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Summary

The vast majority of literature pertaining to mesen-
chymal stem cells (MSC) immunomodulation has
focussed on bone marrow-derived MSC that are sys-
temically infused to alleviate inflammatory condi-
tions. Rheumatoid arthritis (RA) is the commonest
autoimmune joint disease that has witnessed signifi-
cant therapeutic advances in the past decade, but
remains stubbornly difficult to treat in a subset of
cases. Pre-clinical research has demonstrated that
bone marrow, adipose, synovial and umbilical
cord-derived MSC all suppress the functions of dif-
ferent immune cells thus raising the possibility of
new therapies for autoimmune diseases including
RA. Indeed, preliminary evidence for MSC efficacy
has been reported in some cases of RA and systemic

lupus erythromatosis. The potential use of bone
marrow-MSC (BM-MSC) for RA therapy is emerging
but the use of synovial MSC (S-MSC) to suppress the
exaggerated immune response within the inflamed
joints remains rudimentary. Synovial fibroblasts that
are likely derived from S-MSCs, also give rise to a
cell-cultured progeny termed fibroblast-like syno-
viocytes (FLS), which are key players in the perpetu-
ation of joint inflammation and destruction. A better
understanding of the link between these cells and
their biology could be a key to developing novel
MSC-based strategies for therapy. The review briefly
focuses on BM-MSC and gives particular attention to
joint niche synovial MSC and FLS with respect to
immunoregulatory potential therapy roles.

Background

The autoimmune diseases are a heterogeneous group
of self-directed inflammatory disorders which is
characterized by progressive tissue destruction with
a loss of function and potentially death if not ad-
equately treated.1 Although the pathogenesis of auto-
immune diseases are largely played out by cells of
the adaptive immune response including B and T
cells, one autoimmune disease, rheumatoid arthritis
(RA), is also associated with an aberrant joint fibro-
blast activation that contributes to joint destruction.2

The field of mesenchymal stem cells (MSC) research

was initially based on harnessing their remarkable

multi-lineage differentiation capabilities for skeletal

regeneration, including bone and cartilage.

Although this remains a major translational focus

of regenerative medicine, more recently, another

remarkable ability of MSC, namely immunomodula-

tion—has also emerged.3 Generally, the immunomo-

dulatory effect of MSC and in particular synovial

MSC (S-MSC) has led to introduce these cells as po-

tential therapeutic tools to correct the breakdown of
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immune tolerance in RA, particularly for a group of
cases that are inadequately treated.

The mechanisms of MSC
immunoregulation

The effects of MSC on immune cells have been most
extensively studied using ‘gold standard’ bone
marrow-MSC (BM-MSC) as the BM being the site
of the original discovery of MSC. Basically, BM-
MSC could exert widespread modulatory effects on
cells of both the innate and adaptive immune re-
sponses. Some of MSC effects on T cells include
an inhibition of CD4+ T cell proliferation in re-
sponse to mitogens (e.g. phytohaemagglutinin or
concanavalin A) or antibodies (anti-CD2/CD3/
CD28).4–6 Furthermore, MSC can inhibit the produc-
tion of IL-2, TNF-a by T cells.7 BM-MSC can also
induce the differentiation of classic
CD4+CD25hiFOXP3+ T regulatory cells (T-regs)
and maintain their inhibitory function.8,9 These ef-
fects of MSC on T cells have been shown to be de-
pendent on IFN-g.4–6

In addition to the regulation of T cell-mediated
immune response, BM-MSC was found to be cap-
able of inhibition of B cell function and differenti-
ation.10 Moreover, the chemotaxis of B cells into
inflammatory sites could be suppressed via a
reduced surface expression of the chemokine recep-
tors; CXCR4, CXCR5 and CCR7 on B cells. These
effects on chemokine receptors have been shown
when B cells are in co-culture with MSC and are
IFN-g dependent.10

