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ABSTRACT: Massive Open Online Courses (MOOCs) have shown rapid development in recent years, allowing learners 

to access high-quality digital material. Because of facilitated learning and the flexibility of the teaching environment, the 

number of participants is rapidly growing. However, extensive research reports that the high attrition rate and low 

completion rate are major concerns. In this paper, the early identification of students who are at risk of withdrew and failure 

is provided. Therefore, two models are constructed namely at-risk student model and learning achievement model. The 

models have the potential to detect the students who are in danger of failing and withdrawal at the early stage of the 

online course. The result reveals that all classifiers gain good accuracy across both models, the highest performance yield by 

GBM with the value of 0.894, 0.952 for first, second model respectively, while RF yield the value of 0.866, in at-risk student 

framework achieved the lowest accuracy. The proposed frameworks can be used to assist instructors in delivering intensive 

intervention support to at-risk students. 

 

 

 

INDEX TERMS Machine Learning; Massive Open Online Courses; Receiver Operator Characteristics; 

Area Under Curve. 

 

I. INTRODUCTION 

The use of Information Communication Technology (ICT) 

has become widespread and plays a vital role in education. 

ICT has contributed to the support of the academic 

curriculum and allows for the creation of a virtual classroom. 

ICT could improve student outcomes and enables instructors 

to aid students in solving exercises. Therefore, high-quality 

teaching could be delivered through virtual learning [1]. 

The recent boom in ICT has led to an increase in the 

growth of Massive Open Online Courses (MOOCs) in higher 

education. MOOCs provide a variety of multimedia tools to 

deliver an interactive learning environment. MOOCs offer 

valuable digital learning resources, allowing students to 

access information from all over the world  [2]. 

Due to the breakdown of financial and geographical 

obstacles associated with the traditional teaching approach, 

a number of the top-ranked universities adopted online 

courses as an alternative to traditional learning. With the 

rapid growth of online courses in higher education, low 

completion rates is a major issue related to MOOCs [3]. 

Identifying at-risk students is one of the strategies, which 

can be used to improve completion rates. Detecting at-risk 

students in a timely manner could help educators deliver 

instructional interventions and improve the structure of 

courses [4]. With a timely intervention solution, instructors 

can provide real-time feedback to students, and retention 

rates could be improved [5]. 

To build an accurate at-risk student prediction model, 

researchers investigated the reasons behind course 

withdrawal.This has been attributed to a number of 

factors.The main reason for students dropping out of online 

courses is the lack of motivation [6]. Researchers suggested 

that students’ motivational levels in online courses either 

decrease or increase according to social, cognitive and 

mailto:a.hussain@ljmu.ac.uk


 

2                                                                                                                                                                                                                                                                         VOLUME XX, 2018 
 
 

environmental factors [7]. The motivational trajectory is an 

important indicator of student dropout. Motivational 

trajectories can be measured by exploring changes in learner 

behaviour across courses [7]. Until now, most researchers did 

not pay attention in examining the association between 

motivational trajectories, student learning achievement and at-

risk students in the online setting. 

Predicting student retention in MOOCs can provide 

valuable information to help educators to early recognise at-

risk students. Although a number of works were reported in 

the literature proposing robust learning frameworks for online 

courses, it is still challenging to achieve high prediction 

accuracy of student performance in the long term over 

multiple datasets [8], [9]. 

Two case studies  are conducted in this research. The first 

study proposes a novel dropout predictive model, which is 

capable of delivering timely intervention support for at-risk 

students. Machine learning is employed to detect potential 

patterns of learner attrition from course activities and through 

analysing learner historical behaviour.Student engagement, in 

conjunction with motivational status in previous courses, were 

examined to evaluate their effect on students persisting with 

participation in the present course. In the second case study, a 

student performance prediction model is proposed.The model 

offers new insight into the key factors of learning activities and 

can support educators in the monitoring of student 

performance. Machine learning is utilized to track student 

performance and provide valuable information to educator to 

subsequent the courses according to their learning 

achievement. In addition ,it could help academic advisors to 

detect student low academic achievement and offer support for 

them 

The remainder of this paper is organized as follows. Section 

II provides an overview of state-of-the-art research in the field. 

The methodology of the proposed approach is presented in 

section III, including dataset description, techniques and 

simulation results. The conclusions of this work and avenues 

for future research are described in Section IV. 

II. LITERATURE REVIEW 

Student withdrawal and learning achievements are a major 

concern in MOOCs. In this section, we provide a review of the 

state-of-the-art researches in the detection of at-risk students 

with respect to dropout and failure. 

Feedforward neural networks were implemented in [10] to 

detect at-risk students in MOOCs, using student sentiments 

and clickstream as baseline features. The data was collected 

from 3 million student click logs in addition to 5,000 forum 

posts via the Coursera platform in 2014. Dealing with an 

imbalanced dataset was one of the main concerns in this study. 

This was overcome by employing Cohen's Kappa criteria 

instead of accuracy. The results demonstrated an accuracy of 

74%, when both sets of features were employed. This reduced 

to 70%, when sentiment features were excluded. 

In [11], at-risk students were identified by applying various 

machine learning algorithms, including regularized logistic 

regression, support vector machines, random forest, decision 

tree and Naïve Bayes. A set of features were captured from 

behavioural log data, including the number of times students 

visited the home page and the length of the session. The results 

illustrated that regularized logistic regression models achieved 

the highest AUC. 

The ConRec Network model, a type of deep neural network, 

was proposed in [12]. In this work, Convolutional Neural 

Networks (CNN) were combined with Recurrent Neural 

Networks (RNN) to predict whether students are at risk of 

withdrawal from the online course “XuetangX” in the next ten 

days. Student records were structured according to a sequence 

of time-stamps and contained various attributes such as event 

time, event type and student enrolment date. The hybrid neural 

network model consists of two parts, namely, the lower and 

upper parts. In the lower part, the hidden layer of CNN was 

utilized to extract features automatically. In the upper part, 

RNN was used to make a prediction by aggregating and 

combining the extracted features at each time. The model was 

compared with various baseline methods. The results 

indicated similar performance across all models. The F1-score 

results were reported in the range of 90.74-92.48. Although 

there was similarity in performance, the authors argued that 

the ConRec Network model is more efficient than baseline 

methods, as it has the ability to extract the features 

automatically from student records without the need of feature 

engineering [12]. 

