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Highlights  25 

 26 

• Gypsy mushroom (C. caperatus) is an efficient fungal accumulator of radiocaesium 27 

• Decades after Chernobyl accident C. caperatus could exceed radiocaesium safety limits 28 

• Activity concentrations of C. caperatus fluctuate over time 29 

• Recent examples of C. caperatus from hot-spots can show elevated 137Cs levels 30 

• Dietary intake of some Polish C. caperatus can provide relatively high radioactive dose  31 

 32 
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Abstract 50 

 51 

Cortinarius caperatus grows in the northern regions of Europe, North America and Asia and 52 

is widely collected by mushroom foragers across Europe. This study shows that in the last 53 

three decades since the Chernobyl nuclear accident, C. caperatus collected across much of 54 

Northern Poland exhibited high activity concentrations of radiocaesium (137Cs) - a long-lived 55 

radionuclide. The mushroom appears to efficiently bioconcentrate 137Cs from contaminated 56 

soil substrata followed by sequestration into its morphological parts such as the cap and stipe 57 

which are used as food. The gradual leaching of 137Cs into the lower strata of surface soils in 58 

exposed areas are likely to facilitate higher bioavailability to the mycelia of this species which 59 

penetrate to relatively greater depths and may account for the continuing high activity levels 60 

noticed in Polish samples (e.g. activity within caps in some locations was still at 11000 Bq kg-
61 

1 dw in 2008 relative to a peak of 18000 in 2002). The associated dietary intake levels of 137Cs 62 

have often exceeded the tolerance limits set by the European Union (370 and 600 Bq kg-1 ww 63 

for children and adults respectively) during the years 1996 to 2010. Human dietary exposure 64 

to 137Cs is influenced by the method of food preparation and may be mitigated by blanching 65 

followed by disposal of the water, rather than direct consumption after stir-frying or stewing. 66 

It may be prudent to provide precautionary advice and monitor activity levels, as this 67 

mushroom continues to be foraged by casual as well as experienced mushroom hunters.  68 

 69 

 70 

 71 

 72 
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Introduction 75 

 76 

Surface vegetation and fungi, within the humified layer of soil are part of the forest ecosystem 77 

that is susceptible to pollution with caesium (134/137Cs – half-life 2.1/30 yrs respectively) 78 

particularly from radioactive fallout after nuclear events (Römmelt et al., 1990; Suchara, 79 

2017). Mushrooms, the fruiting bodies of fungi, exhibit a remarkable aptitude and propensity 80 

to bioconcentrate a variety of metallic elements and metalloids, both of a beneficial (Cu, K, 81 

Se, Zn) or harmful nature (As, Ag, Cd, Hg, Pb, radiocaesium) (Cocchi et al., 2017; 82 

Frankowska et al., 2010; Giannaccini et al., 2012; Ingrao et al., 1992; Jarzyńska et al., 2012a, 83 

2012b; Komorowicz et al., 2019; Melgar et al., 1998; Vukojević et al., 2019). This tendency 84 

arises from genetic features of the species which include a wealth of transport genes and 85 

binding ligands which act as drivers of metallic element accumulation on the one hand 86 

combined with site-specific features related to soil geochemistry, biology and pollution on the 87 

other. Mushrooms that grow in soil contaminated due to mining or processing of metal ores, 88 

metallurgy, metal waste management, chemical waste disposal, nuclear explosions and 89 

nuclear accidents are often considerably contaminated with specific metal or metalloid 90 

elements, e.g. arsenic (As), cadmium (Cd), lead (Pb), mercury (Hg), nickel (Ni), silver (Ag) 91 

or radionuclides (134Cs, 137Cs) (Barcan et al., 1988; Borovička et al., 2014; Falandysz, 2016, 92 

2017; Kojta et al., 2012; Komárek et al., 2007; Larsen et al., 1998; Mleczek et al., 2016; 93 

Petkovšek and Pokorny, 2013; Steinhauser et al., 2014). Similarly, those that grow in soils 94 

with a naturally high polymetallic background from regions with geochemical anomalies can 95 

display high levels of Hg and As, e.g. affected mushrooms in the mercuriferous belt in the 96 

Yunnan province of China (Falandysz and Rizal, 2016; Falandysz et al., 2014, 2015a, 2015b; 97 

Kojta et al., 2015), and those susceptible to cinnabar deposition from sites and mining activity 98 
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in Europe in the Middle Spiš in Slovakia, Monte Amiata in Italy or the Idrija area in Slovenia 99 

(Árvay et al., 2014; Bargagli and Baldi 1984; Vogel-Mikuš et al., 2016).  100 

Among monovalent alkali elements, stable caesium (133Cs), lithium (Li) and sodium 101 

(Na) occur as minor constituents in mushrooms compared to the high proportions of 102 

potassium (K) with lesser amounts of rubidium (Rb) (Falandysz and Borovička, 2013). The 103 

edible Gypsy mushroom, Cortinarius caperatus (Pers.) Fr., shows a high propensity to absorb 104 

radioactive caesium (134/137Cs) from soil (Haselwandter et al., 1988). The contents of K, Rb, 105 