In relation to innate immune cells, BM-MSC in-
hibit the generation of dendritic cells (DCs) from
monocytes11 and reduce the expression of human
leukocyte antigen DR (HLA-DR) and CD80 and
CD86 co-stimulatory molecules on antigen present-
ing cells (APC).12 Additionally, the production of the
pro-inflammatory cytokines such as IL-2, IFN-g and
TNF-a by APC is reduced and the production of IL-
10 is promoted due to the effect of MSC.12–14 With
respect to NK cells, MSC can reduce the prolifer-
ation of both resting and IL-2 activated NK cells,
their cytotoxic capabilities and IFN-g production.14

Numerous immunoregulatory mechanisms of
MSC have been described including the secretion
of Indoleamine 2, 3-dioxygenase (IDO). IDO can
catalyse an essential amino acid tryptophan into
kynurenine, which impairs the synthesis of various
cellular proteins and leads to inhibition of cell pro-
liferation.15–17 Other soluble factors produced by
MSC include Nitric oxide synthase (iNOS), which
induces the production of nitric oxide from macro-
phages thus inhibiting the proliferation, the secretory

and the cytolytic functions of T cells.18,19 Additional
immunosuppression mechanisms mediated by
MSC involve hepatocyte growth factor, TGF-b,
Hemeoxygenase-1 enzyme and HLA-G5.4,20,21

Besides soluble factors, cell-to-cell contact between
MSC and T cells can also suppress the function of
T cells that acquire regulatory phenotype marked by
a sustained expression of CD69 and increased tran-
script levels of T-reg related genes.22

Niches and origin of S-MSC

It has been shown that MSC can be present in vari-
ous areas of the joint (Figure 1). The presence of
MSC isolated from the joint was first demonstrated
in the synovium.23 As chondrogenic precursors,
MSC are present within the superficial layer of the
articular cartilage.24 Furthermore, it has been shown
that MSC can be derived from certain joint liga-
ments, menisci and adipose tissue.25 Besides tissues,
MSC can be detected in the synovial fluid and have
been shown to be increased in numbers in some
pathological conditions such as osteoarthritis (OA)
or following joint injury. However, the quantity of
these MSC is negatively related to the degree of
synovitis in RA.26–28 Initially, MSC were thought to
be brought into synovium via migrating blood ves-
sels. This was proposed as MSC are mostly located
around blood vessels and because the frequency of
MSC is positively correlated with increase tissue vas-
cularity.29,30 However, other studies have demon-
strated that S-MSC could be originated within the
synovium and exist in projections of the synovial
lining compared with sublining layer. Additionally,
the morphology and gene expression profile of syn-
ovial fluid MSC have been shown to be similar to
S-MSC rather than BM-MSC supporting further the
synovial origin of these MSC.27,28,31,32

Heterogeneity of synovial
stroma: fibroblast-like synoviocytes
and S-MSC

The synovial membrane lines the non-articular sur-
face of the joint forming a cavity containing synovial
fluid which aids smooth joint locomotion. In health,
the synovial membrane is one or two cell thick and
formed of two cell types, macrophage-like cells (type
A synoviocytes) and stromal cells known as type B
synoviocytes. Fibroblast-like synoviocytes (FLS) is the
culture-expanded population derived from digested
synovial stromal cells, the same population from
which culture-expanded S-MSCs are derived.23 It is
possible that this nomenclature actually represents
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the same culture-manipulated cell populations.