A number of features have been considered by researchers to 

identify the level of student learner achievement  in the online 

setting, such as how long students interact with digital 

resources when students submitted assessments and the total 

number of attempts undertaken, educational level, 

geographical location  and gender. In [13],  Genetic 

Algorithms (GA) were used to optimize the feature set. The 

findings indicated that high ranked features are related to 

behavioural attributes instead of demographic features. Four 

classifiers were considered to predict student performance, 

namely decision tree, neural network, Naïve Bayes and k-

nearest neighbour. Simulation results indicated that accuracy 

was improved by 12% when using the GA-optimized feature 

set. Using the decision tree with the complete feature set led to 

an accuracy of 83.87%, while when the GA-optimized feature 

set was used, accuracy jumped to 94.09% [13]. Hidden 

Markov models were used to measure how latent variables in 

conjunction with observed variables could impact student 

performance in virtual learning environments. A two-layer 

hidden Markov model (TL-HMM) was proposed in[8] to infer 

latent student behavioural patterns. TL-HMM differs from 

conventional HMM in its capacity to discover the micro-

behavioural patterns of students in more detail and detect 

transition between latent states. For instance, when students 

undertake quizzes, they would tend to participate in forum 

discussions. The model can also learn specific transitions 
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between quiz assessment date and submission date. The 

research concluded that high performing students have fewer 

latent behavioural states since they have sufficient knowledge, 

and thus, they do not need further support [8]. 

 

TABLE 1 

 Overview of previous research in the identification of at-

risk students in MOOCs 

Author Year Features Results  

 Minaei-Bidgoli  

 et al.,[13] 

 2003 Click stream 

features 

GAimproved by 12% for  

All classifiers. 

 Chaplot et al., [10]  2015 Sentiments  

, click stream 

features 

Neural network attain 

 higher performance , 

when using sentiment  

features. 

 He et al., [11]   2015  Click stream 

features 

Regularized logistic regression 

acquired the 

 best AUC. 

Geigle et al., [8] 2017 Behavioural 

attributes 
 TL-HMM is able to    

infer latent behavioural patterns 

Wanli et al., [12] 2018 Behavioural 

attributes 
Deep learning is 

 able to extract features   automatically. 

 

 

 
III. RESEARCH METHODOLOGY  

A. Data Description  

Two datasets are utilised in our experiments. The first set is 

obtained from Harvard University and Massachusetts Institute 

of Technology online courses, while the second set is related 

to Open University online courses.   

Harvard University collaborated with Massachusetts Institute 

of Technology (MIT) in developing online courses. The 

primary attribute of the Harvard dataset is the clickstream, 

which represents the number of events that correspond to user 

interaction with courseware. Qualifying events include 

clicking on a chapter or on forum posts and accessing the 

home page of videos. The user must register on each course 

before the actual enrolment date [14]. To complete the 

registration process, the user must click on five web pages. 

The “Nchapters” feature is the number of chapters that 

learners are required to read. ”Nplay_video” represents the 

number of events during which the learner viewed a particular 

video. The “Explored” feature is a binary discretisation of 

exploratory learners. To be classified as an explorer, a learner 

must have accessed more than half of the course contents. The 

“Viewed” feature is also a binary feature, which is set to 1 

when a student accessed the home page of assignments and 

related videos [15]. 

The date of learner registration for a specific course is 

recorded in the dataset in addition to the date of the learners’ 

last interaction with the courseware. The “LoE_DI” feature 

is a demographic feature, which represents the learners’ 

educational level. “age “and “gender” are other types of 

demographic features, which are also recorded [15]. The 

assignment grade is an indicator attribute that represents the 

failure/success rate of participants. Table 2 provides a brief 

overview of the Harvard dataset. 

 

TABLE 2 

Harvard Dataset Overview 

Features Type Description 

User-Id Demographic    Learner identification number 

YOB Demographic    Learner date of birth 

Gender Demographic    Learner gender 

LOE Demographic    Learner educational level 

final_cc_cname_DI Demographic    Learner continent area  

Start_time_DI Temporal  First date of learner activity  

last_event_DI Temporal Last date of learner activity  

ndays_act Temporal Number of unique days that the 

learner interacted with the course  

Nevent Behavioural Number of click stream events 

nplay_video   Behavioural Number of videos viewed by 

learner 

Nchapters Behavioural Number of chapters read by learner 

nforum_post Behavioural Number of forum postings by 

learner 

Viewed Behavioural user access to home page of 

quizzes  

Explored Behavioural user access to home page of 

chapters  

 

The second database in this study was obtained from the 

Open University in the UK [16]. The Open University delivers 

various online courses for undergraduate and postgraduate 

students. During 2013-2014, the Open University released a 

dashboard known as the Open University Learning Analytics 

Dataset (OULAD) Demographic, behavioural and temporal 

features are captured in this dataset. It includes a set of tables 

related to student performance, student personal information, 

in addition to student interaction features with online courses. 

The student can interact with various types of digital material, 

such as PDF files, access to the home and sub-pages, and 

taking part in quizzes [16]. There are two types of assessments, 

namely, the Tutor Marked Assessment (TMA) and the 

Computer Marked Assessment (CMA). The final average 

grade is computed as the weighted sum of all assessments 

(50%) and final exams (50%). The “Student Assessment” 

table involves information related to student assessment 

results, such as the date of the submitted assessment and the 

assessment mark. The assessments are mandatory in the 

dataset. Therefore, students are required to undertake 

assessments (including a final exam), if they want to remain 

in the course. A student will succeed in the course if s/he 

gains an overall grade greater than 40% [16]. Table 3 

provides a brief overview of the OULAD dataset. 
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The  learners Virtual Learning Environment (VLE) data 

were collected  on  a daily basis, and feature extraction was 

applied. The extracted VLE features rely on clickstream 

features. The OULAD dataset contains eleven VLE activity 

types. For each student, we aggregated   the number of clicks 

that students interacted per activity, since the first time they 

engaged in the course till the last day they quit the course. 

Twenty-two features are extracted from the VLE similarly to 

previous work [17]. Table 3 provides an overview of the 

OULAD dataset. 

 

 
TABLE 3 

OULAD Dataset Overview 

 

 

B. Course Description 

 In terms of the Harvard dataset, four courses are selected for 

analysis in this study, namely, “Introduction to Computer 

Science”, “Circuits and Electronics”, “Health in Numbers: 

Quantitative Methods in Clinical & Public Health Research” 

and “Human Health and Global Environmental Change”. 

The “Introduction to Computer Science” course focuses 

on teaching students the use of computation in task solving 

[18]. The “Circuits and Electronics” course is an introduction 

to lumped circuit abstraction. The course was designed to 

serve undergraduate students at the Massachusetts Institute 

of Technology and is available online to learners worldwide 

[19].  

 “Health in Numbers: Quantitative Methods in Clinical & 

Public Health Research” is a health research course that was 

designed to teach students the use of quantitative methods in 

monitoring of patients’ health records. In the “Human Health 

and Global Environmental Change” course, students learn to 

investigate how changes in the global environment could 

affect the health of individuals. The reason why these 

particular four courses were selected is that they were the 

only courses providing temporal information [20].  

