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Abstract We prove the following results: (1) There is a one-relator inverse
monoid Inv〈A |w = 1〉with undecidable word problem; and (2) There are one-
relator groups with undecidable submonoid membership problem. The second
of these results is proved by showing that for any finite forest the associated
right-angled Artin group embeds into a one-relator group. Combining this
with a result of Lohrey and Steinberg (J Algebra 320(2):728–755, 2008), we
use this to prove that there is a one-relator group containing a fixed finitely
generated submonoid in which the membership problem is undecidable. To
prove (1) a new construction is introduced which uses the one-relator group
and submonoid in which membership is undecidable from (2) to construct a
one-relator inverse monoid Inv〈A | w = 1〉 with undecidable word problem.
Furthermore, this method allows the construction of an E-unitary one-relator
inversemonoid of this formwith undecidableword problem. The results in this
paper answer a problem originally posed by Margolis et al. (in: Semigroups
and their applications, Reidel, Dordrecht, pp. 99–110, 1987).
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R. D. Gray

1 Introduction

The study of algorithmic questions in algebra has a long history which has
its origins in fundamental problems in logic and topology investigated in the
beginning of the twentieth century by Thue, Tietze, and Dehn. One of the most
fundamental algorithmic questions concerning algebraic structures is the word
problem, which asks whether two terms written over generators represent the
same element of the structure. Markov and Post proved independently that
the word problem for finitely presented monoids is undecidable in general.
This result was later extended to groups by Novikov and Boone (see e.g.
[4,26] and the references therein). It is therefore natural to ask for which
classes ofmonoids and groups theword problem is decidable.Many interesting
families of finitely presented groups andmonoids are known to have decidable
word problem, such as hyperbolic groups (in the sense of Gromov), automatic
groups and monoids, and monoids and groups which admit presentations by
finite complete rewriting systems; see [4,6,11,26]. It is natural to imagine
that the word problem might be decidable for groups or monoids which are,
in some sense, close to being free. The class of one-relator groups falls into
this category, and it is a consequence of classical work of Magnus [27] that
the word problem is decidable for one-relator groups. This result inspired a
series of investigations of the word problem in other one-relator algebraic
structures. For example, Shirshov [37] proved the word problem is decidable
in one-relator Lie algebras.

In contrast, it is still not known whether the word problem is decidable for
one-relator monoids, that is, monoids defined by presentations of the form
Mon〈A | u = v〉 where A is a finite alphabet and u and v are words in the free
monoid A∗. This is one of the most important and fundamental longstanding
open questions in this area. While this problem remains open in general, it
has been solved in a number of special cases in work of Adjan [1], Adjan and
Oganessian [2], and Lallement [20]. In particular, in [1] Adjan proved that
the word problem for one-relator monoids of the form Mon〈A | w = 1〉 is
decidable.

More recently, Ivanov et al. [16] discovered an entirely new approach to the
word problem for one-relator monoids, which uses ideas from the theory of
inversemonoids. Inverse monoids are a class that lies between groups and gen-
eral monoids. While groups are an algebraic abstraction of permutations, and
monoids of arbitrary mappings, inverse monoids correspond to partial bijec-
tions and provide an algebraic framework for studying partial symmetries of
structures. Utilising [2], Ivanov, Margolis and Meakin made the fundamental
observation that a positive solution to the word problem for one-relator inverse
monoid presentations of the form Inv〈A |w = 1〉 would imply a positive solu-
tion to the word problem for arbitrary one-relator monoids Mon〈A | u = v〉;
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see [16, Theorem 2.2]. This result motivated subsequent work investigating the
question of whether all one-relator inverse monoids of the form Inv〈A |w = 1〉
have decidableword problem. This problemhas nowbeen shown to have a pos-
itive answer in several cases including when w is: a Dyck word [31], a sparse
word [14], a one-relator surface group relation, a Baumslag–Solitar relation,
or a relation of Adjan type; see [16,30] and [33, Sect. 7]. Herew ∈ (A∪ A−1)∗
is called a Dyck word if it freely reduces to the identity element in the free
group FG(A). It is important to note that for inverse monoid presentations
one cannot assume that the word w in the defining relation w = 1 is a
reduced word. For example, the presentations Inv〈a | 〉 and Inv〈a | aa−1 = 1〉
define different monoids, the first being the free inverse monoid of rank
one, and the second being the well-known bicyclic monoid (see for instance
[15, Sect. 1.6]).

There are several places in the literature where it is mentioned that the
problem ofwhether inversemonoids of the form Inv〈A|w = 1〉 have decidable
word problem remains unsolved; see e.g. [29, Sect. 2.3], [14,33]. Thefirst place
this question appears in the literature is in the paper [32] of Margolis, Meakin
and Stephen. Indeed, in [32, Conjecture 2] the following conjecture is stated:
“If M = Inv〈A | w = 1〉, then the word problem for M is decidable.” The
first main goal of this paper is to give some new constructions and use them
to prove that, in general, this conjecture does not hold. The first main result of
this paper is:

Theorem A There is a one-relator inverse monoid Inv〈A |w = 1〉 with unde-
cidable word problem.

We shall establish Theorem A by first proving some new results concerning
the submonoidmembership problem in one-relator groups. There are a number
of different membership problems that have been investigated in group the-
ory. The most natural such problems are the subgroup membership problem
(also called the generlised word problem), the rational subset membership
problem, and the submonoid membership problem. The subgroup member-
ship problem for finitely generated groups asks: Given a finite subset X of a
group G and an element g ∈ G, does g belong to the subgroup of G gen-
erated by X? The submonoid and rational subset membership problems are
defined analogously; see Sect. 2 below for formal definitions of these decision
problems. The subgroup membership problem is a natural generalisation of
the word problem. Mihailova showed that the direct product of two copies of
the free group of rank two contains a finitely generated subgroup in which
the membership problem is undecidable; see [26, Chapter IV]. On the other
hand, the subgroup membership problem is decidable for free groups, and for
free abelian groups. In fact, for these two classes the more general rational
subset membership problem is known to be decidable. Benois [3] proved that
every finitely generated free group has decidable rational subset membership
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problem. Decidability of rational subset membership for commutative groups
and monoids is due to Eilenberg and Schützenberger who proved that rational
subsets of commutative monoids are the semilinear sets, whose membership
problem is a special case of integer programming; see [10]. The submonoid
membership problem, and rational subset membership problem, for groups
have been investigated in detail in a series of papers of Lohrey and Steinberg;
see e.g. [22,23]. See [21] for further background and references.