Although culture-expanded BM-MSCs are derived

exclusively from the CD271+ population, there is

much more complexity with respect to native S-
MSCs where a unique phenotype has not thus far

been defined.33 The main characterization of FLS in-

volves limited proliferation and the surface expres-

sion of CD44 and vascular cell adhesion molecule-
1 (VCAM-1).34 S-MSC-like BM-MSC express classic

stromal markers CD105, CD73 and CD90 and lack

the expression of haematopoietic markers CD45,

CD34, CD14, CD19, CD11b and CD79a.35 The
colony forming capacity and high levels of prolifer-

ation have been used to select S-MSC from the stro-

mal plastic adherent fraction following in vitro
expansion of synovial digestion.27 Although the mor-

phological examination of S-MSC suggests their close

relationship to FLS,36 these two types of cells seem to

be distinctive. A higher level of CD105 and CD166 is
detected on S-MSC relative to FLS.27,37 In summary,

although they are closely related, no consensus has

yet been reached on which markers would permit an

isolation of non-overlapping, pure population of S-
MSC and FLS.

Immunomodulatory capacity of
healthy S-MSC and FLS

In contrast to BM-MSC, the immunoregulatory role

of healthy S-MSC is less documented. S-MSC

extracted from healthy subjects are able to inhibit

T cell proliferation.38,39 Similar to BM-MSC, S-

MSC extracted from OA patients can maintain the

percentage of T regs when in co-culture with T-reg

enriched lymphocytes from healthy donors.40

However, the effect of S-MSC on B cells, NK cells

or APCs remains to be explored. One documented

mechanism by which S-MSC can display their sup-

pression effect on T cells is via the production of

IDO39 (Figure 2, A). It has been shown that S-MSC

and BM-MSC can display similar IDO activity at a

basal level or when induced by IFN-g and TNF-a.39

Therefore, a similar inhibitory effect by S-MSC could

be expected on other immune cells.
In physiological conditions, It is plausible that

healthy FLS can also be involved in immune haemo-

stasis within the joint (Figure 2, A). It has been

shown that FLS could inhibit T cell proliferation in

a similar manner to fibroblasts derived from other

tissues such as skin, gingiva and cornea.16,41–43

Healthy FLS could also inhibit the differentiation of

monocytes into DC via IL-6 dependent mechan-

ism.44 Human fibroblasts are generally known to

mediate their immunoregulatory role via IDO-de-

pendent mechanism and TGF-b which FLS can

produce.44,45

The immunoregulatory function of MSC can be

modulated by the pro-inflammatory cytokines such

as IFN-g (the key factor), TNF-a, IL-1a or b.46 This

phenomenon has been recently termed the MSC

‘licensing’ and the production of soluble IDO,

Figure 1. MSC in the joint. Besides BM-MSC, other MSC can be present in multiple areas within the joint; the synovial

lining, synovial fluid, joint fat pad, cartilage, subchondral bone and ligaments. Other synovial stromal cells, including FLS

and fat cells exist within synovial lining and sublining layers.
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iNOS and PGE2 by MSC has been found to be
enhanced by licensed MSC.47,48 The process of
licensing of MSC is also critically linked to the acti-
vation of Toll-like receptors (TLRs) expressed on the
MSC surface. A differential polarization of MSC to-
wards either inflammatory or anti-inflammatory side
has recently shown to be related to type of TLR
primed. Stimulation of TLR4 causes the production
of pro-inflammatory cytokines IL-6, IL-8 or TGF-b
generating MSC1 phenotype. On the contrary, bind-
ing of specific ligands to TLR3 induces

immunosuppressive MSC2 cells which produce
IDO.49–51

Like MSC, various types of fibroblasts have been
shown to be ‘licensed’ by IFN-g.41,43 Therefore, it
can be assumed that FLS can be also activated by
IFN-g to display immunoregulatory effects. As IFN-g
has a central role in the licensing process, joint in-
flammatory milieu could be critical for the stromal
control of the local immune response.52 It is possible
that the synovial stromal cells, in all stages of mat-
uration: as progenitors (S-MSC) or as mature cells

Figure 2. Synovial stromal cells in health and RA. (A) In healthy condition, both FLS and MSC can perform immunosup-

pressive effect via secretion of IDO and/or TGF-b. (B) In RA, S-MSC could be activated by RA FLS and/or by IFN-g, IL-18 and

