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Abstract
Purpose  Serum erythropoietin (EPO) concentration is increased following static apnoea-induced hypoxia. However, the acute 
erythropoietic responses to a series of dynamic apnoeas in non-divers (ND) or elite breath-hold divers (EBHD) are unknown.
Methods  Participants were stratified into EBHD (n = 8), ND (n = 10) and control (n = 8) groups. On two separate occasions, 
EBHD and ND performed a series of five maximal dynamic apnoeas (DYN) or two sets of five maximal static apnoeas 
(STA). Control performed a static eupnoeic (STE) protocol to control against any effects of water immersion and diurnal 
variation on EPO. Peripheral oxygen saturation (SpO2) levels were monitored up to 30 s post each maximal effort. Blood 
samples were collected at 30, 90, and 180 min after each protocol for EPO, haemoglobin and haematocrit concentrations.
Results  No between group differences were observed at baseline (p > 0.05). For EBHD and ND, mean end-apnoea SpO2 
was lower in DYN (EBHD, 62 ± 10%, p = 0.024; ND, 85 ± 6%; p = 0.020) than STA (EBHD, 76 ± 7%; ND, 96 ± 1%) and 
control (98 ± 1%) protocols. EBHD attained lower end-apnoeic SpO2 during DYN and STA than ND (p < 0.001). Serum EPO 
increased from baseline following the DYN protocol in EBHD only (EBHD, p < 0.001; ND, p = 0.622). EBHD EPO increased 
from baseline (6.85 ± 0.9mlU/mL) by 60% at 30 min (10.82 ± 2.5mlU/mL, p = 0.017) and 63% at 180 min (10.87 ± 2.1mlU/
mL, p = 0.024). Serum EPO did not change after the STA (EBHD, p = 0.534; ND, p = 0.850) and STE (p = 0.056) protocols. 
There was a significant negative correlation (r = − 0.49, p = 0.003) between end-apnoeic SpO2 and peak post-apnoeic serum 
EPO concentrations.
Conclusions  The novel findings demonstrate that circulating EPO is only increased after DYN in EBHD. This may relate to 
the greater hypoxemia achieved by EBHD during the DYN.
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Introduction

Hypoxia is a condition of reduced oxygen concentration in 
breathable air or blood. Elite breath-hold divers (EBHD) 
regularly endure periods of acute hypoxemia (oxygen satura-
tion levels < 90%) during their training sessions, interspaced 
by periods of normal breathing (1–2 min). Breath-holding 

(apnoea) triggers a series of physiological modifications 
known as the diving reflex which collectively lower oxygen 
utilisation and in turn, prolong apnoeic durations. The div-
ing reflex is characterised by an initial parasympathetically-
induced bradycardial response (Schagatay and Holm 1996), 
followed by a sympathetically-induced peripheral vasocon-
striction of non-vital organs and extremities (Campbell et al. 
1969), with oxygenated blood preferentially redistributed to 
the vital organs (Sterba and Lundgren 1988).

During apnoeic periods, systemic hypoxemia is induced 
in renal vascular beds (Bron et al. 1966). This stimulates the 
release of the glycoprotein hormone erythropoietin (EPO) 
from the renal peritubular fibroblasts into the circulation 
(Elliott 2008; Jelkmann 2011). The magnitude of EPO 
release is directly proportional to the level of hypoxia (Eck-
ardt et al. 1989; Knaupp et al. 1992), and the transcription of 
EPO is controlled, at the cellular level, by hypoxia-inducible 
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transcription factors (Wang and Semenza 1993). EPO is 
responsible for activating the proliferation and maturation 
of red blood cells and haemoglobin (Eckardt et al. 1989; 
Jelkmann 1992; Lundby et al. 2007; Elliot 2008). Higher 
resting haemoglobin concentrations have been documented 
in breath-hold divers compared with untrained individuals 
(Richardson et al. 2005; Fernandez et al. 2017). It is possible 
that these differences may be influenced by the level of EPO 
hormone secreted by the kidneys into the systemic circula-
tion in response to intermittent hypoxia, causing differentia-
tion of the precursors that become haemoglobin-containing 
red blood cells.