Na and Cs (133Cs) in C. caperatus (Pers.) Fr., collected from Precambrian shales in the Middle 106 

Bohemia region (background area without metallic ores) were respectively 45000 ± 1400 mg 107 

kg-1 dry biomass (db), 243 ± 8 mg kg-1 db, 720 ± 25 mg kg-1 db and 8.4 mg kg-1 db (Řanda 108 

and  Kučera, 2004). K, Rb and Na in C. caperatus (n = 3) sampled in a Norwegian mountain 109 

area in 1988 occurred at concentrations of 55000, 173 and 102 mg kg-1 db, respectively, with 110 

total Cs at 3.6 ± 1.6 mg kg-1 db (including 134/137Cs at activity concentration of 282000 ± 111 

162000 Bq kg-1 db) (Bakken and Olsen, 1990b).  112 

The content of 133Cs in the fruiting bodies of fungi is positively correlated to the value 113 

of the bioconcentration factor/transfer factor (BCF/TF) for radiocaesium in mushrooms from 114 

the soil substrata (Olsen, 1994). It is therefore unsurprising that the level of radiocaesium 115 

activity correlates well with 133Cs at equilibrium state in mushrooms (Ismail, 1994; Karadeniz 116 

and Yaprak, 2007; Rühm et al., 1999; Yoshida et al., 2004). Nevertheless, due to the high 117 

biodiversity within mushrooms there is an insufficient quantity of good quality data on this 118 

topic.  119 

The activity concentration of 137Cs is often also positively correlated with Rb content 120 

(Vinichuk et al., 2011) but not with K (40K), Na and Li or P (Bakken and Olsen, 1990b; Bem 121 

et al., 1990; Falandysz et al., 2019a; Ismail et al. 1995; Karadeniz and Yaprak, 2010; 122 

Strandberg, 1994; Vinichuk et al., 2011). Nyholm and Tyler (2000) noted that: “low K status 123 
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(pool of exchangeable K) in the soil, usually aggravated by high soil acidity which causes K 124 

leaching losses, is compensated by increased uptake of Rb by plants and fungi”. Nevertheless, 125 

any dependence on uptake or a substantial relationship between 133Cs and 134/137Cs on the one 126 

hand and Rb and K on the other has not been studied so far in mushrooms.  127 

C. caperatus is a prized edible species with a fruiting body of appreciable size. The 128 

stipe height is typically from 6 to 12 (15 cm) with a thickness ranging from 1 to 2 (3 cm) over 129 

most of the length, widening towards the base, and a cap of up to 12 cm in diameter. Its 130 

occurrence is widespread in the northern regions of Europe and it also occurs locally in other 131 

regions of Europe, North America and Asia (section 3.3.). Its flesh has a mild smell (Laessoe 132 

et al., 1996) and nutty flavor when cooked.  133 

The culinary treatment and preservation of mushrooms including C. caperatus vary, 134 

depending on the strain, abundance, region, local culinary tradition or the specific needs of 135 

collectors or growers. C. caperatus can be prepared for consumption as fried, stewed or 136 

pickled (caps with a short part of the stipe prepared from young or button stage fruiting bodies 137 

are especially preferred). Blanching (parboiling) with high excess of water and blanching & 138 

pickling can significantly decrease the content of radiocaesium in mushrooms prepared for 139 

consumption due to high predilection and leakage of the element into the water phase, and 140 

hence reduce exposure. However, blanching, in common with  stir-frying, frying or stewing, 141 

causes, among other effects, a partial dehydration and shrinkage of the prepared mushrooms 142 

leading to an apparent increase in the elemental content of the cooked produce when 143 

expressed on a whole (wet) weight basis (relative to the uncooked mushroom weight). This 144 

can result in an apparent increase in the intake of a compound or radionuclide (Falandysz et 145 

al., 2019b, 2019c, 2019d, 2019f),  relative to calculations/estimations that are based on dry 146 

weight results for both uncooked and cooked mushrooms and can lead to misinterpretation. 147 

Stewing or frying at higher temperatures lead to denaturation, hydrolysis and dehydration, and 148 
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can cause partial leaching, but not loss of the radiocaesium (and other metallic elements) 149 

content which shows an apparent increase when results are expressed on a whole (wet) weight 150 

basis for substrate (fresh mushrooms) and product (stewed or fried mushrooms). During 151 

frying there can be partial leakage of minerals into the oil residue (this is sometimes 152 

recovered and used as a sauce and consumed, or withdrawn), but at the same time due to the 153 

high temperature of the oil (around 160 °C during stir-frying in deep oil), partial dehydration 154 

also occurs, resulting in enhancement of the metallic and metalloid element content, including 155 

radiocaesium (Falandysz et al., 2019b-e). The process of stewing (often with other vegetables, 156 

spices and a handful of butter or vegetable oil), in a covered pot, results in almost all minerals 157 

remaining with the dish. Hence, due to the high bioaccumulation potential for radiocaesium 158 

and regardless of the kind of culinary processing, C. caperatus collected from areas 159 

experiencing radioactive fallout can be a particularly risky source of exposure to consumers. 160 