In this paper we shall be specifically interested in membership problems
in one-relator groups. Since Magnus’s fundamental work, many interesting
results about one-relator groups have been proved; see [26, Chapter II, Sect. 5].
One-relator groups are still an active topic of research, with recent results
including e.g. [25,36,42]. Several important algorithmic problems remain
open for one-relator groups including the conjugacy problem, isomorphism
problem, and the subgroup membership problem; see [5, Problems 18 and
19]. Not much is known in general about the subgroup membership problem
for one-relator groups. Magnus’s original solution to the word problem [27]
showed that membership is decidable in subgroups generated by subsets of the
generating set. Pride [35] showed that membership can be decided in certain
subgroups of certain two-generated one-relator groups. The secondmain result
of this paper concerns the more general question of whether the submonoid
membership problem is decidable in one-relator groups. Specifically, we shall
prove the following result.

Theorem B There are one-relator groups with undecidable submonoid mem-
bership problem.

In fact we show that there is a one-relator group with a fixed finitely gener-
ated submonoid in which membership is undecidable.

A corollary of Theorem B is that the rational subset membership problem
is undecidable for one-relator groups in general. Theorem B will be used to
prove Theorem A, but we stress that Theorem A is not an immediate corollary
of Theorem B. A new construction is needed which encodes the submonoid
membership problem from Theorem B into the word problem of a one-relator
inverse monoid.

The general fact that there is a connection between the word problem
for inverse monoids, and the submonoid membership problem for groups,
is something that was first observed by Ivanov et al. in [16]. Their result [16,
Theorem 3.3] implies that in the case that the monoid Inv〈A | w = 1〉 is
E-unitary (this will be defined in Sect. 3) it has decidable word problem if
its maximal group homomorphic image Gp〈A | w = 1〉 has decidable prefix
membership problem. Here, the prefix membership problem for Gp〈A |w = 1〉
is the problem of decidingmembership in the submonoid generated by the pre-
fixes of the wordw. They also prove that ifw is a cyclically reduced word then
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Inv〈A | w = 1〉 is E-unitary. These results have subsequently been applied to
solve the word problem for certain families of E-unitary one-relator inverse
monoids Inv〈A | w = 1〉; see [16,18,30,33].

Theorem B arose from consideration of the natural question of which right-
angled Artin groups arise as subgroups of one-relator groups. Given any finite
graph the associated right-angled Artin group is the group defined by a pre-
sentation with generating set the vertices of the graph, and defining relations
specifying that two generators commute if they are joined by an edge in the
graph. These groups are also known as graph groups, and partially com-
mutative groups. They were originally introduced by Baudisch, and since
then this class has attracted a lot of attention in geometric group theory; see
[7,41]. There are known interesting connections between one-relator groups
and right-angled Artin groups, for example right-angled Artin groups arise
in Wise’s solution to Baumslag’s conjecture about residual finiteness of one-
relator groups; see [42].

Clearly right-angled Artin groups give a common generalisation of free
groups, where the defining graph has no edges, and free abelian groups, where
the graph is complete. Now byMagnus’s Freiheitssatz free groups occur com-
monly and naturally as subgroups of one-relator groups. On the other hand, not
all free abelian groups embed in one-relator groups. Moldavanski [34] proved
that a non-cyclic abelian subgroup of a one-relator group is either free abelian
of rank two, or is locally cyclic. In particular, this answers the question of
which finitely generated abelian groups embed in one-relator groups. In light
of these results, it is not unreasonable to askmore generally which finitely gen-
erated right-angled Artin groups arise as subgroups of one-relator groups. In
this paper we shall show that for any finite forest F the right angledArtin group
A(F) embeds into a one-relator group.When combined with results of Lohrey
and Steinberg from [22], the existence of one-relator groups embedding these
right-angled Artin groups will allow us to prove Theorem B.

The paper is structured in the following way. In Sect. 2 we give some basic
background and definitions concerning right-angled Artin groups, we show
that A(F) embeds into a one-relator group for any finite forest F , and then
we use this to prove Theorem B (see Theorem 2.4). We begin Sect. 3 with
some preliminaries on the theory of inverse monoid presentations. Then we
give a new general construction in Theorem 3.8, which is then combined with
Theorem B in order to prove Theorem A (see Theorem 3.9). We conclude the
paper in Sect. 4 with a discussion of some open problems and directions for
possible future research.
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2 One-relator groups with undecidable submonoid membership
problem

Weassume that the reader has familiaritywith basic notions fromgroup theory;
see e.g. [26].

Right-angled Artin subgroups of one-relator groups

Since later we shall be working both with inverse monoid presentations and
group presentations, to avoid any confusion we shall use Gp〈A | R〉 to denote
the group defined by the presentation with generators A and defining relations
R. Let � be a finite simplicial graph with vertex set V� and edge set E�. So
E� is a set of two-element subsets of V�. The right-angled Artin group A(�)

associated with the graph � is the group defined by the presentation

Gp〈V� | uv = vu if and only if {u, v} ∈ E�〉.

