
Contents lists available at ScienceDirect

Journal of Environmental Management

journal homepage: www.elsevier.com/locate/jenvman

Research article

Emission drivers of cities at different industrialization phases in China
Ran Wanga, Xiuxiu Zhengb, Huiqing Wangb,c, Yuli Shand,∗
a Research Institute for Global Value Chains, University of International Business and Economics, No. 10, Huixin Dongjie, Beijing, 100029, China
b School of International Trade and Economics, University of International Business and Economics, No. 10, Huixin Dongjie, Beijing, 100029, China
c School of International Development, University of East Anglia, Norwich NR4 7TJ, UK
d Energy and Sustainability Research Institute Groningen, University of Groningen, Groningen, 9747, AG, Netherlands

A R T I C L E I N F O

Keywords:
CO2 emissions
Chinese cities
Driving forces
Decoupling analysis

A B S T R A C T

As cities are the center of human activity and the basic unit of policy design, they have become the focus of
carbon dioxide reduction, especially metropolitan areas that are high energy consumers and carbon dioxide
emitters in countries such as China. The fact cities differ in their levels of development and stages of in-
dustrialization points to the need for tailor-made low-carbon policies. This study is the first to consider cities'
different phases of industrialization when analyzing city-level emission patterns and drivers, as well as the
decoupling statuses between economic growth and their emission levels in China. The results of 15 re-
presentative cities at different phases of industrialization show that various decoupling statuses, driving factors
and decoupling efforts exist among cities, and that heterogeneity among these factors also exists among cities at
the same industrialization phase. For further decomposition, energy intensity contributed the most to emissions
reduction during the period 2005 to 2010, especially for cities with more heavy manufacturing industries,
whereas industrial structure was a stronger negative emission driver during the period 2010 to 2015. Based on
those findings, we suggest putting into practice a diversified carbon-mitigation policy portfolio according to each
city's industrialization phase rather than a single policy that focuses on one specific driving factor. This paper
sets an example on emissions-reduction experience for other cities undergoing different industrialization phases
in China; it also sheds light on policy initiatives that could be applied to other cities around the world.

1. Introduction

With their high concentration of people, industries and infra-
structure, worldwide cities contribute almost 70% of the anthropogenic
greenhouse gas (GHG) emissions (Hebbert, 2012). More than 360 cities
from different countries declared commitments on the 2015 Paris Cli-
mate Conference of making a collective contribution to at least half of the
world's urban GHG emissions reductions by the year 2020 (International
Energy Agency (IEA), 2008; UN-Habitat, 2011). Being one of the biggest
energy consumers and CO2 emitters in the world, China has pledged to
peak its carbon dioxide emissions by 2030 (INDC, 2015). China has also
focused its CO2 emissions-reduction policies at the city level. With rapid
economic growth and urbanization since its opening-up policy, the in-
dustrial structure of Chinese cities has also undergone extensive changes
(Jiang and Lin, 2012; Wanfu et al., 2019). Different phases of urbani-
zation or industrialization may exert a different impact on the economic
and environmental relationship (Wang et al., 2018a; Xu and Lin, 2015),
either in the short-run or the long-run (Wang and Su, 2019), or in coastal
or inland areas (Qi et al., 2013). Considering the unbalanced

development and different industrialization stages of cities in China and
around the world, various low-carbon policies may be needed due to the
different resource endowments, geographical locations, industrial fo-
cuses and functional orientations of the cities.

