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Abstract

The paper presents a neurorobotics cognitive model explaining the understanding and generalisation of nouns and verbs
combinations when a vocal command consisting of a verb-noun sentence is provided to a humanoid robot. The dataset used
for training was obtained from object manipulation tasks with a humanoid robot platform; it includes 9 motor actions and
9 objects placing placed in 6 different locations), which enables the robot to learn to handle real-world objects and actions.
Based on the multiple time-scale recurrent neural networks, this study demonstrates its generalisation capability using a large
data-set, with which the robot was able to generalise semantic representation of novel combinations of noun-verb sentences,
and therefore produce the corresponding motor behaviours. This generalisation process is done via the grounding process:
different objects are being interacted, and associated, with different motor behaviours, following a learning approach inspired
by developmental language acquisition in infants. Further analyses of the learned network dynamics and representations
also demonstrate how the generalisation is possible via the exploitation of this functional hierarchical recurrent network.

Keywords Recurrent artificial neural networks - Language learning - Multiple time-scale recurrent neural network -
Developmental robotics - Neurorobotics

1 Introduction abilities of understanding, generation and generalisation of

natural language is still an open challenge. Particularly, natu-
For the design of social robots (Breazeal 2004; Dautenhahn  ral language understanding for a social robotic system plays
2007), besides of building robots with human-like external an essential role as it interfaces the vocal command from

morphology, the ability to process, to understand and gener- ~ human users to an internal representation in the robot’s own
ate language is one of the key factors to support human-robot  cognitive system. In this study, we will apply a developmental
interaction. However, to build a model to accomplish simi-  robotics approach to the design of language and commu-

lar processes for social robotics, the design of the robot’s  nication abilities in robots, following an incremental and
interactive process to language learning, inspired by lan-
guage development in infants.
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Forinstance, in Tellex et al. (2011), Matuszek et al. (2013),
syntactic parsing techniques are used to ground the language
into primitive motor actions (e.g., pickup, move, place),
which can be inferred within graph models. Similarly, Misra
et al. (2014) developed a system for mobile robots which is
able to learn to ground the language instructions from a cor-
pus of pairs of natural language including both verbs and
spatial information. In Yiiriiten et al. (2013), it was proposed
that in order to understand the object affordance which can
be described by adjectives, the most crucial property is the
shape-related one.

Besides the direct modelling methods for robot language
learning, an alternative approach to build a learning model
for language is based on developmental robotics (Weng 2001;
Asada 2009; Cangelosi and Schlesinger 2015). Taking inspi-
ration from developmental psychology and developmental
neuroscience studies, this approach emphasises the role of
the environment and of the interactions that occur during
learning, over a progression of learning stages. In the con-
text of language understanding, the core of developmental
robotics approaches to language learning is following a sim-
ilar developmental pathway of infants acquiring grounded
representations of natural language and forming a sym-
bol system through embodied interaction with the physical
environment (Cangelosi 2010b). Furthermore, via language
learning an agent should also be able to generalise by
inferring un-trained combinations of words within the lex-
ical constructions acquired. One possibility to accomplish
generalisation is to make good use of the semantic composi-
tionality.

Various developmental robotics models have been devel-
oped that incrementally model the various stages of language
acquisition in infants, from phoneme acquisition, to object
and action names, to word combinations. For example,
the cognitive model presented in Guenther (2006) outlines
the cortical interactions in the syllable generation process
which result in different developmental phenomena. This
mimics the first stage of language development. The Elija
model (Howard and Messum 2011) is a vocal appara-
tus which strictly follows detailed developmental stages.
Working as an articulatory synthesizer, it firstly learns the
production of sounds on its own. Then a caregiver is used to
produce speech by using speech sounds for object names
using reinforcement learning, where the reward is again
given by the response of the caregiver. Likewise, a self-
organizing map together with reinforcement learning was
proposed in Warlaumont (2013), which demonstrated that
the reinforcement learning based on the similarity of vocal-
ization can improve the post-learning production of the sound
of one’s language.

From the models mentioned above, we can see that most
of the methods for modelling the first stages of phonetics
production do not tend to use robotic platforms. On the other
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hand, for the modelling of the later stages of lexical devel-
opment, after assuming that phonetics skills are mastered,
robotic systems are usually employed to establish the meta-
knowledge about the association between vocal speech and
the referents or the actions. Therefore, except studies focus-
ing on the mental imagination of actions as in Golosio (2015),
the mechanical morphology of a robot is particularly impor-
tant when modelling the acquisition of words, especially
those used to name the motor actions. For instance, the model
from Mangin and Oudeyer (2012) gets as input dance-like
combinations of human movement primitives plus ambigu-
ous labels associated with these movements. Concentrating
on the second and third stages of the associating lexicon,
words and motor actions, the robot in Dominey et al. (2009)
is able to acquire new motor behaviours in an on-line fashion
by grounding the vocal commands on the pre-defined control
motor primitives. Similarly, Siskind (2001) proposed a model
which uses visual primitives to encode notions of different
actions to ground the semantics of events for verb learn-
ing. Using structured connectionist models (SCMs), (Chang
et al. 2005) built a layered connectionist model to connect
embodied representations and simulative inference for verbs.
In Cangelosi and Parisi (2004), the emergence of verb-noun
separation is learned while the agents are interacting and
manipulating the objects. Meanwhile, the tasks during of
such interaction may be essential during learning too (Good-
man and Frank 2016). Recent experiments (Rohlfing 2016;
Andreas and Klein 2016) and also proposed that language
learning should be posited in the context of task-directed
behaviours.

In terms of the learning structure, Stramandinoli et al.
(2012) developed a model about the grounding hierarchy of
the verbs with more complex meanings (such as “keep”,
“reject”, “accept” and “give”) which related to the inter-
nal states of the caregivers and which were used to build
a robotic model for the grounding of increasingly abstract
motor concepts and words. As follow-up studies of Dominey
et al. (2009), Dominey (2013), Hinaut and Dominey (2013)
focused on the understanding of grammatical complex-
ity. They used recurrent neural networks (RNN) to learn
grammatical structure based on temporal series learning in
artificial neural networks.

Also using RNN, Sugita and Tani (2005) reported exper-
iments with a mobile robot implementing a two-level RNN
architecture called Recurrent Neural Network with Para-
metric Bias Units (RNNPB). This allows the robot to map
a linguistic command containing verbs and nouns into
context-dependent behaviours corresponding to the verb and
noun descriptions respectively. It was among the first to
develop a robotic model of semantic compositionality based
on the sensorimotor combinatory. With a cognitive robot
experiment, the recurrent network models the emergence
of compositional meanings and lexicons with no a priori
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knowledge of any lexical or formal syntactic representa-
tion.

Comparing to RNNPB, another kind of RNN architec-
ture called Multiple Timescale Neural Network (MTRNN)
is able to ground different scales of sensorimotor informa-
tion into the hierarchical structure of sentences, such as the
spelling of words (Ogata and Okuno 2013) and words and
sentences (Hinoshita 2011). The kind of recurrent models
provides a memory to store the spatial and temporal struc-
ture of the environment and the lexical structures. Given the
fact that RNN can learn the arbitrary length of the depen-
dencies in statistical structures and their context, the storage
ability of the RNN out-performs most of the language learn-
ing models.