Given a finite simplicial graph �, and an isomorphism ψ : �1 → �2
between two finite induced subgraphs of �, we use A(�, ψ) to denote the
HNN-extension of A(�) with respect to the isomorphism between the sub-
groups A(�1) and A(�2) of A(�) that is induced by ψ . This is a well-defined
HNN-extension since by standard results on right-angled Artin groups (see
for example [7]) the subgroups A(�1) and A(�2) each naturally embed into
A(�), and thusψ induces an isomorphism between A(�1) and A(�2). There-
fore, by the HNN-extension A(�, ψ) of A(�) with respect to ψ : �1 → �2
we mean the group defined by the presentation

Gp〈V�, t | uv = vu if and only if {u, v} ∈ E�,

t xt−1 = ψ(x) for all x ∈ V�1〉.

By standard results on HNN-extensions, the group A(�) embeds naturally
into this HNN-extension A(�, ψ). Let Pn denote the path with n vertices. The
next result shows how this construction can be used to embed A(P4) into a
one-relator group.

Proposition 2.1 Let P4 be the graph

a b c d

let�1 be the subgraph induced by {a, b, c}, let�2 be the subgraph induced by
{b, c, d}, and let ψ : �1 → �2 be the isomorphism mapping a �→ b, b �→ c,
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and c �→ d. Then the HNN-extension A(P4, ψ) of A(P4) with respect to ψ is
isomorphic to the one-relator group

Gp〈a, t | atat−1a−1ta−1t−1 = 1〉.
Furthermore, A(P4) embeds into this one-relator group via the mapping
induced by a �→ a, b �→ tat−1, c �→ t2at−2, and d �→ t3at−3.

Proof The group A(P4) is defined by the presentation

Gp〈a, b, c, d | ab = ba, bc = cb, cd = dc〉,
and A(P4, ψ) is defined by the presentation

Gp〈a, b, c, d, t | ab = ba, bc = cb, cd = dc, tat−1 = b, tbt−1 = c, tct−1 = d〉.
We now perform some Tietze transformations to show this is the one-relator
group given in the statement of the proposition. Eliminating the redundant
generators d, c and b, in this order yields

Gp〈a, t | a(tat−1) = (tat−1)a, (tat−1)(t2at−2) = (t2at−2)(tat−1),

(t2at−2)(t3at−3) = (t3at−3)(t2at−2)〉.
The last two relations are consequences of the first, obtained via conjugation
by t , and therefore they are redundant and can be removed. This shows that
A(P4, ψ) is isomorphic to

Gp〈a, t | atat−1a−1ta−1t−1 = 1〉.
Since A(P4) embeds naturally in theHNN-extension A(P4, ψ), this completes
the proof. 	


In [19, Theorem 1.8] it is shown that if F is any finite forest then A(F)

embeds into A(P4). Combined with the above proposition this gives the fol-
lowing result.

Theorem 2.2 For any finite forest F, the right angled Artin group A(F)

embeds into a one-relator group.

Remark 2.3 While it is not important for the main results of this paper, it is
worth noting that, in fact, the converse of Theorem 2.2 is also true. That is,
a right-angled Artin group A(�) embeds into some one-relator group if and
only if � is a forest. For one-relator groups with torsion this follows from
the fact that they are hyperbolic. The argument in the torsion-free case was
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pointed out by JimHowie after reading an earlier version of the present article.
His argument makes use of a result of Louder and Wilton from [24] on Betti
numbers of subgroups of torsion-free one-relator groups. The author thanks
Jim Howie for allowing his argument to be reproduced here.

In more detail, suppose that A(�) embeds into a one-relator group G. Seek-
ing a contradiction suppose � is not a forest and let Cn with n > 2 be the
smallest cycle which embeds into � as an induced subgraph. One-relator
groups with torsion are hyperbolic by Newman’s Spelling Theorem. Since
no hyperbolic group contains a free abelian subgroup of rank 2 (see e.g. [12,
Proposition 5.1]) it follows that the only right-angled Artin groups which
embed into one-relator groups with torsion are free groups. Hence the one-
relator group G must be torsion-free. Now in [24] it is proved that for any
finitely generated subgroup H of a torsion-free one-relator group, we have
b2(H) ≤ b1(H)− 1, that is, the second Betti number of H is strictly less than
the first. It iswell-known (see for example [8, Sect. 3.1]) that b1(A(�)) = |V�|
while b2(A(�)) = |E�|. In particular b1(A(Cn)) = b2(A(Cn)). It follows that
A(Cn) does not embed into the torsion-free one-relator group G, which con-
tradicts the fact that A(�) embeds into G. We conclude that if A(�) embeds
into a one-relator group then � must be a forest.

Undecidability of the submonoid membership problem

Throughout we shall use A∗ to denote the free monoid over the alphabet A,
and we use A+ to denote the free semigroup. Let G be a finitely generated
group with a finite group generating set X . This means that X ∪ X−1 is a
monoid generating set for G and there is a canonical monoid homomorphism
π : (X ∪ X−1)∗ → G. Given any subset W of (X ∪ X−1)∗ we use Mon〈W 〉
to denote that submonoid of G generated by the subset {π(w) : w ∈ W } of G.
The submonoid membership problem for G is the following decision problem:

INPUT: A finite set of words W = {w1, . . . , wm} ⊆ (X ∪ X−1)∗ and a word
w ∈ (X ∪ X−1)∗.
QUESTION: π(w) ∈ Mon〈W 〉?

This generalises the subgroup membership problem, also called the gen-
eralised word problem, for G which takes the same input but asks whether
π(w) ∈ Mon〈W ∪ W−1〉, that is, whether w belongs to the subgroup gen-
erated by W . The submonoid membership problem is itself a special case
of a more general problem called the rational subset membership problem
where the input is a finite automaton A over X , and the question is whether
π(w) ∈ π(L(A))where L(A) is the language recognised byA. Alternatively,
the class of rational subsets of a group is the smallest class that contains all
finite subsets, and is closed with respect to the operations of union, product,
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and taking the submonoid generated by a set. We shall not be working with
finite automata or regular languages in this paper. We refer the reader to [21]
for more details on the rational subset membership problem for groups. There
are non-uniform variants of these decision problems as well, where the subset
of the group is fixed. Given a fixed subset S of G the membership problem for
S within G is the decision problem with input a word w ∈ (X ∪ X−1)∗ and
question: π(w) ∈ S?