The driving factors of CO2 emissions mainly includes energy intensity,
energy structure, industrial structure, GDP per capita and population (Liu
et al., 2013; Tan et al., 2011). The case of Turkish manufacturing industries
shows that industrial activity and its consequent energy intensity are the
driving factors influencing changes in carbon dioxide emissions. In Turkey,
the largest CO2 emitting sectors are industries supported by coal-based fuel
structures (such as steel and iron-related industries) (Akbostancı et al.,
2011). Research on South Korea's manufacturing industries indicates that
the main driving factors of CO2 emissions may change dynamically, in-
cluding not only energy intensity, but also industrial structure (Jeong and
Kim, 2013). Evidence also shows that CO2 emissions in China decline lar-
gely due to changes in industrial and energy structure and decreasing en-
ergy intensity (Guan et al., 2018). However, some researchers use the “re-
bound effect” to explain the stimulating effect of reduced energy intensity
on CO2 emissions in heavy-manufacturing cities, indicating that improving
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energy efficiency will reduce the cost of energy-related products and ser-
vices, and thereby expand energy demand, and finally lead to increasing
CO2 emissions (Lin and Li, 2014; Wang et al., 2012). Among the relevant
literature, some studies explore the driving factors of CO2 emissions at
province or city level in China. Studies on Shanghai (Zhao et al., 2010),
Beijing (Wei et al., 2017), Inner Mongolia (Wang et al., 2014), Tianjin
(Wang et al., 2015), and Nanchang (Jia et al., 2018) show that growth in
GDP mainly contributes to increases in CO2 emissions while a decline in
energy intensity significantly drives emission reductions. This mechanism is
particularly significant in cities with heavy manufacturing industries (Jeong
and Kim, 2013; Lin and Liu, 2017). Economic growth and changes in in-
dustrial structure have contributed to significant increasing CO2 emissions
in Beijing, a city with its emissions dominated by metal and nonmetal
mining, construction, and utilities - electricity, natural gas and water (Wei
et al., 2017). The research based on Shanghai indicates that for a service-
oriented city, it is more critical to further reduce energy intensity and to
adjust the industrial structure rather than its energy structure (Zhao et al.,
2010). The research based on Nanchang identified the main industries that
dominate this city's CO2 emissions, including not only the traditional ferrous
metal smelting and processing industry but also the communications
equipment and electronic equipment manufacturing industries (Jia et al.,
2018).

Different approaches have been used in CO2 emissions research at the
city level; these include the structural decomposition analysis (SDA)
method based on input-output data, and the index decomposition ana-
lysis (IDA) method based on sector-aggregated data. As input-output
tables are unavailable for most of the cities, the SDA method is less ap-
plicable to research on urban-level decomposition. Many research prefer
the Logarithmic Mean Divisia Index (LMDI) decomposition method, an
extended form of the IDA method, to identify the driving factors behind
changes in CO2 emissions, due to its easy access and extensive adapt-
ability (Ang, 2004; Fernández González et al., 2014; Meng et al., 2016;
Ren et al., 2014). In addition, the Tapio Decoupling Classification Index
is often conducted along with the LMDI method to measure whether
economic growth is disconnected from resource consumption or en-
vironmental pollution (Diakoulaki and Mandaraka, 2007). Apart from
these, the Tapio Decoupling Effort Index, based on the LMDI results, is
widely applied to evaluate cities’ degree of efforts in realizing economic
growth with less energy or environmental resources. A combination of
these two methods can not only reveal the driving factors of decoupling
in a more specific way but also target detailed industrial segments that
contribute to CO2 emissions (de Freitas and Kaneko, 2011).

Despite the above findings, the existing literature show research
gaps in several ways. Most of the literature focuses on city clusters in
geographically agglomerated zones, such as the Beijing-Tianjin-Hebei
region (Yu et al., 2019), the Yangtze River Delta region (Zhu et al.,
2017) and the Pearl River Delta region (Wang et al., 2018b), or on
megacities such as Beijing and Shanghai (Shao et al., 2016; Shi et al.,
2019; Wang et al., 2019); however, these studies lack the level of re-
search that would take city classifications into consideration
throughout the different stages of urban industrial development. In
addition, few researchers have used the LMDI method and/or Decou-
pling Analysis to carry out thorough, detailed industrial segment-level
studies on cities, especially research that is based on cities’ changing
fossil fuel structure, even though using these methods makes in-depth
research feasible and practical.

In this paper, 15 representative cities in China are selected for detailed
CO2 emission decomposition and decoupling analyses. This paper con-
tributes to the existing literature in three distinctive ways: (i) firstly, dif-
ferent city classifications are taken into consideration to better reflect the
real unbalanced industrialization and urbanization development statuses
among cities in China; (ii) secondly, detailed data of fossil energy types and
industrial classifications that span the period from 2005 to 2015 are applied
so as to better analyze the evolution of the sample cities’ CO2 emissions; and
(iii) thirdly, an extended LMDI decomposition model is constructed, along
with the Tapio Decoupling Classification Index and the Tapio Decoupling
Effort Index, to study the driving factors behind changes of CO2 emissions
during different development stages of each of the 15 representative cities.
The results indicate that decoupling does not only occur in cities that are
leaders in high-tech or service industries but also in energy-producing cities
and cities where heavy manufacturing is prevalent, and which are con-
strained by resource endowment or geographical location. However, to
achieve this, coordinating efforts in improving energy structure, energy
efficiency and industrial structure are required, and these would set ex-
amples for other similar cities and shed light on practical policymaking
directions for the future.