In this study the activity concentration and bioconcentration of 137Cs and 40K in C. caperatus 161 

mushrooms collected from soil substrata (0 – 10 cm layer) sampled from twenty two locations 162 

in the northern part of Poland in 1996 – 2016 was evaluated. Existing data on the 163 

radiocaesium contamination in mushrooms (sixty one species) of the genus Cortinarius from 164 

locations in Europe, Japan and China during 1974 – 2016 have also been collated and 165 

discussed. 166 

 167 

2. Materials and methods 168 

 169 

2.1. Mushrooms and soil substrate 170 

 171 

Samples of C. caperatus matured fruiting bodies (sporocarps) and generally, the underlying 172 

soil substrata (0 - 10 cm upper layer) of humified and mineral soil (ca. 100 g) were collected 173 
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from 22 locations in 20 geographically discrete, distributed forested areas in the northern part 174 

of Poland in 1996 – 2016 (Fig. 1). Between 8 and 70 individual fruiting bodies were collected 175 

per sampling location. The fresh fruiting bodies were routinely cleaned to remove any visible 176 

plant vegetation and soil debris at the site using a plastic knife, and the bottom part of the 177 

stipe was cut-off.  The cleaned samples were air-dried for a few days. With the exception of 178 

two sets from sites for which the whole fruiting bodies were examined, each individual 179 

fruiting body was then separated into cap (with skin) and stipe, and dried at 85 °C to constant 180 

mass. The dried fungal materials were pulverized in a porcelain mortar and kept in screw 181 

sealed plastic (low density polyethylene) bags under dry conditions.  182 

In parallel with the mushrooms from 17 locations, samples of corresponding topsoil 183 

layer (0–10 cm) of humified and mineral forest soil were collected from directly beneath the 184 

fruiting bodies, and were pooled for each site  (ca. 100 g of dried soil within a pool). After the 185 

removal of any small stones, sticks and leaves, the pooled samples were air dried at room 186 

temperature (constant 18 - 22 °C) for several weeks under clean (preventing from dust) and 187 

dry conditions. When constant air-dried weight was reached, the soil samples were graded 188 

through a plastic sieve of 2 mm pore size, into sealed polyethylene bags and kept under dry 189 

and clean conditions in the laboratory sample store. 190 

 191 

2.2. Analysis 192 

 193 

137Cs and 40K contents were determined using a gamma spectrometer with a coaxial HPGe 194 

detector with a relative efficiency of 18 % and a resolution of 1.9 keV at 1.332 MeV. All 195 

measurements of the fungal materials were preceded by a background measurement (time 196 

80,000 s or 250,000 s), and background counts were subtracted (the GENIE 2000 program). 197 

The equipment was calibrated using a multi-isotope standard and the method was fully 198 
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validated. The reference solution ‘Standard solution of gamma emitting isotopes, code BW/Z-199 

62/27/07’ produced at the IBJ-Świerk near Otwock in Poland was used for preparing 200 

reference samples for equipment calibration. The same geometry of cylindrical dishes with 40 201 

mm diameter (as applied for environmental samples) was used for reference samples during 202 

equipment calibration. Data obtained were recalculated for dehydrated materials (dried at 105 203 

°C) and results were decay corrected back to the time of mushrooms and soil sample 204 

collection (Falandysz et al., 2015a, 2017; Zalewska and Saniewski, 2011). Concentrations of 205 

stable K were calculated from the 40K data (Table 1). 206 

 207 

3. Results and discussion 208 

 209 

3.1. 137Cs and 40K in mushrooms 210 

 211 

As in other locations in northern Europe, C. caperatus that grows in the northern regions of 212 

Poland is found in coniferous (spruce and pine) and beech woods on poor and acidic sandy 213 

soils, both humid and dry. Seasonally, in Poland, it can proliferate in forests in the late 214 

summer and autumn. Caps in this study showed higher concentrations of 137Cs than stipes, the 215 

median value of the quotient between level of the activity concentration in caps and stipes 216 

(index QC/S) for all locations was 2.4 (mean: 2.4 ± 0.5), and minimum and maximum values 217 

were in the range 1.5 to 3.3 (Table 1). 218 

As reported in Table 1, the determined activity concentrations of 137C in Bq per 219 

kilogram of dry weight (dw) in pooled samples and according to the period and place of 220 

collection were in the range of 1500 ± 16 to 9600 ± 71 Bq kg-1 dw in stipes to 2800 ± 52 to 221 

18000 ± 140 Bq kg-1 dw in caps and fluctuated to some degree depending on region (Fig. 2). 222 

