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Abstract 24 

Although it is generally assumed that among mammals and within mammal groups, those 25 

species that rely on diets consisting of greater amounts of plant fiber have larger 26 

gastrointestinal tracts (GIT), statistical evidence for this simple claim is largely lacking. We 27 

compiled a dataset on the length of the small intestine, caecum and colon in 42 strepsirrhine, 28 

platyrrhine and catarrhine primate species, using specimens with known body mass (BM). 29 

We tested the scaling of intestine length with body mass, and whether dietary proxies 30 

(percentage of leaves and the diet quality index) were significant covariates in these scaling 31 

relationships, using two sets of models: one that did not account for the phylogenetic 32 

structure of the data, and one that did. Intestine length mainly scaled geometrically at 33 

exponents that included 0.33 in the confidence interval; Strepsirrhini exhibited particularly 34 

long caeca, while those of Catarrhini were comparatively short. Diet proxies were only 35 

significant for the colon and the total large intestine (but not for the small intestine or the 36 

caecum), and only in conventional statistics (but not when accounting for phylogeny), 37 

indicating the pattern occurred across but not within clades. Compared to terrestrial 38 

Carnivora, primates have similar small intestine lengths, but longer large intestines. The data 39 

on intestine lengths presented here corroborate recent results on GIT complexity, suggesting 40 

that diet, as currently described, does not exhaustively explain GIT anatomy within primate 41 

clades. 42 

 43 

Keywords primate, anatomy, digestive tract, diet, phylogeny  44 
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Introduction 45 

Of the various aspects of mammalian biology where a link between form and function has 46 

been investigated, the connection between diet and the morphology of the digestive tract has 47 

received considerable attention (Chivers and Langer, 1994). Illustrations of the digestive 48 

tracts of herbivores and carnivores make it evident that the digestive tracts of herbivores are 49 

more complex (Stevens and Hume, 1998) due to the less digestible nature of their natural 50 

diets. Though statistical evidence is lacking (Lavin, Karasov, Ives, Middleton and Garland, 51 

2008; Smith, Parker, Kotzé and Laurin, 2017), it is usually thought that the intestines of 52 

herbivorous mammals are longer than those of carnivores (Orr, 1976). When considering 53 

gastrointestinal complexity across all eutherian mammal clades, however, there is a less 54 

clear-cut relationship between intestine morphology and diet. In particular, while complex 55 

hindguts are typically associated with (but not obligatory for) herbivores, complex stomachs 56 

are not necessarily linked with high-fiber herbivory, as evidenced by the morphology 57 

observed in whales and myomorph rodents (Langer and Clauss, 2018). 58 

Among primates, the morphology of the gastrointestinal tract, both macro- and 59 

microscopically, has been suggested to be tightly linked to dietary ecology (Chivers and 60 

Hladik, 1980; Martin, Chivers, MacLarnon and Hladik, 1985; Lambert, 1998). Understanding 61 

aspects of the anatomy of primates’ digestive systems is thought to provide information about 62 

the diet to which a particular taxon may be adapted (Ferrari and Lopes, 1995) or its dietary 63 

constraints, such as why a species may target or avoid certain food items (Lambert, 1998). 64 

Despite the value of broad anatomical comparisons across taxa, relatively few studies have 65 

taken an interspecific, phylogenetic approach to the gross anatomy of primate gastrointestinal 66 

tracts. Quantitative analyses of gut morphology frequently focus on a small range of taxa 67 

(e.g., Ferrari and Martins, 1992; Ferrari, Lopes and Krause, 1993 in callitrichines), and some 68 

studies (e.g., Hill, 1958) provide illustrations of primate gastrointestinal tracts, but do not 69 
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provide measurements. The paucity of recent gross intestinal morphology research may be in 70 

part related to the fact that the proportions of different components of the gastrointestinal 71 

tract can vary intraspecifically with age (Langer, 1988) or with dietary shifts (Gross, Wang 72 

and Wunder, 1985). Nevertheless, the use of relative dimensions can provide information 73 

about the relative role of different portions of the tract in a particular subset of species 74 

(Chivers and Hladik, 1980; Caton, 1998) and can inform hypotheses about adaptations to 75 

different dietary regimes. The enlarged caecum and colon of some strepsirrhines, New World 76 

monkeys, cercopithecines, and hominoids (Hladik, Charles-Dominique, Valdebouze, Delort-77 

Laval and Flanzy, 1971; Chivers, 1994), for example, act as fermentation chambers to aid in 78 

the digestion of plant foods. 79 

On the other hand, it has also been recognized that gastrointestinal form alone is not 80 

sufficient to predict diet (Milton, 1987), even though general relationships between gross 81 

digestive morphology (e.g., relative gut proportions) and broad dietary categories are 82 

expected. Chivers and Hladik (1980) demonstrated an increase in the ratio of combined 83 

stomach, caecum, and colon volume to small intestine volume across a continuum of 84 

faunivores to frugivores to folivores, although there was substantial overlap between the 85 

groups. When Chivers and Hladik considered the surface area of the small intestine, however, 86 

no differences between trophic groups were evident. Notably, these analyses were performed 87 

prior to the arrival of statistical methods that account for phylogenetic non-independence. 88 

