
IEEE Transactions on Consumer Electronics 1

Abstract—Plug-in electric vehicles are becoming one of
indispensable prosumer electronics components for smart
households and therefore, their cost efficient energy scheduling is
one of the main challenging issues. In the current schemas, the
charging and discharging interval of the vehicles are normally
announced by the owners in advance leading to the suboptimal
profit gain in some situations and hence consumers dissatisfaction.
In this paper, we propose an efficient charging/discharging
scheduling mechanism for electric vehicles in multiple homes
common parking lot for smart households prosumers. The
proposed mechanism takes into account the optimal interval
allocation considering the instantaneous electricity load and the
vehicles request pattern. Based on the data from the vehicles, a
mixed optimization model is formulated by the central scheduler
which aims to maximize the profit of consumers and is then solved
using an effective algorithm. The optimization results are then sent
to the system controller determining the interval and energy
trading patterns between the power grid and the vehicles. The
proposed algorithm has low complexity and ensures the energy
satisfaction for all consumers. The performance of the scheduling
schema is verified through multiple simulation scenarios.

Index Terms—Plug-in Electric Vehicles, Home Stations,
Charging and Discharging, Profit Maximization, Consumers
Satisfaction.

I. INTRODUCTION

   Due to the environmental issues such as the increase in CO2
emissions from high pollution caused by oil dependent vehicles,
the penetration of electric vehicles is expected to take a
considerable place of indispensable prosumer electronics
components [1], [2]. Among various categories of electric
vehicles, plug-in electric vehicles have found the most
attentions from both research and practical perspectives due to
their simpler modeling [3]-[6]. Plug-in electric vehicles which
belong to nonperiodic non-real-time appliances [7] have
significant role in shaving the electricity load on the grid.
   To compensate the instability of power grid caused by
unidirectional energy flow, the bidirectional energy flow
between the electric vehicles and the grid known as vehicle-to-

   This research was a part of the project titled Domestic products development
of marine survey and ocean exploration equipments, funded by the Ministry of
Oceans and Fisheries, and by GIST Research Institute (GRI) .
   Abbas Mehrabi  is  with   the  Department  of   Computer Science, Aalto
University, Espoo, Finland. P.O.Box: 15400, FI-00076 (Email:
abbas.mehrabidavoodabadi@aalto.fi ).
   Kiseon Kim is with the School of Electrical Engineering and Computer
Science, Gwangju Institute of Science and Technology (GIST), P.O.Box.
61005, Gwangju, Korea. (Email: kskim@gist.ac.kr).