To date, only two studies have investigated the erythro-
poietic effect of apnoea-induced hypoxia (de Bruijn et al. 
2008; Kjeld et al. 2015). De Bruijn et al. (2008) first reported 
that a series of 15 maximal dry static apnoeas performed 
by a group of non-divers (ND) induced acute increases in 
serum EPO with peak values observed within 3 h (16% 
increase) of the last hypoxic bout and being restored to base-
line 5 h post. More recently, Kjeld et al. (2015) reported 
significant increases in EPO (17%) 3 h after a single bout 
of a combined maximal static and dynamic apnoea attempt 
in a group of elite breath-hold divers (EBHD). However, a 
distinction between the individual physiological responses 
to static and dynamic apnoeas was not determined. Static 
and dynamic apnoeas are two fundamentally different dis-
ciplines. Although both require individuals to hold their 
breath during the time course of their maximal attempt, the 
physiological demands imposed differ substantially. Indeed, 
Overgaard et al. (2006) reported a greater heart rate and 
end-tidal carbon dioxide and lower end-tidal oxygen after 
dynamic apnoeas when compared to dry static apnoeas, 
despite the ~ 75% shorter apnoeic time period in the dynamic 
apnoeas. The addition of contractile activity during the state 
of dynamic apnoea imposes a significant challenge to the 
diving reflex where myocardial and skeletal muscle oxy-
gen consumption is increased, and blood flow is redistrib-
uted to meet the competing needs of both the vital organs 
and recruited striated muscle. Therefore, it is tempting to 
speculate that the nature of dynamic apnoeas (i.e. apnoea 
and exercise) may induce a greater hypoxemic stress and 
consequently, upregulate the release of EPO.

Accordingly, this study aimed to make the first investiga-
tions into the individual erythropoietic effects of static and 

dynamic apnoeas performed by EBHD and ND. We hypoth-
esise that the greater hypoxemia associated with dynamic 
apnoeas will stimulate greater EPO concentration compared 
with static apnoeas.

Materials and methods

Participants

Twenty-six male participants volunteered for this study 
and were differentiated into three groups including, EBHD, 
ND and control. EBHD had 6 ± 2 years of apnoea practice 
and their training regime consisted of 9 ± 1 h per week of 
apnoea-related activities (Table 1). All breath-hold divers 
were national team members, of which four were current 
and two former national record holders (Table 1). The ND 
were physically active individuals and had no prior breath-
hold diving experience. The control group consisted of eight 
physically active individuals of which two of them were 
recruited from the ND group. Participants were healthy, non-
smoking, habitual sea-level residents and provided written 
informed consent before the study. All experimental pro-
cedures were completed in accordance with declaration of 
Helsinki and institutional ethical approval.

Experimental protocol

Participants reported to the laboratory after a 12 h fast and 
abstinence from caffeine and alcohol containing beverages. 
In addition, participants were instructed to refrain from 
physical activity and apnoea-related activities for 24 h prior 
to and during the testing day. All resting data were collected 
during a single laboratory visit.

Following arrival at the laboratory (~25 °C), participants’ 
anthropometric measurements were assessed, including 
height and body mass (Seca, Vogel & Halke, Hamburg, 
Germany) (Table 1).

Participants then underwent a 20-min supine resting 
period. Subsequently, resting peripheral oxygen saturation 
(SpO2) was assessed using a finger pulse oximeter placed 
on the left-hand index finger (Nellcor PM10N, Medtronic, 
MN, USA) followed by two whole blood samples being 
drawn from a suitable vein in the antecubital fossa of the 

Table 1   Mean (± SD) 
participant characteristics

Variables EBHD (n = 8) ND (n = 10) Control (n = 8)

Height (m) 1.83 ± 0.05 1.82 ± 0.06 1.78 ± 0.09
Body mass (kg) 84 ± 12 85 ± 7 82 ± 11
Static apnoea (s) 376 ± 39 – –
Dynamic apnoea without fins (m) 131 ± 41 – –
Dynamic apnoea with fins (m) 193 ± 42 – –
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participant’s arm (median cubital vein and basilica vein) to 
assess serum EPO (6 mL; BD Vacutainer, 367954, Plym-
outh, UK), haemoglobin and haematocrit concentrations 
(4 mL; BD Vacutainer, K2E EDTA, BD, Plymouth, UK).