When controlling for phylogeny, Langer and Clauss (2018) did not find diet-associated 89 

differences in gut complexity among primates.  90 

Despite these various lines of research, quantitative data on the digestive tracts of 91 

primates are scarce. In order to provide data on intestine length for a larger number of 92 

primates, we used the opportunity to take photographs of the digestive tracts of a number of 93 

specimens during dissections performed for a study on mammalian body composition 94 
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(Navarrete, van Schaik and Isler, 2011), and provide photographic evidence for the gross 95 

digestive tract morphology of 32 species. Because with any absolute measure, body size will 96 

be the main driver of the magnitude, we first investigate the allometric relationship of 97 

intestine length with body mass. Based on the general geometric relationship between a 98 

length and a volume measure, one would expect intestinal lengths to scale approximately 99 

with body mass to the power of 0.33. However, three previous data compilations – on 100 

mammals in general (Lavin et al., 2008), on mammalian carnivorans (McGrosky, Navarrete, 101 

Isler, Langer and Clauss, 2016) and on ruminants (McGrosky et al., 2019) – unexpectedly 102 

yielded higher exponents. The explanation for this phenomenon was, to our knowledge, first 103 

proposed by Woodall & Skinner (1993), who suggested that animals should evolve so that 104 

their intestinal surface retains a geometric or metabolic scaling (i.e., at an exponent between 105 

0.67 and 0.75), but that the diameter of the intestine should scale less-than-geometrically to 106 

maintain short diffusion distances, and that hence, to compensate, intestinal length should 107 

scale more-than-geometrically. Therefore, a corresponding scaling was expected in primates 108 

as well. 109 

As a second step, we tested whether proxies of the natural diet influenced the scaling 110 

relationships with body mass. Following broad mammalian trends and Chivers and Hladik 111 

(1980), we expect both small and large intestine length to increase along a dietary continuum 112 

from insectivores to frugivores to folivores. 113 

 114 

Methods 115 

During the data collection for a different study (Navarrete et al., 2011), a large number of 116 

mammalian specimens originating from various sources were dissected by AN; some 117 

additional specimens were contributed by MC. Most specimens derived from zoological 118 

collections. The specimens were either dissected directly after death or, in the majority of 119 
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cases, after storage by deep-freezing and thawing. Body mass (BM) was recorded, and the 120 

gastrointestinal tracts were dissected by removing mesenteries. The intestinal tract was laid 121 

out according to common practice for anatomical documentation (Stevens and Hume, 1995), 122 

placing the intestine as a straight line without stretching, and photographs (with scale) were 123 

taken for later measurement. For measurements, the caecum served as the defining border 124 

between the small and the large intestine. Length of the different sections was determined 125 

using the polyline VOI tool of the MIPAV biomedical imaging software (version 14.0, 126 

National Institutes of Health), which facilitated tracing the length of the intestine directly on 127 

the digital photo and converting pixel length into centimeters. 128 

For some large-sized specimens, the intestine was cut into several pieces prior to 129 

photography. Photographs of these specimens were not manipulated to create the impression 130 

of an uninterrupted intestine. The only photo manipulations included the deletion of 131 

background and, in some cases, adjustment of the brightness and color of the images and a 132 

mirroring to achieve a consistent position of the stomach.  133 

Additional data were collected from the literature, but only if the original BMs of the 134 

specimens investigated were reported together with the length measurements; this led to the 135 

exclusion of many published intestine length measurements. When several specimens were 136 

available for a species, averages for both BM and the respective measurements were 137 

calculated; in doing so, we always ensured the averaged BM matched the averaged gut 138 

section measure.   139 

Data on the natural diet of the investigated species, as the percentage of leaves in the 140 

overall diet (as generally the diet items most requiring microbial fermentation) and the diet 141 

quality index (to account not just for one but the range of diet items), were taken from a 142 

literature collection based on three publications (Van Woerden, van Schaik and Isler, 2010, 143 

2014; Van Woerden, Willems, van Schaik and Isler, 2012), supplemented with additional 144 
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information (for a full set of sources, see Table S1). The diet quality index represents a sum 145 

of each dietary item, multiplied by a factor that is higher for more digestible diet items (8 for 146 

insects, 5 for fruits/seeds/flowers, 3 for young leaves, 1 for mature leaves) and is weighted 147 

for the proportion of these items in the diet (Van Woerden et al. , 2010). All species-specific 148 

data are given in Table 1. 149 

Allometric relationships were investigated using linear regressions on log-transformed 150 

data according to Length = a BMb, with 95% confidence intervals for parameter estimates, 151 

for the whole dataset and for individual clades. Additionally, the same analysis was 152 

performed with clades as cofactors, and the clade x BM interactions, to directly test for 153 

differences between the clades. Proxies of the natural diet were added to the linear 154 

regressions on log-transformed data as covariates (only one proxy per model, i.e. either the 155 

percentage of leaves, or the diet quality index). Initially, models including the BM x diet 156 

proxy interaction were also included, but because there were no significant interactions, 157 

results are only presented here for models without interactions. Analyses were performed 158 

using Generalized Least Squares (GLS) and Phylogenetic Generalized Least Squares (PGLS), 159 

using a consensus phylogenetic tree downloaded from the 10kTrees Project (version 3; 160 