grid has been introduced as  a viable solution by providing the
ancillary services back to the grid [2], [3], [8], [9]. In the context
of smart households prosumers electronics, the  integration  of
electric vehicles for charging or discharging will have
significant impact on the energy consumption pattern of the
appliances except for electric vehicles. Considering the real-
time electricity pricing (RTP) model declared by the energy
utility company [3], [4], [10], the scheduling of electric vehicles
in bidirectional vehicle-to-grid communication has been
extensively studied from different perspectives such as
minimizing the overall energy cost [3], [8], [10] or maximizing
the vehicle consumer satisfaction [5]. He et al. [3] addressed the
problem of minimizing the costs for electric vehicles in their
charging and discharging scheduling taking into account the
RTP pricing model and the internal battery associated costs.
   The cost minimization in smart charging scheduling of
conservative and green EVs at a single charging station
equipped with solar panels has been investigated [11].
Recently, the utilization of cloud computing facilities into the
smart grid communications for efficient charging and
discharging of electric vehicles has been also studied [12].
From the auxiliary energy resources point of view, Chaudhari
et al. [10] have investigated the problem of minimizing the
operational costs of charging stations in scheduling of the
vehicles by integrating the energy storage system (ESS) into the
charging stations. In the context of consumer electronics, Jo et
al. [13] introduced the energy cost minimization in scheduling
of electronic devices with the integration of  auxiliary energy
resources and  the charging of electric vehicles into the home
energy management system (HEMS). The customer
convenience is provided through solving a mixed optimization
problem with the objective of minimizing the overall costs. The
interaction of HEMS with the consumers toward minimizing
the electricity cost of home appliances considering both time of
use (ToU) and inclining block rate (ICB) pricing models has
been also addressed [14]. Wi et al. [15] have studied the
problem of scheduling of  electric vehicles based on the
predicted photovoltaic output and according to the consumer
preference during different time periods of the scheduling.
   In spite of such extensive study on vehicle-to-grid scheduling,
the current existing algorithms assume that the desired interval
for charging and discharging of the electric vehicle is provided
to the scheduler by the consumer in advance. Furthermore, no
attention has been paid to the combination of inclining block
rates (ICB) [16] and real-time pricing model (RTP) [17] as a
more realistic pricing  model  which  is  mostly  applicable  for
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charging and discharging of the vehicles for smart households
prosumers. Therefore, our main contributions in this work are
summarized as follows:
   1) Aiming to improve the profit gain for household
prosumers, we design an efficient charging/discharging
scheduling mechanism for the consumers of electric vehicles in
multiple home stations common parking lot scenarios.
   2) The proposed system and the scheduling mechanism
provide the flexibility of sending the data from the electric
vehicles to the central scheduler where a novel mixed
optimization model is constructed for the optimal interval
allocation and the energy power determination.
   3) An efficient algorithm based on the greedy heuristic is then
run by the central scheduler to solve the optimization problem.
The algorithm has low complexity and ensures the satisfaction
of energy requirements for all consumers. The results of the
conducted simulations verify the performance of the proposed
scheduling mechanism in terms of improving the profit gain for
the consumers, better ancillary services for the power grid and
reducing the percentage of unserviced vehicles.
   The remaining parts of the paper are organized as follows:
The proposed system model and its components are described
in Section II. The profit maximization methodology and the
scheduling algorithm are detailed in Section III. The results of
conducted simulations are presented in Section IV and finally
Section V concludes the paper.

II. ELECTRIC VEHICLE-TO-GRID TARGET SYSTEM

   Fig. 1 illustrates the framework of target vehicle-to-grid
system model and its prosumer electronic components. The
system facilitates the bidirectional energy flow between the
electric vehicles and the power grid through the charging and
discharging at home stations and common parking lot. Vehicle-
to-grid operations are performed under the coordination of local
aggregators which are in direct connection with the  power  grid.
The local aggregator coordinates  the  energy  trading  between
vehicle-to-grid   control   system   and   multiple   charging   or
discharging outlets. Upon the request of each vehicle’s owner,
its data including the arrival/departure times, initial state of
charge (SoC) and final energy target are sent through the
communication line to the central scheduler. The scheduler then

runs an efficient algorithm based on a mixed integer nonlinear
programming (MINLP) optimization model to determine the
optimal interval for each vehicle as well as the charging or
discharging power at each time slot during the allocated
interval. The scheduler then sends the scheduling commands to
vehicle-to-grid control component of the system to establish the
energy flow between the grid and electric vehicles under the
coordination of local aggregators. Fig. 2 demonstrates the
interaction between the main components of the system toward
the determination of optimal charging/discharging interval and
energy power allocation for the requesting vehicles.
   To analytically model the system and the scheduling
algorithm, we use the discrete index t ∈{1,2,…,|T|} throughout
the paper for the representation of time slot where |T| is the total
number of time slots during the scheduling day. The duration of
each time slot is also denoted by ∆t. Furthermore, the set of
consecutive time slots Interval(a)={tfa,…,tla}  represents the
charging or discharging interval of vehicle where tfa,tla are
respectively the starting and ending time slots of the interval.
Notation Nt is also defined which represents the number of
plugged-in vehicles to the grid at time slot t. Furthermore, in
order to avoid the situations where the grid becomes overloaded
in the case of charging or underloaded in the case of
discharging, the constant Cmax  is defined which limits the
maximum number of electric vehicles that can be plugged-in to
the grid at each time slot. In the following, we describe the main
characteristics and the involving entities of the target vehicle-
to-grid system from the consumers point of view.