With regards to the OULAD dataset, the only available 

VLE data pertained to the “Social Science” course, which 

was launched in two semesters during the academic year 

2013-2014 [16]. The courses acronyms are shown in Table 4 

. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
C. At-Risk Student Framework  

In previous work [21], Learning Analytics (LA) tools were 

utilized to characterize the students’ motivational status 

based on Incentive Motivation Theory (IM). According to 

this theory, learners are classified into three categories, 

namely, amotivation, extrinsic, and intrinsic. Student 

motivation changes over time across multiple courses and 

could affect a student’s decision to quit the course. 

Since students in the  OULAD courses are required to 

participate in assessments, intrinsically motivated  and 

amotivatied students cannot be evaluated for this dataset 

[22].Therefore, the at-risk student detection framework is 

only considered with the Harvard dataset, as the aim is to 

assess how motivation trajectories could impact at-risk 

students. 

Learning trajectories can facilitate online course analysis 

by tracing student activities over time. In this study, LA  is 

utilized in the tracking of learning trajectories across 

multiple courses. Figure 1 illustrates the at-risk student 

framework.  

 

We propose an algorithm (Algorithm 1) to identify at-risk 

students in online courses, based on the course trajectories 

concept. Two intervals are defined in our algorithm (T1, T2). 

In T1, the learners who engaged only in fall course  are selected 

Features      Description 

id_student Learner identification number 

age_band Learner age 

Gender Learner gender 

highest_education Learner educational level 

Region Learner geographic area  

studied_credits The number of credits for the module 

that the learner is currently involved 

disability Indicator of student disability 

num_of_prev_attempt Number of times that student undertook 

the course 

imd_band Socio-economic indicator measure of 

student economic level 

leaerning activity  The type and number of daily activities 

that the student undertakes  

grades The student’s assessment  marks  

date_registration The date of learner registration  in the 

course   

date_unregistration The date that the learner quit the course 

TABLE 4 

COURSE ACRONYM 
Course Course Acronym 

Circuits and   Electronics Fall Electronics Fall 

Circuits and  Electronics Spring Electronics Spring 

Introduction to Computer Science and 
Programming Fall 

Computer  Science 
Fall 

Introduction to Computer Science and 

Programming Spring 

Computer  Science 

Spring 
Health in Numbers: Quantitative 

Methods in Clinical & Public Health 

Research 

Health Fall 

Human Health and Global 

Environmental Change 

Health Spring 

 

 
Social Science First Semester  Social Science Fall 

Social Science Second  Semester Social Science 

Spring 
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while the learners who participated in both falls and spring 

semester courses are considered in T2. 

As suggested in [21], three categories of learners are 

defined, i.e., intrinsic (RL), extrinsic (CLsc, CLsn), and 

amotivation (Al). The assignment cutoff grade (40%) was 

employed for distinguishing between failing and successful 

extrinsic learners. Students who withdrew from a course 

within a period of seven days are considered amotivation 

students. If a student’s motivational status is amotivation 

during the spring semester courses, then the student can be 

defined as withdrawn. The algorithm makes a significant 

contribution by detecting patterns in student motivation 

trajectories. Using this approach, the proposed algorithm can 

facilitate course instructors in providing timely interventions 

to assist at-risk students. 

It has been suggested that low student performance and 

learning achievement outcomes are important factors for 

students withdrawal from online courses [23]. However, in the 

current case study, students are defined as at risk if they 

withdraw from spring courses within the period of one week. 

This is because it is not possible to perform a reliable 

evaluation of student learning in such a short period. 

Although intrinsically motivated students can attain 

learning outcomes within one week, in the Harvard dataset, it 

is not possible to measure student performance for such 

students, since relevant information, e.g., student feedback is 

not captured [24]. A data-driven approach should be 

considered when investigating the most critical factors which 

impact on student learning outcomes. To examine how such 

factors influence students who are at risk of failure, a student 

learning achievement model is proposed. 

 

Let Ri V represent the ith student record, given as: 

Ri = < si, gi, di, ei, ci, li, wi > 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
D. Learning Achievement Framework 

Learning achievement is considered a vital indicator of the 

effectiveness of the MOOCs platform [23]. A student 

performance predictive model is proposed to predict whether 

students will pass or fail in online courses. The framework 

aims to measure poor student performance and investigate the 

impact of learning activities that influence student decisions to 

complete a future course. This will assist instructors in 

drawing inferences about student performance and will offer 

deeper insights into the learning process. Additionally, it could 

 Algorithm 1 At-Risk Students  

 

1:       Let 𝑐𝑖, ∈ 𝐶𝑝, where 𝐶𝑝is a set of courses 

2: Let t ∈ T where T is a set of intervals T={ 𝑇1, 𝑇2} 

3: Let 𝑠𝑖, ∈ 𝑆𝑣, where 𝑆𝑣, is a set of students who enrol 

(𝑐𝑖)𝑇1  ∧ (𝑐𝑖)𝑇2 4: 

 

 

 

Let 𝑑𝑖, ∈ 𝐷𝑚,where 𝐷𝑚, is a set of  student  motivation 

status where  m ∈ { 𝑅𝐿, 𝐴𝑙, 𝐶𝐿𝑠𝑐 } 

𝑅𝑖 ∈ 𝑅𝐿 ↔ 𝑔𝑖 = 0 ;  𝑙𝑖 < 𝑑𝑖 ,  𝑤𝑖  < 𝑒𝑖 
𝑅𝑖 ∈ 𝐴𝑙 ↔ 𝑔𝑖 = 0 ;  𝑒𝑖 − 𝑑𝑖 < 8 

𝑅𝑖 ∈ 𝐶𝐿𝑠𝑐 ↔ 𝑔𝑖 ≥ 40 ;  𝑑𝑖 ≤ 𝑙𝑖 
    𝑅𝑖 ∈ 𝐶𝐿𝑠𝑛 ↔ 0 < 𝑔𝑖 < 40;  𝑑𝑖 ≤ 𝑙𝑖  

5:     ∀𝑦𝑖 ∈ 𝑆𝑣,:  if  𝑑𝑖, at T2 ∈ Al 
 
 

                        Then 

                     𝑦𝑖=” withdrawal Student” 

                        Else 

                     𝑦𝑖=” non-withdrawal Student ” 

     Where si - Identity of the student for the ith record 

 gi - Grade of the ith student record 

 di -     Start date of associated student interaction with 

course 

 ei - End date of associated student interaction with 

course 

 ci -     Identity of the course associated with the ith entry 

 li -     Launch date of the course referred to by ci 

 wi -    Wrap date of the certification issued by ci 

 

 
 
Figure 1. At-risk student framework 
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support instructors in racking student progress for each tier of 

learning. Hence, effective teaching can be delivered. 

LA is utilized  to examine the factors that affect student 

learning achievement using the two datasets.  With LA, 

decision-makers would be able to acquire a more in-depth 

insight into the ground truth behind learner success and failure 

within MOOCs platforms across various courses [23].  