The submonoid membership problem behaves well with respect to taking
subgroups, in the following sense. Let G be a finitely generated group and let
H be a finitely generated subgroup of G. If G has decidable submonoid mem-
bership problem then so does H . Also, for any finitely generated submonoid
N of H , if the membership problem for N within G is decidable then the
membership problem for N within H is decidable. See [21, Sect. 5] for more
background on the closure properties of these decision problems.

We may now state and prove the main result of this section.

Theorem 2.4 Let G be the one-relator group Gp〈a, t | atat−1a−1ta−1t−1 =
1〉. Then there is a fixed finitely generated submonoid M of G such that the
membership problem for M within G is undecidable.

Proof It was proved in [22, Theorem 7] that there is a fixed finitely generated
submonoid N of A(P4) such that the membership problem for N within A(P4)
is undecidable. Let θ be an the embedding of A(P4) into G given in Proposi-
tion 2.1, and letM be the image of N under this embedding. Then it follows that
M is a finitely generated submonoid of G such that the membership problem
for M within G is undecidable. 	

Remark 2.5 The proof of Theorem 2.4 makes use of the fact that A(P4) has
undecidable submonoid membership problem, which was proved in [22, The-
orem 7]. The anonymous referee of the present paper has pointed out that an
easier proof that A(P4) has undecidable submonoidmembership problemmay
be obtained by combining [19, Theorem 1.8] with certain results from [22]
which precede [22, Theorem 7] in that paper. In more detail, combining [22,
Theorem 2] with the argument given in the proof of [22, Lemma 11] gives a
proof that the free product A(P4)∗ F2 of A(P4) with the free group F2 of rank
2 has undecidable submonoid membership problem. The group A(P4) ∗ F2 is
isomorphic to A(�) where � is the union of P4 with two additional vertices,
and no extra edges. Since this graph is a forest, it follows from [19, Theorem
1.8] that A(P4) ∗ F2 embeds in A(P4), and hence A(P4) also has undecidable
submonoid membership problem.

Since any finitely generated submonoid of a group is a rational subset we
obtain the following corollary.
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Corollary 2.6 There are one-relator groups with undecidable rational subset
membership problem.

It would be interesting to try to classify those one-relator groups for which
the rational subset membership problem is decidable. Similarly, it would be
interesting to characterise the one-relator groups with decidable submonoid
membership problem. These may well be difficult problems. Indeed, it is
a major open problem whether the rational subset membership problem is
decidable for surface groups. As mentioned in the introduction, whether there
are one-relator groups with undecidable subgroup membership problem also
remains as an interesting open problem; see [5, Problem 18] .

3 One-relator inverse monoids with undecidable word problem

In this section we shall introduce a new construction which, when combined
with the results from Sect. 2, will be used to construct one-relator inverse
monoids of the form Inv〈A | w = 1〉 with undecidable word problem. Before
giving the construction and results, we first recall some background on free
inverse monoids and inverse monoid presentations. A more detailed account
of combinatorial inverse semigroup theory may be found in [33]. For basic
concepts from semigroup theory we refer the reader to [15].

Preliminaries on inverse monoid presentations

An inverse monoid is a monoid M such that for everym ∈ M there is a unique
element m−1 ∈ M satisfying mm−1m = m and m−1mm−1 = m−1. The ele-
mentm−1 is called the inverse ofm. It may be shown (see e.g. [15, Chapter 5])
that if M is an inverse monoid then for all x, y ∈ M we have x = xx−1x ,
(x−1)−1 = x , (xy)−1 = y−1x−1, and xx−1yy−1 = yy−1xx−1. In fact,
inverse monoids form a variety of algebras, in the sense of universal algebra,
defined by these identities together with associativity. It follows from this that
free inverse monoids exist. For any set A the free inverse monoid F I M(A)

generated by A may be concretely described in the following way. Let A−1 =
{a−1 : a ∈ A}be a set of formal inverses of the letters from A,whereweassume
the sets A and A−1 are disjoint. Given any word x1x2 . . . xn ∈ (A ∪ A−1)∗,
with xi ∈ A∪ A−1 for 1 ≤ i ≤ n, we define the formal inverse of this word to
be (x1x2 . . . xn)−1 = x−1

n . . . x−1
2 x−1

1 where (x−1)−1 = x for all x ∈ A, and
we set 1−1 = 1. Let ν be the congruence on (A ∪ A−1)∗ generated by the set

{(ww−1w, w), (ww−1uu−1, uu−1ww−1) : u, w ∈ (A ∪ A−1)∗}.
We call ν the Vagner congruence on (A ∪ A−1)∗. The free inverse monoid
F I M(A) on alphabet A is then isomorphic to (A ∪ A−1)∗/ν. For the rest
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of this article we identify F I M(A) with (A ∪ A−1)∗/ν. The inverse monoid
defined by the presentation Inv〈A|ui = vi (i ∈ I )〉, where ui , vi ∈ (A∪A−1)∗
for i ∈ I , is defined to be the quotient of the free inverse monoid F I M(A)

determined by these defining relations. Therefore, Inv〈A | ui = vi (i ∈ I )〉
is isomorphic to the quotient (A ∪ A−1)∗/τ where τ is the congruence on
(A ∪ A−1)∗ generated by ν ∪ {(ui , vi ) : i ∈ I }.