1.2 Embodied symbolic emergence in a hierarchical
structure

In the developmental psychology which studies focusing
specifically on the emergence of nouns and verbs, there is
still an open debate between the learning stages and their rel-
ative temporal acquisition order. For the early stages of the
verb and noun learning, it is widely accepted that most of
the common nouns are generally learned before verbs (Gen-
tner 1982), by first connecting speech sounds (labels, nouns)
to physical objects in view. However, some nouns which
relate to context, such as “passenger”, are learnt at a rela-
tively later stage, only after “an extensive range of situations”
(contexts or life phases) have been encountered (Hall and
Waxman 1993), during which verbs may play a crucial role.
The embodied learning of verbs and nouns is not correlated to
one single modality in sensory percept’s: experiments done
in Kersten (1998) suggest that the nouns are grounded from
the intrinsic properties of an object, even at different move-
ments and orientations, while verbs are accounted for the
movement path of an object. This distinction may be associ-
ated with the neuroanatomy distinction between the ventral
and dorsal (what/where) visual streams, involved in the gen-
eration of nouns and verbs respectively. As Maguire et al.
(2006) suggested, some nouns and verbs can be learnt more
straightforward to learn because they can be accessed percep-
tually. On the other hand, some abstract words, either verbs
or nouns, should only be learnt from a social and linguistic
context.

For instance, while infants learn the word-gesture com-
bination at the age of two, they associate the meaning of
verbs with the meanings of the higher-order nouns (Bates and
Dick 2002). Such verbs with complex meaning are obtained
from both motor action and visual percept (Longobardi et al.
2015). As summarised in Cangelosi and Parisi (2001) and
Cangelosi and Parisi (2004), comparing to the static object
perception that associates with simple nouns, the early verb
learning involves a temporal dynamic from motion percep-

tion. Indeed, we assert that the learning processes of nouns
and verbs (especially for those with complex meanings) are
not separated; there is a close relation between verb and
noun development, during which the embodied sensorimotor
information plays a crucial role.

During this embodied development, both the perceptual
system and the motor system contribute to language com-
prehension (e.g. Pulvermiiller 2002; Kaschak 2005; Pecher
et al. 2003; Saygin 2010). This embodied development may
contribute to the emergence of how compositional seman-
tics of a sentence can be acquired by a language acquisition
system without knowing any explicit representations about
either the meaning of word or motor behaviours as a priori.
In this way the system can refer a semantic compositionality
by the sensorimotor combinatoriality. It also extends Piaget’s
proposal that language learning is a symbolised understand-
ing process for dynamic actions, which is ““a situated process,
function of the content, the context, the activity and the goal
of the learner” (Holzer 1994).

The sensorimotor information is not the only mechanism
acting as a learning tool for language acquisition. Conversely,
recent research also proposes that language is such a flexi-
ble and efficient system for symbolic manipulation which is
more than a communication tool of our thoughts (e.g. Landy
et al. 2014; Mirolli and Parisi 2009, 2011.) For the predic-
tive effect from language to sensorimotor behaviours, vocal
communication can be one of the sources that drive the visual
attention to become predictive, by making inferences as to
the source-inferences (Tomasello and Farrar 1986). In this
process, language can trigger a predictive inference about
the appearance of a visual percept, driving a predictive sac-
cade (Eberhard 1995). Therefore, the sensorimotor system
is affected by the inferences from the auditory modality or
even from higher level cognitive processes.

We concluded this bidirectional relationship between lan-
guage learning and sensorimotor system in a hierarchical
cognitive framework proposed in Zhong (2015), in which
the language understanding and grounding occurs during the
dynamical process hierarchically from the neural processes
on the (lower) receptor level to the higher level under-
standing which happens in the (higher) prefrontal cortex.
As the review done by Tenenbaum (2011), the hierarchi-
cal framework can be detailed formulated in a probabilistic
way, in which the abstract knowledge also acts as a prior
to guide our learning and reasoning. The probabilistic based
models have also been applied in acquiring abstract knowl-
edge from robot-environment interaction (Konidaris et al.
2015), human-robot interaction (Iwahashi 2008) and multi-
modal living environment (Attamimi 2016). Additionally, the
hierarchical architecture can also be implemented as connec-
tionist models. For example, the hierarchical recurrent neural
architectures can be found in Zhong et al. (2011), Zhong et al.
(2012a), Zhong et al. (2012b), due to the fact that the learn-
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ing modalities of visual perception and motor actions can be
represented as both spatial and temporal sequences, so that
the recurrent connections provide possibilities to intertwine
these two modalities.

In this paper, due to our interests in the non-linear dynam-
ics of the system and its contribution to the generalisation
abilities, the recurrent neural models would be a proper model
to model this process. Although similar RNNPB (Sugita
and Tani 2005) or MTRNN (Heinrich et al. 2015) networks
have been used to learn verbs and nouns features with motor
actions and visual features, the model we will use is a single
MTRNN model to learn both the sensory and motor infor-
mation in a single set of sequences, because we regard the
perception and action having inseparable links (e.g. Wolpert
et al. 1995; Noé 2001) and should be encoded solely as sim-
ilar data structures. Moreover, since the training of such a
large MTRNN has become more and more feasible in recent
years due to the accessibility and affordability of GPU com-
puting, a large data-set from robotic experiment will be tried
to be conceptualised towards abstract representations on the
higher level of this hierarchy, similar to the developmental
processes of language conceptualisation and categorisation.

To summarise, compared with the connectionist models on
semantic compositionality (Sugita and Tani 2005; Heinrich
et al. 2015), the novelties of our model and experiments are:

— Instead of using the neural binding methods on multi-
ple RNNs, the hierarchical MTRNN provides another
perspective to model the emergence of semantic com-
positionality over multi-modal data, which may be more
parallel to the perception-action coupling of different lev-
els of the nervous system (Sperry 1952): perception and
action processes are functionally intertwined, which we
represent in the recurrent connections from the low to the
top layer in our hierarchical network.

— Technically, in our model, the multi-modal data (lan-
guage, visual and proprioceptive) was implemented into
a single hierarchical network. This uniformity can be dis-
covered in the higher-level heteromodal representation in
the multisensory neurons with continuous feedback and
feed-forward connectivities (Ghazanfar and Schroeder
2006; Macaluso and Driver 2005). That is similar to the
recurrent neural architecture we use. Furthermore, a sin-
gle RNN network that incorporates multi-modal signals
would be beneficial to improve the generalisation ability.

— Using a humanoid robot and a large-scale dataset, we can
observe how the semantic dynamic is emerged on differ-
ent levels with a similar learning process of the human
morphology. The later experiments will also show how
the semantic structures of verbs are self-organised on the
higher-level of neurons, suggesting a similar neural rep-
resentation may exist in the human brain activities.