Arnold, Matthews and Nunn, 2010). The phylogenetic signal (Pagel’s λ) was estimated using 161 

maximum likelihood (Revell, 2010). λ can vary between 0, indicating no phylogenetic signal, 162 

and 1, indicating a strong phylogenetic signal and that similarity among species scales in 163 

proportion to their shared evolutionary time (Pagel, 1999; Freckleton, Harvey and Pagel, 164 

2002). Statistical tests were performed using the package caper (Orme et al., 2010) in R 165 

2.15.0 (Team, 2011). The significance level was set to 0.05. 166 

Finally, the data of primates were compared visually to data from terrestrial Carnivora 167 

including canids, mustelids, ursids, mephitids, procyonids, felids, hyenids, herpestids and 168 

viverrids, but excluding pinnipeds (McGrosky et al., 2016).  169 
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 170 

Results 171 

Among the Strepsirrhini, lemurs appear to have particularly long caeca (Fig. 1) compared to 172 

the gummivorous cheirogalids (Fig. 2). The latter have smaller caeca, although their caeca 173 

still appear proportionally larger than those of the gummivorous callitrichids (Fig. 3). The 174 

non-gummivorous cebids studied here all have similar digestive tracts (Fig. 4). Atelids have 175 

an unremarkable caecum that appears part of a large proximal colon (Fig. 5), whereas the 176 

caecum of the pitheciids is more distinct (Fig. 5). Among the Catarrhini, colobines have a 177 

voluminous forestomach, as well as a distinct caecum and an enlarged proximal colon (Fig. 178 

6). The hindgut of many non-colobine Catarrhini is voluminous and haustrated, with a short, 179 

broad caecum (Fig. 7-10). In the apes, the caecum bears a clearly visible, vermiform 180 

appendix (Fig. 10). 181 

When using the complete gastrointestinal morphology dataset, as well as Strepsirrhini-  182 

and Platyrrhini-specific datasets, there was a strong, significant phylogenetic signal, 183 

indicating that the data scatter is guided by the phylogenetic structure in the datasets. 184 

However, this strong phylogenetic signal was generally not observed within Catarrhini (Table 185 

2). Across all species, the scaling exponent typically included 0.33 in the 95% confidence 186 

interval, indicating geometric scaling (Table 2). The 95% confidence intervals for the 187 

allometric factors (a) and scaling exponents (b) generally overlapped between the clades, 188 

with the exception of both the factor and exponent of the caecum, which were higher in the 189 

Strepsirrhini (Table 2). This observation was corroborated by the models that tested the 190 

scaling including the clade and clade x BM interactions, where the Strepsirrhini x BM 191 

interaction was significant both in GLS (P = 0.009) and PGLS (λ = 0.73; P = 0.017), 192 

indicating a steeper scaling of the caecum with BM for this clade (Fig. 11). Additionally, 193 

although the corresponding 95% confidence intervals for a overlapped, the analyses for small 194 



 McGrosky 9 

intestine length and total intestine length indicated significantly smaller values for Platyrrhini 195 

(small intestine: GLS P = 0.015; PGLS λ = 0.73, P = 0.018; total intestine: GLS P = 0.032; 196 

PGLS λ = 0.80, P = 0.035; in all cases, with non-significant interaction terms; Fig. 11). 197 

While the scaling exponent of GLS models was generally very similar to that of PGLS 198 

models (Table 2 and S2), the GLS scaling exponent for the caecum in the complete dataset 199 

was very low (due to the long caeca of small-bodied strepsirrhines) and excluded geometric 200 

scaling in the confidence interval (0.16; 95%CI 0.04-0.29; Fig. 11). However, PGLS analyses 201 

indicated a generally geometric scaling of the caecum (0.41; 95%CI 0.25-0.56; Table 2). 202 

Neither the percentage of leaves in the diet nor diet quality index exhibited a significant 203 

effect on intestinal length in any of the models, including models of caecum length (P always 204 

> 0.05). The only exceptions to this trend included significant GLS models of colon and total 205 

large intestine length for the percentage of leaves dataset and the diet quality index (GLS: 206 

colon – leaves P = 0.045; colon – diet index P = 0.008; large intestine – leaves P = 0.066; 207 

large intestine – diet index P = 0.011). In PGLS, these dietary effects were no longer 208 

significant, indicating that variation in large intestine length with diet occurred mainly across 209 

and not within clades (PGLS: colon – leaves P = 0.402; colon – diet index P = 0.075; large 210 

intestine – leaves P = 0.648; large intestine – diet index P = 0.231). Using the diet quality 211 

index and the relative colon length (in cm/BM0.33), Figure 12 illustrates how the phylogenetic 212 

structure of the dataset explains the colon – diet index relationship: within clades, there is 213 

little correlation between the measurements, and any trend within Strespirrhini or Platyrrhini 214 

is due to a particular genus, not due to similar variation in several genera; the position of the 215 

clades, however, suggests the expected negative relationship. For a more detailed graph 216 

including the phylogenetic tree and the distribution of these two measures across it, see Fig. 217 

S1. 218 
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When compared to terrestrial Carnivora, the total intestines of primates are generally 219 

slightly longer (Fig. 11). This holds particularly true for the colon, and the caecum of the 220 