Mushrooms from a few sites in the Warmia region and from one site from the Mazovia 223 
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(Mazowsze) region all showed relatively high 137Cs activity (Table 1). Nevertheless, a high 224 

degree of contamination was also noted in C. caperatus at a site in the Pomerania region. The 225 

activity concentration of 137Cs in the pooled sample of the whole fruiting bodies collected in 226 

2010 was 3700 ± 30 Bq kg-1 dw. 227 

C. caperatus is considered to have a high potential to accumulate 137Cs (Bakken and 228 

Olsen, 1990a; Strandberg, 2004). Indeed, the activity concentrations of 137Cs in caps of this 229 

species collected over 22 to 24 years after the Chernobyl accident and examined in this study 230 

were as high as 11000 ± 82 Bq kg-1 dw in the Orzechowo place (Warmia region) and 5600 ± 231 

58 Bq kg-1 dw in the Śliwice place (central area of the Tuchola Pinewoods) (Table 1). The 232 

substantial variability in the activity concentrations of 137Cs within the caps and stipes of C. 233 

caperatus observed in fruiting bodies seem to reflect location-specific differences in the 234 

degree of soil pollution (Figs. 2 and 3). For example, activity in caps at four locations in 2003 235 

was in the range 5000 ± 49 to 14000 ± 110 Bq kg-1 dw, and in 2007 at five other locations 236 

was in the range 3500 ± 38 to 13000 ± 100 Bq kg-1 dw (Table 1). 237 

Edible mushrooms with greater gastronomic value such as Imleria badia (Fr.) Fr. 238 

(previous name Xerocomus badius), and others such as Boletus edulis Bull., Boletus 239 

pinophilus Pilát & Dermek, Boletus reticulatus Schaeff., Leccinum scabrum (Bull.) Gray or 240 

Cantharellus cibarius Fr. are also considered as good accumulators of 137Cs. During the last 241 

four decades these mushrooms that are foraged in the same regions as those in this study and 242 

elsewhere in Poland have been found to be clearly less contaminated with radiocaesium than 243 

the C. caperatus in this study (Bem et al., 1990; Falandysz et al., 2015a, 2016; Malinowska et 244 

al., 2006). An exception could be mushrooms foraged from the hot spot area in the 245 

southwestern region of Poland (cumulative deposition of 137Cs was 64 ± 2 kBq m2 - as 246 

calculated in autumn 2006) and described by Mietelski et al. (2010; see also Fig. 3). 247 

Considerable contamination with radiocaesium could also be expected in mushrooms foraged 248 
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from the region of Śnieżnik in the Sudety Mountains in the south-west of Poland (Fig. 3). B. 249 

edulis collected in 1998 from the Kłocka Dale in Sudety Mountains showed concentration 250 

level of 137Cs at 5722 ± 5 Bq kg-1 db (Falandysz et al., 2015a), but there is no data available 251 

for other species from this location. 252 

The degree of maturity of the fruiting body is a possible variable that could influence 253 

the content of accumulated 137Cs as well as certain other metallic and metalloid elements in 254 

mushrooms, as seen for example, in Amanita muscaria (L.) Lam.) (Falandysz et al., 2019a, 255 

2019g), but there are no similar observations that are specific to C. caperatus from this study 256 

Clearly, the characteristics of accumulation of 137Cs and 40K  by C. caperatus vary, regardless 257 

of location and year of collection, or morphological parts such as caps and stipes (Table 1, Fig. 258 

2).  259 

Unlike 137Cs,  40K activity concentrations (and hence also total K content) were more 260 

uniform across the range of sampling locations and over time, i.e. the median and mean 261 

values in stipes was 1200 Bq kg-1 dw and 1200 ± 140  Bq kg-1 dw  respectively (range 960 ± 262 

130 to  1500 ± 150 Bq kg-1 dw) (see also Fig. 2). The corresponding values for caps were 263 

1100 Bq kg-1 dw and 1100 ± 160 Bq kg-1 dw respectively (range 880 ± 140 to 1600 ± 130 Bq 264 

kg-1 dw) (Table 1). Relative to 137Cs however, the morphological distribution was different in 265 

the fruiting bodies. The stipes were usually richer in potassium compared to the caps. The 266 

median value of the quotient (QC/S) for 40K was 0.92 (mean: 0.95 ± 1.2 and range 0.73 to 1.2) 267 

(Table 1). 268 

Potassium generally occurs to a high level and is an important functional metal in the 269 

flesh of mushrooms. It is essential as an intracellular cation for osmotic regulation of water 270 

content and as a co-factor in enzymes. The reported potassium content in a large set of 271 

fruiting bodies of the mycorrhizal (mutualistic) mushrooms such as King Bolete (Boletus 272 

edulis) and Fly Agaric (Amanita muscaria) was in the range 20000 to 38000 mg kg-1 db 273 
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(median values)  and 37000 to 45000 mg kg-1 db (Drewnowska et al., 2013; Falandysz et al., 274 