Familiarisation session

Within 24 h of completing the baseline measurements, par-
ticipants reported at the swimming facilities and a familiari-
sation session was performed. Participants were introduced 
to the static apnoea position (seated position immersed up 
to the neck) and the dynamic apnoea technique (horizontal 
underwater breast stroke swimming) and were familiarised 
to the trial conditions and requirements.

Static apnoea protocol

Within a week from completing the familiarisation session, 
participants reported at the swimming pool (~ 28 °C) prem-
ises as during the familiarisation visit. The static apnoea 
protocol consisted of the participants performing two sets 
of five maximal static apnoeas. The two sets were separated 
by a 10-min seated rest and each apnoea was separated by a 
2-min resting period.

Participants were instructed to hold their breath after 
a deep but not maximal inspiration, without prior hyper-
ventilation or glossopharyngeal pistoning. A 1-min warn-
ing was provided prior to commencing each apnoea, par-
ticipants received a nose clip 30 s prior to the apnoea to 
reduce any oxygen or water inspiration or oxygen loss, and 
a 10 s countdown was provided prior to immersing their 
face underwater and commencing their maximal apnoeic 
attempt. During each breath hold, participants received 
verbal information and a physical signal (gentle tap on the 
shoulder) every 30 s. After each breath hold, participants 
underwent a 2-min resting period during which they were 
allowed to relax and breathe normally in a seated position, 
whilst remaining immersed in water up to the waist. This 
procedure was repeated five times per set with the apnoeic 
duration being recorded during each maximal attempt.

The participant’s SpO2 (Nellcor PM10N, Medtronic, MN, 
USA) was recorded at 10 s intervals until 30 s after the ter-
mination of their breath-hold (Fagoni et al. 2017).

Dynamic apnoea protocol

Within a week of completing the static apnoea protocol, 
participants reported at the swimming pool as in during the 
static apnoea protocol. The dynamic apnoea protocol con-
sisted of performing five maximal dynamic apnoeas with-
out fins, with each apnoeic repetition being separated by 
a 2-min seated rest (immersed in water up to the waist). 
The pre-apnoeic breathing protocol and data collection 

was replicated as in the static apnoea protocol with the 
exception that SpO2 was not measured during the maximal 
attempt but up to 30 s post the termination of each maximal 
attempt, due to practical implications. During each maximal 
dynamic apnoeic attempt the duration and distance covered 
was recorded.

Control protocol

To control against any possible effects of whole-body 
immersion in water and diurnal variation in serum EPO 
concentration, a control group performed a static eupnoeic 
(normal breathing) protocol. The static eupnoeic protocol 
replicated the water exposure times, resting periods and 
data collection time points of the static apnoea protocol and 
replaced apnoeas with normal breathing periods. The static 
eupnoeic protocol was based on the static apnoeic protocol 
as the water exposure periods were longer in the static com-
pared with the dynamic apnoea protocol.

Participants reported to the swimming pool facilities as 
during the apnoea measurements, at the same time period 
and were immersed in water up to the neck.

Post‑apnoea blood sample

At completion of the apnoeic and control protocols, a can-
nula was inserted into a suitable median cubital or basilic 
vein of the participant’s arm and two blood samples were 
drawn at 30, 90 and 180 min after the last apnoeic/eupnoeic 
repetition to determine the level of circulating EPO (6 mL; 
BD Vacutainer, 367954, Plymouth, UK), haemoglobin and 
haematocrit (4 mL; BD Vacutainer, K2E EDTA, BD, Plym-
outh, UK).