@ Springer
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Fig.1 Architecture of multiple time-scale recurrent neural network

2 The multiple timescale recurrent neural
network model

Briefly, the motivations that we employ recurrent neural
models, specifically, the MTRNN, to model the learning
processes of the language learning from the sensorimotor
interaction are:

— The hierarchical neuron distribution in a single MTRNN
with multi-modal inputs is able to mimic the dynamical
and bidirectional processes of the heteromodal neurons
when human is learning the multi-sensory knowledge;

— Furthermore, such dynamical process in the RNNs is able
to form the bifurcation functions in which the functional
hierarchy is formed in a self-organized way in one net-
work (Tani 2014);

— The MTRNN is able to be stacked in a hierarchical way
which is also similar to the hierarchical organization of
the brain areas (Zhong 2015);

Our language learning model is based on the combination
of an MTRNN network with Self-Organizing Maps (SOMs)
to control the humanoid robot iCub, being trained on the
understanding of a set of noun-verb combinations to perform
a variety of actions with different objects. Figure 1 shows
the learning architecture incorporating a Multiple Timescale
Recurrent Neural Network (MTRNN) (Yamashita and Tani
2008) and the self-organizing maps. The core module of the
system is the MTRNN, which will learn sequences of verb-
noun instructions and will control the movement of the robot
in response to such instructions. The inputs to the MTRNN
correspond to the language command inputs, to the visual
inputs as well as the proprioceptive inputs. We regard these
three modalities as a whole sensorimotor input because the
MTRNN model is able to learn the relation between the
verbs and nouns and seen objects within the context of the
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non-linearity of the sensorimotor sequences in a hierarchi-
cal manner. This network will learn this non-linearity in the
functional hierarchy in which the neural activities are self-
organised, exploiting the spatiotemporal variations.

2.1 Using a self-organizing map as a sparse structure

The initial input data sets, consisting of speech, camera
images, and proprioceptive (kinesthetic) states are pre-
processed (see Eqs. 1-4) using three SOMs respectively for
the linguistic, visual and motor input modalities.

Although the MTRNN could be trained with original data
representation, we usually employ pre-processing modules
for the MTRNN inputs, which result in a sparse structure
of the weighting matrices in the network. Also the MTRNN
outputs are decoded into the original data structures. The
sparseness in weighting matrices has a similar concept of
sparse coding in computational neuroscience (Olshausen
and Field 1997): the weighting matrices are sparsely dis-
tributed, which is an analogous form of the sparse distributed
representations that are used in our neural activities, such
as in visual (Essen 1985) and auditory cortex (Reale and
Imig 1980). Previous research on language learning in
RNN (Awano et al. 2011) also showed that a sparse encod-
ing results in robustness in training and a better generalisation
results and improved robustness with noisy inputs.

Here the sparseness structure in the weight matrices is
given by the SOMs (Kohonen 1998). During this process,
the SOM performs as a dimensional mapping function, with
an output space with higher dimensions than the input space.
Having a discretised and distributed neural encoding in the
output space, the pre-processed SOM modules are able to
reduce the possible overlap of the original data within the
original input space. Therefore, the topological homomor-
phism produced by the SOM guarantees that the training
vectors between the raw training-sets and the input vectors
are topologically similar with each other.

In the SOM training here, assuming the input vectors are

S xMT ey

where m is the number of dimensions of the input vectors.
These input vectors are mapped to an output space whose
coordinates define the output topology of the SOM. Connect-
ing between the input and output spaces, the weight vector
is defined as

u)jzliwl.’wz.’...,wm:l.r,j=172’3,...7n (2)

i J

where neuron j is one of the input space vectors and n is
the total number of those neurons. When a self-organising
map receives an input vector, the algorithm finds a neuron
associated with weights that are most similar to the input

vector. The measure of similarity is usually done using the
Euclidean distance metric, which is mathematically equiva-
lent to finding a neuron with the largest inner product wTx.
Thus the very neuron that is the most similar match for the
input vector is referred to as the best matching unit (BMU)

and it is defined as:
c=argmin;|x —wj|| 3)

The dimensionality mapping is achieved when the BMU
coordinates are used to update the weights of the neighbour-
hood neurons around neuron ¢ by driving them closer to the
input vector at iteration ¢:

wit+1) =w;()+8(x; —wj) 4)

38 is a Gaussian neighbourhood function, which determines
the adjusting rate for the weights.

Therefore, the output of the SOM which is encoded in
a high-dimensional input space, is still able to preserve the
topological properties of the input space due to the use of the
neighbourhood function.

2.2 Multiple timescale recurrent network (MTRNN)

As shown in Fig. 2, the neurons in the MTRNN form three
layers: an input-output layer (/ O) and two context layers
called Context fast (C ) and Context slow (Cy). In the fol-
lowing text, we denote the indices of these neurons as:

Lar = Iiro Y lc, Ulc, (%)

where 17 represents the indices to the neurons at the input-
output layer, /c, belongs to the neurons at the context fast
layer and I, belongs to the neurons at the context slow
layer. The neurons on a layer own full connectivity to all
neurons within the same and adjacent layers, as shown in
Fig. 1. The difference between the fast and slow context lay-
ers as well as the input-output layer consists in having distinct
time constants t, which determine the speed of the adap-
tation given a time sequence with a specific length, when
updating the neural activity. The larger the value of 7, the
slower the neuron adaptation. The difference of adaptation
rate of the neurons further assemble features of the input
sequences in various timescales. Therefore, given the previ-
ous states S(0), S(1), ..., S(¢), their spatiotemporal features
will be self-organised on different levels of the network. So
the MTRNN is not only a continuous time recurrent neu-
ral network that can predict the next states S(t + 1) of the
time sequence, but also its internal state acts as a hierarchical
memory to preserve the temporal features of the non-linear
dynamics in different timescales. In the embodied learning
case, such memories, mostly in a set of of oscillatory patterns,
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represent the verb/noun semantics during the robot interac-
tion. Therefore, such patterns are learnt by self-organising as
fixed points and limit cycle non-linear dynamics.

2.2.1 Learning

In general, the training of the MTRNN follows the updat-
ing rule of classical firing rate models, in which the activity
of a neuron is determined by the average firing rate of all
the connected neurons. Additionally, the neuronal activity is
also decaying over time following an updating rule of the
leaky integrator model. Therefore, when time-step ¢ > 0, the
current membrane potential status of a neuron is determined
both by the previous activation as well as the current synaptic
inputs, as shown in Eq. 6:

!
Tik; = — Uit E Wi, jXj.1 (6)
J

where u; ; is the membrane potential, x; ; is the activity of
J-th neuron at 7-th time-step, w; ; represents the synaptic
weight from the j-th neuron to the i-th neuron and 7 is the
time scale parameter which determines the decay rate of this
neuron. One of the features that is similar to the generic
continuous time recurrent neural networks (CTRNN) model
is that a parameter 7 is used to determine the decay rate of
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Particularly, the soft-max activation function gives rise to
the recovery of a similar probability distribution as the SOM
pre-processing modules. Therefore, this activation function
results in a faster convergence to the MTRNN network train-
ing.

During the training process, it is to minimize the error E
defined by the Kullback-Leibler divergence:

Vi
E=7" yilog (;) (10)

t ie0

where y/, is the desired neural activation of the i-th neuron
at the 7-th time-step, which acts as the target value for the
actual output y; ;. The target of the training is to minimize E
by back-propagation through time (BPTT).