The key challenge in building a learning achievement 

model over two datasets is how to reshape the features. The 

structure of the Harvard and OULAD courses is similar to 

traditional courses, where the syllabus consists of a set of 

video lectures, pdf files and a set of multiple choice quizzes, 

in addition to the final exam. However, they are different with 

respect to data representation [24][16]. 

The Harvard dataset does not provide a granular record 

structure for student activity over time. Instead, summary 

values are provided, which incorporate totals, with the 

intermediate structure discarded. On the other hand, daily 

learning activities are collected in the  OULAD dataset. 

Clickstreams information is employed to acquire a common 

set of attributes across the two datasets. Specifically, the daily 

VLE activities are used to construct summative behavioural 

features across the OULAD dataset. Only four activities are 

considered, i.e., “nforum”, “resource”, “quiz” and “videos”. 

Next, the extracted features are aggregated with OULAD 

behavioural features these 

are”nfroum_posts”,“Nchapters”,”Viewed”and  “nplay_vedio” 

Thus, similar behavioural  attributes can be extracted from the  

two  datasets. 

With regards to temporal features, the number of days that 

learners interact with the OULAD online courses is extracted 

by computing the difference between the dates of  student 

registration and deregistration from MOOCs. The same 

feature extraction process is performed in the Harvard dataset. 

Due to the weak association between learning outcomes and 

demographic features [25], demographic characteristics are 

excluded in this analysis. Figure 2 illustrates the Learning 

Achievement framework.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

Figure 2. The proposed Learning Achievement framework. 

 
E. Data Pre-Processing  

The first step in pre-processing is cleaning the data by 

detecting the occurrence  of missing values. Several 

variables in the Harvard dataset have null values; examples 

of these include “Nevent”, “nplay_video”, “Nchapters”, 

“nforum_post”, “YOB”, “Gender” and “LoE_DI” attributes. 

The data is cleaned by removing missing values and others. 

In addition, student records with duplicated rows are also 

removed. 

 The Harvard dataset is non-normally distributed. In order 

to address this problem, transformation methods were 

applied. The BOX_COST transformation [26] was used to 
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transform the data distribution into normal. As seen in Table 

5, the Box-Cox method transformed ten features with 

skewed distributions. The scaling and centring transforms 

were also applied , and results show that all features are 

centred to a mean value of 0 and scaled to a standard 

deviation of 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Data Pre-Processing is applied to the extracted 

behavioural features and demographic variables of the 

OULAD dataset, with the aim to achieve the best 

performance. The first step in pre-processing the data is to 

investigate highly correlated variables. We set a correlation 

cut off value of 0.8, i.e., if the correlation between two 

features is greater than 0.8, then these features are considered 

highly correlated. Highly correlated features are removed 

from the model, given that the problem of feature 

redundancy could be solved. Moreover, the occurrence of 

over-fitting may also be reduced. The zero and near-zero 

variance predictors are also investigated in this database; the 

features with the same values that appear frequently become 

zero variance predictors when the data is split into training 

and test. These features, which have a “near-zero-variance” 

are diagnosed and eliminated during the pre-processing 

procedure. 

The Open University dataset is non-normally distributed; 

in order to address this problem, transformation methods are 

applied. Yeo-Johnson [27]is one of the data transformations 

methods and performs a similar function to the Box-Cox 

transformation, in which a continuous variable that has a raw 

value equal to zero is applied [27]. In our case, when a 

student did not participate in a particular  activity, the value 

of the extracted features become zero. To this end, Yeo-

Johnson is more useful than Box-Cox. 

F. Exploratory Data Analysis (EDA) 

Exploratory Data Analysis (EDA) is implemented in this 

study in order to gain insight into the learners’ motivational 

trajectories in conjunction with their dropout rate. EDA is an 

important step in machine learning, providing intuition about 

the structure and relationships within the dataset [28], [29].  

With regards  to the first case study, the objective of data 

visualization is to provide information and understanding of 

the type of motivational status at the first-time interval , 

which is more relevant to at-risk students.  

Figure 3 visualizes the correlation between motivational 

statues and at-risk students more intuitively. It shows that 

learners who are intrinsically and extrinsically motivated in 

the fall semester courses withdraw from the spring semester 

course within a week. Approximately 31% of amotivation 

students withdrew in the subsequent course, while the 

proportion of withdrawal students sharply increased for the 

intrinsically and extrinsically motivated. It is noticeable that 

84% and 77% of the intrinsically motivated and the 

extrinsically motivated students, respectively, dropped out in 

the spring course.   

Principal Component Analysis (PCA) is used in the 

OULAD dataset to reduce redundancy due to the presence of 

highly correlated across the extracted  features. This is only 

applied on the behavioural features as only learners activities  

are employed to track student performance[25]. To 

determine the number of principal components, the Kaiser 

method is used [30].The Kaiser approach is based on 𝜎2 to 

detect the number of optimal components, and retains 

components that have √𝜎 > 1[31]. Figure 4 illustrates the 

PCA for  OULAD dataset, which exhibits low variance. The 

optimal number of principal components was found to be 

equal to 10 in this dataset. Figure 5 illustrates the results of 

the Kaiser method, which shows that nine components are 

selected as the optimal.  

 

 
 

 

 

 

 

 

 

 

 

 

 

Features Sample Skewness Estimated Lambda  

userid_DI 0.0135 0.70  0.1 
final_cc_cname_DI -0.569 1.2 

LoE_DI -0.163 0.7 

YoB -1.4 2 
start_time_DI -0.107 0.7 

last_event_DI 0.0376 0.7 

nevents 3.18 -0.1 

ndays_act 1.76 0 

nplay_video 6.21 0.1 

nchapters 1.07 -0.4 

 

 
Figure 3. Distribution of learners according to motivational status 

TABLE 5 

BOX-COX TRANSFORMATION HARVARD DATASET 
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 Figure 4. PCA for the OULAD Dataset 

 
   Figure 5. Selection of principal components with the Kaiser method 

for the OULAD dataset 

 

G. Dropout prediction model based on motivational 
status  

A temporal dropout predictive model was constructed that 

aims to examine the influence of motivational trajectories 

and engagement levels on the students’ decisions to 

withdraw from courses. A variety of machine learning 

models are used, including Random Forest (RF), 

Feedforward Neural Network with a single hidden layer 

(NNET1), Multi-Layer Perceptron (NNET2) with two 

hidden layers, Gradient Boosting Machine (GBM) and 

Generalized Linear Model (GLM).  

 

1) MODEL CONSTRUCTION AND VALIDATION 

The dropout prediction model contains 4,800 records for 

non-withdrawal students and 6,500 records for withdrawal 

students. Two sets of experiments based on different sets of 

features were conducted in this study. Behavioural features 

were considered at the first and second time intervals in the 

first set of experiments. In the second set of experiments, 

only high-ranking features were selected. The original 

dataset was split in half to be used as cross-validation .The 

cross-validation, allocate 30% for the training set and 20% 

for validation set . In this study, ten-fold cross-validation 

with five repetitions was considered. A further 50% of the 

data is used as an external test dataset to validate 

generalization errors for each model.  