The theory of inversemonoid presentations has developed significantly over
the last few decades. It follows from results of Scheiblich and Munn that
the word problem for free inverse monoids is decidable; see [15, Chapter 5].
That work shows that the elements of F I M(X) may be represented by finite
connected subgraphs of the Cayley graph of the free group FG(X), which
are now commonly known asMunn trees. Other important work for the study
of the word problem for finitely presented inverse monoids are the automata-
theoretic methods introduced by Stephen in [38]. We shall not need the details
of Stephen’s theory in this article, but they are needed in the original proofs of
some of the background results which we use, most notably Proposition 3.7
below. For an excellent overview of Stephen’s techniques and results see [16,
Sect. 2] and [33].

Throughout this section M will always denote an inverse monoid defined
by a finite presentation Inv〈A | R〉 and G will be used to denote the maximal
group homomorphic image Gp〈A | R〉 of M . For any word u ∈ (A∪ A−1)∗ we
use [u]M to denote the image of u in M , and we use [u]G to denote the image
of u in G. We shall use σ to denote the natural surjective homomorphism
σ : M → G defined by σ([u]M ) = [u]G for all u ∈ (A ∪ A−1)∗. The inverse
monoid M is called E-unitary if the natural homomorphism σ : M → G
is idempotent pure, which means that σ−1(1G) = E(M) where 1G is the
identity element of the group G. Here E(M) denotes the set of idempotents of
the monoid M . There are other ways of characterising the property of being
E-unitary. One important such characterisation is that it is equivalent to saying
that the natural map σ : M → G is injective on everyR-class of M ; see [31,
Lemma 1.5] and [38, Theorem 3.8]. HereR denotes Green’sR-relation on the
monoid M , where (x, y) ∈ R if and only if xM = yM . This characterisation
of E-unitarity will be used below in the proof of Theorem 3.8.

IfU and V are monoids we writeU ≤ V to mean thatU is a submonoid of
V . If X is a subset of a monoid then we use Mon〈X〉 to denote the submonoid
generated by X . Given any subset W of the free monoid (A ∪ A−1)∗, by
the submonoid of M generated by W we shall mean the submonoid of M
generated by the subset {[w]M : w ∈ W } of M . Similarly, the submonoid of
G generated by W is the submonoid of G generated by {[w]G : w ∈ W }.
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Our main interest in this article will be inverse monoids defined by presen-
tations of the form

Inv〈A | ri = 1 (i ∈ I )〉.
We use FG(A) to denote the free group over A. We identify FG(A) with the
set of freely reduced words in (A ∪ A−1)∗. For any word w ∈ (A ∪ A−1)∗
we use red(w) to denote the word obtained by freely reducing w. It is well
known, and straightforward to prove, that a word e ∈ (A ∪ A−1)∗ represents
an idempotent in the free inverse monoid F I M(A) if and only if red(e) = 1
in FG(A). We call words in (A ∪ A−1)∗ with this property Dyck words. For
a word w ∈ (A ∪ A−1)∗ we use pref(w) to denote the set of all prefixes of w.
So

pref(w) = {w′ : w = w′w′′ with w′, w′′ ∈ (A ∪ A−1)∗}.
An element m of a monoid M is right invertible if there exists an element
n with mn = 1. There is an obvious dual notion of an element being left
invertible, and an element is invertible if it is both left and right invertible. The
invertible elements of M are called the units of M , and those that are right
invertible are called the right units. If M is an inverse monoid generated by A
we say that the word u ∈ (A ∪ A−1)∗ is right invertible in M if [u]M is right
invertible. Similarly we talk about words being left invertible, and invertible,
in the monoid M . The following lemma is standard. For completeness we
include a proof.

Lemma 3.1 Let M be an inverse monoid, and let a, b ∈ M. If ab is right
invertible in M then abb−1 = a.

Proof Since ab is right invertible it follows that abb−1a−1 = 1. Since idem-
potents commute in an inverse monoid, right multiplying by a then gives
a = a(bb−1)(a−1a) = a(a−1a)(bb−1) = abb−1. 	

Corollary 3.2 Let M be an inverse monoid generated by a set A. If xaa−1y ∈
(A∪A−1)∗ is right invertible in M, where a ∈ A∪A−1 and x, y ∈ (A∪A−1)∗,
then [xaa−1y]M = [xy]M. In particular, for every word w ∈ (A ∪ A−1)∗, if
w is right invertible in M then [w]M = [red(w)]M.

Proof Since xaa−1y is right invertible it follows that xa is also right invertible,
and hence [xaa−1]M = [x]M by Lemma 3.1, from which the result then
follows. 	

Lemma 3.3 Let e ∈ (A ∪ A−1)∗ be a Dyck word and let r1, r2, . . . , rm ∈
(A ∪ A−1)∗. Then the inverse monoid presentations

Inv〈A | er1 = 1, r2 = 1, . . . , rm = 1〉
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and

Inv〈A | e = 1, r1 = 1, r2 = 1, . . . , rm = 1〉
are equivalent, that is, the identity map on (A∪A−1)∗ induces an isomorphism
between the inverse monoids defined by these two presentations.

Proof Clearly all of the defining relations in the first presentation are conse-
quences of the defining relations in the second presentation. For the converse,
er1 = 1 implies that e is right invertible and hence e = 1, since the identity
element is the only right invertible idempotent in an inversemonoid. Therefore
r1 = 1, completing the proof. 	


Construction and application to one-relator inverse monoids

We shall use H ∗ K to denote the free product of two groups H and K , where
we assume H∩K = {1}. A reduced sequence of length n is a list g1, g2, . . . , gn
(n ≥ 0) such that gi �= 1 for all 1 ≤ i ≤ n, each gi belongs to one of the
factors H or K , and gi ∈ H if and only if gi+1 ∈ K for all 1 ≤ i ≤ n − 1. It
is standard basic result that each element of H ∗ K can be uniquely written as
g1 . . . gn where g1, . . . , gn is a reduced sequence; see [26, Chapter IV]. Below
we shall refer to this as the normal form theorem for free products of groups.
The length of an element of H ∗ K is defined to be the length of the unique
reduced sequence representing that element.