Blood sample treatment and analysis

Samples for serum EPO were gently inverted, allowed to 
coagulate at room temperature for 20 min, and centrifuged 
(ALC Multispeed Refrigerated centrifuge, PK131R, Lon-
don, United Kingdom) at 4000 rpm for 10 min at 4 °C. Sam-
ples were then aliquoted into 1.5 mL eppendorf tubes and 
stored at − 80 °C until an enzyme-linked immunosorbent 
assay analysis was performed (R&D systems, Quantikine 
IVD ELISA, Human Erythropoietin, DEP00, sensitivity 
0.6 mIU/mL; intra-assay variability ~ 3.0%). For haemo-
globin and haematocrit concentrations, samples were gently 
inverted for the EDTA to bind to calcium ions thus block-
ing the coagulation cascade and were analysed within 6 h 
of collection (Advia 2120i Haematology System, Siemens 
Healthcare, Surrey, UK; intra-assay variability ~ 1%).
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Changes in plasma volume, blood volume and red 
cell volume

Plasma, blood and red cell volume changes for each post-
apnoeic time point were determined using the methods of 
Dill and Costill (1974).

Statistical analysis

All participants completed the protocols successfully and all 
data were statistically analysed using the IBM SPSS statis-
tics software version 21. The Shapiro–Wilk test was used to 
assess normality, whereas homogeneity was assessed using 
Levene’s test. Sphericity was assessed using Mauchly’s 
test of sphericity; where the assumption of sphericity was 
violated, the Greenhouse–Geisser correction was applied. 
Repeated measures ANOVA with post hoc contrast com-
parisons were used to assess differences between and within 
groups for baseline measurements and other collection time 
points for SpO2, serum EPO, haemoglobin and haematocrit 
concentrations. MANOVAS were used to assess differences 
in collection time points between groups (EBHD vs ND) 
and conditions (Static vs Dynamics vs Control). Pearson 
correlation was used to assess the relationship between end-
apnoeic SpO2 and peak serum EPO concentrations, and to 
examine the relationship between post-apnoeic erythro-
poietin concentrations and plasma volume, blood volume 
and red cell volume. Where appropriate, effect size, partial 
eta squared (η2) and power (β) are also presented. Data are 
reported as means ± SD and significance was accepted at 
p < 0.05, and p = 0.000 was reported as p < 0.001. GraphPad 
Prism version 7.0c was used to construct figures.

Results

Control

Mean SpO2 was not significantly different from baseline 
(98 ± 1%) during the static eupnoeic protocol (98 ± 1%) 
(p = 1). There was a trend for serum EPO concentra-
tions to gradually decrease from baseline concentrations 
(8.27 ± 3.63 mlU/mL) to 6.66 ± 1.55 mlU/mL (30 min), 
5.95 ± 1.64 mlU/mL (90 min) and 5.34 ± 0.90 mlU/mL 
(180 min) post the completion of the static eupneic protocol 
(p = 0.056, partial η2 = 0.358).

Static apnoeas

Mean static apnoea duration was on average 67 ± 3% longer 
(p < 0.001, partial η2 = 0.744, β = 1) during each successive 

apnoeic attempt in EBHD than ND, with a mean duration 
of 218 ± 21 s (range from 130 to 350 s) in EBHD compared 
with 74 ± 7 s (range from 30 to 183 s) in ND, respectively.

Dynamic apnoeas

There was a between-group difference in distance covered 
during dynamic apnoeas (p < 0.001, partial η2 = 0.751, 
β = 1). The distance covered was 66 ± 4% longer in EBHD 
than ND during all apnoeic attempts with a mean distance 
covered of 66 ± 5 m (range from 46 to 126 m) compared 
with 22 ± 1 m (range from 14 to 37 m) in ND. Mean abso-
lute apnoeic duration was significantly (p < 0.001, partial 
η2 = 0.641, β = 1) longer in EBHD (EBHD 94 ± 22 s) than 
ND (ND 42 ± 13 s).

