loads  
 
 
 

Equipment 
Infiltration Rate 
Lighting Density 
People Density 

0 W/m2 
0.003 m3/s -m2 
0 W/m2 
0 ppl./m2 

Window 
 
 
 

Orientation 
Glazed Area 
Window to Wall Ratio 
Window Construction  

South 
7.84 m2 
0.87  
Double Pane with Low E  

Glass Material 
 
 

Type 
Visible Transmittance 
Refraction Index 

Clear glass 
0.79 
1.52 

 

 

 

 

 

 

Figure 2. Exterior shading system with six control zones and the diagram of a single 
shading control parameter 

Inclusion of Performance Metrics to the Parametric Model  

Inclusion of performance metrics to the parametric model was achieved using well-

established plugins for Grasshopper. Ladybug and Honeybee are open source plug-ins for 

Grasshopper, developed for aiding the designers to explore and evaluate environmental 



performance of any design alternative at the conceptual design phases. With help of the 

programs within Ladybug toolset, it is possible to import EnergyPlus weather data files 

(EPW) into Grasshopper, make various environmental analyses that rely on previously 

recorded local time-series data. Honeybee toolset contains programs that connects visual 

programming environment of Grasshopper with various validated simulation engines such 

as EnergyPlus, Radiance, Daysim and OpenStudio [18]. An integrated and flexible design 

approach can easily be utilized in the design process by means of these plugins and the visual 

scripting environment that Grasshopper platform provides. By generating a definition on 

Grasshopper various design variables and associative performance data can easily be 

generated for further research.  

Database Generation  

A performance integrated parametric model was generated for exploring the alternatives in 

the design space and the response variables of the static and responsive kinetic shading 

devices. The previously established parametric model had six independent variables, and 

three response variables (objectives) that are referred to as performance metrics. The next 

step was automating the process of generating and recording random independent variables 

for the control of shading zones and their computed performance metrics in a database. To 

achieve, following procedure was followed:  

• Step 1: Generate 6 random values within the range for shading control parameters 

(independent variables) 

• Step 2: Run daylight, energy and view simulations for each the generated scenarios 

• Step 3: Write shading independent design variables and dependent response variables 

to spreadsheets 

• Step 4: Iterate the above process for 500 times for each hour 

• Step 5: Change the hour of the year. 

• Step 6: Iterate for 50 times 

Nabil and Mardaljevic [19] argued that sub-sampling the meteorological dataset, such as 

picking only one day from each month, eventually bring biases because different sky and 

conditions would be excluded. However, in the research presented here, the aim is not making 

an annual inference, but examining the point in time situation. For this reason, a random 



sampling of 50 hours was made from total daylight hours of a year, provided that the selected 

hours were between 9:00 am and 17:00 pm. 

Simulations were run on an hourly basis for the randomly sampled times in a year. By 

assigning random values for the decision variables within the range, 500 simulations were 

performed for each of the 50 randomly sampled hours. For the static shading, a randomly 

generated set that contains 500 examples were performed on an annual basis. Therefore, 

aggregated 25.500 runs were performed in an automated workflow to generate 51 datasets 

for further development of surrogate models. At each run, the independent variables and their 

associative variables that contain performance indicator values for each hour and a year were 

stored in separate spreadsheets. After finishing the database generation procedure, each 

spreadsheet was converted to comma-separated values (CSV). 

Development of Surrogate Models 

In the experimental design of the current study, development of surrogate models played a 

central role since they served two crucial purposes: (1) First, they were employed as the 

objective functions for the subsequent optimization process. Since they established the causal 

relationship among input and output variables, the current work utilized these relationships 

towards concurrent evaluation of the performance metrics. (2) Second, they functioned as the 

performance metric predictor of the static shading devices on considered date/hour of the 

year to facilitate comparative results with the performance results obtained for RKSD. 

Feed-forward Artificial Neural Networks (FAAN) was used for development of surrogate 

models. In feedforward neural networks, a connection is allowed only from a node in a layer 

to nodes in the next forward layer. Multi-layer feedforward networks are very popular and 

long-established structures of artificial neural networks, which have been used in many 

applications such as forecasting and function approximation [20]. This class of neural 

networks is identified by presence of hidden layers between the input and output of the 

network. Hidden layer contains hidden neurons, which are not directly seen from either input 

or output [21]. The models that were prepared for the study are in the class of multilayer 

perceptron (MLP), since they have one hidden layer, other than just having an input and 

output layer. According to the extensive review conducted by Zhang, Patuwo, and Hu [20] 

ANNs with a single hidden layer are sufficient to approximate any complex non-linear 

function at any degree of accuracy. Therefore, number of hidden layers was not a parameter 



to search for in the model selection process that was conducted for finding best performing 

network models and avoiding over-training of the networks.  

Prior to generating MLPs, three model selection operations were executed for each 

performance metrics to determine the network architectures. For network architectures that 

would be used for RKSD models, a dataset from a random hour was selected for testing 

network model, other than performing it to all the 50 datasets. The network architecture that 

outperformed remainders for the selected hour were then used for 49 remainder hours for 

RKSD. For annually optimized static shading, this was not an issue because the network 

models used one dataset for annual performance. 