Lemma 3.4 Let H be a group, let U be the submonoid of the free product
H ∗ FG(t) generated by {t} ∪ H ∪ t Ht−1, and let V be the submonoid of
H ∗ FG(t) generated by H ∪ t Ht−1. Then V ≤ U and U \ V is an ideal in
the monoid U.

Proof It is obvious from the definitions that V ≤ U . We are left with the task
of proving thatU \ V is an ideal in U . Let θ be the surjective homomorphism
θ : H ∗ FG(t) → FG(t) defined by t �→ t and h �→ 1 for all h ∈ H . Set

S = θ−1({1, t, t2, t3, . . .}), T = θ−1({t, t2, t3, . . .}), and N = θ−1(1).

Then S, T and N are submonoids of H ∗ FG(t) such that S is the disjoint
union T ∪ N , and T is an ideal of S. This holds since {t, t2, t3, . . .} is an ideal
of the monoid {1, t, t2, t3, . . .} and the preimage of an ideal, with respect to a
surjective homomorphism, is itself an ideal.

Since H ∪ t Ht−1 ⊆ N it follows that V ⊆ N . As t is in T , and T is disjoint
from N , it follows that t ∈ U \ V . Thus U \ V is non-empty. Let z ∈ U \ V .
Write z = x1x2 . . . xm where xi ∈ {t} ∪ H ∪ t Ht−1 for all 1 ≤ i ≤ m. Since
z /∈ V it follows that x j = t for some j , but then since T is an ideal of S,
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and t ∈ T , it follows that z ∈ T . This proves that U \ V ⊆ T . Note also that
U ≤ S = T ∪ N with T ∩ N = ∅. Hence V = U ∩ N and U \ V = U ∩ T .
Since T is an ideal of S it then follows that U \ V is an ideal of U . 	


The following lemma is a straightforward exercise.

Lemma 3.5 Let T be a submonoid of a monoid S such that S \ T is an ideal
of S. Then for any subset X ⊆ S we haveMon〈X〉 ∩ T = Mon〈X ∩ T 〉.

The next result will be needed for the proof of Theorem 3.8 below.

Lemma 3.6 Let H be a group and let W be a finite subset of H. Let T be the
submonoid of H generated by W, and let S be the submonoid of H ∗ FG(t)
generated by {t} ∪ H ∪ tW t−1. Then for all h ∈ H

tht−1 ∈ S ⇔ h ∈ T .

Proof Let h ∈ H . If h = 1 then the result clearly holds, so suppose otherwise.
If h ∈ T = Mon〈W 〉 then

tht−1 ∈ tMon〈W 〉t−1 = Mon〈tW t−1〉 ⊆ S.

For the converse, suppose that h ∈ H and

tht−1 ∈ S = Mon〈{t} ∪ H ∪ tW t−1〉.
By Lemma 3.4 the complement ofMon〈H∪ t Ht−1〉 inMon〈{t}∪H∪ t Ht−1〉
is an ideal. It then follows from Lemma 3.5 that

tht−1 ∈ Mon〈{t} ∪ H ∪ tW t−1〉 ∩ Mon〈H ∪ t Ht−1〉
= Mon〈({t} ∪ H ∪ tW t−1) ∩ Mon〈H ∪ t Ht−1〉〉
= Mon〈H ∪ tW t−1〉 = Mon〈H ∪ tT t−1〉.

Since tht−1 ∈ Mon〈H ∪ tT t−1〉, and by assumption tht−1 �= 1, we can write

tht−1 = x1x2 . . . xm

where m ≥ 1, xi ∈ H ∪ tT t−1 and xi �= 1 for all 1 ≤ i ≤ m. Since each of
H and tT t−1 is a submonoid of H ∗ FG(t) we can combine adjacent terms
in this product if they both belong either to H or both to tT t−1, and we can
remove any resulting terms that are equal to 1. Repeating this if necessary, we
can write

tht−1 = s1s2 . . . sn (�)

where n ≥ 1, each si belongs to H ∪ tT t−1, where si �= 1 for all 1 ≤ i ≤ n
and si ∈ H ⇔ si+1 ∈ tT t−1 for all 1 ≤ i ≤ n − 1. By the normal form
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theorem for free products of groups applied to the free product H ∗ FG(t), at
least one of the terms si must belong to tT t−1. If n > 1 then either si+1 ∈ H
or si−1 ∈ H but in both cases this would imply that s1s2 . . . sn has length at
least four in the free product H ∗ FG(t). But this contradicts (�) since tht−1

has length three in H ∗ FG(t). We conclude that n = 1 and s1 ∈ tT t−1. (An
alternative way to see this is to observe that the submonoid Mon〈H ∪ tT t−1〉
of the group H ∗ FG(t) is in a natural way isomorphic to the free product
H ∗ T of the monoids H and T .) This implies tht−1 ∈ tT t−1 and thus h ∈ T ,
completing the proof of the lemma. 	


The following result is an important basic consequence of Stephen’s proce-
dure (see [38]).

Proposition 3.7 ([39, Theorem 3.2]; cf. [16, Proposition 4.2]) Let M be the
inverse monoid defined by

Inv〈A | r1 = 1, . . . , rk = 1〉
where ri ∈ (A ∪ A−1)∗ for 1 ≤ i ≤ k. Then

X = {[p]M : p ∈
⋃

1≤i≤k

pref(ri )}

is a finite generating set for the submonoid of right units of M.

Proof This result follows from the argument given in the second paragraph
of the proof of [16, Proposition 4.2]. We note that the statement [16, Propo-
sition 4.2] actually carries the additional assumption that the defining relators
are cyclically reduced words. However, this is not used in their proof, and the
result holds with that assumption removed. Alternatively, this proposition can
be seen to be a corollary of [39, Theorem 3.2]. 	