2. Methodology

2.1. Emission accounts

The CO2 emissions are calculated in the Intergovernmental Panel on
Climate Change (IPCC) territorial administrative scope, based on the
representative cities’ energy balance tables (Shan et al., 2017). The
inventories cover 47 socioeconomic sectors and 17 fossil fuels, which
are consistent with national and provincial emission accounts of China
(Shan et al., 2016, 2018a, 2018b). The emission levels are derived from
activity data (fossil fuel consumption) multiplied by emission factors
(IPCC, 2006), see Equation (1):

=
= × × ×

CE
Activity NCV EF O i j

CE
, [1,17], [1.47]

energy i j ij

i j ij ij ij ij 1

where CEij represents the CO2 emissions from fossil fuel i combusted in
sector j; Activitiyij is the consumption of fossil fuels; NCVi represents the
net caloric value; EFij represents the emission factors; while Oij re-
presents the oxygenation efficiency. These three emission parameters
(NCVi , EFij and Oij) are obtained from Liu et al. (2015). The residential
consumption data is excluded.

2.2. Tapio Decoupling Classification Index

The Tapio Decoupling Classification Index measures the change in
the economic growth and pollutant emissions in the form of an elasticity
coefficient, and the range of the results is divided into three categories of
first-level indicators and eight categories of second-level indicators,
measuring different decoupling states (as shown in Table 1); the formula
is shown in Equation (2). Among the results, strong decoupling indicates

Table 1
Tapio decoupling classification index (Tapio, 2005).

Tapio Decoupling Classification Relevant factors Tapio decoupling
elasticity coefficient

Grade I index Grade II
indexes

CO2 GDP

Negative
decoupling

Expansive
negative
decoupling

> 0 >0 DI > 1.2

Strong
negative
decoupling

> 0 <0 DI < 0

Weak
negative
decoupling

< 0 <0 0 < DI < 0.8

Decoupling Recessive
decoupling

< 0 <0 DI> 1.2

Strong
decoupling

< 0 >0 DI < 0

Weak
decoupling

> 0 >0 0 < DI < 0.8

Coupling Recessive
coupling

< 0 <0 0.8 < DI < 1.2

Expansive
coupling

> 0 >0 0.8 < DI < 1.2
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the ideal state of low-carbon economic development, whereas strong
negative decoupling represents the most unfavorable state.

=DI CO CO
GDP GDP

/
/

2 2
2

2.3. Index decomposition analysis (IDA-LMDI)

Decomposition analysis is one of the methods often used in energy
policy decision-making. Since the 1970s, various decomposition
methods have been applied to measure the influencing factors behind
changes in CO2 emissions. Among them, IDA provides detailed analyses
and impact assessments at the sector level (Xu and Ang, 2013). Being
one of the extended forms of the IDA method, the LMDI method is
preferred when applied to CO2 emission decomposition analysis using
city-level data due to its reliable theoretical basis and wide applicability
(Ang, 2004). In this paper, an LMDI decomposition model is con-
structed for six sectors, referring to the classic model of Ang (2005).
Meanwhile, a modified LMDI decomposition model at industrial seg-
ment level is constructed according to Zhao et al. (2010) and Lin and
Liu (2017); this model is also specifically constructed at the detailed
industrial-segment level.

A classic LMDI decomposition model of six major economic sectors
(refer to online Supporting Information) with 15 selected cities de-
composes the changes in energy-related carbon dioxide emissions (C)
into six factors, namely the carbon dioxide emission coefficient (CI), the
structure of energy consumption (ES), the energy intensity (EI), the
structure of industry (IS), GDP per capita (Y_per) and the scale of city's
population (P), calculated based on city level total energy consumption
(E) as well as GDP (Y). The six-sector decomposition formulas are ex-
pressed as follows, referring to Ang (2005), subscripts of which in-
dicating fossil fuel type k used in sector i. We assume that =CIik

C
E

ik
ik
,

=ESik
E
E
ik
i
, =EIi

E
Y

i
i
, =ISi

Y
Y

i , =Y per_ Y
P . Then the CO2 emissions (C) can

be decomposed as Equation (3).
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Under the additive form of LMDI, the total CO2-emission changing
effect during period t compared to the basic period is shown in Equation
(4). Therefore, we formulate the additive LMDI decomposition model
based on two consecutive years as Equation (5). We assume that the
CO2 emission coefficients of the 17 sub-categories of fossil fuels are
constant in a short time, so the change in the emission factor ( CCI) is
always zero.