Peripheral oxygen saturation

Mean SpO2 was significantly different from baseline dur-
ing the static apnoea repetitions in EBHD (p < 0.001, par-
tial η2 = 0.638, β = 0.992), but not in ND (p = 0.327, partial 
η2 = 0.131, β = 0.248). EBHD attained significantly lower 
SpO2 (p = 0.001, partial η2 = 0.558, β = 0.982) during each 
successive apnoeic repetition with a mean end-apnoeic 
SpO2 of 76 ± 5% compared to 96 ± 1% in ND. The dynamic 
apnoea protocol induced a significant decrease in mean SpO2 
from baseline in both groups (EBHD, p < 0.001, partial 
η2 = 0.775, β = 1; ND, p < 0.001, partial η2 = 0.685, β = 1). 
EBHD reached significantly lower SpO2 (mean end-apnoeic 
SpO2 62 ± 10%) at all apnoeic repetitions when compared 
to ND (mean end-apnoeic SpO2 85 ± 6%) (p < 0.001, par-
tial η2 = 0.693, β = 1). When the end-apnoeic SpO2 for each 
group was compared between protocols (static vs dynamic), 
significantly lower SpO2 were attained for both groups dur-
ing the dynamic apnoea protocol (EBHD, p = 0.004, par-
tial η2 = 0.456, β = 0.889; ND, p < 0.001, partial η2 = 0.566, 
β = 0.99). Significantly lower SpO2 levels were attained for 
both groups during dynamic apnoeas (p < 0.0001) versus 
the control protocol, whereas only the EBHD group reached 
significantly lower SpO2 levels during the static apnoea pro-
tocol versus the control protocol (EBHD, p < 0.0001, par-
tial η2 = 0.467, β = 0.996; ND, p = 0.366, partial η2 = 0.066, 
β = 0.242).

Erythropoietin

Mean post-apnoeic EPO concentrations were not different 
from baseline during the static apnoea protocol for either 
groups (EBHD, p = 0.534, partial η2 = 0.097, β = 0.183; ND, 
p = 0.850, partial η2 = 0.006, β = 0.055) or when compared 
between groups (p = 0.471, partial η2 = 0.033, β = 0.107) 
(Fig. 2). Mean post-apnoeic EPO concentration was signifi-
cantly different from baseline during the dynamic apnoea 



European Journal of Applied Physiology	

1 3

protocol in EBHD (p < 0.001, partial η2 = 0.584, β = 0.992) 
but not in ND (p = 0.622, partial η2 = 0.062, β = 0.157) 
(Fig. 1).

Specifically, serum EPO concentration was 60% 
higher than baseline (6.85 ± 0.9  mlU/mL) at 30  min 
(10.82 ± 2.5 mlU/mL, p = 0.017) and 63% higher at 180 min 
post-dynamic apnoeas (10.87 ± 2.1 mlU/mL, p = 0.024) in 
EBHD. There was a trend for increased EPO at 90 min 
post-apnoea (10.13 ± 2.0 mlU/mL, p = 0.058). In the EBHD 
group, there was inter-individual variability in the time to 
peak serum EPO concentration in response to dynamic 
apnoeas. Mean peak serum EPO concentration was 78 ± 43% 
(45–151%) higher than baseline after dynamic apnoeas 
(p = 0.001) in the EBHD. When the mean post-apnoeic EPO 
concentrations were compared between groups, the EBHD 
attained significantly higher EPO concentrations during all 

timepoints  when compared with the ND group (p = 0.002, 
partial η2 = 0.475, β = 0.946) (Fig. 1).