A. System Dynamicity
   The system considers the dynamicity in the vehicles arrival
and departure such that based on a daily regular pattern, the
consumers leave home in the morning at an arbitrary time from
a specified interval and depart from their office to reach the
home at the evening time. The fleet of electric vehicles for
charging and discharging scheduling is denoted by set
M=MCHG∪MDCG. The vehicles belong to subset MCHG are
willing to participate in charging operation while those belong
to subset MDCG participate in only discharging. The arrival and
departure times of vehicle a  are represented by Aa and Da,
respectively. Depending on the future trip scheduling of the
vehicle, the owner announces its own desired plug-in duration
and the departure time to the central scheduler once it decides
to participate in vehicle-to-grid program at either home station
or common parking lot. Then, based on the instantaneous
electricity load on the power grid and by solving a mixed
optimization problem, the scheduler determines the optimal
charging/discharging interval as well as the amount of energy
trading for the requested vehicle. As demonstrated in Fig. 2, the
scheduler then sends the scheduling commands to the control
system to initiate the vehicle-to-grid operation.
   In multiple home stations common parking lot for smart
household prosumers, the system considers the continues and
regular charging and discharging operations during the
allocated interval of the vehicle. For the vehicle with index a,
lets denote by Ba, Eini

a  and  Efin
a  as respectively the battery

capacity, the initial stored energy in the battery and the final
energy target set by the  owner  of  the vehicle. With maximum

Fig. 1. The framework of vehicle-to-grid system in multiple home stations
common parking lot scenario (Dashed and bold lines represent the
communication and energy lines, respectively).
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feasible charging power Pmax
c  and discharging power Pmax

d  at
each time slot, variable eat represents the charging or
discharging power allocated to vehicle a at time slot t. Also, the
constant force of electric motor denoted by F is taken into
account for computing the energy consumption during the
traveled distance d.

B. Consumer Convenience
   The vehicle-to-grid system also provides the consumer
convenience in the sense that among the set of electric vehicles
in either home stations or common parking lot, those will send
their data to the scheduler who are willing to participate in the
energy trading depending on the SoC of their battery and the
future trip plan.

C. Household Electricity Pricing
   One of the most important consumer electronics factors in the
system model which affects the charging and discharging
policy at each plugged-in time slot is the instantaneous
household electricity price announced by the energy utility
company [4], [10]. Under the theme of smart scheduling and in
order to encourage the consumer of electric vehicles to charge
and discharge at time slots with low and high electricity
demands, respectively, the target system applies the ICB-RTP
pricing model with respect to other household appliances.
Relation zt=Lt+ ∑ eat∀a∈M  states the current load at time slot t
where, Lt is the base electricity loaded on the grid which is from
the appliances except for the electric vehicles. Represented by
Z, the threshold for electricity load and Pc, the constant price
determined by the energy utility company, the ICB-RTP pricing
model is described as Pt(zt)=Pc for zt≤Z and Pt(zt)=c0+c1zt for
zt>Z. Constants c0, c1 are the coefficients of the linear pricing
model [3]. It is also noteworthy to mention that the target
system model is easily adoptable to other pricing strategies as
well since the optimization model run by the scheduler is
independent from the pricing model which is applied.