Strepsirrhini. By contrast, the caecum of the Catarrhini was of a magnitude also observed in 221 

many terrestrial Carnivora. 222 

 223 

Discussion 224 

Using what is to our knowledge the most comprehensive dataset on primate intestine lengths 225 

directly linked to the body mass of the same specimens, the present study largely 226 

corroborates well-known features of different primate groups and in part confirms broad 227 

macroanatomical concepts about differences in intestinal length between carnivores and 228 

herbivores. However, it also demonstrates that, in primates, correlations of length measures 229 

of the different intestinal sections with the natural diet may not be as clear-cut as is often 230 

assumed. 231 

The photographic evidence provided can be compared to drawings and reports from the 232 

literature. While we do not want to dwell on this in detail here, some points of interest shall 233 

be mentioned. Fisher (2000) explained a reliable classification of species with respect to 234 

whether they have a true ‘appendix’ or not requires more than visual inspection, including 235 

histology, and ontogenetic series. Several species that have been classified as having an 236 

appendix in comparative datasets (e.g., Smith et al., 2017), including Eulemur spp. (Fig. 1) 237 

and Callithrix spp. (Fig. 3), did not have a vermiform structure that was clearly 238 

distinguishable. For Papio hamadryas, a variable disposition with respect to the presence of 239 

an appendix has been assumed (Smith et al., 2017), with our specimen not showing 240 

macroscopic evidence of a vermiform structure (Fig. 9). With respect to Varecia spp. or 241 

Lemur catta, it is evident that the macroscopic appearance could be interpreted both ways 242 
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(Fig. 1), and that further investigations as recommended by Fisher (2000) would be required 243 

for a reliable assessment. 244 

A series of limitations applies to the present study. Our own and the literature data 245 

represent a mixture of measurements taken from freshly dissected specimens and specimens 246 

dissected after frozen storage and thawing. While we do not think that this has a relevant 247 

effect on macroscopic length measurements, readers that question this assumption should 248 

therefore consider the results with extra caution. In our view, it needs to be mentioned that 249 

length measurements of intestinal structures should rather be considered as indicating 250 

magnitudes, and not precise data (hence, we give no decimals in Table 1). When laying out 251 

intestines for length measurements, details such as the dryness of the organ and the 252 

smoothness of the surface used for measuring can influence whether an unintentionally 253 

stretched organ can contract again or retains the stretched disposition, for example. A further 254 

kind of caveat that needs to be mentioned refers to the use of a consensus tree (here, from the 255 

10kTrees Project) rather than testing a whole distribution of trees. The standpoint, adopted 256 

intuitively in the present study, that absence of a signal when using the consensus tree is 257 

meaningful, could of course be questioned, and the data could be explored using the whole 258 

distribution of trees available. 259 

However, the main limitations of the present study are its reliance on mainly captive 260 

specimens, and the low sample size for the majority of the included species that also 261 

precludes tests of ontogenetic changes. Freckleton, Harvey, & Pagel (2002) demonstrated 262 

that at lower species numbers below 20, a phylogenetic signal may not be always detected 263 

reliably, whereas a wrong detection of a phylogenetic signal is rare. In our analyses, this was 264 

also reflected in the finding that confidence intervals for λ could often not be calculated 265 

(Table 2). Among the Strepsirrhini (n=11) and Platyrrhini (n=14), the limited number of 266 

species might have been responsible for the finding that small intestine length and colon 267 
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length (and hence also large intestine and total intestine length) showed a phylogenetic 268 

signal. This phylogenetic signal indicates that variation in these measures and clades was 269 

mainly an effect across, and not within, the included taxonomic subgroups. Notably, this did 270 

not apply to the Catarrhini, for which we obtained a larger sample size (n=17). In contrast, 271 

the fact that no phylogenetic signal was evident in strespirrhine caecum length suggests that a 272 

long caecum that increases in length with body mass is a common feature across various 273 

strepsirrhine subgroups. For more confidence in the phylogenetic signal of intestinal length 274 

measurements, a larger species sample would be required. This would also help to clarify if 275 

primates are really different from carnivores, ruminants or mammals in general (Lavin et al., 276 

2008, McGrosky et al., 2016, 2019), which all show a more-than-geometrically scaling of 277 

intestine length, possibly to achieve geometrical constancy of absorptive intestinal surface 278 

while keeping diffusion distances in the instestine small by increasing the intestinal diameter 279 

at less-than-geometrically scaling (Woodall and Skinner, 1993). The large 95% confidence 280 

intervals for the scaling exponents in the present study do not allow a clear answer to this 281 

question. 282 

Another limitation becomes evident given the absence of a clear dietary signal in 283 

intestinal length measurements, and is inherent to our study design: intestinal length is 284 

possibly poorly correlated with diet. Other measures, notably the volume or the actual gut fill 285 

(Clauss, Schwarm, Ortmann, Streich and Hummel, 2007; Müller et al., 2013), are most likely 286 

more meaningful correlates with diet, as mammalian herbivores generally have more 287 

voluminous (yet not necessarily longer) intestines. Chivers and Hladik (1980) addressed this 288 

fact by using intestinal surface area rather than length for some of their analyses. Notably, 289 

they did not find a significant difference in small intestine surface area between diet groups, 290 

and they did not report results for the large intestine or caecum in isolation, as done in the 291 

present study, where any dietary signal that derives from the anatomy of the stomach and 292 
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forestomach was excluded. The often-cited patterns between gut morphology and diet 293 

described by Chivers and Hladik (1980) always represent a composite signal in which the 294 

volume or surface area of the (fore)stomach and the large intestine are summed up before 295 

evaluation. However, even using this composite signal, their study revealed substantial 296 

overlap between faunivores, frugivores and folivores. Additionally, affiliation to dietary 297 

groups varied, depending on whether anatomical surface or volume measurements were used; 298 

while colobine monkeys were exclusively grouped as folivores in terms of volume measures 299 