IL-12 to produce pro-inflammatory cytokines IL-6, IL-8 and TNF-a. Furthermore, RA FLS are activated by T cells or macro-

phages by cell-to-cell contact or by the effect of TNF-a, IL-17 or IFN-g. RA FLS in turn produce pro-inflammatory cytokines,

IL-6, IL-8, IL-15, IL-18, IL-23, GM-CSF, TNF-a, BAFF and APRIL, which all cause immune stimulation.
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(FLS), control the ‘healthy’ balance of immune re-

sponse within the healthy joint and the failure of this

haemostasis probably takes place with an excess

inflammation.

S-MSC and FLS in RA

It has been shown that S-MSC harvested from RA is

capable of immunosuppression in vitro.39 However,

it seems that RA micro-environment including in-

flammatory cells and cytokines causes an inefficacy

of S-MSC to control the exaggerated immune re-

sponse in this disease (Figure 2, B). One mechanism

that could explain ineffective control of the immune

response by S-MSC in RA is TLR activation which is

directly linked to RA pathogenesis.53 TLR2 and 4 are

hardly detected in healthy synovium compared with

RA synovium where these TLRs are highly expressed

particularly in the synovial lining layer.54 The most

abundant types of ligands for TLR receptors that de-

tected in RA synovium are those binding to TLR2

and TLR4 which when activated could induce the

release of pro-inflammatory cytokines by macro-

phages.53 Examples of these ligands include

HSP2255 and the extracellular matrix component

Biglycan.56 Interestingly, the expression of

Biglycan has been detected in the lysate of RA

FLS57 indicating that RA FLS can be involved in

inappropriate priming of S-MSC. RA-induced cyto-

kines, IL-12 and IL-18 together with IFN-g, can

cause an upregulation of TLR4 on MSC and thus

trigger the expression of IL-6 and TNF-a.54,58,59

Altogether, this suggests that in RA, S-MSC could

be induced via inflammatory cytokines to express

higher level of TLR4 and consequently respond

to different TLR4 stimulants. Additionally, this indi-

cates that the process of licensing and mechanism of

immunosuppression displayed by S-MSC could be

reversed in favour of RA progression.
RA FLS have been described as activated and ‘ag-

gressive’ cells that directly aggravate the inflamma-

tory processes (Figure 2, B).60 RA FLS have been

shown to acquire MHC class II compared to healthy

FLS and work as antigen presenting cells leading to

T cell activation and proliferation in a comparable

way to APCs.61,62 Despite that RA FLS lack the sur-

face expression of classic co-stimulatory molecules

such as CD80, FLS-dependent T cell proliferation is

related to an interaction between CD47 on T cell

surface and its ligand, thrombospondin-1 expressed

by FLS.63 Also, RA FLS induce the activation and

accumulation of T cells following an interaction

between CXCR4 on T cells and its ligand stromal

cell-derived factor-1 (SDF-1) on RA FLS.64

Similarly, RA FLS enhance B cell recruitment,
survival and functions, particularly via SDF-1 and
VCAM-1-dependent mechanisms.65,66 RA FLS also
promote the survival of B cells via an increase of the
expression of BCL-XL by B cells67 and by upregula-
tion of IL-15 receptor on the surface of B cells.68 RA
FLS induce immunoglobulin class switching in B
cells via production of high levels of TNF ligand
family member, B-cell activating factor (BAFF) and
a proliferation-inducing ligand (APRIL).69 With re-
spect to innate cell functions, RA FLS can act as
APCs and could express high level of surface Toll
receptors TLR 2 and 4.61,70 Priming by cytokines
such as IL-1 or TNF-a also induces the production
of GM-CSF from FLS which is a major macrophage
activating factor.71 In conclusion, this all demon-
strates that RA FLS can promote both types of
immune responses.