D. Consumer Profit
   As the main objective of the scheduling is to maximize the
overall profit for the consumers, the obtainable profit for each

vehicle should be first analyzed. Regardless of the location, the
profit that the consumer of plugged-in vehicle ܽ obtains at time
slot :from either charging or discharging is given by ݐ

Profit(a,t)=Revenue(a,t)-Cost(a,t)      (1)

   As the first term in equation (1), the obtainable revenue at
time slot t is computed by integrating over the pricing relation
in term of electricity load when the load changes from the
current to the modified load after either charging or discharging
at time slot t. More precisely:

Revenue(a,t)= න (c0+c1zt)dzt        (2)
zt+eat

zt
   On the other side, the incurred cost of the electric vehicle at
each time slot is calculated as the battery degradation cost due
to high charging or discharging powers, the fluctuation as well
as the maintenance costs of the vehicle at that time slot.

Cost(a,t)=αeat
2 +β(eat-ea(t-1))

2+MCa     (3)

where α and β are the coefficients for the battery associated
degradation and fluctuation costs [3] and MCa is the constant
maintenance cost that the owner of vehicle a pays at each time
slot. Based on ICB-RTP model, up to the threshold load, the
constant price is considered in the computation of revenue.
Obviously, the overall obtainable profit at slot t i.e. Profit(t) is
the summation of the profit of all plugged-in vehicles at slot t.

III. PROFIT MAXIMIZATION METHODOLOGY

   As illustrated in Fig. 2, the data from the vehicles are sent to
the central scheduler where the mixed optimization problem is
first formulated which takes into account the current state of the
system. In this section, we present the optimization problem
which aims to achieve the scheduling objective and satisfy the
set of practical constraints. It should be noted that the
optimization problem is presented in the offline form i.e.
assuming that the data from all consumers of electric vehicles
are available in advance. The section is then followed by the
proposed scheduling algorithm.

A. Optimization Model
   Considering the starting time slot and the amount of power at
each time slot as respectively the integer and real variables
(mixed) to be optimized, the problem of maximizing the overall
obtainable profit of vehicles from both charging and
discharging is formulated as the following mixed integer
nonlinear programming (MINLP) optimization model:

Maximize ෍ Profit(t)                                  (4)

|T|

t=1
Subject to:

tfa,tla∈{1,2,…,|T|},   Aa≤tfa<tla≤Da, ∀a∈M          (5)

zt=Lt+ ෍ eat, ∀t∈{1,2,…,|T|}                          (6)
∀a∈M

0≤Eini
a -F.d+ ෍ et'∆t≤Ba,  ∀a∈M, ∀t∈Interval(a)    (7)

t'∈S(t)

Fig. 2.  A schematic view of the interaction between the system components.
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Eini
a -F.d+ ෍ eat∆t=raBa, ∀a∈M       (8)

∀t∈Interval(a)

∑ I(tfa≤t≤tla)≤Cmax , ∀t∈{1,2,…,|T|}∀a∈M       (9)

tla=tfa+|Interval(a)|, ∀a∈M,                  (10)

0≤eat≤Pmax
c , ∀a∈MCHG, ∀t∈Interval(a)          (11)

0≤eat≤Pmax
d , ∀a∈MDCG, ∀t∈Interval(a)           (12)

   In the above model, variables tfa,  eat are the integer and real
decision variables, respectively. Constraint (5) ensures that the
starting time slot of charging or discharging interval of the
vehicle does not exceed the ending time slot. Constraint (7)
enforces that the stored energy in the battery of the vehicle at
the end of each time slot must be non-negative and less than its
battery capacity where S(t) is the discrete set of consecutive
slots before time slot t. Equality (8) ensures that for each
vehicle, the final energy including the initial energy, consumed
energy during the traveled distance between home/office and
the summation of charging or discharging energies must satisfy
the desired target set by the owner of the vehicle which is ra
fraction of battery capacity. Constraint (9) imposes the
constraint on the maximum number of plugged-in vehicles per
time slot at each location and (10) determines the ending time
slot in term of the starting time slot and the size of charging or
discharging interval. Here, function I(tfa≤t≤tla) is 0-1 indicator
function such that for time slot t, I(tfa≤t≤tla)=1 if tfa≤t≤tla and
I(tfa≤t≤tla)=0, otherwise. Finally, constraints (11) and (12)
specify the maximum allowed charging and discharging powers
at each time slot.