We propose an algorithm for early detection of at-risk 

students in online courses. The algorithm can be used in a 

classification setting, where students are classified according 

to their learning trajectories. It overcomes the issue of feature 

redundancy. Thus, the algorithm can be applied in a high 

dimensional dataset to enhance the efficiency and 

effectiveness of the predictive model. 

The chi-square test is utilised to evaluate high-ranking 

features. If the chi-square test value is lower than a critical 

value (i.e., 0.05 ) then the null hypothesis is accepted, and 

the  feature is considered as important; otherwise, the null 

hypothesis is rejected, and the feature is discarded. Five 

linear and nonlinear classifiers are employed to detect at-risk 

students in online courses. Two sets of features are trained 

and tested for each classifier. The performance of classifiers 

is also evaluated in the proposed framework.   

 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 2 At-Risk Student prediction algorithm  

Input: S  is a set of n samples where S={ (𝑍1,𝑦1)}), . . (𝑍𝑛,𝑦𝑛)} 
Z is a set of m-dimensional behavioral features where Zi= 
{𝑧𝑖1,𝑧𝑖2,….𝑧𝑖𝑚,}   

Y is a set of target values Y = {y1, ……yn} 
 Let H be a set of selected features 

 Max-iteration is the maximum number of iterations 

Output:  Let 𝑌∧  is set of set of predicted values where 𝑌∧ =  

{𝑦1
Λ,… 𝑦𝑛

Λ} 

1: for i = 1 … Max-iteration,  do 

2:  for j=1…n ,do 

3:     Calculate  feature weights by using Eqn. 1  

  end for 

4:      If (𝜒𝑗
2 >0.05) then 

          𝑍𝑖 is not Important  
      else 
      𝑍𝑖 is Important H = H ∪   𝑍𝑖 
      end if  
end for 

5: 𝐿𝑒𝑡  ML is set of machine learning models where 
ML={ NNET2, RF, Rpart, Glm, Gbm, NNET1} 

6: Let P to be a set of performance matrix where P = { Acc, 

F1, Sens, Spec, AUC } 

7: Training1 = { tr ∈ S ⇒ tr ⋉ S} 

8: Training2 = { ta ∈ H ⇒ ta ⋉ S} 

9: Test1 = { ts ∈ S ⇒ ts ⋉ S & ts ∉ Training1} 

10: Test 2= { tn ∈ H ⇒ tn ⋉ S & tn ∉ Training2} 

11:   f𝐨𝐫 ∀ ML do  

12: Compute 𝑌∧ for first set of features  

13: E[P1] = { S: S ⇒ML(Training1, Test1)} 

14: Compute 𝑌∧ for second set of features  

15: E[P2] = { S: S ⇒ML(Training2, Test2)} 

 end for 
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 where χ
i
2  is Chi-square calculator tests . The  Niec is the 

observed frequencies of variables Zi in class c , and Εi𝑒𝑐 is 

the expected frequencies for the Zi . The test compares the 

observed values with the expected values and determines the   

most relevant features as defined in Eq.(1). 

𝜒𝑖
2  = ∑

   (𝑁𝑖𝑒𝑐 − Εi𝑒𝑐)2

Εi𝑒𝑐
𝑐 ∊{0,1}

 

 

   (1) 

 

H. Learning  Achievement Model  

To predict whether students are at risk of failing, it is 

important to determine the factors that impact student 

learning achievement. The training dataset consists of 5000 

records, which are randomly sampled from the Harvard and 

OULAD datasets. Only Fall courses are considered for 

training. The test data consists of 3000 data points, which are 

randomly captured from Spring courses. The Harvard and 

OULAD datasets are imbalanced, since 78% of the records 

refer to failing students (majority class), and 22%  of the data 

relate to students succeeding (minority class). Due to the 

class distribution, the model may be more sensitive in 

predicting the majority class, thus leading to the well-known 

bias problem [32]. 

To overcome this, the training data set should be re-

sampled. In this work, Synthetic Minority Over-Sampling 

(SMOTE) is applied. SMOTE equalizes the class 

proportions by generating additional minority class 

examples. In particular, SMOTE applies K-nearest 

neighbours to interpolate new instances of the minority class 

through an evaluation of its nearest neighbours, using a 

specific distance metric. Following the application of 

SMOTE, the balance between the two classes is considerably 

improved, with 57% of instances belonging to the majority 

class, while the remaining 42% belongs to the minority class.  

In order to evaluate the learning achievement model, 

several quality metrics are utilised, including sensitivity, F-

Measure, ROC, and AUC. Furthermore, ten-fold cross-

validation is used for classification analysis, with 70% and 

30% of the dataset selected for training and testing, 

respectively. This process is repeated 5 times.The evaluation 

of the predictive model is performed by using the training 

data with features and targets from courses that were 

completed and test data on the subsequent courses across the 

Harvard and OULAD datasets.  

 

I. Machine Learning Algorithms Utilized in the 
Experiments                                                                        

RANDOM FOREST 

The Random Forest model is an ensemble method that 

constructs multiple decision trees during the learning 

process, and each tree is generated using random sample 

vectors from the input features. The Random Forest method 

can be employed for classification and regression problems 

[33], [34]. In terms of classification, the Random Forest 

method uses the voting mechanism that selects the most 

popular classes to classify the target. In regression, the 

weighted averages of trees are used in prediction [35], [33]. 

The Random Forest training algorithm follows the 

bootstrap method, given that the training dataset consists of 

n samples and features. Specifically, each tree is constructed 

by randomly selecting samples with replacement. Next, trees 

are created by selecting the predictor variables that give the 

best split. The procedure is repeated multiple times, and the 

tree governs the growth without pruning until the stopping 

criteria is achieved [36], [37]. 

There are two approaches which can be used to choose 

features in the Random Forest method, namely, Mean 

Decrease Impurity (MDI) and Mean Decrease Accuracy 

(MDA). MDI is based on decreasing the weighted impurity 

in a tree. Multiple nodes are created, where each node 

corresponds to a single feature. The Gini impurity metric for 

classification should be computed for each node and 

averaged across all trees to calculate the weighted impurity 

of the tree. The best features are those with the lowest 

impurity weight [38]. 

MDA relies on the Out-of-bag (OOB) error concept. As 

previously mentioned, trees are constructed using bootstrap 

samples. Some of the observation excluded  from bootstrap 

samples and are not used in building trees [38]. The 

prediction error of left-out observations is called OOB error. 