=
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The use of fossil fuels in multiple industry segments among different
cities varies by variety, quality, efficiency and is influenced by tech-
nological development and regional policies. Thus, the industry seg-
ment level LMDI decomposition model (refer to online Supporting
Information) has been constructed to better observe how the score of
industrial value added, energy efficiency and energy structure play
different roles in this economic-environmental mechanism. The driving
factors of CO2 emissions at the detailed industrial segment level (CI) are
decomposed into four parts, which are the CO2 emission coefficient for
the industry segments (ICI, which equals to CI), the energy structure of
the industry segments (IES), the energy intensity of the industry seg-
ments (IEI), and the value-add scale of each industry segment (IY),
calculated with data for total energy consumption (IE) and value-add
scale of output (IY), both at the detailed industrial segment level. Above
formulas can be expressed as in Equation (6), with changing effect of
each factor in consecutive years formulated as in Equation (7). We use
the “analytical limit’’ (AL) strategy in Ang et al. (1998) to process the
zero values in both the LMDI models with six sectors or that with 36
detailed industry segments (refer to online Supporting Information for
details).
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2.4. Tapio Decoupling Effort Index

Based on decomposition results from the LMDI model, this paper
also measures the decoupling efforts of the various cities in terms of
their different driving factors. Each city's CO2 emissions caused by the
economic growth factor ( C _Y per) are excluded from its total CO2

emissions ( C), and the decoupling effort indicator DE is constructed
based on this net effect, as in Equation (8) and Equation (9). When

C≥0, or C and GDP are in the same direction, this will lead to
DE≤0, indicating “no decoupling effort”; while C <0 and
0 < DE < 1 indicating “weak decoupling effort”; and with DE≥1
indicating “strong decoupling effort”. The greater the change in urban
CO2 emissions relative to GDP growth, the greater the decoupling effort
will be. To sum up, the larger the gap between a city's CO2 emissions
reduction and its GDP growth, the stronger are the decoupling efforts
that have been made.

= + + +C Y per ES EI IS P_ 8

=

=
= + + +

DE

DE DE DE DE

C Y per
GDP

ES
GDP

EI
GDP

IS
GDP

P
GDP

ES EI IS P

_
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2.5. Data sources

In this study, the data required are the city-level CO2 emissions
accounts, the sectoral fossil fuels consumption, the GDP, the popula-
tion, and the industrial value-added. The city level CO2 emissions in-
ventories and sectoral fossil fuels consumptions are calculated based on
China Emission Accounts and Datasets (www.ceads.net) (Shan et al.,
2018a, 2018b; Shan et al., 2019), which are sourced from city level
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Statistical Yearbook 2006–2016. The GDP, population, and industrial
value-added data are sourced from Statistical Yearbook 2006–2016 of
sample cities. The outlined 36 industry segments for all 15 selected
cities account almost to a proportion of 95% in the total industrial GDP,
thus they can be seen as an appropriate substitute for the actual in-
dustrial segments of these 15 cities. The rest of the industry segments
(such as the waste treatment industry) are not included due to incon-
sistent changes in the national economic classifications and these in-
dustries’ relatively small proportions in GDP. In this study, we cover the
years 2005–2015, and divide these years into two periods, from 2005 to
2010 and from 2010 to 2015, to reduce bias due to the churning be-
havior of industries within cities.

3. Results and main findings

3.1. Cities’ emissions and their decoupling statuses

We get the city classification from Shan et al. (2018a, 2018b) in
which cities are clustered into five groups, according to whether they
are mainly service-based, high-tech, light manufacturing, heavy man-
ufacturing, or energy producers. The top three cities with the largest
CO2 emissions (according to descending order of total CO2 emissions in
2015) in each category are selected as the representative samples (see
Table 2). The 15 cities, which cover almost all of the stages of China's

industrialization phases, provide a good representation of how different
types of cities perform in reducing their CO2 emissions.