There is an indication as shown in vitro, that syn-
ovial stromal cells can be immunosuppressive.38

The aggressive pro-inflammatory nature of RA FLS
shown in vivo could be explained by the effect of
RA micro-environment and interaction between RA
FLS and immune cells. FLS express intracellular mol-
ecules such as Cryopyrin which are inducible by
TNF-a and can in turn increase the production of
IL-6 and IL-8.72 Also, type-II collagen-specific
effector T cells could stimulate secretion of IL-15,
IL-18 and TNF by FLS which in turn activate the
production of IFN-g by T cells.73 In summary, polar-
ization of RA FLS into pro-inflammatory cells ap-
pears to be related to RA environmental factors
and this seems to create a vicious circle leading to
chronicity of this disease.

The development of RA is associated with hyper-
proliferation of FLS, a process which could be
related to the inhibition of FLS apoptosis.74,75

Additionally, increased production of cysteine-rich
protein 61 (Cyr61), a molecule involved in cell ad-
hesion and migration, stimulates FLS proliferation.76

The factors driving FLS proliferation in RA do not
appear to be acting on S-MSC; one study has
shown that the frequency of S-MSC in the RA syno-
vium is reduced compared with OA controls and
this is correlated with the progression of synovitis.27

This imbalance in the numbers of aggressive RA FLS
and MSC could be another contributing factor lead-
ing to the loss of immune haemostasis in RA.

In summary, RAFLS and S-MSC could directly par-
ticipate in the progression of inflammation in RA by
different means (Figure 2, B). Despite their potential
immunosuppressive role, these synovial-derived stro-
mal cells are not effective in controlling inflammation
in RA and potentially in other auto-inflammatory dis-
eases. More knowledge on the immunoregulatory
function of S-MSC in health and early stages of RA
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could therefore lead to new methods of targeting in-
flammatory processes in the RA synovium.

S-MSC as cell therapy for
RA—principles

The use of autologous MSC for immunosuppression
therapy is widely accepted because these MSC can
efficiently inhibit the proliferation of activated
lymphocytes in a similar manner to allogeneic
healthy cells as in vitro studies have shown.77

Although the morphology and phenotype of culti-
vated S-MSC is similar to that of BM-MSC, it has
been shown that S-MSC has superiority in several as-
pects. Interestingly, S-MSC have much greater prolif-
erative rate compared to bone marrow as well as
muscle- and fat-derived MSC as shown in animal
models.78 Furthermore, S-MSC retains their prolifera-
tive power regardless of donor age and after several
passages in culture unlike other MSC.23,79 Comparing
S-MSC with skin-derived MSC has shown that the
later exert less immune suppressive properties than
S-MSC, particularly upon stimulation with IFN-g.39

In summary, S-MSC could be a convenient MSC
source to consider for RA cell therapy.

The extraction of S-MSC from pathological joints
such as OA and RA is usually performed as part of
surgical treatment such as the removal of degener-
ated cartilage.80 An extraction of small quantity of
synovial tissue is usually sufficient to extract MSC
effectively.23 MSC can be extracted from different
sites within a joint; suprapatellar pouch, infrapatellar
fat pad and medial outer or medial inner articular
regions. However, the functional capabilities of S-
MSC could be varied from other joint-driven MSC. It
has been noticed that MSC harvested from medial
outer tissues have higher proliferation rate com-
pared with those extracted from other joint
regions.30 This point reflects a need for more re-
search on the differences between immunosuppres-
sive capacities of MSC derived from various
anatomical areas within the joint.