(Fig. 20 in Chivers and Hladik, 1980), they were also depicted within the range of frugivores 300 

in terms of surface measures (Fig. 18 of their study). 301 

Nevertheless, the present study provides evidence for the functional relationship between 302 

colon or large intestine length and diet, as postulated previously (Hladik, 1978; Chivers, 303 

1994). Similar to the findings on gastrointestinal complexity of Langer and Clauss (2018), 304 

GLS models revealed a significant relationship between diet and large intestine length. 305 

However, in both Langer and Clauss (2018) and the present study, these effects were not 306 

significant when accounting for the phylogenetic structure of the data using PGLS. This 307 

indicates that these effects do not occur within the different primate clades and therefore 308 

cannot be considered convergent between them in the respective datasets. Rather, the pattern 309 

occurs at deeper nodes of the phylogeny in each dataset, to the extent that clades as a whole 310 

differ in both, the GIT and the diet measure. The lack of significance in PGLS, or, in other 311 

words, the lack of evidence for dietary convergence, should not encourage the interpretation 312 

of a lack of a functional relationship. The relationship is just not evident within clades, but 313 

only across the clades included in this study. This could lead to the traditional interpretation 314 

often applied to non-significant findings when accounting for phylogeny, i.e. clade-specific 315 

characteristics other than diet (represented by ‘phylogeny’) led to the evolution of longer or 316 

more complex large intestines in those taxa that also ingest more leaves. Alternatively, it 317 
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suggests that clade diversification in primates followed, to a large extent, dietary niche and 318 

concomitant intestinal adaptations, but that diet diversification within clades left less reliable 319 

marks on intestinal anatomy. Reporting only one result, such as – in the case of a significant 320 

phylogenetic signal – the PGLS result while ignoring the GLS result, as sometimes 321 

recommended in the biological literature (Freckleton, 2009), would leave this observation 322 

unrecognized.  323 

With respect to length, primates do not appear to differ from terrestrial carnivores for the 324 

small intestine where auto-enzymatic digestion occurs. However, as also described by Martin 325 

(1990) and Lambert (1998), primates generally have a longer large intestine (a site of allo-326 

enzymatic digestion), which coincides with their generally higher reliance on diets that 327 

contain plant cell walls compared to carnivores. The difference in the intestinal segment by 328 

which primates achieve a longer large intestine resembles the pattern observed between other 329 

large (e.g., perissodactyl) and small (e.g., rodents and lagomorphs) hindgut-fermenting 330 

herbivores (Stevens and Hume, 1998); while smaller species typically have particularly large 331 

caeca and are often called ‘caecum fermenters’, larger species also possess a voluminous 332 

colon for allo-enzymatic digestion. This pattern is reflected in the differences between the 333 

larger Catarrhini and the smaller Strepsirrhini and Platyrrhini, which both have larger caeca 334 

compared to the Catarrhini (Fig. 12D). The difference in caecum size and shape between 335 

these groups has been known for some time (Reider, 1936; Scott, 1980). One can only 336 

speculate that for smaller species, the retention times necessary for allo-enzymatic fiber 337 

digestion are more easily achieved by a larger dead-end structure such as the caecum rather 338 

than by a larger colon.  339 

Ultimately, primate clades have a typical mammalian macroscopic appearance of their 340 

gastrointestinal tracts. The measure of intestinal length in primates matches broad statements 341 

about differences between carnivorous and herbivorous species mentioned in the 342 
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Introduction, and, in the case of the large intestine, about the effect of natural diets on primate 343 

intestinal length. Within primates, however, dietary effects are found only across but not 344 

within clades, as models of the effect of diet on intestine length are only significant if the 345 

phylogenetic structure of the dataset is not accounted for. Within primate clades, dietary 346 

specialization as measured in our dataset has little power to explain intestinal length 347 

measures. 348 

 349 
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Table 1 Average (±S.D.) body mass (g) and intestinal length (cm) measurements of primate species 495 
Species (Cladea) Source n Body mass Small intestine Caecum Colon Large intestineb Total intestine %leaves  