2007b; Lipka and Falandysz, 2017). Saprotroph mushrooms are also rich in potassium, e.g. in 275 

caps of Parasol Mushroom (Macrolepiota procera) potassium occurs in the range 33000 to 276 

46000 mg kg-1 db (Gucia et al., 2012; Jarzyńska et al., 2011; Kojta et al., 2011 and 2016; 277 

Kułdo et al., 2014) with higher concentrations in the fruitbodies of Coprinus micaceus, i.e. 278 

from 99000 to 135000 mg kg-1 db (Tyler, 1980), 79500 (74500 to 87000) mg kg-1 db (Seeger, 279 

1978) and 69000 ± 2400 mg kg-1 db – all values rounded (Vetter, 1994).  On the other hand, 280 

mycorrhizal species whose mycelia extract nutrition from wood, e.g. Auricularia auricula-281 

judae (Bull.) Quél have considerably lower potassium levels than saprotrophs (4300 mg K kg-
282 

1 db) (Vetter, 1994).  283 

The value of QC/S for 40K in fruiting bodies of many species of mushrooms is usually 284 

above 1.0 (Falandysz et al., 2017 and 2018). In a recent study of A. muscaria, the caps to stipe 285 

quotients (QC/S) of 40K decreased with increasing development of the mushroom, i.e. from 1.5 286 

(1.4 to 1.6) in the button stage and young individuals (n = 97) down to 1.0 (0.62 to 1.2) in the 287 

older and mature specimens (n = 144) (Falandysz et al., 2019a). However, based on the 288 

results for one species in one location, it would be difficult to generalize on  the influence of 289 

the development stage of fruiting bodies on the QC/S  values for other species, as there is no 290 

other reported data on this parameter.  291 

 292 

3.2. 137Cs and 40K in the soil beneath fruiting bodies and bio-concentration  293 

 294 

137Cs activity concentrations in the forest topsoil (mixed layers including organic and mineral 295 

layer) samples showed values in the range from 10 ± 1 (Lębork site, Pomerania, 2007) to 70 ± 296 

3 Bq kg-1 dm (Strzebielino, Pomerania, 2006). Soils sampled from other locations during 297 

1996 to 2008 contained 137Cs at level 33±1 to 41±2 Bq kg-1 dm (Table 1). This level of 137Cs 298 
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activity is similar to that reported earlier (Malinowska et al., 2006) for soils sampled below 299 

the fruiting bodies of I. badia, that were collected from sites in the northern and north-eastern 300 

regions of Poland in 1996-1998.  137Cs activity concentrations were in the range of 34 ± 3 to 301 

100 ± 4 (total 11 to 260) Bq kg-1 dm, with areas in the north-eastern region showing higher 302 

pollution. 303 

 Bioconcentration factors (BCFs) and aggregated transfer factors (TFs) are generally 304 

calculated to understand the potential of some species including mushrooms, to accumulate 305 

chemical elements contained in the soils or substrates in which they grow. BCFs and TFs are 306 

ratios of radionuclide specific activity in mushrooms to the activity concentration in the 307 

underlying soil (0-10 cm layer) or the surface activity of the soil (m2 kg-1) respectively. It is 308 

evident that the BCF estimate is highly specific because it relates to the soil collected directly 309 

beneath the sampled fruiting body of the mushroom while the distribution of radiocaesium in 310 

the surrounding surface soils can be more heterogeneous. 311 

The variability of 137Cs pollution of Polish soil resulting from the Chernobyl accident 312 

is evident from geospatial imagery (Fig. 3) which presents a slightly mosaic-like distribution 313 

highlighting areas of higher concentration. This detailed picture differs form more generalized 314 

images (Betti et al., 2016). Fig. 3 can be particularly useful in identifying possible “hot spot” 315 

forested areas, where mushrooms can show site-specific levels of high pollution, both for one-316 

off sampling or for trends from longer term sampling. 317 

An earlier study (Borio et al., 1991) showed no reliable correlation between the 318 

radiocaesium activity concentration of mushrooms and the underlying soil. However, 319 

mushrooms collected from forested areas (Falandysz and Borovička, 2013; Falandysz et al., 320 

2008; Mietelski et al., 2010) that corresponded to “hot spot” visualized in Fig. 3, with soils 321 

showing substantially elevated 137Cs levels (due to the Chernobyl fallout), appear to be more 322 
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contaminated with 137Cs. Moreover the elevation in 137Cs levels for these areas seems to be 323 

regardless of the species of mushroom under study.  324 

The relationship between substrate areas of mycelial proliferation and growth (either 325 

within layers or within the soil horizon), the severity of the radioactive fallout, speed of 137Cs 326 

infiltration to deeper layers and the nuclide activity concentration accumulated by mushrooms 327 

can be effectively illustrated using the example of the amethyst deceiver mushroom (Laccaria 328 

amethystina Cooke), that feeds on decaying litter.  Immediately after the Chernobyl accident, 329 

high levels of 137Cs and 134Cs were found in L. amethystina, which is known to accumulate 330 

activity through surface mycelia that absorb the easily available radiocaesium from fresh fall-331 

out (Stijve and Poretti, 1990). This is because forest topsoil rich in organic matter (humus) 332 

can adsorb and retain a large portion of radiocaesium from airborne deposition (Lehto et al., 333 