B. Scheduling Algorithm
   At the next phase, the scheduler needs to run an efficient
algorithm in order to determine the starting time slot as well as
the amount of charging or discharging power of the vehicle at
each time slot of the allocated interval. A simple yet efficient
algorithm based on greedy heuristic is developed for the
scheduling problem which has low complexity and ensures the
satisfaction of energy requirements of all consumers. The body
of the algorithm named OptimalInterval Allocation  has  been
shown in  Algorithm 1.
   For the case of charging, in an optimal scheduling, the
charging demand of the consumers must be shifted to the time
intervals with low electricity demand on the grid i.e. time slots
with cheap price while for discharging, the discharged load
must be shifted to time  intervals  with  high  price. With initial
base load on the grid, for each vehicle in either home stations
or parking lot, the proposed algorithm  starts  from  the time slot
of arrival and investigates all sets of consecutive time slots with
length equal to the size of vehicles interval. The time interval
which has available space for the current vehicle as well as it
has the least and the most average load among all possible
intervals is chosen for respectively charging and discharging
operation of the vehicle. As an illustrative example, Fig. 3
shows the allocated charging interval according to the
electricity base load. In contrast to the fixed interval allocation
in which the charging interval is announced by the consumer in

advance, in our system, the scheduler runs the proposed
algorithm which assigns the interval with lowest  average  load
according to the instantaneous electricity load on the grid.
Updating the price as mentioned in line 27 of the algorithm is
also performed according to ICB-RTP model. It should be also
mentioned that although  the  proposed algorithm allocates the
locally optimal interval for each electric vehicle, it does  not
incur  high  complexity since  the  interval size of the vehicle is
normally small compared to the total number of time slots.
After the command was sent to vehicle a determining the
interval during which the vehicle should be plugged-in, the
scheduler then solves the following optimization to determine
the amount of charging  or discharging powers at  each  time
slot which will be exchanged between the vehicle and the grid.

Minimize  ෍ (zt+eat-zത)2       (13)
∀t∈Interval(a)

where zത is the average of load during the vehicle’s interval. Note
that   the   above    minimization   problem   is   subject   to  the

Algorithm 1: OptimalInterval Allocation
Input: Set M of electric vehicles a  with data

(Aa,  Da,  |Interval(a)|,  Ba,  Eini
a ,  Efin

a ,  ra)
Output:   Interval(a), ∀a∈M,   overallProfit

1:     zt←Lt, ∀t∈{1,2,…,|T|}
2:     for each vehicle a ∈M do
3:          tfa←0
4:          if a ∈MCHG  (At home station)  then
5:                   aveLoad←∞
6:         else
7:                  aveLoad←-∞
8:         end if
9:         for each time slot ⌈Aa⌉≤t≤⌊Da⌋-|Interval(a)|
10:             If     N൫t'൯≤Cmax,   t≤t'≤t+|Interval(a)|
11:                    tempAverage←( ∑ zt't' )/|Interval(a)|
12:                    if a∈MCHG (At home station)  then
13:                        if    tempAverage≤aveLoad
14: aveLoad←tempAverage;    tfa←t
15:                        end if
16:                    else
17:                         if   tempAverage≥aveLoad
18: aveLoad←tempAverage;    tfa←t
19:                          end if
20:                    end if
21:              end if
22:        end for
23:        if  tfa≠0  then
24:            Interval(a)←[tfa,   tfa+|Interval(a)|]
25: Solve optimization problem (13) with