in natural dietc 
Diet quality 

indexc 
Alouatta sara (P) 1 2 3950 (±636) 123 (±11) 6 (±5) 74 (±3) 80 (±1) 202 (±10) 50 NA 
Alouatta seniculus (P) 2 1 635 239 12 58 70 309 48 328 
Ateles paniscus (P) 1 1 8070 211 13 60 73 283 8 456 
Callthrix argentata (P) 1 1 242 43 4 23 28 70 0 NA 
Callithrix jacchus (P) 1,3 5 323 (±30) 58 (±14) 5 (±1) 25 (±13) 30 (±12) 88 (±27) 0 519 
Cebuella pygmaea (P) 1 1 163 41 5 24 29 69 0 599 
Cebus apella (P) 1 1 1750 145 5 34 39 184 16 543 
Cheirogaleus medius (S) 1 2 197 (±49) 114 (±0) 5 (±0) 16 (±3) 21 (±3) 135 (±3) 4 549 
Chiropotes satanas (P) 2 1 3130 282 19 48 67 349 1 504 
Chlorocebus pygerythrus (C) 1 1 5300 176 7 67 74 250 10 526 
Colobus guereza (C) 1 2 9750 (±354) 278 (±57) 8 (±0) 104 (±22) 112 (±22) 390 (±79) 61 348 
Eulemur coronatus (S) 4 1 1580 99 14 55 69 168 3 493 
Eulemur fulvus (S) 1 1 2500 91 16 57 73 164 25 396 
Eulemur macaco (S) 1  2 1875 (±530) 125 (±20) 26 (±6) 66 (±1) 92 (±5) 217 (±15) 45 454 
Gorilla gorilla (C) 1,5 2 154648 (±102032) 810 (±299) 18d 139d 162 (±8) 972 (±307) 61 359 
Hapalemur griseus (S) 6 4 648 (±106) 86 (±16) 7 (±4) 50 (±6) 57 (N.R.) 144 (N.R.) 100 296 
Homo sapiens (C) 9 6 65300 (±14471) 678 (±138) 8 (±2) 146 (±16) 154 (±15) 831 (±144) 30 NA 
Lemur catta (S) 1 3 2117 (±144) 156 (±43) 24 (±7) 86 (± 24) 111 (±28) 267 (±71) 32 432 
Leontopithecus chrysomelas (P) 1 3 642 (±98) 101 (±12) 5 (±1) 27 (±4) 32 (±4) 133 (±15) 0 490 
Macaca arctoides (C) 1 4 14525 (±3495) 297 (±51) 7 (±2) 125 (±47) 132 (±45) 429 (±95) 40 NA 
Macaca cyclopis (C) 7 6 119667 (±1783) 230 (±29) 6 (±1) 79 (±7) 85 (±7) 315 (±30) 23 470 
Macaca fuscata (C) 1 1 11970 434 5 121 126 560 32 372 
Macaca nigra (C) 1 1 5600 295 8 113 121 415 2 596 
Macaca sylvanus (C) 1 1 9625 334 7 163 170 504 11 430 
Mandrillus sphinx (C) 1 1 23000 515 8 189 197 713 8 482 
Mirza zaza (S) 1 1 336 82 4 34 38 120 38 420 
Nomascus leucogenys (C) 1 1 6550 449 13 83 96 545 59 356 
Pan paniscus (C) 1 1 37730 527 12 234 245 773 24 415 
Papio hamadryas (C) 1 2 23250 (±8132) 426 (±161) 10 (±2) 148 (±12) 158 (±10) 585 (±172) 28 401 
Pithecia pithecia (P) 1,2 3 1467 (±339) 191 (±25) 11 (±4) 56 (±17) 67 (±21) 258 (±46) 9 492 
Pongo pygmaeus (C) 9 1 56250 559 23 328 351 910 48 458 
Propithecus tattersalli (S) 6 1 2760 362 37 252 289 651 39 378 
Propithecus verreauxi (S) 6 2 3890 (±438) 365 (±38) 39 (±7) 364 (±42) 403 (N.R.) 767 (N.R.) 53 302 
Saguinus fusicollis (P) 1 1 330 81 2 22 25 106 0 614 
Saguinus oedipus (P) 1 4 460 (±211) 75 (±8) 5 (±1) 29 (±9) 33 (±10) 109 (±17) 0 NA 
Saimiri boliviensis (P) 1 1 1003 144 5 18 22 166 0 500 
Saimiri sciureus (P) 1,2,8 22 678 (±117) 104 (±17) 4 (±1) 12 (±4) 16 (±4) 120 (±21) 0 684 
Symphalangus syndactylus (C) 1 1 8500 298 5 60 65 362.46 45 435 
Theropithecus gelada (C) 1 1 11400 227 4 121 125 352 94 313 
Trachypithecus vetulus (C) 1 1 5000 305 9 83 92 397 45 300 
Varecia rubra (S) 1 1 4200 162 35 72 108 269 12 454 
Varecia variegata (S) 1 1 3520 102 25 51 75 178 9 472 

NA not available 496 
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a C Catarrhini, P Platyrrhini, S Strepsirrhini 497 
bincluding caecum length 498 
cfor sources, see Table S1 499 
dcaecum & colon length only obtained from the present study 500 
Sources: 1 present study; 2 Fooden (1964); 3 Caton, Hill, Hume and Crook (1996); 4 Schwitzer (2009); 5 Steiner (1954); 6 Campbell, Eisemann, Williams and Glenn (2000); 7 Makita et al. (1984); 8 Beischer and 501 
Furry (1964); 9 Chivers (pers. comm.): for a previous study on mammal body composition (Navarrete et al. 2011), handwritten notes of Dr. Chivers were obtained of files used in preparation of his publication on 502 
mammal digestive tract anatomy (Chivers and Hladik 1980); while these notes did not record the lengths of the intestines for the species included in that publication, they contained measurements of some additional 503 
specimens. 504 
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Table 2 Phylogenetic signal (λ) and allometric relationships between intestinal length 505 
measures (in cm) and body mass (BM, in kg) according to Length = a BMb with 95% 506 
confidence intervals for parameter estimates from analyses using Phylogenetic Generalized 507 
Least Squares 508 