We first conduct a decoupling analysis of the sample cities to de-
termine the relationship between economic growth and CO2 emissions
and to monitor the variations in decoupling statuses between the dif-
ferent time periods (refer to Section 2.2 for details). Most sample cities
presented weak decoupling statuses during the period 2005 to 2010,
while five cities showed strong decoupling during the period 2010 to
2015, with a decoupling index of less than zero. Besides high-tech and
service-based cities, energy producing and light-manufacturing cities
also achieved decoupling, such as Taiyuan and Shijiazhuang (see
Fig. 1). The results of the decoupling show that the performance of low-
carbon development varies not only among the cities' different in-
dustrialization phases but also within the same industrialization phase.
Therefore, further studies are needed to find out how the different
driving factors influence cities’ CO2 reductions outcomes.

3.2. Emission drivers

As is shown in the decomposition results of the LMDI six-sector
model (see Table 3), all of the 15 sample cities mostly showed an in-
crease in CO2 emissions during the two research periods (2005 to 2010
and 2010 to 2015) but with Taiyuan, Shijiazhuang, Ningbo, Shanghai
experiencing CO2 reductions from 2010 to 2015. Meanwhile, the
driving factors that influenced changes in CO2 emissions among the
representative cities with different industrialization phases show both
commonness and individuality.

Economic growth (Y_per) was the largest contributor to increasing
CO2 emissions in cities of all types. For 12 of the 15 cities, the stimu-
lating impact of economic growth on carbon dioxide emissions in the
period 2010 to 2015 was relatively smaller than that in the period 2005
to 2010. Further, the contribution of the population effect (P) to CO2

emission changes was also positive in most of the cases, indicating that
an increasing population leads to increasing total CO2 emissions. These
findings are consistent with the view of Chen et al. (2018). The popu-
lation effect on high-tech and service-based cities was positive and
significant while it was negative on some energy producing or manu-
facturing cities due to a decline in population size (refer to online
Supporting Information). Meanwhile, for all types of representative
cities, the industry sector was the main source of carbon dioxide
emissions. However, the driving factors of carbon dioxide emission
reduction varied among cities undergoing different industrialization
phases.

The EI and IS effects were the biggest driving factors behind

Table 2
Fifteen selected cities and their CO2 emissions during 2005–2015.
Source: based on author's calculation

City type City name Total CO2 emissions (Mt)

2005 2010 2015

Energy production cities Taiyuan 158.72 182.89 174.14
Yinchuan 10.29 34.32 67.38
Daqing 30.47 34.70 44.51

Heavy-manufacturing cities Tangshan 121.72 165.38 202.07
Handan 103.46 114.70 142.98
Chongqing 69.82 124.19 133.79

Light-manufacturing cities Xuzhou 71.34 109.14 177.38
Shijiazhuang 102.03 141.05 121.99
Harbin 33.49 42.49 62.79

Leading cities in the high-tech
industry

Ningbo 141.15 228.25 226.53
Suzhou 97.50 174.63 225.44
Tianjin 83.10 128.59 140.85

Leading cities in the service
industry

Shanghai 147.90 181.89 178.27
Nanjing 69.92 106.54 157.59
Beijing 78.93 101.85 74.34

Fig. 1. Tapio Decoupling Classification Index of the sample cities.
Source: based on author's calculation
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reductions in CO2 emissions for all types of cities, indicating that im-
provements in efficiency in energy usage and differences in industrial
structure between industry and services can significantly reduce the
scale of CO2 emissions in those cities. Further, the EI effect on CO2

emissions reduction was particularly prominent during the period 2005
to 2010, especially for heavy-manufacturing cities. In comparison, CO2

emissions reductions driven by the IS effect became more and more
obvious over time, with a corresponding reduction in the volume of CO2

emissions during the period 2010 to 2015 being greater than that from
2005 to 2010, except for Beijing. This may be due to government po-
licies encouraging the city to adjust its industrial structure from sec-
ondary industries to tertiary industries since 2007. During this time, the
state council of China issued a policy entitled “Several Opinions on
Accelerating the Development of the Service Industry”, where it re-
quired local governments to formulate policies aimed at increasing
their service industries relative to their overall industrial structures and
to make the services the leading industry. Therefore, we propose that
the development path for urban CO2 emission reductions could include
two aspects: first, by improving the energy efficiency of existing energy-
consuming industries; second, by transforming the industrial structure
so that it encompasses a larger percentage of low-carbon emission
service industries. These policy measures from the above two

perspectives could be carried out simultaneously, but adjustments to
the industrial structure show a time-lag effect.