Given a finite list of words u1, . . . , um ∈ (A ∪ A−1)∗ we define

e(u1, u2, . . . , um) = u1u
−1
1 u2u

−1
2 . . . umu

−1
m .

This is clearly a Dyck word. The following result gives a general construc-
tion which will later be used to construct one-relator inverse monoids with
undecidable word problem.

Theorem 3.8 Let A = {a1, . . . , an} and let r1, . . . , rm, w1, . . . wk ∈ (A ∪
A−1)∗. Let G be the group Gp〈A | r1 = 1, . . . , rm = 1〉 and let M be the
inverse monoid

Inv〈A, t | er1 = 1, r2 = 1, . . . , rm = 1〉 (†)
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where e is the Dyck word

e(a1, . . . , an, tw1t
−1, . . . , twkt

−1, a−1
1 , . . . , a−1

n ).

Let T be the submonoid of G generated by W = {w1, . . . , wk}. Then M is
an E-unitary inverse monoid. Furthermore, if M has decidable word problem
then the membership problem for T within G is decidable.

Proof We first prove that M is E-unitary. Let I = {1, . . . ,m} and J =
{1, . . . , k}. By Lemma 3.3 the presentation (†) is equivalent to

Inv〈A, t | ri = 1 (i ∈ I ), aa−1 = 1, a−1a = 1 (a ∈ A),

tw j t
−1tw−1

j t−1 = 1 ( j ∈ J )〉.

In particular we see from this that all of the elements [a]M (a ∈ A) are
invertible in M , and all of the elements [tw j t−1]M ( j ∈ J ) are right invertible
in M . The inverse monoid

Inv〈A | ri = 1 (i ∈ I ), aa−1 = 1, a−1a = 1 (a ∈ A)〉 (1)

is a group and thus is E-unitary. It is well-known that free inverse monoids
are E-unitary (see for example [31, Theorem 1.1]) so in particular the monoid
Inv〈t | 〉 is E-unitary.

In [17, Proposition 7.1] Jones proves that the free product of two E-unitary
inverse semigroups is again an E-unitary inverse semigroup. Jones’s result can
be applied to prove that the free product of two E-unitary inverse monoids is
again an E-unitary inverse monoid. Alternatively, this fact can be deduced as a
corollary of a result of Stephen [40, Theorem 6.5] which gives sufficient con-
ditions for the amalgamated free product of two E-unitary inverse semigroups
to again be E-unitary. To apply Stephen’s result one observes that the free
product of two inverse monoids is isomorphic to the amalgamated semigroup
free product where the identity elements of the two monoids are identified.
It may then be verified that the hypotheses of [40, Theorem 6.5] are satisfied
in this situation. Therefore, the free product S of the inverse monoid (1) with
Inv〈t | 〉, which has inverse monoid presentation

Inv〈A, t | ri = 1 (i ∈ I ), aa−1 = 1, a−1a = 1 (a ∈ A)〉, (2)

is also E-unitary. Now K = G ∗ FG(t) is the maximal group image of both S
and also ofM . It follows that the identitymapping on A∪{t} induces surjective
homomorphisms φ, ψ and θ that make the following diagram commute:
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S M

K

ψ

φ
θ

Since S is E-unitary it follows that M is E-unitary. Indeed, if m ∈ M with
θ(m) = 1 then writing m = ψ(s) for s ∈ S we have φ(s) = θ(ψ(s)) = 1
which since S is E-unitary implies s ∈ E(S). But then m = ψ(s) ∈ E(M)

since homomorphisms map idempotents to idempotents. This completes the
proof that M is E-unitary.

For the second part of the theorem, we shall prove the following key claim:
For all u ∈ (A ∪ A−1)∗

[u]G ∈ T ≤ G ⇐⇒ [tut−1]M is right invertible in M. (‡)

To prove (‡), first suppose that [u]G ∈ T . This means we can write

[u]G = [w j1 . . . w jl ]G
where jq ∈ J for 1 ≤ q ≤ l. Since this equation is written over the alphabet
A ∪ A−1 and all these letters represent invertible elements in M , and all the
defining relations in the presentation of G also hold in M , it follows that

[u]M = [w j1 . . . w jl ]M .

Since [tw j t−1]M is right invertible in M for all j ∈ J , by applying Corol-
lary 3.2 it then follows that

[tut−1]M = [tw j1 . . . w jl t
−1]M = [(tw j1 t

−1)(tw j2 t
−1) . . . (tw jl t

−1)]M
which is right invertible in M since it is a product of right invertible elements.

For the proof of the converse implication of (‡), let UR be the submonoid
of right units of M . Let

P =
⎛

⎝
⋃

i �=1

pref(ri )

⎞

⎠ ∪ pref(er1),

and let X = {[p]M : p ∈ P}. It follows from Proposition 3.7 that X is a finite
generating set forUR . Since M is E-unitary, it follows from [31, Lemma 1.5]
(see also [38, Theorem 3.8]) that the canonical homomorphism σ : M → K
from M onto its maximal group image K = G ∗FG(t) induces an embedding
of each R-class of M into K . In particular σ induces an embedding of the
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right units UR , which is the R-class of the identity element 1M of M , into
the group K . It follows that UR is isomorphic to the submonoid of the group
K generated by {[p]K : p ∈ P}. From the definition of e this is equal to the
submonoid of K generated by the set

Z = {[x]K : x ∈ A ∪ A−1} ∪ {[t]K } ∪ {[tw j t
−1]K : j ∈ J }.

To see that this is the case, it suffices to prove that for any word p ∈ P
the element [p]K belongs to the submonoid of K generated by Z . If p is
a prefix of some ri with i �= 1 then since ri ∈ (A ∪ A−1)∗ it follows that
[p]K can be written as a product of elements from {[x]K : x ∈ A ∪ A−1}.
Otherwise, if p is a prefix of er1 then, by the definition of e, it follows that
the reduced word red(p) can be written as a product of words from the set
A ∪ A−1 ∪ {t} ∪ {tw j t−1 : j ∈ J } and hence the element [p]K = [red(p)]K
belongs to the submonoid of K generated by Z , as required.