Length of n λ (95%CI) a (95%CI) b (95%CI) 
Total intestine 42 0.82 (0.47; 0.96) 187 (123; 287) 0.38 (0.30; 0.47) 
   Strepsirrhini 11 1.00 (0.40; NA) 217 (127; 371) 0.47 (0.15; 0.79) 
   Platyrrhini 14 0.72 (NA; NA) 156 (134; 181) 0.41 (0.30; 0.51) 
   Catarrhini 17 0 (NA; 0.46) 198 (146; 269) 0.34 (0.24; 0.45) 
     
Small intestine 42 0.80 (0.37; 0.94) 130 (86; 198) 0.38 (0.29; 0.47) 
   Strepsirrhini 11 1.00 (0.57; NA) 141 (94; 213) 0.31 (0.07; 0.56) 
   Platyrrhini 14 0.66 (NA; 0.97) 115 (93; 142) 0.45 (0.30; 0.60) 
   Catarrhini 17 0 (NA; 0.58) 143 (101; 203) 0.34 (0.22; 0.46) 
     
Caecum 42 0.92 (0.62; NA) 7.1 (3.2; 15.9) 0.41 (0.25; 0.56) 
   Strepsirrhini 11 0 (NA; 0.79) 12.3 (10.5; 14.5) 0.76 (0.61; 0.91) 
   Platyrrhini 14 0.77 (NA; NA) 6.2 (4.5; 8.4) 0.39 (0.18; 0.61) 
   Catarrhini 17 0 (NA; 0.69) 3.9 (2.1; 6.9) 0.29 (0.09; 0.48) 
     
Colon 42 0.94 (0.76; 0.99) 46 (23; 93) 0.38 (0.25; 0.51) 
   Strepsirrhini 11 1.00 (0.77; NA) 61 (37; 100) 0.60 (0.30; 0.89) 
   Platyrrhini 14 0.75 (0.07; NA) 31 (23; 42) 0.29 (0.09; 0.49) 
   Catarrhini 17 0 (NA; 0.81) 49 (32; 76) 0.33 (0.19; 0.48) 
     
Large intestine 42 0.94 (0.74; 1.00) 55 (28; 106) 0.38 (0.26; 0.50) 
   Strepsirrhini 11 1.00 (0.60; NA) 75 (47; 120) 0.64 (0.35; 0.92) 
   Platyrrhini 14 0.82 (0.20; NA) 38 (29; 49) 0.31 (0.13; 0.48) 
   Catarrhini 17 0 (NA; 0.76) 54 (36; 82) 0.33 (0.19; 0.47) 

NA - no respective confidence limit available 509 
for GLS results, see Table S1 510 
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 511 
Figure 1 Digestive tracts of various lemur species. Note the long caecum in all species.  512 
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 513 
Figure 2 Digestive tracts of two cheirogalid species.  514 
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 515 
Figure 3 Digestive tracts of five callitrichid species.  516 
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 517 
Figure 4 Digestive tracts of three cebid species.  518 
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 519 
Figure 5 Digestive tracts of two atelid and one pitheciid species.  520 
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 521 
Figure 6 Digestive tracts of two colobine species.  522 
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 523 
Figure 7 Digestive tract of Chlorocebus.  524 
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 525 
Figure 8 Digestive tracts of four macaque species. The * indicates where the small intestine 526 
was linked before dissection.  527 
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 528 
Figure 9 Digestive tracts of three baboon species. The * marks where the small intestine was 529 
linked before dissection.  530 
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 531 
Figure 10 Digestive tracts in four ape species. The * marks where the small intestine was 532 
linked before dissection. Note the caecal appendix in all four species. 533 
  534 
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 535 
Figure 11 Relationship between body mass and A) total intestinal length, B) small intestinal 536 
length, C) colon length and D) caecum length in primates as compared to terrestrial 537 
carnivorans (from McGrosky et al., 2016). Regression lines from Phylogenetic Generalized 538 
Least Squares (Table 2). Straight black line = Catarrhini; black dotted line = Platyrrhini; grey 539 
line = Strepsirrhini. The two outlier lemurs in  (A-C) are sifakas (Propithecus spp.).  540 
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 541 

 542 
Figure 12 Relationship between the diet quality index and the relative length of the colon in 543 
species of three different primate clades. Note that while there is a negative relationship in 544 
the overall data, this is not the case in the individual clades, leading to a non-significant result 545 
when accouting for the phylogenetic structure of the data (see Results). The two outliers with 546 
a high relative colon length in the Strepsirrhini are from one genus (Propithecus spp.); the 547 
two outliers in the Platyrrhini with a low relative colon length are also from one genus 548 
(Saimiri spp.).  549 
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Table S1 Sources for diet information 554 
 555 
ACHTUNG: alles normal ist aus den Van Woerden Papers bzw. aus der Excel-Tabelle; gelb = keine Ahnung, woher (incl. der Angabe im 556 
Excel); blau = Angabe aus Excel, obwohl Quelle in Van Woerden Papers; pink = all the worlds primates – kann man da die direkte quelle 557 
rausziehen? 558 

Species (Cladea) Source 
Alouatta sara (P) Neville, M. K., Glander, K. E., Braza, F., & Rylands, A. B. (1988). The howling monkeys, genus Alouatta. In Ecology and behavior of neotropical primates, vol 2 (ed. R. A. 