It should also be noted that the ES effect makes a relatively small
contribution to carbon dioxide emission reduction compared to the EI
and IS effects. This may due to the fact that cities’ resource endowments
are relatively fixed and are considered rigid constraints, unless the
adjustment of the energy structure is influenced externally, such as by
government policies. In other words, the optimization of the energy
consumption structure is time-consuming and is always driven by
technological innovation, and this may not be the best option for all
cities to use to fight climate change, especially energy-intensive cities
that greatly depend on a local energy supply. In addition, increasing
consumption percentage of clean energy and renewable energy in the
energy structure may lead to an increase in energy intensity.

3.3. Decoupling efforts

The Tapio Decoupling Effort Index calculated according to the de-
composition results of the LMDI model at the detailed 36 industry
segment level is shown in Fig. 2 (refer to Section 2.4 for details). The
darker red sections indicate more decoupling efforts; the darker blue
sections indicate less decoupling efforts; and the blank sections indicate

Table 3
Additive LMDI decomposition of six sectors (Mt CO2).
Source: based on author's calculation

City type City Time period ES effect EI effect IS effect Y_per effect P effect Total effect

Energy production cities Daqing 2005–2010 −0.004 −15.24 −1.20 18.84 1.83 4.24
2010–2015 2.66 1.98 −6.14 11.91 −0.59 9.81
2005–2015 3.37 −14.70 −7.37 31.32 1.44 14.05

Yinchuan 2005–2010 1.30 9.24 0.53 8.16 4.80 24.03
2010–2015 0.88 9.87 −0.28 23.33 −0.74 33.06
2005–2015 2.83 20.55 0.64 23.57 9.49 57.09

Taiyuan 2005–2010 0.92 −74.80 −13.61 99.62 12.04 24.17
2010–2015 −22.41 −4.62 −48.59 65.97 0.90 −8.75
2005–2015 −19.58 −75.18 −58.19 156.03 12.34 15.42

Heavy-manufacturing cities Tangshan 2005–2010 14.98 −79.52 1.99 100.65 5.56 43.65
2010–2015 −37.08 13.84 −9.03 71.68 −2.71 36.69
2005–2015 −17.24 −77.02 −5.73 169.68 10.65 80.34

Chongqing 2005–2010 2.92 −50.16 18.58 80.31 2.73 54.38
2010–2015 −8.68 −29.25 −28.59 70.48 5.63 9.59
2005–2015 −2.48 −71.84 −1.04 132.48 6.83 63.97

Handan 2005–2010 −2.65 −70.12 11.48 66.15 6.38 11.24
2010–2015 2.94 −5.58 −20.09 47.70 3.30 28.29
2005–2015 0.17 −82.99 −6.41 118.55 10.20 39.52

Light-manufacturing cities Shijiazhuang 2005–2010 0.71 −54.77 8.48 73.43 11.17 39.02
2010–2015 −0.24 −59.24 −16.32 50.39 6.35 −19.06
2005–2015 1.75 −99.74 −2.08 104.58 15.45 19.96

Xuzhou 2005–2010 1.46 −31.84 −0.39 60.39 8.17 37.79
2010–2015 1.50 10.95 −19.81 74.22 1.38 68.25
2005–2015 15.26 −29.25 −14.81 124.32 10.52 106.04

Harbin 2005–2010 −0.01 −19.58 −0.01 27.95 0.65 9.00
2010–2015 7.63 1.10 −8.63 21.67 −1.47 20.30
2005–2015 9.42 −20.18 −7.77 48.38 −0.56 29.30

Leading cities in the high-tech industry Suzhou 2005–2010 −22.05 14.94 −18.60 97.20 5.65 77.14
2010–2015 −4.51 1.41 −31.79 83.05 2.65 50.81
2005–2015 −22.60 17.47 −44.19 169.07 8.19 127.94

Tianjin 2005–2010 −7.05 −31.71 −5.46 67.65 22.05 45.49
2010–2015 −7.70 −41.41 −16.78 54.98 23.17 12.27
2005–2015 −12.26 −64.03 −18.88 112.25 40.67 57.76