2013).  334 

According to a number of studies, the infiltration of airborne 137Cs from the surface to 335 

wider soil horizons (or deeper layers) is a slow process (Mietelski et al., 2010; Niesiobędzka, 336 

2000). The soil layer with the highest density of mycelia and the extent of depth and space to 337 

which the hyphae penetrate, largely depends on the type of mushroom. Therefore, bulk (0-10 338 

cm layer) sampling of soils can only give a general idea of 137Cs contamination and its 339 

availability from soils. To better assess the efficiency of 137Cs uptake and sequestration by C. 340 

caperatus, a more detailed study would be required to identify the specific soil layers (e.g.: 0-341 

1, 1-2, 2-3 cm etc.) that correlate with the highest density of C. caperatus mycelia and the 342 

137Cs content. 343 

For ectomycorrhizal fungi, the penetration zone of hyphae is likely to be species-344 

dependent and if the soil profile is favorable they can follow the roots to deeper levels. For 345 

example, the saprobic Agaricus bernardii hyphae lives at least down to a depth of 30 cm 346 

(Borovička et al., 2010). Ingrao et al. (1992) noted, that one of difficulties in estimating the 347 
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bio-concentration potential of mushrooms to accumulate metallic and metalloid elements and 348 

their suitability or not, as indicative species in environmental (soil) pollution monitoring, is 349 

that hyphae can live down in soil to depths of 50 cm. On other occasions, mushrooms can be 350 

suitable in prospecting of the metal/metalloid resources and geochemical anomalies 351 

(Borovička et al., 2010; Falandysz et al., 2015a). 352 

Relative to K, both 137Cs and 133Cs (stable) only occur at trace concentrations in C. 353 

caperatus, like other metallic and metalloid elements in most species of macromycetes 354 

(Falandysz and Borovička, 2013). The relatively high levels of 137Cs that accumulated in 355 

many mushroom species shortly after the Chernobyl accident have been interpreted as 356 

possibly being due to its “better availability/accessibility” when compared to stable 133Cs, and 357 

a possible role (direct or indirect) of K in terms of absorption pathway. The latter influence 358 

(of K availability) can in turn dependent on multiple factors such as the chemical state in 359 

which K exists in the associated soil, its bio-availability in soil and other competing alkali 360 

ions during homeostasis. 361 

As the mycelia of C. caperatus penetrate to deep levels in the soil, the samples of soils 362 

collected from 0-10 cm layer can give only a general idea of 137Cs pollution about the soil 363 

horizons and its availability from forest soils. 137Cs has been found to have penetrated into 364 

deeper soil layers, and radiocesium levels in this particular mushroom have long been on the 365 

rise because it is increasingly available to the mycelium at lower depths. Ismail et al. (1995) 366 

observed that activity concentration of 137Cs in C. caperatus increased by around 20 percent 367 

each year between 1991 and 1993 (Table S1). The same was observed by Daillant et al. (2013) 368 

in C. caperatus sampled in 1992, 1993 and 1995, while levels dropped in 1998 and 2011 369 

(Table S1). 370 

 371 

3.3. Risk of 137Cs intake from C. caperatus 372 
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 373 

The maximum and minimum values of 137Cs activity concentration for caps of C. caperatus in 374 

this study in the years 1996 – 2016 were 2800 and 18000 Bq mg kg-1 db (280 and 1800 Bq 375 

mg kg-1 on a fresh biomass basis - assuming a moisture content of 90%). In view of the food 376 

tolerance limits for radiocaesium that are 370 and 600 Bq kg-1 whole (fresh) weight within the 377 

European Union for children and adults respectively, the R. caperatus collected in this study 378 

(in practice the caps with a piece of the uppermost part of stipes are used as food) (Table 1) 379 

often exceeded these limits in the years 1996 to 2010. Thus, while this species may be 380 

avoided by knowledgeable and informed mushroom hunters (mushroomers), the precaution 381 

may not extend to casual or opportunistic foragers. Due to their fresher appearance, it is 382 

possible that mushroomers preferentially collect young fruiting bodies, which can be more 383 

contaminated with 137Cs than more mature examples as has been observed recently for 384 

Amanita muscaria (Falandysz et al., 2019a). 385 

The mode of preparation of a mushroom dish can significantly influence the content of 386 

the metallic elements including 137Cs (Drewnowska et al., 2017; Falandysz et al., 2019b-f; 387 