(Interval(a),  zt൫∀t∈Interval(a)൯, Eini
a ,  Efin

a )
26: for each  t∈Interval(a) do
27:                 zt←zt+eat    Update   Pt(zt)
28: Compute Profi(a,t)  from relation (1)
29:                 overallProfit←overallProfit+Profit(a,t)
30: end for
31:        else
32:             No space for vehicle a       Profit(a,t)←0
33:        end if
34:    end for
35:    Return    overallProfit
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constraints (7), (8), (11) and (12). According to (13), the
charging or discharging load of the vehicle at each time slot  is
determined such that the overall deviation of the modified load
from the average one is minimized. In fact, the aim of scheduler
in solving this optimization problem for power determination is
to provide the load  flatting  on  the  power grid  which  is one
of  the main objectives of the vehicle-to-grid system. Once the
charging or discharging powers eat are determined, the share of
profit that vehicle a obtains from its charging or discharging is
computed using the relation (1). Meanwhile, the algorithm also
updates the overall obtainable profit from all the vehicles
plugged-in to the system up to the current time.

C. Consumer Satisfaction and Complexity
   As mentioned earlier in the system model, the satisfaction of
energy requirements of all the vehicles and the low
computational complexity are two noticeable features of the
proposed scheduling mechanism. Consumer satisfaction is
guaranteed by applying the constraint (8) in the optimization
problem (13) which is run by the scheduler. In other words, this
constraint ensures that the summation of charging or
discharging powers during the allocated time interval of the
vehicle meets its final energy target. Since this optimization is
invoked for each vehicle’ request, therefore, the proposed
algorithm guarantees the satisfaction of energy requirements for
all the vehicles in the system regardless of their location.
   From the complexity point of view, it is noticed that at either
home  station or parking lot, finding the best  time  interval  for
each electric vehicle in the greedy manner performs with time
complexity of O(|T|2) in the worst case. Furthermore, since for
each time slot, the computation of profit according to relation
(1) takes O(1) time, therefore, the last for loop is performed
with time complexity of order O(|T|). Considering topt   as the
required computation time for solving the optimization problem
(13), with m  available electric vehicles in the system, running
the algorithm OptimalInterval Allocation results in the worst
case time complexity of order O(m(|T|2+topt)). Since the
allocated interval for each vehicle is normally short, therefore,
the overall low complexity of the algorithm makes it practically
feasible for smart household prosumers.

IV. PERFORMANCE EVALUATION

   In this section, we implement the proposed scheduling
mechanism for an instance of multiple home stations common
parking lot scenario. The fixed interval allocation strategy [11]
was adopted to compare the performance of our scheduling
algorithm against. Using FixedInterval Allocation algorithm,
the starting time slot  for  vehicle-to-grid  operation  of the
vehicles are deterministic and are announced by the consumers
in advance.

A. System Modeling and Simulation Setting
   We first describe the simulation scenario and the settings of
the system parameters for the scheduling of a fleet of electric
vehicles in multiple home stations common parking lot for
smart household prosumers. The charging/discharging
scheduling is performed during one day time duration with
∆t=1s as the duration of each time slot. For the vehicles
commuting pattern, the arrival times of the vehicles to the office
parking lot and home stations are uniform  random values with
the density of respectively Unif[7am,10am] and
Unif[6pm, 9pm]. A randomly chosen value from the uniform
interval Unif[6hours, 9hours] is also considered for the plug-in
duration of each vehicle at either home station or common
parking lot. During the night time when there is normally low
electricity load from home appliances, the system assumes the
participation of 80% of the consumers in charging their electric
vehicles while the remaining 20% involve in discharging
operation. In contrast, during the day times, the participation of
80% of consumers is for discharging while the other 20%
charge their vehicles. As default, the maximum plug-in capacity
of Cmax=100 is  considered for each time slot at  each  location.
As the alternative scheduling strategy, the fixed interval
allocation   strategy   assigns   the   starting    and  ending  time
slots of the vehicles’ interval with some random values chosen
between the  arrival  and departure  times  of  the vehicle.
   On the vehicle side, an ideal battery capacity of  Ba=100kW.h
and the maximum charging and discharging powers of
respectively Pmax

c =15kW and Pmax
d =10kW at each time slot are

considered for the electric vehicles. This charging power
corresponds to the charging rate of 15/100=0.15C [18]. As
default, the identical electric motor force of F=5kW.h/km is
considered for all the vehicles and the traveling distance
between the home of consumer and the office is randomly
chosen from the uniform interval Unif[2km,3km]. The final
energy target is set  by  the  consumer while  the  initial  energy

Fig. 4. An adopted typical base load during the summer day [3].