In the BPTT algorithm, the input of the /O neuron is
calculated from a mixed partition value r (called the feedback
rate) of the previous output value y and the desired value y*.
(Eq. 11)

Xjer1 =0 =r)xyj +rxyj, (11)
where we will use » = 0.1 during training, and r = 0 during

generation, which means that the network is used to generate
the sequences autonomously.
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At the n-th iteration of training, the synaptic weights and
the biases of the network of neuron i are updated according
to Eq. 12.

o0E
1
wl’”j' =w; —nij _awij
— = M - OE 12
= Wi,j o ij,t awi,t ( )
oE oE
P = bt — B — =b; — B; 13
= = pig =bi— B th T (13)
1\ _E
Vil — y;it*kl + (1 - E) duj g1’
VE if ielo,
dui D kel % [)»i,k (1 - %) + r]—kwkif/(ui,t)],
otherwise.
(14)

In Eqgs. 12 and 13, the partial derivatives for w and b are
the sums of weight and bias which determine the changes
over the whole sequence respectively, and n and B denote
the learning rates for the weight and bias changes. Partic-
ularly, the term 0 E/duy ; can be calculated recursively as
Eq. 14, where the f’() is the derivative of the sigmoid Func-
tion defined by Eqs. 8 and 9. The term A; j is the Kronecker’s
Delta, whose output is 1 when i = k, otherwise, it is set to 0.

3 Experiments

To examine the network performance, we recorded the real
world training data from object manipulation experiments
based on an iCub robot (Metta et al. 2008). This is a child
sized humanoid robot built as a testing platform for theories
and models of cognitive science and neuroscience. Mimick-
ing a two-year old infant, this unique robotic platform has 53
degrees of freedom. As such, using the iCub, we set a learn-
ing scenario in which a human instructor was teaching the
robotic learner a set of language commands whilst providing
kinaesthetic demonstration of the named actions. This setting
is similar as the infant-directed action or motionese scenario
(e.g. Brand et al. 2002; Brand 2007) where the mother mod-
ifies their actions when demonstrating objects to infants in
order to assist infants’ processing of human action. Dupli-
cating the learning environment of the development process,
the aim of these experiments was to evaluate the verb-noun
generalisation with a large data-set using the MTRNN. We
were also interested in how the mechanisms, especially the
neural activities in the hierarchical architecture, result in such
a generalisation.

3.1 Experimental setup
Figure 3a shows the setup used in our experiments. During the

training process, the data set was obtained using the following
steps:

Fig.3 Experimental scenario. a iCub Manipulation setting. b Objects
used in the experiment. There are eight different objects shown in this
image. The last object thatis not present is a green ball, which is shown in
Fig. 3c. ¢ Example of a complex lifting action involving the coordination
of the entire upper body actuated by 41 motors

1. Objects with significantly different colours and shapes
were placed at 6 different locations along the same line
in front of the iCub (i.e. the objects from perception).

2. A vocal command was spoken by an instructor accord-
ing to the visual scene that was perceived by the iCub. A
complete sentence of the vocal command is composed of
averb and a noun such as “lift [the] ball””. This was recog-
nised by the speech recognition software called Dragon
dictate,! with which the corresponding verb and noun
were recognised and then translated into two dedicated
discrete values based on the verb and noun look-up table
(Table 1) (i.e. a sentence includes a verb and a noun).

! The speech recognition is not always successful here. It is not the main
research topic in this work. But for the sake of a more natural training
process, we manually monitored to obtain current recognition results
before the data sequences were recorded to ensure a better performance.
Please also see http://www.nuance.co.uk/dragon/index.htm.
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Table 1 Look-up table of verbs and nouns for the data sets: the instruc-
tor showed the robot with different combinations of the 9 actions and 9
objects

Actions Slide left Slide right Touch Reach Push
Verb value 0.0 0.1 0.2 0.3 0.4
Actions Pull Point Grasp Lift

Verb values 0.5 0.6 0.7 0.8

Objects Tractor Hammer Ball Bus Modi
Noun value 0.0 0.1 0.2 0.3 0.4
Objects Car Cup Cubes Spiky

Noun values 0.5 0.6 0.7 0.8

The actions and the objects are represented in two discretised values for
semantic command inputs which range from 0 to 0.9. For instance, the
command “lift [the] ball” is translated into values [0.8, 0.2]

3. Following the command “lift [the] ball”, the built-in
vision tracker of the iCub searches for a ball-shaped
object and automatically locate it in the middle of the
receptive field; in this way, the joint angles of head and
neck measure the position of the object (for the purpose
of generalisation of different locations).

4. Joint positions of the head and neck are recorded. The
sequence recorder module of the iCub was used to record
the sensorimotor trajectories while the instructor was
guiding the robot by holding its arms to perform a certain
action for each object (i.e. the motor actions).

During the testing process, all the objects are placed on
the table. The vocal command from the instructor are acted
before the action execution. The whole experimental setup
used combinations of 9 actions and 9 objects. The objects
and one example of the action can be found in Fig. 3b
and 3c. From these combinations, both the vocal commands
(i.e. a complete sentence includes verb and noun) and the
sensorimotor sequences can be created. To the best of our
knowledge, this 9 x 9 noun-verb scenario is one of the setups
with the highest combination of verbs and nouns in grounded
robot language experiments (e.g. Tani et al. 2004; Yamashita
and Tani 2008). We used such a large number of data to test
the combinatorial complexity and mechanical feasibility of
this model, as well as to evaluate the generalisation ability
and its internal non-linear dynamics when using such a large
data-set. From an engineering point of view, after testing the
feasibility of generalisation, it is also possible to apply this
model in a real-world robot application.

As mentioned before, each speech command was recog-
nised and translated into two semantic command units. Using
9 discretised values for verbs and 9 for nouns, the semantic
commands have thus 81 possible combinations. This transla-
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tion was done according to the verb and noun look-up table,
as shown in Table 1. Since we used the visual object tracker in
the iCub, the joints of neck and eyes automatically represent
the location of the particular object which is presented in the
vocal commands. Also the movements of the joint angles in
the torso are recorded as the sequences of the motor actions.
During the data recording, each recording sequence lasted 5
seconds and the encoder values of 41 joints were sampled at
50ms intervals. Thus, the complete input vector of the data
set contains 100 steps of the discrete semantic command,
location of visual attention and joint movement of the torso,
as shown in Table 2.

Three experiments were carried out and are described in
the next subsections: in the first experiment, given the 9
actions and 9 objects data set, we will search the parameter
space and find the best parameters for the network training.
In the second experiment, the training and generalisation per-
formance will be shown given different types of manipulated
data sets. For the third experiment, we will further analyse
the generalisation ability of the MTRNN network. All these
experiments were run using a modified version of the Aquila
software (Peniak et al. 2011) in a GPU computer with one
Tesla C2050 and two GeForce GTX 580 graphic cards.

3.2 Training performance

In this experiment, we used the data set consisting of the
complete 9 x 9 combinations (i.e. number of verbs: N, = 9,
number of nouns: N,, = 9), which include information about
6 different object locations. The 6 locations were placed
along the straight line on the table as shown in Fig. 3a. Thus
the whole data-set contains 9 x 9 x 6 = 486 sequences (teach-
ing time took less than 1 hour totally), which were all used
for training the network.