Shutov et al., 1996). Blanching for 10 min or longer in boiling water (often slightly salty) 388 

leaches radioactivity into the water and can remove from around 20 to 90% - (based on dry 389 

biomass data) of the radiocaesium from the mushrooms, although there is no original data that 390 

is specific to C. caperatus, (or knowledge of such estimations when based on whole (wet) 391 

weight basis). On the other hand, stir-frying or stewing is much less efficient at causing 392 

leaching and removal of  metallic and metalloid elements or radiocaesium from mushroom 393 

meals than blanching (Falandysz et al., 2019b-f; Shutov et al., 1996).  394 

 395 

Conclusions 396 

 397 
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The mushroom Cortinarius caperatus has been seen to efficiently bioconcentrate 137Cs that is 398 

contained in the soil substratum in which its mycelia live.  The mushroom sequesters this 399 

element in substantial amounts in its morphological parts such as the cap and stipe which can 400 

be foraged and used as food.  401 

The mechanistic pathways that lead to a higher pollutant loading over time, in this 402 

species is not fully confirmed, but it is thought that the gradual leaching of 137Cs from the 403 

Chernobyl fallout, into lower strata of surface soil and decay combined with the relatively 404 

greater depths to which the mycelia of this species penetrate, may account for the higher 405 

levels of activity noticed in the samples collected in Poland. 406 

Intakes of radiocaesium arising from the consumption of  C. caperatus collected in 407 

this study (and based on data collated from literature) have often exceeded the tolerance limits 408 

set by the European Union for radiocaesium (370 and 600 Bq kg-1 ww for children and adults 409 

respectively) during the years 1996 to 2010. Human dietary exposure to 137Cs is influenced by 410 

the method of food preparation and may be mitigated by blanching mushrooms for 10 min or 411 

longer in boiling water (followed by disposal of the water), rather than direct consumption 412 

after stir-frying or stewing. 413 

As this mushroom continues to be foraged by casual as well as experienced mushroom 414 

hunters, it would be prudent to monitor levels of 137Cs in this species and mushrooms within 415 

this region, in general, and provide precautionary advice depending on the findings. 416 
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Figure 1. Location of the C. caperatus and surface soil sampling places in Poland (for name 787 

and ID of the places see also Table 1). 788 

 789 

Figure 2. Spatial visualisation of the distribution of 137Cs and 40K activity concentrations in 790 

surface layer of soils in Poland (Isajenko et al., 2012). 791 

 792 

Figure 3. 137Cs and 40K in caps and stipes of C. caperatus from the northern regions of Poland 793 

(Bq kg-1dry weight). 794 

 795 



Table 1. 137Cs and 40K activity of C. caperatus – composite samples and beneath soils 
 

 
 
Region, site, year and site ID# (see Fig. 1) 

137Cs (Bq kg-1 db)  137Cs  40K (Bq kg-1 db)  40K  

Fruiting body  (Bq kg-1 dm)  Fruiting body  (Bq kg-1 dm)  
Cap Stipe QC/S Soil BCFC // BCFS Cap Stipe QC/S Soil BCFC // BCFS 