For cross validation, Monte Carlo technique was implemented for both model selection and 

neural network training processes. Using Monte-Carlo, the randomly generated data sample 

was split into two random sub-samples by a factor of 0.1. That is, 450 random observations 

(corresponds to 0.9) in the datasets were used for neural network training purposes. To assess 

predictive ability of trained network on the unseen data, remaining 50 observations, namely 

test sample was used. This process was then iterated 10 times, generating new training and 

test partitions at random each time. The performance evaluation criteria for cross-validation 

is root mean square error (RMSE)1 which is subject to minimization.  

Once the network architectures and number of iterations were determined for the models, the 

networks were trained using the data that contain simulation-derived observations. MLPs 

were trained by Resilient Back-Propagation (RProp) algorithm. RProp is a fast learning 

algorithm for MLPs that performs local adaptation of the weight-updates due to the act of the 

error function. Detailed information on training algorithm used in the current study can be 

found elsewhere [22]. Developed by Chatzikonstantinou [23], CIDEA, a Computational 

Intelligence Decision-Support Environment for Architectural and Building Design was used 

to conduct the tasks of surrogate model development and multi-objective optimization.  

Multi-Objective Optimization – Objective functions 

HypE algorithm was employed for deriving optimal solutions with respect to |∆𝑇𝑇|,  |∆𝑙𝑙𝑙𝑙𝑙𝑙|, 

and 𝑉𝑉𝑉𝑉𝑉𝑉𝑤𝑤 . Bader, et. al. [24] proposed HypE as an evolutionary multi-objective optimization 

algorithm that is based on quality measure of hypervolume indicator. In their study, they 

                                                 
1 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �1

𝑛𝑛
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦𝚤𝚤�)2𝑛𝑛
𝑖𝑖=1  . 



compared the algorithm with other evolutionary optimization algorithms such as NSGA-II, 

SPEA2 and so on. Their results showed that HypE outperformed all the others, in multi-

objective optimization problems with a dimension more than two. Therefore, HypE 

algorithm seems adequate for three-dimensional optimization problem that was formulated 

for the study of exterior shading devices. 

According to the problem formulation, while |∆𝑇𝑇| and |∆𝑙𝑙𝑙𝑙𝑙𝑙| objectives were minimized, 

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 was maximized. This formed an obvious conflicting situation. In the optimization 

phase, HypE algorithm was referenced to the neural networks for each objective function. 

The current work used the default settings for optimization to generate 100 generations each 

having 100 populations, whereas hypervolume samples and mutation probability was set as 

5000, and 0.1, respectively. Surrogate-based optimization method was implemented for both 

types of conceptual shading devices to reach the best performing design alternatives. For 

RKSD 50 optimization operations were run for each randomly sampled daylight hours. For 

the static shading, only one optimization operation was performed to find best performing 

alternatives on an annual basis. At the end of the process, we extracted 100th generation from 

each of the 51 optimization processes in total, for further operations. 

Test of Hypotheses 

The current work hypothesized that responsive-kinetic shading device would outperform 

optimized-static selected performance criteria. Accordingly following alternative hypotheses 

were tested:  

• 𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎,1 = �∆𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟� − |∆𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠| ≤ 0 

• 𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎,2 = �∆𝑙𝑙𝑙𝑙𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟� − |∆𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠| ≤ 0 

• 𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎,3 = 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑖𝑖𝑖𝑖 ≥ 0 

The design of experiment dictates to compare the means of one sample having different 

interventions whereas the data is in continuous domain. The same set of items was measured 

under two different interventions, namely responsive-kinetic and optimized-static. Therefore, 

Paired-T Test is the adequate statistics to conduct formal test of hypothesis. 

RESULTS AND DISCUSSION  

Upon successful implementation of the experimental design, exhaustively explained in the 

previous section, the current work obtained 50 sets of optimized decision variables for 50 



randomly selected daylight hours for the responsive shading and one set of optimized 

decision variables for the static shading. Each of the 51 data sets is consisted of 100 optimized 

design alternatives.  

Prior to implementing surrogate-based optimization, several pilot studies were conducted by 

using simulation-based optimization method of RKSD on arbitrarily selected daylight hours. 

The main intent of these studies was to verify the design of experiment as well as to calculate 

necessary duration of reaching near optimum solutions when using simulation-based 

technique. In pilot studies, near-optimum solutions for just a single hour in a year emerged 

only after a process that lasted for more than 60 hours. That is, when an architect chose to 

implement traditional simulation-based optimization technique towards performance 

evaluation of RKSD on, say, 50 selected hours of a year, he/she requires approximately 125 

days to achieve the task. On the other hand, utilizing surrogate models reduced the 

computational costs, significantly. The investigation of the performance for the RKSD, on 

50 randomly sampled daylight hours lasted for about 90 hours in total; whereas the computer 

conducted most of the process in an automated fashion. 