After a brief hyper-parameter search experiment shown in
Table 3, we selected the best parameters for this data-set are
(70, 3, 50, 120) in the parameter space (zy, Tf, Nc,, ch).
We then examined the training performance of the network
under this parameter setting using different data-sets. To test
the generalisation ability, these data-sets were manipulated:
a subset of the combinations of actions and objects were
removed from the training set, to be used as validation test
sets when testing the generalisation ability of the network.
The detailed information about the manipulated data-sets are
shown in Table 4, where the coloured numbers N indicate
the specific verb-noun combination removed in the specific
N-th data-set. We can see that the number of removal sets
was increasing from the first to the third test-set, indicating
the difficulty of generalisation was increasing. Also at the
second and the third data-sets, some of the removal sets were
next to each other, which further increased the difficulty of
generalisation.
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:-r:l'iarll?nzg dSattrglcture of the Description Semantic commands Object location (neck and eyes) Torso joints
Dimension 2 6 3
Description Left arm joints Right arm joints
Dimension 16 16

g?f?:::m g;?;?:;%efrsr;rﬁ‘:;? Parameters Error 1 Error 2 Error 3 Ave.

(Cs, €y, Ne,. Ney) (70, 5, 20, 60) 0.084 0.081 0.085 0.0833
(70, 3, 20, 60) 0.084 0.085 0.082 0.0837
(70, 5, 30, 60) 0.084 0.086 0.083 0.0843
(70, 5, 30, 50) 0.082 0.079 0.080 0.0803
(70, 5, 30, 100) 0.079 0.079 0.078 0.0787
(70, 5, 60, 100) 0.078 0.078 0.077 0.0777
(70, 5, 40, 120) 0.079 0.079 0.078 0.0787
(70, 5, 50, 140) 0.075 0.075 0.077 0.0757
(70, 5, 60, 160) 0.072 0.071 0.074 0.0723
(70, 5, 50, 120) 0.071 0.070 0.071 0.0707
(70, 3, 50, 120) 0.071 0.071 0.070 0.0707
(70, 5, 70, 120) 0.070 0.071 0.072 0.0710

Table4 Some of the sequences containing particular semantic combinations of verbs and nouns were removed during training

v N. Tractor | Hammer | Ball | Bus | Modi | Car | Cup | Cube | Spiky
Slide left 1/2/3 3 2 3
Slide Right 2/3 1 3 2 3

Touch 3 2 1 3 2/3

Reach 2/3 1 3 2 3

Push 3 2 1/3 2/3

Pull 3 2 3 1 2/3

Point 3 2 3 1 2/3
Grasp 3 2 3 1 2/3
Lift 3 2 3 1/2/3

The number 7 in the cell indicates that such a combination was removed in the i-th training set for generalisation experiments

We used the parameter set of (50, 5, 70, 100). To further
demonstrate the robustness of the generalisation ability given
the un-trained sensorimotor sequences, the validation sets,
which were not included in the training, were fed into the net-
work. In this way, we aimed to test how the network responds
to noun-verb combinations not used during training. Using
the three MTRNNs we trained from three data-sets, we per-
formed three generalisation experiments using the missing
verb-noun combinations. In the experiments, only the first
time step data in the sequence was provided (i.e. r = 0 in
Eq. 11), which includes the initial position of the torso, head,
and eye motors, as well as the vocal command. Then the net-
work prediction was used as the input of the next time-step

and formed a closed-loop to complete 100-step of the time
sequence generation. The errors of the whole three training-
sets, as well as those in different steps are shown in Table 5.

Table 5 RMS error of the generalisation tests

Test 1 2 3

RMS error (All) 0.0052 0.0069 0.0169
RMS error (Step 1-20) 0.0064 0.0082 0.0240
RMS error (Step 21-40) 0.0042 0.0075 0.0194
RMS error (Step 41-60) 0.0033 0.0069 0.0150
RMS error (Step 61-80) 0.0031 0.0062 0.0121
RMS error (Step 81-100) 0.0024 0.0052 0.0101
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1.2

Fig. 4 Trajectory generation The generated trajectories (dotted) with
41 dimensions were plotted and compared with the original trajectories.
Three test-sets were selected to validate the training performances with
different training sets. Similar to our RMS error shown in Tab. 5, larger

A more straightforward visualisation of the network perfor-
mance can be found in Fig. 4, which displays three examples
of generated time sequences for motor actions from three
MTRNNSs. As we calculated in Table 5, the training error
became larger when the number of training samples was
smaller. In particular, a larger error could be found at the
beginning of each time sequence, but the network became
stable and generated a stable motor trajectory with less error
as time elapsed. There were some errors displayed in the
trajectories generation, so sometimes the generated robot
behaviours based on the trajectories are biased with the orig-
inal ones. However, in most of the cases, the generated robot
behaviours correctly followed the semantic commands.?

4 Generalisation analyses

In this section, we focus on the problem of how the verb-noun
generalisation ability of the MTRNN network is achieved.
The experiments we showed in the previous section, while
only part of the verb-and-noun combinations were presented
in the training of the network, it was able to “understand” the
un-trained verb-and-noun semantic compositionality. Dur-
ing the training and execution phrases, the iCub learnt and
duplicated the actions that the verb instructor speaks with the
object that specified in the noun. At the meanwhile, since we
trained one object at 6 different locations on the table, the
robot can “adjust its attention” toward the intended object at
different random locations on the table during execution. For
an experiment with a similar aim of generalisation, (Sugita
and Tani 2005) reported combining two hierarchical recur-
rent neural networks which can also accomplish verb-noun
generalisation for understanding semantic compositionality
in a situated environment. The model they used, called recur-
rent neural networks with parametric biases units (RNNPB),

2 https://youtu.be/FOgKbJ-iEhM.
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(b)

errors could be found at the beginning of the sequences. a Generated
trajectory from MTRNN 1, Test-set 61 (v.-n.: 0.1-0.1). b Generated
trajectory from MTRNN 2, Test-set 231 (v.-n.: 0.4-0.2). ¢ Generated
trajectory from MTRNN 3, Test-set 484 (v.-n.: 0.8-0.8)

had similar non-linear dynamics as the MTRNN: the non-
linear dynamics are determined by a small number of neural
units which act as bifurcation for the whole system.
However, in our case, the learning sequences contain a
much larger dimension (35) of the motor joint angles for
the iCub movements, compared with motor sequences that
trained in Sugita and Tani (2005). Furthermore, while the
object appeared at one location in Sugita and Tani (2005), the
differences in location of our work also increases the com-
plexity of learning. On the other hand, this complex setting
results in the bifurcation which occurs hierarchically in the
MTRNN structure, but not been discovered in RNNPB yet.
From this point, we hypothesise that the MTRNN, or any
other hierarchical RNNs, results in the separation in the net-
work dynamics about different modalities in a self-organised
way associating the semantics with the robot behaviours and
the object categories after training. This type of separation
should depend on the different organisation of the training
data structures, and occurs on different levels of the hierar-
chical architecture using different strategies. For instance, in
Sugita and Tani (2005), such association learning occurring
on the PB level binds the semantic and the behaviour repre-
sentations. Similar association learning also can be found
in Heinrich and Wermter (2018). On the other hand, the
single RNN we use, although with more complexity in train-
ing, allows a higher generalisation abilities because all the
modalities are learnt in a single dynamical system. As shown
In our experiment setting, after enough training, the synap-
tic weights between a basic motor behaviour (e.g. concepts
of “lift”)* are strengthened about the verb input. And due
to its complexity of iCub’s (as well as human’s) morphol-
ogy, controlling its behaviours is difficult so it dominates a
large portion of the spatio-temporal space in the sensorimotor