In animal models of RA, allogeneic MSC have
been shown to exhibit poor immunogenicity
in vitro.81,82 Furthermore, animal model of colla-
gen-induced arthritis (CIA) responded successfully
to allogeneic BM-MSC delivered intraperitoneally.83

Despite the apparent advantages of allogeneic MSC,
some conflicting data have emerged in terms of RA
treatment. Allogeneic MSC extracted from BM, um-
bilical cord and placental cultures were rejected in a
mouse model of graft versus host disease, did not
form ectopic bone and lost their immunosuppressive
power that was displayed in vitro.84,85 However,
studies performed on patients of autoimmune

diseases have demonstrated the advantage of using

allogeneic MSC. The Using of autologous MSC did
not seem to improve SLE disease course despite an

increase of proportion of peripheral blood T-regs.86

MSC extracted from SLE patients grew slower in cul-

ture, display less viability and produce less TGF-b in
contrast to allogeneic healthy MSC indicating that

the former cells are probably defective in function.87

In case of RA, it has been shown that intravenous

infusion of allogeneic BM-MSC or Umbilical Cord
(UC)-MSC into small group of anti-TNF resistant

cases induces a temporary clinical improvement

but not on long term follow-up.88 A recent work

has proved the safety and the potential efficiency
of allogeneic MSC for RA therapy in a larger

number of patients.89 Furthermore, the combination

of allogeneic UC-MSC and conventional therapy
improves RA cases clinically and serologically.

The same research group has conducted a pilot

study for 15 patients with refractory SLE and has

shown a clinical improvement and stability in
renal function after treatment with allogeneic BM-

MSC.90 In summary, using allogeneic MSC could be

effective in refractory autoimmune disorders such as

RA and SLE; however, more clinical trials are
needed to approve these findings.

The best tool to deliver MSC is still undetermined.

Although MSC can migrate into the specific site of

inflammation, MSC infused systemically could dis-

play anti-inflammatory responses in different sites
which underpin an effective use of MSC in multi-

organ diseases.91,92 However, the systemic admin-

istration of autologous MSC could cause an exacer-

bation of the disease as shown in CIA model
although the mechanism is not clear.93

Furthermore, there is a potential activation of

hidden or low grade tumours because MSC could

suppress the anti-tumour immune response.94

Consequently, there is now an increasing trend to

implement a local MSC delivery, such as intra-ar-

ticular MSC injections. A recent study using SCID
mouse model of arthritis has verified the practicabil-

ity and safety of using intra-articular adipose-derived

MSC injection as a therapy of rheumatic disorders.95

Similar assessment is needed to test if a direct inocu-
lation into joint could be the convenient way of the

S-MSC delivery in RA cases.

How S-MSC can be an effective tool
for therapy of RA; Conclusions and
future aspects

Within the normal synovial tissue, two types of

non-haematopoietic stromal cells: FLS and S-MSC
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appear to play an important role in controlling the
inflammation and immune haemostasis. In normal
conditions, closely related FLS and S-MSC can act
as immunomodulatory cells controlling the magni-
tude of immune responses. Both stromal lineage
cells retain some level of immunosuppressive cap-
ability during pathological conditions such as RA,
which can be detected in vitro. However, due to
various factors within RA milieu and as a result of
a direct contact with inflammatory cells and cyto-
kines, the immunomodulatory function of S-MSC
and FLS seem to be disturbed. The proliferation of
RA FLS which acquire aggressive pro-inflammatory
phenotype within the synovium takes the upper
hand. Moreover, the function of S-MSC seems to
be shifted towards immune stimulation. Based on
these considerations, the use of S-MSC as cell ther-
apy for autoimmune disorder such as RA needs to be
complemented with targeting the inflammatory fac-
tors within the synovium. Essentially, further inves-
tigation into the interaction between S-MSC and RA
FLS and with immune cells is still required to im-
prove the therapy of RA. Some pre-clinical studies
have been shown that targeting of signalling mol-
ecules in active pro-inflammatory cells including
RA FLS could be of value in treatment of RA.96

Therefore, combination of MSC therapy together
with targeting RA FLS must be considered.
Furthermore, joint MSC harvesting sites, doses as
well as routes and schedules of delivery remain
underexplored and merit further investigation
before this type of therapy could become a clinical
reality.
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