Mittermeier, A. B. Rylands, A. Coimbra-Filho, G. A. B. Fonseca). Washington DC: World Wildlife Fund. 
Alouatta seniculus (P) Julliot, C., & Sabatier, D. (1993). Diet of the red howler monkey (Alouatta seniculus) in French-Guiana. Int J Primatol 14:527-550. Di Fiore, A., & Campbell, C. J. (2007). The 

atelines: variation in ecology, behavior, and social organisation. In Primates in perspective (ed. C. J. Campbell, A. Fuentes, K. C. McKinnon, M. Panger, S. K. Bearder). New 
York: Oxford University Press. 

Ateles paniscus (P) van Roosmalen, M. G. M. (1980). Habitat preferences, diet, feeding strategy and social organization of the black spider monkey (Ateles paniscus paniscus Linnaeus 1758) in 
Surinam. PhD thesis. Landbouwhogeschool Wageningen: Leersum. Di Fiore, A., & Campbell, C. J. (2007). The atelines: variation in ecology, behavior, and social 
organisation. In Primates in perspective (ed. C. J. Campbell, A. Fuentes, K. C. McKinnon, M. Panger, S. K. Bearder). New York: Oxford University Press. 

Callthrix argentata (P) xxx (Willems and van Schaik 2015?) 
Callithrix jacchus (P) de Castro, C. S. S., & Araújo, A. (2007). Diet and feeding behavior of marmoset, Callithrix jacchus. Brazilian Journal of Ecology, 7, 14-19. Digby, L. J., Ferrari, S. F., & 

Saltzman, W. (2007). Callitrichines: the role of competition in cooperatively breeding species. In Primates in perspective (ed. C. J. Campbell, A. Fuentes, K. C. McKinnon, M. 
Panger, S. K. Bearder). New York: Oxford University Press. 

Cebuella pygmaea (P) xxx (Van Woerden 2010?) 
Cebus apella (P) Zhang, S. Y. (1995). Activity and ranging patterns in relation to fruit utilization by brown capuchins (Cebus apella) in French-Guiana. International Journal of Primatology, 

16, 489-507. 
Cheirogaleus medius (S) Fietz, J., & Ganzhorn, J. U. (1999). Feeding ecology of the hibernating primate Cheirogaleus medius: how does it get so fat? Oecologia, 121, 157-164. 
Chiropotes satanas (P) Norconk, M. A. (1996). Seasonal variation in the diets of white-faced and bearded sakis (Pithecia pithecia and Chiropotes satanas) in Guri Lake, Venezuela. In Adaptive 

radiations of neotropical primates (ed. M. A. Norconk, A. L. Rosenberger, P. A. Garber). New York: Plenum Press. 
Chlorocebus pygerythrus (C) Enstam, K. L., & Isbell, L. (2007). The guenons (genus Cercopithecus) and their allies: behavioral ecology of polyspecific associations. In Primates in perspective (ed. C. J. 

Campbell, A. Fuentes, K. C. McKinnon, M. Panger, S. K. Bearder). New York: Oxford University Press.  
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Table S2 Allometric relationships between intestinal length measures (in cm) and body mass 560 
(BM, in kg) according to Length = a BMb with 95% confidence intervals for parameter 561 
estimates from analyses using Generalized Least Squares (i.e., not accounting for phylogeny) 562 

Length of n a (95%CI) b (95%CI) 
Total intestine 42 168 (148; 190) 0.40 (0.34; 0.46) 
   Strepsirrhini 11 188 (133; 367) 0.40 (0.08; 0.73) 
   Platyrrhini 14 152 (137; 168) 0.40 (0.32; 0.49) 
   Catarrhini 17 198 (146; 269) 0.34 (0.24; 0.45) 
    
Small intestine 42 117 (103; 132) 0.41 (0.35; 0.46) 
   Strepsirrhini 11 125 (93; 167) 0.29 (0.01; 0.56) 
   Platyrrhini 14 111 (96; 128) 0.44 (0.32; 0.56) 
   Catarrhini 17 143 (101; 203) 0.34 (0.22; 0.46) 
    
Caecum 42 7.5 (5.7; 9.7) 0.16 (0.04; 0.29) 
   Strepsirrhini 11 12.3 (10.5; 14.5) 0.76 (0.61; 0.91) 
   Platyrrhini 14 6.1 (5.0; 7.4) 0.34 (0.18; 0.51) 
   Catarrhini 17 3.9 (2.1; 6.9) 0.29 (0.09; 0.48) 
    
Colon 42 41 (34; 49) 0.41 (0.32; 0.50) 
   Strepsirrhini 11 54 (37; 79) 0.62 (0.26; 0.98) 
   Platyrrhini 14 31 (25; 38) 0.31 (0.14; 0.47) 
   Catarrhini 17 49 (32; 76) 0.33 (0.19; 0.48) 
    
Large intestine 42 49 (41; 59) 0.38 (0.29; 0.47) 
   Strepsirrhini 11 69 (48; 98) 0.66 (0.34; 0.98) 
   Platyrrhini 14 38 (31; 45) 0.32 (0.17; 0.47) 
   Catarrhini 17 54 (36; 82) 0.33 (0.19; 0.47) 
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