To evaluate the importance of a particular feature, the value 

of this feature permutes into an OOB observation. The MDA 

for this feature is computed by the average difference of 

OOB prediction errors prior to and post permutation across 

all trees. Finally, feature importance is directly related to 

their MDA value [35], [38].    

 

   GENERALIZED LINEAR MODEL 

The generalized linear model is a statistical method, which 

assumes that observations follow a particular distribution, 

namely, Average, Binomial, Poisson and Gamma. In the 

generalized linear model, we assume {𝑋1,…𝑋𝑛} are 

observations with a dependent variable 𝜂𝑖, and each linear 

predictor 𝜂𝑖 is generated from a particular distribution. The 

simple generalized linear model can be described according 

to the following equation [39], [40]: 

                    𝜂𝑖= 𝛽0+ 𝛽1𝑋1+…𝛽𝑛𝑋𝑛 (2) 

where Xi are the predictor variables and βi are the 

associated coefficients. β0 is an intercept, which can be 

interpreted as the mean value of 𝜂𝑖, when all predictor 

variables are set to zero.  

  There are several link functions that can be used to fit the 

values of variables to a linear model, such as Identity, Log, 

Reciprocal, Logit and Probit [41]. The basic formula of the 

link function is defined as [42]: 
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 𝜂𝑖 = 𝑔(𝜇𝑖)  (3) 

𝜇𝑖=𝑔−1(𝑋𝑖𝛽𝑖)  (4) 

where 𝑔(𝜇𝑖) is the link function and 𝜂𝑖 is the linear predictor. 

In equations 3 and 4, the linear predictor 𝜂𝑖 equals the mean 

𝜇𝑖, which is the inverse of the expected value of the predictor 

variables, since the data follows an exponential family 

density.  

 

GRADIENT BOOSTING MACHINE 

Gradient boosting is a sequence of decision trees that adopt 

the ensemble technique used for classification and regression 

tasks. The trees are trained sequentially, where early shallow 

trees fit the sample model of the data. Subsequent trees try to 

minimize the errors of previous trees. As a consequence, the 

final prediction model is built in the form of boosting weak 

classifiers into a strong classifier [43], [44]. 

The mean square error is used  as a cost function in the 

Gradient boosting model. More specifically, this approach 

minimizes the expected values of loss for the function 

Ψ(𝑌, Ϝ(𝑋𝑖)), as follows [45],  [46]: 

 

Ϝ∗(𝑋𝑖)= arg minϜ(𝑋𝑖)𝐸𝑋,𝑌Ψ(𝑌, Ϝ(𝑋𝑖)) (5) 

Friedman (2002) developed the stochastic gradient 

boosting the algorithm, which incorporates randomness [45]. 

A random subsample of the training dataset is chosen 

without replacement, and then, it is used to fit the base 

learners in each iteration of the learning process. It was 

concluded that randomization significantly improves the 

performance of the predictive model [45].   

The main feature of stochastic gradient boosting is the 

ability to prevent overfitting in the dataset. Using a smaller 

subsample helps to reduce the variance of the combined trees 

over the iterations. Furthermore, the computational cost is 

smaller in stochastic gradient boosting than in gradient 

boosting [46], [47].  

 

NEURAL NETWORKS  

The simplest type of artificial neural networks is a single 

layer (perceptron) network, where the information transfers 

directly from the input layer to the output layer via the weight 

matrix. The activation function used in the single-layer 

perceptron network is a non-linear threshold function. The 

Delta rule is utilized for training the perceptron network. In 

the Delta rule, gradient descent is used to calculate the error 

between actual and predicted outputs, and the weights are 

adjusted so as to minimize the error [48], [49]. The activation 

function can be defined as follows: 

 

    𝑔(𝑥)={
1, 𝑖𝑓 𝑍 > 𝜃

−1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(6) 

     Z=𝑤1𝑥1 + ⋯ + 𝑤𝑚𝑥𝑚== ∑ 𝑤𝑚𝑥𝑚
𝑚
𝑗=1   (7)   

where 𝑥𝑖   are the input values and 𝑤𝑖  are the corresponding 

weights. Z is the network input based on the threshold (𝜃), 

and the neuron is active if the values of the network input are 

above the threshold. 
The multilayer perceptron (MLP) is a type of feed-forward 

neural network that is able to learn the features of linearly 

inseparable data. It consists of multi-layers of units. Usually, 

the MLP comprises of three layers, i.e., the input layer, the 

output layer and at least one hidden layer. Each node of a 

layer is fully connected to all nodes of the previous layer 

through a sequence of weighted edges [50], [51]. 

The MLP formally consists of a number of 𝐿 layers, where 

each layer has a number of nodes. The collection of N units 

in the input layer can be described as {(𝐿𝑖)}    𝑖=1
𝑁 . {(𝐿ℎ)}  ℎ=1

𝑀  

is the vector representing the complete set of M units in the 

hidden layer h. {(𝐿𝑜)}   𝑜=1
𝑈  is the vector representing the U 

neurons in the output layer o. In the case of a single hidden 

layer, the collection of weights can be represented by two 

matrices { 𝑊𝑖𝑗
1, 𝑊𝑘𝑗

2} The weight matrix which connects 

the input to the hidden layer can be represented as 𝑊𝑖𝑗
1, and 

the weight matrix that links the hidden to the output layer is 

𝑊𝑘𝑗
2. {(𝐵𝑖)} 𝑖=1

𝐿  is the column vector of biases for layer i .  

Assuming the training dataset as the pair of inputs and 

outputs {(𝑋1,𝑌1,), … (𝑋𝑛,𝑌𝑛,)}, the input vector 𝑋𝑖, is fed to the 

nodes of the input layer, and then multiplied by the weight 

values of 𝑊𝑖𝑗
1. Equation (8) shows the calculation of 

network inputs for unit j. The network inputs are then 

processed by the activation function f as follows [51]: 

                                         𝑢𝑗= ∑ 𝑊𝑖𝑗
1𝑛

𝑖=1 𝑋𝑖
𝑛+b   (8) 

          𝑑𝑗 = 𝑓(𝑢𝑗)   (9)      

A similar procedure takes places for the output layer. The 

outputs of the hidden layer are the inputs to the output layer. 

The weights 𝑊𝑘𝑗
2 are multiplied by the hidden layer outputs, 

before being fed to the transfer functions of the output 

neurons [51]. The weights of the MLP are adjusted using 

error-backpropagation [48], [49]. 

 

FEATURE SELECTION  

Feature selection has been used to reduce information 

redundancy and improve the generalization performance of 

the prediction model. In terms of machine learning, feature 

selection considers a subset of features by eliminating 

features, which are redundant or irrelevant to the task at hand 

[52].  