Ningbo 2005–2010 4.11 −43.66 5.14 101.58 19.93 87.10
2010–2015 −1.04 −68.86 −21.51 83.28 6.40 −1.72
2005–2015 3.23 −97.49 −11.89 166.65 24.89 85.38

Leading cities in the service industry Shanghai 2005–2010 −1.15 −42.11 −26.93 72.11 32.07 33.98
2010–2015 −17.68 −14.04 −36.51 56.11 8.49 −3.62
2005–2015 −16.62 −50.88 −59.92 119.29 38.50 30.37

Nanjing 2005–2010 6.36 −25.40 −6.48 50.15 11.99 36.62
2010–2015 0.22 3.55 −18.94 62.58 3.62 51.04
2005–2015 12.29 −28.03 −22.45 108.51 17.34 87.66

Beijing 2005–2010 3.94 −34.18 −13.71 32.91 19.64 8.61
2010–2015 −2.68 −26.52 −10.93 19.52 7.41 −13.21
2005–2015 −2.66 −46.58 −28.50 52.06 21.10 −4.59
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that the industry is not above a designated size (it is missing value-
added data). According to the performance of the 36 industrial seg-
ments in the 15 sample cities, the nonmetal mineral products segment
(NMP) and the electric power, steam and hot water production and
supply segment (EPSH) are the segments with the most decoupling ef-
forts, while the smelting and pressing of ferrous metals segment (SPFM)
and petroleum processing and coking segment (PPC) are the segments
with the least decoupling efforts. Due to the small scale of CO2 emis-
sions in high-tech industries, such as electric equipment and machinery
(EEM) and electronic and telecommunications equipment (ETE), the
decoupling efforts of these industries were not making much difference.
In terms of city performance, the decoupling efforts of 15 cities in the
36 segments varied from 2005 to 2015. From 2005 to 2010, Daqing and
Shijiazhuang showed strong decoupling efforts in the NMP, metal
products (MP) and rubber and plastic products (RPPP) segments. From
2010 to 2015, Nanjing exerted strong decoupling efforts in SPFM, NMP
and the smelting and pressing of nonferrous metals (SPNP) segments.
The decoupling efforts made by energy-producing cities were at the two
ends of either strong decoupling efforts or no decoupling efforts. Light-
manufacturing cities and leading cities in the service industry were
often less involved in the energy or resource extraction industries
during the periods under review.

4. Discussion and policy implication

The cities at different phases of industrialization show various de-
coupling statuses, driving factors and decoupling efforts; we also find
that such heterogeneity exists in cities in the same industrialization
phase. Cities represented by Taiyuan has implemented energy con-
servation and emissions-reduction plans for high CO2 industrial emit-
ters, striving to take into overall consideration production efficiency,
and economic and environmental benefits. However, Yinchuan and
Suzhou present the opposite phenomenon. Although they have also
undergone industrial restructuring, their CO2 emissions increased ra-
ther than decreased as a result of either a deterioration in their energy
mix or inefficient energy consumption. To understand this, a further

comprehensive analysis that combines economic performance, in-
dustrial segment decomposition and the decoupling effort index is
discussed in this paper.

As typical energy-producing cities, both Taiyuan and Yinchuan rely
on coal mining and oil refining as the pillar industries of their urban
economic development, but their achievements in CO2 emissions re-
duction are in stark contrast (see Fig. 3 and Fig. 4). Taiyuan authorities
had been encouraging petrochemical enterprises to carry out energy-
saving and to undertake GHG emissions-reduction technology-oriented
equipment renovation since the 11th Five-Year Plan period
(2006–2010). It further formulated and implemented the “Plan for
Controlling GHG emissions in Taiyuan”, which called for reducing CO2

emissions by 3.7% per unit of GDP annually during the 12th Five-Year
Plan period (2011–2015) and achieving a 17% reduction by the end of
2015. These policies included setting strict controls on energy-intensive
projects, accelerating the upgrading and transformation of resource-
based industries, promoting the development of low-carbon industries,
and vigorously developing the circular economy. The above policy
measures have contributed to controlling Taiyuan's overall CO2 emis-
sions through exerting the ES, EI and IS effects. In contrast, Yinchuan
also adjusted its energy structure but with an unsatisfactory outcome.
During the period from 2005 to 2010, its petroleum processing and
coking (PPC) segment reduced its energy production from oil and coal,
but the rapid over-expansion of its output led to an increase in total CO2

emissions. However, as other industries contributed little to CO2

emissions reduction, Yinchuan's overall industry showed an expansive
negative decoupling status between carbon dioxide emissions and
economic growth during the period.