3 The basic motoric perspective of verbs here means that such kind of
motor actions belong to general definitions such as “slide”, “touch” and
etc, without a specific goal for directing action.
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Table 6 Removal of data in the 3 x 3 data-set

Tractor | Hammer | Spikey
Slide left 1 2
Slide right 172
Touch 2 1

The number i in the cell indicates that such a combination was removed
in the i-th training set for generalisation experiments

sequences as well as in the neural dynamics. This is similar to
the mechanism that the hearing of a verb causes neural firing
in the primary motor and pre-motor cortices, corresponding
to certain motor action fires when a particular verb is heard or
said on the C; layer. On the contrary, the noun also affects part
of the sensorimotor outputs by offsetting the motor actions
toward its interacting object, resulting in a specific goal-
directed action. This appears to depend on somatotopically
mapped parietal regions, parallel to our Cy layer.

In the following experiments, we will examine this
hypothesis by means of manipulating data and visualising
the training results.

4.1 Generalisation with partial inputs

In this subsection, we concentrate on the comparisons of
the results after the removal of different modalities. These
comparisons included two parts: i) Error of generalisation
after removals; ii) Visualisation of weights after removals.
For the first part of the analysis, in order to obtain a more
conclusive statement, we used two sets of data 9 x 9 and
3 x 3 of verb-noun combinations. The 3 x 3 data-set (Table 6)
contains a subset of the data-set from previous experiment; it
contains the combinations of three actions and three objects,
which were placed in 6 different locations. We used a similar
look-up table as Table 1 except that only 3 nouns and 3 verbs
were used for the vocal command discretisation. For the sec-
ond part of the experiment, the visualisation of weights was
only done with the 3 x 3 data-sets, since its features are easier
to observe and its basic principle can be easily extended to
the 9 x 9 data-set.
For both parts of the experiment, in order to observe how
different lexical categories and visual input affected the train-
ing results, especially within the output of the sequences of
the motor behaviours, different parts of the input data were
removed:

1. No modification (base-line)

2. Remove the noun input (i.e. the first input unit was reset
to zero.)

3. Remove the verb input (i.e. the second input unit was
reset to zero.)

4. Remove the location of the visual object (i.e. from the
third to eighth units were reset to zero.)

During the generalisation tests, the full 3 x 3 or 9 x 9
datasets were placed into the network. The training error
and generalisation error of the motor output was compared
in Tables 7 and 8. From these two tables, we can see that
the removal of the verb resulted in a larger generalisation
error than the other two tests, while the removal of the object
location resulted in the lowest generalisation error.

For the second part of the experiment, the main aim
was to understand the effect of a particular input modal-
ity (presenting as semantic structures or visual input) in the
whole network activities by observing the visualization of the
weights. We conducted an experiment with a smaller data-
set (3 x 3), due to the fact that smaller number of weights
give a better presentation for the visualization. But a similar
conclusion would be extended into the larger 9 x 9 data-set.
Figure 5 visualises the weighting matrix, where the neurons
from number O to number 703 were neurons on the / O layer,
from number 704 to number 764 were neurons on the Cy
layer and from number 765 to number 794 were neurons
on the C, layer. The weight matrices in Fig. 5a, Fig. 5c
and Fig. 5d looked quite similar. But in Fig. 5b, without
the verb input, we could easily notice that a large amount
of weights from /O layer to Cy remain to be un-trained.
To quantitatively evaluate this observation, Table 9 calcu-
lated the 2-norm to obtain the Euclidean distances from the
manipulated weighting matrices to the base-line matrix. The
2-norm was calculated by:

dW" =W = | " (@ —df)? (15)

i=1 j=1I

where W is the weighting matrix after data manipulation,
W? is the weighting matrix from the base-line experiment,
d is the weight from the i-th neuron to j-th neuron. Here
n = 795 which is the total number of neurons.

From the comparisons of weight matrices and the Euclid-
ean distances, we further verified our hypothesis that the
semantic compositionality of verbs represented as motor
behaviours plays a significant role in the network since it
is further grounded in the differences of motor action trajec-
tories, which dominate a large spatio-temporal space of the
sequences.

4.2 Internal dynamics

In the previous analysis, we have looked at the generalisation
ability of the MTRNN. A preliminary conclusion suggests
that the lexical structure of the verb plays a significant role
in maintaining the convergence of the temporal sensorimotor
sequences. In this section, we are particularly interested in
how the generalisation capabilities are brought by the recur-
rent connected hierarchical structure. We believed that part of
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Table 7 Errors: removal part of input (3 verbs and 3 nouns)

Error Training: w/o v. Generalisation: Training: w/o n. Generalisation: Training: w/o Generalisation:
w/o v. w/o n. visual w/o visual

Test 1 0.0003 0.1041 0.0003 0.0594 0.0003 0.0868

Test 2 0.0003 0.1129 0.0003 0.0612 0.0003 0.0933

Table 8 Errors: removal part of input (9 verbs and 9 nouns)

Error Training: w/o v. Generalisation: Training: w/o n. Generalisation: Training: w/o Generalisation:
w/o v. w/o n. visual w/o visual

Test 1 0.0003 0.5311 0.0003 0.5223 0.0003 0.0921

Test 2 0.0005 0.6623 0.0005 0.7473 0.0005 0.1379

Test 3 0.0006 0.8574 0.0006 0.7494 0.0006 0.1771

100 200 300 400 500 600 700

Fig. 5 Weight visualization by input removal: different colours along
the axis represent different layers (red: /0, green: C ¢, blue: Cs) Without
the verb input, we could easily notice that a large number of weights
from IO layer to Cy remain to be un-trained in Fig. 5b. And no big

Table9 Euclidean distances between partial input matrices and normal
training matrix

W/o verb W/o noun W/o location

Distance 8.9100 0.9450 0.6736

these answers can be found by observing the detailed neural
activities on each context layer given the selection of dif-
ferent inputs. The neural activities were therefore examined
using the 9 x 9 data-set, with a previously trained MTRNN
with the parameter setting of (70, 3, 50, 120).

The following figures showed the PCA trajectories of
the internal neural dynamics on the Cy (Fig. 6) and C;
(Fig. 7) layers. Since the complete 9 x 9 data-set contains 486
sequences, whose patterns can hardly be observed in one sin-
gle figure, only a few samples were presented in the following
figures to clearly show the PCA trajectories. Figures 6a and
7a showed the selected PCA trajectories on the Cy and Cj
layers. These trajectories mainly concern combinations of
verb inputs and a few noun inputs. We can see that the
verbs mainly determine the patterns of the trajectories, which
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(d)

differences can be observed in Fig. 5a, ¢ and d. a Weight matrix of nor-
mal training (base-line). b Weight matrix without verb input. ¢ Weight
matrix without noun input. d Weight matrix without visual input (Color
figure online)

implies that the motor processing of verbs mainly affects the
temporal dynamics in the MTRNN. Since perception and
action are intertwined, we expect such neural phenomenon
about motor execution exist during both the action execution
and observation since the system needs a number of neural
dynamics to maintain such motoric memories.