Pomerania; Trójmiejski Landscape Park, 1996 (n=20)* [6]# 13000 ± 110¶ 4200 ± 45 3.1 33 ± 1 390 // 130 1200 ± 110 1200 ± 140 1.0 150 ± 41 8.0 // 8.0 
Pomerania, Wdzydze Landscape Park, 1998 (n=15) [5] 16000 ± 180 5300 ± 65 3.0 WD*  WD 1200 ± 130 1000 ± 120 1.2 WD WD 
Pomerania, Darżlubska  Wilderness, 2001 (n=15) [1a] 6500 ± 60 2000 ± 19 3.3 19 ± 2 340 // 100 1100 ± 140 1400 ± 100 0.79 110 ± 74 10 // 13 
Pomerania, Darżlubska Wilderness, 2003 (n=53) [1b] 5100 ± 43 2100 ± 19 2.4 24 ± 1 210 // 87 1200 ± 100 1300 ± 91 0.92 120 ± 36 10 // 9.2 
Masuria, Napiwodzko-Ramucka Wild., 2002 (n=15) [17] 18000 ±140 9600 ± 71 1.9 37 ± 1 490 // 260 980 ± 120 980 ± 97 1.0 180 ± 34 5.4 // 5.4 
Przymuszewo Forest Inspectorate, 2002 (n=16) [10] 12000 ± 94 5400 ± 43 2.2 WD WD 1300 ± 130 1100 ± 91 1.2 WD WD 
Pomerania, Dziemiany, 2003 (n=14) [4] 9000 ± 69 3100 ± 27 2.9 17 ± 1 530 // 180 1000 ± 110 1100 ± 98 0.91 97 ± 34 10 // 11 
Pomerania, Kępice; 2003 (n=8) [12] 5000 ± 49 2000 ± 19 2.6 16 ± 2 310 // 120 1200 ± 140 1200 ± 100 1.0 100 ± 69 12 // 12 
Masuria, Piska Wilderness, 2003 (n=52) [18] 14000 ± 110 4700 ± 40 3.0 WD WD 980 ± 130 1200 ± 100 0.82 WD WD 
Pomerania, Ostrowo, 2006 (n=53) [2] 3800 ± 36 1800 ± 17 2.1 23 ± 1 165 // 78 1100 ± 130 1200 ± 100 0.92 170 ± 41 6.5 // 7.0 
Pomerania, Seaside Landscape Park, 2006 (n=43) [2] 4100 ± 33 2100 ± 18 1.9 16 ± 2 260 // 130 1100 ± 100 1200 ± 90 0.92 < 37 61 // 67 
Pomerania, Seaside Landscape Park, 2007 (n=16) [2] 3500 ± 38 1300 ± 17 2.6 46 ± 3 76 // 28 1600 ± 130 1300 ± 130 1.2 110 ± 86 14 // 12 
Pomerania, Sulęczyno, 2006 (n=70) [3] 5200 ± 50 3500 ± 25 1.5 43 ± 1 120 // 81 1200 ± 140 1300 ± 100 0.92 83 ± 39 14 // 16 
Pomerania, Strzebielino, 2006 (n=16) [7] 4600 ± 42 1800 ± 23 2.6 70 ± 3 66 // 26 1200 ± 130 1500 ± 150 0.80 120 ± 73 10 // 12 
Pomerania, Kobylnica region, 2006 (n=61) [8] 4600 ± 39 2100 ± 18 2.2 25 ± 1 180 // 84 1000 ± 110 1200 ± 89 0.83 < 57 36 // 43 
Pomerania, outskirts of the town of Lębork, 2007 (n=31) [3] 3600 ± 36 1500 ± 16 2.4 10 ± 1 360 // 150 1200 ± 140 1300 ± 120 0.92 < 40 60 // 65 
Pomerania, Gołubie, 2008 (n=15) [11] 6500 ± 47 3000 ± 22 2.2 18 ± 1 360 // 120 1100 ± 100 1200 ± 80 0.92 150 ± 36 7.3 // 8.0 
Augustowska Primeval Forest, Suwałki, 2007 (n=17) [15] 9900 ± 99 3000 ± 32 3.3 24 ± 1 410 // 120 1200 ± 120 1200 ± 120 1.0 230 ± 37 5.2 // 5.2 
Mazovia, Olszewo-Borki, 2007 (n=19) [20] 13000 ± 100 5600 ± 59 2.3 WD WD 950 ± 120 1300 ± 150 0.73 WD WD 
Notecka Wilderness, Lubusz region, 2008 (n=32) [19] 5300 ± 50 2000 ± 17 2.7 WD WD 880 ± 140 960 ± 130 0.92 WD WD 
Warmia, Orzechowo, 2008 (n=52) [16] 11000 ± 82 5700 ± 44 1.9 41 ± 2 270 // 140 920 ± 120 1100 ± 100 0.92 180 ± 82 5.1 // 6.1 
Pomerania, Commune Parchowo, 2010 (n=15) [9] 3700 ± 30 NA WD WD 1100 ± 93 NA WD WD 
Pomerania, Tuchola Pinewoods, Lubichowo, 2007 (n=53) [13] 7300 ± 60 2900 ± 24 2.5 20 ± 1 360 // 140 980 ± 120 1100 ± 93 0.89 140 ± 36 7.0 // 7.9 
Pomerania, Tuchola Pinewoods, Śliwice, 2010 (n=16) [14] 5600 ± 58 1900 ± 24 3.0 WD WD 970 ± 150 980 ± 140 0.99 WD WD 
Pomerania, Tuchola Pinewoods, SE, 2016 (n=15) [14a] 2800 ± 52 1700 ± 84 1.6 WD WD 1100 ± 21 1400 ± 96 0.79 WD WD 
Mean NA NA 2.4 NA 280 // 110 1100 1200 0.95 110 17 // 18 
SD NA NA 0.5 NA 140 // 51 160 140 0.12 57 17 // 19 
Median NA NA 2.4 24 260 // 130 1100 1200 0.92 110 10 // 12 
Minimal 2800  1500  1.5  10 66 // 26  880 960 0.73 < 40  5.1 // 5.2 
Maximal 18000 9600 3.3 70 530 // 260 1600 1500 1.2 230 61 // 67 

Notes: QC/S (The quotient of the activity concentration in cap and stipe); BCF (bioconcentration factor – cap or stipe); *Number of fruiting bodies in composite sample – in 
parentheses (from 15 to 152 specimens per site, respectively); #Sampling site – in brackets (see Fig. 1); ¶Activity concentration ± measurement uncertainty; WD (without data); NA 
(not applicable) 
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Highlights  

 

• Gypsy mushroom (C. caperatus) is an efficient fungal accumulator of radiocaesium 

• Decades after Chernobyl accident C. caperatus could exceed radiocaesium safety limits 

• Activity concentrations of C. caperatus fluctuate over time 

• Recent examples of C. caperatus from hot-spots can show elevated 137Cs levels 

• Dietary intake of some Polish C. caperatus can provide relatively high radioactive dose  