Since the submonoid of K generated by A ∪ A−1 is G, it follows that UR
is isomorphic to the submonoid of K generated by {t} ∪ G ∪ tW t−1. Now
suppose that u ∈ (A ∪ A−1)∗ is a word such that [tut−1]M is right invertible
in M . Then from above it follows that [tut−1]G belongs to the submonoid of
K = G∗FG(t) generated by {t}∪G∪tW t−1. It then follows fromLemma 3.6
that [u]G ∈ T . This completes the proof of the claim (‡).

To complete the proof of the theorem, suppose that M has decidable word
problem. Then there is an algorithm which for any word w ∈ (A ∪ A−1)∗
decides whether or not [w]M is right invertible in M . Indeed, [w]M is right
invertible if and only if [ww−1]M = 1M . Therefore, given any word u ∈
(A ∪ A−1)∗ we can decide whether or not [tut−1]M is right invertible in M
which, by claim (‡), is equivalent to deciding whether or not [u]G ∈ T ≤ G.
Hence the membership problem of T within G is decidable. 	


Combining this construction with the results from the previous section then
gives the main result of this section.

Theorem 3.9 There is a one-relator inverse monoid Inv〈A | w = 1〉 with
undecidable word problem.

Proof Let A = {a, z} and let G be the one-relator group

Gp〈a, z | azaz−1a−1za−1z−1 = 1〉.

Let W = {w1, . . . , wk} be a finite subset of (A ∪ A−1)∗ such that the mem-
bership problem for T = Mon〈W 〉 within G is undecidable. Such a set W
exists by Theorem 2.4. Set e = e(a, z, tw1t−1, . . . , twkt−1, a−1, z−1). Then
by Theorem 3.8 the one-relator inverse monoid
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Inv〈a, z, t | eazaz−1a−1za−1z−1 = 1〉
has undecidable word problem. This completes the proof. 	


Since the inverse monoid constructed in the proof of Theorem 3.9 is E-
unitary we immediately obtain the following result.

Corollary 3.10 There is an E-unitary one-relator inverse monoid Inv〈A |w =
1〉 with undecidable word problem.

4 Conclusions and open problems

We have seen in Theorem 3.9 that there are one relator inverse monoids of the
form Inv〈A | w = 1〉 with undecidable word problem. The key question for
future research in this area is therefore:

Question 4.1 For which words w ∈ (A ∪ A−1)∗ does Inv〈A | w = 1〉 have
decidable word problem?

Asmentioned in the introduction, there aremany examples ofwords, or classes
of words, for which it has been shown that Inv〈A |w = 1〉 has decidable word
problem. For example it is true when w is a Dyck word; see [31]. In light of
the results of Ivanov et al. [16], of particular importance is the case where w

is a reduced word. Indeed, the result [16, Theorem 2.2] states that if the word
problem is decidable for all one relator inversemonoids Inv〈A|w = 1〉withw a
reduced word, then it is decidable for all one-relator monoids Mon〈A |u = v〉.
Note that in the examples of one-relator inverse monoids Inv〈A | w = 1〉
with undecidable word problem constructed in this paper, the word w is not
a reduced word. Under the stronger assumption that w is cyclically reduced,
to show that the one-relator inverse monoid has decidable word problem it
suffices, by Ivanov et al. [16, Theorem 3.1], to show that the corresponding
one-relator group has a decidable prefix membership problem. As mentioned
in the introduction, the prefix membership problem for one-relator groups
has been shown to be decidable in a number of special cases. See also [9]
for some more recent results showing that the prefix membership problem is
decidable for certain classes of one-relator groups which are low down in the
Magnus–Moldovanskii hierarchy.

Let M be the one-relator E-unitary inverse monoid Inv〈A | w = 1〉 with
undecidable word problem given by the proof of Theorem 3.9. By Proposi-
tion 3.7 the submonoid of right units of M is finitely generated by the prefixes
of w. It follows (see e.g. the argument in the proof of [16, Proposition 4.2])
that the group of units U of M is finitely generated by the invertible prefixes
of w, that is, the prefixes of w which represent the invertible elements of M .
Since M is E-unitary it follows that U is isomorphic to a finitely generated
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subgroup of the one-relator group Gp〈A | w = 1〉. Therefore the group of
unitsU of M has decidable word problem, while the monoid M itself does not
have decidable word problem. This shows that in general the word problem
for one-relator inverse monoids of the form Inv〈A | w = 1〉 does not reduce
to the word problem for their groups of units. This contrasts sharply with the
situation for one-relator monoid presentations of the form Mon〈A | w = 1〉.
Adjan proved that one-relator monoids of the form Mon〈A | w = 1〉 have
decidable word problem. He did this by first proving that the group of unit of
a special one-relator monoid Mon〈A | w = 1〉 is a one-relator group, and then
showing that the word problem for the monoid can be reduced to solving the
word problem in this group, which in turn is decidable by Magnus’s theorem.
This reduction result was later extended by Makanin [28] who showed that
the monoid M defined by the presentation Mon〈A | w1 = 1, . . . , wk = 1〉 has
a finitely presented group of units, and that M has decidable word problem
if and only if its group of units also does. Thus, the example constructed in
Theorem 3.9 shows that there is no hope in general of using the same reduction
to the group of units approach for the word problem for inverse monoids of
the form Inv〈A | w1 = 1, . . . , wk = 1〉. Further results showing the contrast-
ing behaviour of inverse monoids defined by presentations of this form, when
compared to monoids defined by such presentations, will be explored in the
paper [13] where the groups of units of these inverse monoids are investigated.
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