The following figures mainly show how the differences
in lexical structures and visual information result in the dif-
ferences in the PCA trajectories. Figures 6b and 7b show
the PCA trajectories of the internal dynamics on Cy and Cj
layers, with different noun inputs; Figs. 6c and 7c showed
the PCA trajectories with different object location inputs.
We could observe that the differences of nouns on the Cr
(Fig. 6b) cause divergences at the beginning of the trajecto-
ries, but not at the end. From Fig. 6¢c comparisons show the
differences of visual inputs produce even smaller divergences
in the trajectories, and that the divergences mainly occurred
at the middle of the trajectories. Comparatively, from the
activities on the C; layer (Fig. 7b and c), the divergences
of the trajectories from nouns and visual inputs were even
smaller: the C; layer mainly encoded the information from
the verbs.
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Fig. 6 Principle component analysis on the Cy neurons. With com-
parison, we can observe the differences in verbs (Fig. 6a) result in
larger divergence than nouns and locations. a Neural activation C
from selected sequences. It shows that the sequences with different

To summarise the MTRNN analysis, the model self-
organises similar patterns on various levels for every sen-
sorimotor sequence, reflecting the hierarchical structure for
the vocal commands. Particularly, we can see that the differ-
ence between verb inputs results in larger divergence of the
trajectories than noun and object-location differences. Due
to the data structure of our input vectors, the O layer repre-
sents a collection of each word. With a slower adaptation rate
than the 1 O layer, the C ; represents the grounded meaning
of each verb, noun, and visual information. This ground-
ing process is learnt by all temporal sensorimotor sequences.
Similarly, using slower changing neurons, the C; layer repre-
sents the general motor behaviour (i.e. the verb) of the whole
sensorimotor sequence.

Therefore, the C y activation mainly represents the lexical
structures (verbs and nouns). The visual location has a limited
effect on the Cy activation, probably because the informa-
tion of noun already has overlap with the object information
about the visual location. As the main factor of the C 7 layer,

nouns are clustered closer than those with different verbs. Particularly
we can compare (verb-noun) combinations of (0.3—0.5, 0) (red) and
(0.1,0.0-0.2) (blue). b Cy with different nouns. ¢ Cy With different
object locations (Color figure online)

the same verbs are represented as a similar pattern on the
fast context layer in all Fig. 6a—c. The difference from nouns
can be observed at the beginning of the trajectories. It corre-
spond to the difference of robot behaviours at the beginning
of the time sequences, caused by the neck and eye tracking
before the actual hand movement starts. Comparing with the
Cy layer, the Cy activation changes even slower. It generally
represents the motor behaviours; only the verbs are repre-
sented in different patterns.

5 Discussion

5.1 Functional hierarchy of RNN and its bifurcation
It has been reported that quite a few RNN models based on
functional hierarchy, such as RNNPB, MTRNN and concep-

tors (Jaeger 2014), allow the bifurcation to occur in the RNN
dynamics. We will give a brief discussion of how this bifurca-
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Fig. 7 Principle component analysis on the Cy neurons. With com-
parison, we can observe the differences in verbs result in larger
divergence than nouns and locations. a Neural activation Cy from
selected sequences. It shows that the sequences with different nouns are

tion happens. Assuming we have a simple hierarchical RNN
with an additional unit (which can be regarded as a simplified
version of RNNPB) as depicted in Fig. 8. The system can be
described as Eq. 16.

x1(t) = —x1(t) + f(x3(1))
Xo(t) = —xo(t) +a- f(xi1(t)) +c- PB
x3(1) = —x3(t) + b - f(x2(2))

y(@) = f(x3(1))

(16)

There are three fixed points in this network. After the
network has been trained, i.e. the weights a, b and c are
fixed, the coordinates of fixed points only depend upon the
value of PB. Furthermore, the coordinates of the fixed points
[x1, x2, x3] are first-order functions of the value of P B units
(please see appendix for the calculation in details). In other
words, the coordinates of the fixed points further determine
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clustered closer than those with different verbs. Particularly we can com-
pare (verb-noun) combinations of (0.3—0.5, 0) (red) and (0.1, 0.0—0.2)
(blue). b C; with different nouns. ¢ C; With different object locations
(Color figure online)

Q : @

Fig.8 A simple recurrent network with parametric bias units
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the domain of different bifurcation properties. This is the
reason that changing the parameter of P B units will change
the qualitative structure of the non-linear dynamics of the
network. From the bifurcation explanation of the simplified
RNNPB model, at the next step we can also extend this
to other hierarchical RNNs such as MTRNN, as they are
holding a fundamentally similar theoretical foundation (Tani
2014).

5.2 Generalisation ability of MTRNN

In our experiments, the MTRNN was trained under a particu-
lar input data structure: Firstly the language commands were
recorded as auditory data and transformed into a discrete
symbolic representation, and secondly, the object locations
and the motor behaviours were also stored as the angles of
motor joints. This unique structure is a simplified represen-
tation of the common coding theory, which proposes that
perceptual inputs and motor actions are sharing the same
format of the representation within the cognitive processes.

The neural dynamics in our MTRNN exhibited a dynam-
ics which are different from those reported in Hinoshita
et al. (2009) and Heinrich et al. (2015). Whereas the noun
(or object perceptual inputs) play a significant factor in
the dynamics of context layers in these two examples,
our network has minimised the effects of nouns or the
object perception. This is partly because of the input data
structure where the motor joints of the iCub robot have
much larger dimensions than the visual perception input.
Also, the spatial information for objects in our experi-
ment setting is much easier to learn, compared to our
diversified motor behaviours. The generalisation here con-
cerns more the inference of the symbolic meaning of a
language command due to the composition of neural dynam-
ics. During the training in a hierarchical network, such
as MTRNN or RNNPB, the neural connections strengthen
between a particular type of sensorimotor sequence and
visual perception. Particularly, in our case of 9 x 9 data-
sets, most of our network weights store the memory of motor
actions.

Note that the generalisation of commands in the verb-
noun combinations is not the same as we usually do in the
generic recurrent neural networks (e.g. Ito and Tani 2004;
Pineda 1987; Zhong et al. 2014), which expect the net-
work to do interpolation or extrapolation with a novel input
value in either temporal or spatial space. While general-
izing dynamical patterns by interpolation is a non-trivial
task for training motor patterns in robots, our main con-
cern is the novel combinations in the context of lexicon
acquisition. In our case, the learning of verbs and nouns
results in the emergence of different dynamics that are mostly
stored in different synaptic weights, and thus their combi-
natorial composition is realised by the non-linearity of the

recurrent connections. Considering the different generali-
sation abilities of generic RNN, RNNPB (Kleesiek et al.
2013; Zhong et al. 2014) and MTRNN (Heinrich et al.
2015), the hierarchical RNNs appear particularly suitable
for the production of flexible motor behaviour and language
expression simultaneously in the real-world social robot
experiments.

5.3 Hierarchical recurrent networks and further
development

The hierarchical architecure was proposed the capture the
unpredict information in the hierarchical architecture. In our
application, it mainly captures the verb/motor information.