In the first case study, the filter approach [53], inspired by 

the chi-square test, is considered. The filter approach is 

independent of the type of classifier. Machine learning 

algorithms that rely on this method require less 

computational resources, which makes it attractive for use 

in large datasets. The behavioural numeric features are 

categorised into groups namely high,medium,low according 

population distribution.Table 6 illustrates the results of the 

chi-square test based on weight criteria. To find the most 

important features, we set a threshold of 0.30 according to 

[52]. When the weights of a feature are above the threshold, 
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it is considered as significant and highly correlated with the 

target. The results demonstrate that the target class is highly 

dependent on the behavioural features in the second time 

interval (t2). The “ndays_act” feature acquired the largest 

value of 0.42 for non-at-risk students and conversely has a 

weak correlation with student behavioural attributes at the 

first time interval (t1). A good relationship between student 

motivational statuses at the first time interval is observed for 

the target at-risk students, where a value of 0.38 is obtained. 

This significant result indicates that student interventional 

motivation can be used as a robust predictor to detect 

students, who may be at risk of dropping out in future 

courses. 

 
TABLE 6 

 FEATURE SELECTION RESULTS  

Features Weight 

YOB 0.12 

Gender 0. 18 

LOE_DI 0.09 

final_cc_cname_DI 0.11 

ndays_act/t1 0.26 

Nevent/t1 0.25 

nplay_video /t1 0.20 

Nchapters/t1 0.23 

nforum_post/t1 0.01 

Explored/t1 0.18 

motivational status/t1 0.38 

ndays_act/t2 0.42 

Nevent/t2 0.40 

nplay_video /t2 0.39 

Nchapters/t2 0.40 

nforum_post/t2 0.17 

Explored/t2 0.29 

 

J. simulation results- Dropout Prediction Model 

This section presents the simulation results for the Dropout 

prediction model. Student learning trajectories were tracked 

over fall and spring courses. The findings demonstrated that 

the motivational trajectory is an important factor that impacts 

on student completion in online courses. 

The hyperparameter tuning problem was considered for 

both the complete set of features (all  features, selected 

features)and the optimized sub-set in order to determine the 

optimal parameters for the learning algorithms in our 

investigations. Two methods were used to perform 

hyperparameter optimisation, namely, random search and 

grid search. The random search was applied to select the 

optimal number of trees and the number of samples at each 

split. Grid search was used to tune the number of hidden 

neurons and weight decay for the NNET1 and NNET2 

classifiers. In this method, a combination of parameters is 

used to specify the optimal number of neurons  and weight 

decay. Grid search was also used to determine the learning 

rate in the GBM model, while the random search was applied 

to tune the number of trees. The results of hyperparameter 

tuning are shown in Table 7. 

 The classifiers are tested on five-step ahead prediction of 

at-risk students. The results over both sets of features have 

been compared with respect to a number of performance 

metrics, including accuracy, F-measure, specificity, 

sensitivity, and AUC. The empirical results from the second 

set of features (high ranking features) demonstrate slightly 

better performance than the first set of features (all features). 

As can be seen  in Tables 8 and 9 for both sets of features, 

the NNET1 and GBM classifiers give the best accuracy, with 

average values of 0. 9157 and 0.894, respectively. The RF 

and NNET2 classifiers produce compelling results with an 

accuracy of 0.914 in the second set of features. Conversely, 

accuracy decreases by 3% and 1% in RF and GLM,  over the 

second and first set of features, respectively, producing 

average values of 0.866 and 0.9068. 

For both sets of features, sensitivity is seen to be slightly 

higher than specificity. In particular, models NNET1, 

NNET2 and GBM obtained sensitivities in the range of 90%-

95%. Conversely, RF achieves the lowest sensitivity in the 

first set of features. Again, for both feature sets, GBM and 

GLM attained the highest specificity with average values of 

0.86. The worst specificity is yielded by NNET2 across both 

sets of features. Figures 6 and 7 show the ROC results for 

both sets of features. The curves are shown to converge to 

roughly the same ideal result on the plot, indicating a 

similarity in performance across the models in both feature 

sets, which result in values of approximately 91% and 93%, 

respectively. The lowest AUC yield is obtained by RF for the 

first set of features. 

The two feature sets were compared with respect to the 

learning curve. The learning curve plot provides a good 

indication about the early divergence between training and 

validation (resampling and testing), which is observed when 

overfitting occurs. As seen in Figures 8(a)-(b), there is 

overfitting across both sets of features for the RF classifiers, 

but in the optimized feature subset, it is not significant. With 

the GBM classifier, a small amount of overfitting occurs. 

However, its effect is not excessive in the case of high 

ranking features. Although the learning curves overlap in the 

NNET1 model, the classifier does not suffer from 

underfitting. Since the ROC performance is close to the 

ideal, the training errors decreased, when the training data 

was increased to 4000 samples. NNET2 is the best model, 

and feature selection shows a better performance. The 

resampling error for both sets of features is lower than the 

training error.  
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TABLE 7 

HYPERPARAMETER TUNING PARAMETERS   

 

                                                                                                                      

 
 

 

 
 

 

 
 

 

 
 

 

 

 

          
 

 

Model Learning Algorithm  Tuning  parameters  

NNET2 Backpropagation  Number of units in   

hidden layers 

   First set of features (17,7), 

Second set of features (5,2) 

weight decay 

First set of features (0.01), 

Second set of features (0.01) 

RF   Number of variables    

randomly sampled 

First set of features (8), 

Second set of features (4) 

  Number of  trees 

 First set of features (500),   

Second set of features(100) 

GBM AdaBoost Algorithm    Number of trees 

First set of features (500), 

Second set of features (50) 

   Learning rate 

First set of features (0.001), 

Second set of features (0.01)  

NNET1 Backpropagation Number of units in hidden  

layer 

First set of features (20), 

Second set of features (8) 

  

 

 

 

 

 weight decay 

First set of features (0.01), 

Second set of features (0.002)   

Classifier Acc. F-Meas. Sens. Spec. AUC 

NNET2 0.9148 0.933 0.946 0.859 0.929 

RF 0.9142           0.9335 0.9472   0.8565 0.918 

GLM 0.9068 0.9086 0.9332       0.8607 0.916 

GBM 0.9149 0.933 0.945 0.860 0.934 

NNET1 0.9157 0.934  0.950      0.855 0.927 

      

 

Figure 6. ROC curve (All features) 

 

 

Figure 7. ROC curve (Optimized feature subset) 

TABLE 8 

CLASSIFICATION PERFORMANCE- ALL FEATURES 

Classifier Acc. F-Meas. Sens. Spec. AUC 

NNET2 0.893 0.908 0.921   0.842 0.923 

RF 0.866 0.893 0.875 0.850 0.89 

GLM 0.884  0.881 0.897 0.862 0.932 

GBM 0.894 0.916 0.910 0.865 0.933 

NNET1 0.890 0.913 0.902 0.869 0.899 

 

TABLE 9 

CLASSIFICATION PERFORMANCES FOR SECOND SET OF FEATURES 
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(a) RF (All Features Set) (b) RF (Selected Features) 

(c) GBM (All Features) 
(d) GBM (Optimized feature sub-set) 

(e) NNET1 (All Features) 
(f) NNET1 (Optimized feature sub-set) 

 

 (g) NNET2 (All Features) 
(h) NNET2 (Optimized feature sub-set) 
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 (i) GLM (All Features) 

 

 

Figure 8. Comparison of learning curves for the two feature sets

 

 

K. simulation results- Learning Achievement Model 

The simulation results of the learning achievement model 

are presented in this section. Three set of machine learning 

is used in this study theses including NNET1,GBM and 

GLM. 