As a typical heavy-manufacturing city, Tangshan's economic de-
velopment were highly dependent on the SPMF industry (such as steel
manufacturing), which accounted for 45–60% of its GDP from 2005 to
2015 and contributed to 66.97% of its increased CO2 emissions during
this 10-year period. Although Tangshan had implemented certain en-
ergy-saving and emissions-reduction measures in its SPMF industries,
the continuous expansion of its output still contributed to the increasing
trend in its total CO2 emissions. In addition, this paper also identifies

Fig. 2. Tapio Decoupling Effort Index of sample cities.
Source: based on author's calculation
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the six industrial segments that were driving CO2 emissions, including
CMD, PPC, SPFM, SPNP, NMP, and RCMC. Even for service cities like
Nanjing, which are gradually shifting their industrial structure from
manufacturing to tertiary industries, the above-mentioned driving in-
dustrial segments were still important factors in their increasing CO2

emissions. For example, from 2005 to 2015, the RCMC and SPFM
segments, respectively, accounted for 41.91% and 53.45% of the total
CO2 emission increasement in Nanjing. However, these segments do not
bring relatively higher economic incomes to service cities. As a result, it
is suggested that relevant industrial requirements are obtained through
the production transfer from nearby manufacturing cities. Therefore,
we suggest that energy-producing cities and heavy-manufacturing cities
improve energy efficiency and moderately reduce the production scale
of their CO2-driving industrial segments. For light-manufacturing and
high-tech cities, attention should be paid to both making adjustments to
the industrial structure and to improving energy efficiency. For service
cities, the above-mentioned CO2-driving industrial segments should be
gradually transferred to other nearby manufacturing cities, so as to
focus on the development of service industries.

5. Conclusion

Cities are the center of human activity and constitute the key units
of climate change mitigation. This study takes into consideration the
diverse industrialization phases of Chinese cities when analyzing city-
level emission patterns and drivers, as well as their decoupling statuses
and efforts to reduce emissions and achieve economic growth. This
study resulted in three important findings on CO2 emissions reduction:
(i) decoupling occurs not only in high-tech or service-based cities but
also in energy-producing and manufacturing cities; (ii) both economic
growth and population accretion are the main contributors to the in-
crease of CO2 emissions, while energy intensity and industrial structure
are significant negative driving factors for CO2 emissions for all of the
sample cities. The energy structure makes a relatively smaller con-
tribution to CO2 emission reduction compared to the other factors. This
indicates the importance of improving energy efficiency and of up-
grading the industrial structure in mitigating CO2 emissions for cities;
and (iii) a point which demonstrates the novelty of this paper, is that
cities at different industrialization phases show various decoupling

Fig. 3. Decomposition results comparison of Taiyuan and Yinchuan (Mt CO2).

Fig. 4. Decomposition results comparison of key segments (PPC) (Mt CO2).
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statuses, driving factors and decoupling efforts, and such heterogeneity
also exists in cities in the same industrialization phase. Achieving
emissions reductions, however, will require that cities simultaneously
make efforts to improve their energy mix, energy efficiency and in-
dustrial structure.

This paper provides examples on how to achieve emission reduc-
tions for other energy-producing or heavy-manufacturing cities in
China; it also provides rich insight into emissions-reduction policies for
other cities around the world. Firstly, in order to tackle climate change,
rather than focusing on a single policy, policy portfolios should be put
into practice. Furthermore, for different cities at different industrial
development stages and with various economic foundations, there
needs to be a requirement for diversified policy portfolios to reduce
carbon emissions and fight climate change. For energy-producing and
heavy-manufacturing cities, improving the energy efficiency of carbon-
intensive industries and reducing the production scale of low-efficiency
industries are found to be effective in tackling CO2 emissions; while for
light manufacturing and high-tech leading cities, optimizing the in-
dustrial structure is also useful in CO2 emissions reduction. In addition,
for leading cities in services, on the one hand, it is necessary to reduce
or deflect the production capacity of CO2-driving industrial segments,
while on the other hand, it is important to focus on the development of
service industries.
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