Furthermore, some machine learning methods have
recently been proposed based on the two Hierarchical Recur-
rent Networks together (Cho et al. 2014), which achieved
great performance in machine translation (Sutskever et al.
2014), image captioning (Vinyals et al. 2014), etc. The
Encoder-Decoder (ED) architecture usually consists of two
recurrent neural networks. One deep RNN network encodes
a sequence of input vectors with arbitrary length into a fix-
length vector representation in a hierarchical way, while the
other deep RNN network decodes this representation into a
target sequence of output vector. This specific representa-
tion between the encoder and the decoder RNNs is called
“thought vectors” which is claimed to represent the meaning
of the sequence in a high-dimensional space. The training of
such an architecture is done by maximizing the conditional
probability of the target sequence. If the input sequence is
denoted as (xp, x2, -+, x7) and the corresponding output
sequence is (y1, y2, - -+ , yr) (T does not necessarily equal
to T”), the next symbol generation is done by maximising
Eq. 17.

7
HP(ytlyt—l»yt—Za"' » V1, €)
=1

= P(yr, yrr—1, -+ o yilxr, xr—1, -+, x1) 17)
Generic RNNs are not able to approximate the probability
of the sequence with arbitrary length because of its vanish
gradient problem, but other novel RNNs, such as LSTM,
BRNN (Bi-directional Recurrent Neural Networks), have
been successfully employed to construct the ED architec-
ture to “understand” (encode) and to “generate” (decode) the
temporal sequences. Furthermore, due to the recent popular-
ity of parallel computation by GPU, it has become possible
to train and use such architectures to solve problems such as
machine translation and image captioning.

As the MTRNN can also avoid the vanish gradient prob-
lem, and larger MTRNN can be implemented via GPU, it
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is also possible to embed the MTRNN into the ED archi-
tecture. In fact, the context slow level Cs already exhibits a
similar feature of “thought vectors”, using a stable neural vec-
tor to represent the basic profiles of motor actions and object
instances (in our robotic experiment). They also have similar
information bi-directional flows which allow the networks to
recognise and to generate the time sequences. Despite their
similarities, compared with LSTM, the MTRNN have other
distinct features: First, from the above experiments and from
other MTRNN experiments (Heinrich et al. 2015; Hinoshita
et al. 2009), it has been shown that the fast context layers
and slow context layers exhibit various dynamics to explic-
itly represent the relationship between the verbs and nouns.
The deep LSTM, on the contrary, has not been reported to
have similar dynamics. Second, differently from the static
vector representation from LSTM, the context layers allow
a “slow” change through time which is more realistic for an
interaction environment, where it can be used to dynamically
exhibit the meaning of sentences and sensorimotor informa-
tion.

Admittedly, the training of deep RNNs, e.g. LSTMs and
MTRNNS, costs a large amount of computational effort.
But the recent development of GPU computing provides an
opportunity to construct and test such a big scale neural net-
work with a reasonable time and budget. The combination of
MTRNN, the concept of “thought vectors” and its embod-
iment in robotic systems, will allow us to further explore
issues such as:

1. The comparison of the performances of MTRNN, LSTM,
and BRNN within the ED architecture and examine their
performances in the robotic platforms.

2. The robot motor action, as a natural temporal sequence,
can be further incorporated as the training of RNNs of
ED architecture with connections to other modalities.

6 Conclusion

This paper presents a neurorobotic study on noun and verb
generation and generalisation, utilising with the MTRNN
networks, with a large data-set, consisting of vocal language
commands, visual object, and motor action data. Although
the generalisation abilities of hierarchical RNNs (RNNPB,
MTRNN) have been reported in previous research, this is
the first study to demonstrate its generalisation capability
using such a large data-set, which enables the robot to learn
to handle real-world objects and actions. These experiments
showed that the generalisation ability of the network is pos-
sible even with a large number of test-sets (9 motor actions
and 9 objects placing placed in 6 different locations). This
is particularly important because the recurrent connections
between the verbs and nouns are associated with different

@ Springer

modalities of the training-data, which is strengthened dur-
ing embodiment training by the sensorimotor interaction.
Detailed analyses on the robot’s neural controller showed
that the dynamics on different layers are self-organized in
the MTRNN. These self-organised dynamics further con-
stitute a functional hierarchical representation on different
layers, which associate different lexical structures with dif-
ferent modalities of the sensorimotor inputs. The MTRNN
showed how the embodied information about the verbs dom-
inates a large portion of the network dynamics, since the
proprioception information plays a significant role in the
training sequences. As such, the hierarchical RNNs, such as
MTRNN, are shown to be particularly beneficial in building a
neurorobotics cognitive architecture about language learning
for robotic systems, where the recurrent connections are able
to self-organise and build associations between embodied
information in different modalities and the lexical structure
information.
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Appendix

To calculate the coordinates of the fixed points, we should let
f'(x) = 0, which means that we need to solve the following
equations

—xi(0) + f(x3() =0
—x(t)+a- f(x1(t))+c-PB=0 (18)
—x3() +b- f(xa()) =0

The first solution for the first coordinate [xll, le, x31] is:

| 36N2 + (6M — 6N2 + Na)?
X1 =
! 36N2b2 + 36N2 + (6M — 6N2 + Na)?
1 a M
— 4+ _N 19
=7 + N (19)

N2b?
xi=6
36N? + (6M + N(—6N + a))?

Similarly, the coordinate of the second fixed point [xf, x%,
x32] is calculated by:
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[2250000(173N —100)2 4(—30000M+224727 N 2+43250N a+259650 N +-25000a+75000)2 ]

2
Xi=
1 \/ [22500062 (173N —100)2+225000(173N —100)2+(—30000M 4224727 N2 +43250N a+259650N +25000a+75000)2 ]

ay 2M N1 V3
§t i AN—(—3+%N)

2
X2

_ »2.(1.73N—1.0)2
*3=6 2 2
3 —12M+(1.73N—1.0)-(5.196 N+a+3.0)2+36(1.73N —1.0)

(20)

And the coordinate of the third fixed point [xf, x% , xg] is

given by

2_ [2250000(173N +100)2 +(—30000M +224727N 2 +43250N a+259650N +25000a+75000)2]
1 [22500062 (173N +100)2+225000(173 N +100)2+(—30000M +224727 N2 +43250 N a+259650N+25000a+75000)2 ]

2_ oM 1_ /3
N=gtooAaN-(2=7N)

2=6 b2-(1.73N+1.0)2
3 —12M+(1.73N+1.0)-(5.196N+a+3.0)2 +36(1.73N+1.0)2

2

For the above solutions, we define the parameter M as:

a2 bp?r o1
M="3%"%"3 22
and N as
2
B a’ ab2+—a§ —1+a+c-PB
216 4 12 4 4
1/3
g —% PB ?
st +—%—+t3+
M3
+ + 7
(23)

Although the equations seem to be complicated, remember
that variables a, b and ¢ (weights) are constant after training,
which means that M is a constant as well. Thus P B value
is a first-order variable in the function of N. Similarly, from
observation from Eqs.19-21 we can see that the solutions
are first-order function of variable N, which means that the
coordinates of this non-linear system are a first-order function
of PB.
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