Fig. 3. Comparison between two interval scheduling schema.
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stored in  the  battery of the vehicle depends on the final energy
at the previous location minus the energy consumed during the
travelled distance to the current location. As an instance of the
electricity price determined by the energy utility company, for
the verification of the scheduling algorithm, the constant
electricity load threshold Z=250kW and constant price
Pc=1 $/kW.h are used in ICB pricing model and the coefficients
c0=0.002$ and c1=0.004$/kW for RTP model. The battery
degradation and fluctuation parameters α=0.001 and β=0.002
[3] are also considered. As  shown in Fig. 4, an adopted typical
base load of other household appliances during one summer day
[3] is also used in the system.

B. System Scalability
   In the first part of simulations, we study the performance of
the proposed charging/discharging mechanism considering the
scalability of the system when the number of electric vehicles
changes from 50 to 100. Its performance is evaluated  in  terms
of the obtainable profit for the consumers, the percentage of the
vehicles which lose their service (unserviced) and the smartness
of the schema in energy interval allocation.
   The result of comparing two interval allocation algorithms in
term of the overall obtainable profit for the consumers of
electric vehicles during one day vehicle-to-grid operation has
been  shown  in  Fig. 5 (top).  As  we  can  see  from  the  result,
for different number of vehicles, the OptimalInterval Allocation
outperforms  FixedInterval  Allocation  in  term  of  the  overall
profit   that   consumers   obtain    from    both    charging   and
discharging. For this simulation instance, the average
improvement of about 10% in profit is achieved using the
proposed algorithm. Furthermore, it is also observed that the
improvement gap increases as more number of vehicles are
plugged-in to the system. The reason is that by increasing the

number of vehicles, larger volume of charging and discharging
loads are concentrated on time slots with respectively high and
low electricity demands when FixedInterval Allocation strategy
is applied for the scheduling process.
   Next, we have investigated the impact of maximum vehicle
capacity at each time slot on the percentage of consumers which
do not get the charging service. In fact, with low vehicle
capacity at each slot, depending on the interval allocation
strategy, some of the consumers may not be able to get their
service upon sending the request. With maximum capacity of
40 vehicles at each time slot, the percentage of unserviced
vehicles for the charging operation have been shown in Fig. 5
(bottom). As the  results  confirm for different number of
vehicles, OptimalInterval Allocation algorithm results in
plugging more number of electric vehicles  by looking for the
most appropriate time interval with available space. As for this
simulation instance, in average, about 17.55% reduction in the
percentage of unserviced vehicles is observed using the
proposed algorithm compared to FixedInterval Allocation.
   We have been also interested to compare two interval
allocation algorithms in term of determining the starting time
slot for the charging operation of each consumer. The result of
this comparison for charging of 100 electric vehicles during the
time interval 6pm until 6am has been shown in Fig. 6. As we
can see before 8pm where the base load is slightly high, the
proposed algorithm does not assign the starting time slot of any
vehicle while, fixed interval allocation strategy allocates the
starting time slot of about 16% of vehicles before this time in
an uncontrolled manner. In contrast, the proposed algorithm
allocates the starting time slots of about 42% of electric vehicles
after 12am when the base load is low which confirms the
superiority of the proposed algorithm compared to its
competitor in term of smart interval allocation.