Three hypotheses were considered within the content of the current study. In each, it was 

assumed that the responsive-kinetic shading type would outperform the optimized static one. 

However, the results of Paired-T Tests significantly demonstrated that, while 𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎,2  and 

𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎,3 cannot be rejected, 𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎,1 can be rejected. This implies, while responsive kinetic 

shading outperformed optimized static with respect to daylight intensity and view to outside, 

there was no significant difference in the comparison of the impacts of the two types of 

shadings on indoor air temperature. 

The first objective function was minimization of |∆𝑇𝑇|. Therefore, we expected lower |∆𝑇𝑇| 

values for responsive-kinetic shading type. However, the results suggest there is not enough 

evidence to conclude that the mean of responsive-kinetic shading is less than static shading 

at the 0.05 level of significance. We found out that the mean of �∆𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟� is 16.77 °C, 

while the mean of |∆𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠| is 16.60 °C. In an indoor space with a solely southern-exposure 

to the sun in Izmir climate, responsive-shading devices may not contribute to thermal comfort 

and energy efficiency better than an optimized static shading device. To further underline, 

the study considered other objective functions in the optimization problem, simultaneously. 

The function of view to outside maximization might have influenced this result, since it is an 



obviously conflicting objective in most of the weather conditions. Figure 3 illustrates paired 

comparison of mean |∆𝑇𝑇| on randomly selected hours.  

 

Figure 3. Comparison of mean |∆𝑇𝑇| between static and RKSD  

The second performance objective function was minimization of |∆𝑙𝑙𝑙𝑙𝑙𝑙|. As in the first 

objective, the current work aimed at minimizing |∆𝑙𝑙𝑙𝑙𝑙𝑙| to make the average daylight 

intensity as close to 500 lux as possible. In the comparison test for |∆𝑙𝑙𝑙𝑙𝑙𝑙| objective, the 

findings of the current study suggest that the RKSD performs significantly better than 

optimized the static shading at the 0.05 level of significance. The results revealed that the 

mean of �∆𝑙𝑙𝑙𝑙𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟� is 420 lux, while the mean of |∆𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠| is 1277 lux. The daylight 

performance of responsive-kinetic shading is almost three times better than the optimized 

static shading according to the findings. However, it must be noticed that five of the paired 

differences were unusual, that is the difference between the pair is much more than the trend 

(see Figure 4).  This situation contributed to the increase in the total mean difference. 

Nonetheless, one can be 95 % confident that the true mean difference is less than 507 lux and 

90 % percent confident that it is between 507 and 1206 lux.  

The final objective function for the performance evaluation was percentage of view to outside 

(𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉). Maximization was intended for this function, therefore higher values of 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 is 

desired. The findings suggest that the mean of 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 and 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is 64.2 and 



48.4, respectively. As reported in the results, we can conclude that the mean of responsive-

kinetic shading is significantly greater than the mean of optimized static shading at the 0.05 

level of significance. We can be 95% confident that true mean difference is greater than 12.7, 

and 90% confident that it is between 12.7 and 18.7. Table 5 illustrates paired comparison of 

View objective.  

 

Figure 4. Comparison of mean |∆𝑙𝑙𝑙𝑙𝑙𝑙| between static and RKSD 

 

Figure 5. Comparison of mean 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 between static and RKSD 



The reason for these results may be related with the formulation of the experiment. The 

controlled experiment was designed for the investigation of sole impact of sunlight on the 

interior environment. The solar beams have two diverse but related aspects, namely thermal 

and daylight. Heat energy cannot reflect but radiate. Both shading devices intercepted the 

heat energy of solar beams on the outside in a similar manner. However, daylight aspect of 

solar beams was managed much better by responsive kinetic shading type. Performance 

objective about view in the design problem statement, which is not a dynamic measure that 

conflicts with the other objectives, might have contributed to this situation. 

CONCLUSION 

The current work established a novel framework for adequately exploring design alternatives 

and optimizing performance of control parameters of responsive-kinetic shading devices with 

respect to objectives of |∆𝑇𝑇|, |∆𝑙𝑙𝑙𝑙𝑙𝑙|, 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉. The urge for developing such framework was 

motived by the absence of an adequate and efficient method for exploring and evaluating the 

performance of RKSD. In addition, literature has not addressed the task with consideration 

of thermal, daylight and view objectives simultaneously, up to now. Findings suggest one 

can achieve significant reduction in computational time compared to simulation-based 

methods using proposed framework. A surprising outcome was the optimized static shading 

slightly outperformed the responsive-kinetic one in the objective of |∆𝑇𝑇|. Considering the 

objectives of |∆𝑙𝑙𝑙𝑙𝑙𝑙| and 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉, however, empirical evidences suggested that RKSD 

significantly outperformed the optimized-static shading.  

In the future works, the relationships between weather conditions, design variables and 

performance objectives should further be examined. Certain weather parameters, such as 

global illuminance, global radiation, are required to be extracted from the weather file and 

match with the design and response parameters, to picture the relationships between them.  
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