The analysis was run five times for each classifier, with 

average values over the five simulation rounds computed to 

acquire the final performance results. As shown in Table 10, 

accuracy is high for all classifiers. 

As in the previous set of experiments, hyperparameter 

optimization was considered. With regards to NNET1 

model, grid search suggested a hidden layer with 32 hidden 

units, a learning rate of 0.02, and weight decay of 0.01. The 

random search was used to optimize the number of trees and 

learning rate in GBM. The optimal parameters were 50 trees 

and a learning rate of 0.03.  NNET1 and GBM acquired the 

highest accuracy, with a value of approximately 0.95, while 

GLM gave a slightly lower accuracy of 0.945. 

 The F-measure was used as a metric to evaluate the 

performance of the predictive model since the datasets are 

imbalanced. The results show that GBM achieves the highest 

F–measure value, whereas GLM obtained the lowest F–

measure value. 

The learning achievement predictive model revealed 

nearly ideal sensitivities and specificities for all classifiers. 

The best sensitivity was achieved by GBM with a value of 

0.956. The lowest sensitivity was attained by GLM  with a 

value of 0.945. All classifiers obtained good specificities 

values over 0.93. 

 Although the sensitivity and specificity values are 

balanced for all classifiers, the sensitivity values are higher 

than the corresponding specificity values. This is because the 

database is skewed in favour of choosing the majority class 

of “Failing”. In this case, predicting poor student learning 

achievement is more of a priority than predicting successful 

learners, as it could be useful for the deployment of early 

interventional strategies. 

ROC is used in this study to choose a decision threshold 

value for the true and false positive rates across each class. 

Figure 9 shows the ROC curves. Overall, a range of AUC 

values between 0.82-0.99 for all classes was obtained. 

 

TABLE 10 
 CLASSIFICATION PERFORMANCES FOR LEARNING  ACHIEVEMENT MODEL 

Classifier Acc. F-Meas. Sens. Spec. AUC 

NNET1 0.950 0.968           0.954           0.937           0.95 

GBM 0.952           0.969           0.956           0.937 0.934 

GLM 0.945          0.881 0.948          0.936           0.932 

 

 

 

Figure 9. ROC Curve (Learning Achievement model) 

 

L. DISCUSSION 

A temporal predictive model was developed. In regards to 

feature selection, the filter approach, inspired by the chi-

square test, was utilized to select the most significant 

features. The results show that the optimized feature sub-set 

includes student behavioural features in the spring semester 

courses, i.e., “ndays_act”, “Nevent”, “nplay_video”, and 

(J) GLM (Optimized feature sub-set) 

 



 

15 
 

“Nchapters”, in addition to the student motivational status in 

the fall semester courses. 

Five machine learning algorithms were employed to detect 

at-risk students over the complete and reduced feature sets. 

The results of the F–Measure demonstrated that GBM and 

NNET1 obtain the highest performance for the full and 

reduced set of features, respectively, whereas RF and GLM 

produce the lowest performance over both sets of features. 

In general, the findings reveal that all classifiers 

demonstrated good performance.  

The sensitivity values for withdrawal students are slightly 

higher than the specificity values for non-withdrawal 

students because the number of withdrawal student records 

is slightly higher than that of non-withdrawal student 

records. This could have an influence on the learning of the 

classifier. That is, the classifier may be biased in predicting 

the positive class (withdrawal student). In this study, the 

values of sensitivity are more important than the values of 

specificity, since the objective of the research is early 

prediction of students who may be at risk of withdrawing, so 

that instructors may deploy intervention strategies to support 

them. 

 The learning curve was used to investigate the overfitting 

problem. The findings reveal that feature selection has a 

significant benefit in reducing overfitting. It can be observed 

that any overfitting effect is not significant in the optimized 

feature dataset across all classifiers. With the feature 

selection approach, irrelevant and redundant features are 

eliminated. As a consequence, predictive models perform 

faster and more efficiently, reducing the occurrence of 

overfitting on the dataset and decreasing computational 

complexity. 

The effect of behavioural engagement on student learning 

achievement was investigated through the tracking of student 

activities. The learning achievement predictive model was 

demonstrated in the Harvard and OULAD datasets. The 

input predictors consist of behavioural features, followed by 

the dates of student registration and deregistration from the 

courses. Both dataset results demonstrate that clickstream 

features can be reliable predictors. Indeed, this information 

is remarkably relevant to the prediction of student outcomes 

and subsequent grades for estimation of student failure. 

Temporal features also contain important information. For 

instance, the number of days that students interact with a 

course is highly correlated with the at-risk status.   

 

 

IV. Conclusions 

Two case studies were conducted in this work, with the 

aim of offering decision-makers the opportunity for early 

intervention and provision of timely assistance to students 

who are at risk of withdrawal and failure. In the first case 

study, the relationship between engagement level and 

motivational status with withdrawal rates was examined. In 

the second case study, a learning achievement model was 

proposed to identify at-risk students and analyze the factors 

affecting student failure. 

The dropout prediction model can facilitate educators in 

delivering early intervention support for at-risk students. The 

findings show that student motivation trajectories are the 

main reason for student withdrawal in online courses. 

Feature selection enhances the predictive capacity of 

machine learning models while reducing the associated 

computational costs. Furthermore, the filter method for 

feature selection is a promising solution for tackling the 

overfitting problem. The results of this study could assist 

educators in monitoring changes in student motivational 

status, thus enabling them to identify those students who 

require additional support. 

Various factors influencing at-risk students were 

evaluated using the Harvard and OULAD datasets in the 

learning achievement model. The results in both datasets 

indicate that clickstream features are significant factors, 

which are highly correlated to student failure in online 

courses. 

In regards to future research, we intend to consider the 

validation of the proposed framework with additional 

datasets. It will be interesting to capture online datasets from 

different providers, delivering courses on the same topics, to 

evaluate subject trends. Deep learning can also be used to 

automatically predict students who are in danger of dropout 

from courses. Deep learning can extract features from 

student records by inferring the sequences of temporal events 

across various MOOCs datasets. As such, deep 

convolutional neural networks can be used to track student 

behaviour and motivational status and discover the impact of 

these characteristics on at-risk students[12]. 
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