C. Ancillary Services
   In the next part, we evaluate the performance of the proposed
algorithm in term of ancillary services provided to the power
grid. For  this simulation, 20 number of vehicles are considered
for the charging and discharging operations. The results of
comparing algorithms in term of valley filling i.e. load shifting
during the time interval [4am, 12pm] and peak load reduction
during the time interval [1pm, 9pm] have been shown in Fig. 7.
The root mean square deviation (rmsd) with the following
definition is used as the metric for measuring the  valley filling
during the given time interval t1≤t≤t2  [6]:

Fig. 5. Comparison between interval scheduling algorithms in term of overall
achievable profit (top) and the percentage of unserviced vehicles (bottom).

Fig. 6. Comparison between the algorithms in term of interval allocation.
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rmsd=ට∑ (zt- max(Lt))2/(t2-t1)t1≤t≤t2         (14)

   As we can see from Fig. 7 (top), the OptimalIntervall and
Fixed- Interval allocation algorithms achieve the rmsd values
of about 13.59 and 40.17, respectively, confirming that the
proposed interval allocation algorithm outperforms
significantly FixedInterval allocation in term of load shifting.
The reason is that the proposed algorithm allocates time
intervals for the consumers in a controlled manner such that
their charging load is shifted to the time intervals with low
electricity demand on the power grid. With the same number of
electric vehicles, we have also compared both interval
allocation strategies in term of peak load reduction by adopting
the following relation as a metric for peak reduction (PR)
during  the given  time  interval t1≤t≤t2  [6]:

PR(%)=
max(Lt) -max (zt)

max (Lt)
×100       (15)

   As we can see from the result in Fig. 7 (bottom) for the time
period [1pm,   9pm], the proposed algorithm shows better
performance in term of the percentage of peak reduction. For
this simulation instance, the optimal and fixed interval
allocation strategies reduce the peak load during the
aforementioned time period for  about  9.7%  and  5%,
respectively. Similar to the case of charging, the proposed
algorithm takes into account the current electricity load on the
grid and allocates the discharging intervals for the consumers
in a controlled way. It is also noteworthy to mention that by
penetrating more number of electric vehicles, further peak load
reduction can be obtained using the proposed algorithm.

D. Effect of Electric Motor Force
   We have also investigated the impact of one of the main
components of the electric vehicles on its performance in  term

of the achievable profit for the consumers. With 100 electric
vehicles, the force of motor is increased from 5 to 10 ܹ݇. ℎ/݇݉
and corresponding to each motor force, the overall obtainable
profit from discharging has been shown in Fig. 8. As we see,
the overall profit decreases when the force of electric motor
increases. This is because with fixed distance from the home to
the parking lot, the vehicles consume more energy when the
force of motor increases, therefore, lesser volume of energy will
return back to the power grid which in turn yields the reduction
in the achievable profit for the consumers.

V. CONCLUSION

   This paper proposes a low-complexity charging and
discharging interval scheduling for electric vehicles in multiple
home stations common parking lot scenarios for smart
household prosumers. The scheduling objectives are to
maximize the profit of all consumers of electric vehicles,
provide the ancillary services to the power grid as well as
satisfying the energy requirements of all consumers. Based on
the instantaneous electricity price and the data from the
vehicles, a novel mixed optimization model is first constructed
by the central scheduler with the aim of maximizing the overall
profit of the consumers. Running an efficient scheduling
algorithm at the scheduler, the charging/discharging interval as
well as the amount of energy power at each time slot of the
interval are determined for each requesting vehicle. The low
complexity of the algorithm and the guarantee on satisfying the
energy requirement of all consumers makes the algorithm
practically attractive for real-word deployment by smart
household prosumers.
   The results of our simulation instances reveal that the
proposed algorithm outperforms the conventional fixed interval
allocation mechanism by in average 42% of electric vehicles in
term of smart interval allocation as well as achieving in average
about 10% improvement  in  overall  obtainable  profit  for  the
consumers. It is also observed that in term of ancillary services,
the proposed algorithm achieves more peak load reduction and
yields significant benefits in term of valley filling. The
algorithm also efficiently utilizes the available time intervals
such that the percentage of unserviced consumers noticeably
decreases.
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