EPO concentrations were significantly higher in response 
to the dynamic versus static apnoea protocol in EBHD 
(p = 0.001, partial η2 = 0.548, β = 0.969) (Fig. 2), but EPO 
concentrations were not different between protocols in ND 
(p = 0.867, partial η2 = 0.002, β = 0.053). Additionally, EPO 
concentrations were significantly higher in response to the 
apnoeic protocols versus the control protocol in EBHD 
(Dynamics, p = 0.001, partial η2 = 0.548, β = 0.969; Statics, 
p = 0.043, partial η2 = 0.196, β = 0.595), whereas no differ-
ences were reported between protocols in ND (Dynamics, 
p = 0.066, partial η2 = 0.117, β = 0.484; Statics, p = 0.152, 
partial η2 = 0.117, β = 0.341) (Fig. 1).

There was a significant (p = 0.003) moderate negative 
correlation (r = − 0.49) between end-apnoeic SpO2 and peak 
post-apnoeic serum EPO concentrations (Fig. 2).

Haemoglobin and haematocrit

Mean post-apnoeic haemoglobin and haematocrit concen-
trations were not different from baseline during the static 
(haemoglobin, p = 0.136, haematocrit, p = 0.064) or dynamic 
(haemoglobin, p = 0.427, haematocrit, p = 0.522) apnoea 
protocol for either groups (Table 2).

Plasma volume, blood volume and red cell volume

Plasma volume, blood volume or red cell volume did not 
change for either protocol or group (p = 0.83). There was no 
relationship between post-apnoeic delta percentage change 
in EPO concentration and delta percentage change in plasma 
volume (r = − 0.052, p = 0.613), blood volume (r = 0.151, 

Fig. 1   Change in mean EPO (mlU/mL) concentrations from baseline 
to 180 min post-apnoeas. Data are presented as mean ± SD. Signifi-
cant difference (p < 0.05) compared to baseline is denoted as asterisk, 
between dynamic and static apnoea protocols is denoted as double 
asterisk, between dynamics and control protocols is denoted as dag-
ger. a Static apnoea and control protocols. b Dynamic apnoea and 
control protocols. EBHD elite breath-hold divers, ND non-divers

Fig. 2   Relationship between end-apnoeic peripheral oxygen satura-
tion levels and peak post-apnoeic serum erythropoietin concentrations 
for both groups and apnoeic protocols
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p = 0.122) or red cell volume (r = − 0.048, p = 0.643) 
(Fig. 3).

Discussion

This is the first study to make a novel distinction between 
the acute effects of static and dynamic apnoeas on erythro-
poietic responses in ND and EBHD. The primary findings 
were that: (1) dynamic apnoeas induced a more pronounced 
oxygen desaturation rate compared with static apnoeas, (2) 
which led into a significant increase in circulating EPO in 
EBHD only, (3) with no effect of static or eupnoea protocols 
on EPO. These findings confirm our hypothesis that a series 
of maximal dynamic apnoeas can elicit a greater hypoxemia 
than a series of maximal static apnoeas, and that the hypox-
emia achieved during dynamic apnoeas is associated with a 
robust increase in circulating EPO.

Dynamic apnoeas induced a greater reduction in SpO2 
than static apnoeas in both groups, despite significantly 
lower absolute apnoeic durations during the dynamic apnoea 
protocol compared with static apnoeas. These data suggest 
that tissue oxygen consumption was greater during repeated 
maximal dynamic apnoeas compared with repeated maxi-
mal static apnoeas, signifying that the addition of contractile 
activity during the state of apnoea imposes a greater hypox-
emic stress. During both apnoeic protocols EBHD achieved 
significantly longer apnoeic durations and reached lower 
end-apnoeic SpO2 than ND. More experienced breath-hold 
divers, such as those recruited in the current study, are able 
to withstand the physiological breaking point, supress the 
urge to breathe and sustain prolonged apnoeic durations. As 
a consequence, EBHD are exposed to greater hypoxemic 
conditions during maximal apnoeic attempts than ND (Joulia 
et al. 2002). Evidence suggests the response of EBHD to 
apnoeas is trainable as Joulia et al. (2003) demonstrated 
that 3 months of apnoeic training significantly delayed the 
physiological breaking point, improved hypoxic tolerance 
and prolonged apnoeic durations.

To the best of our knowledge, this is the first study to 
report the erythropoietic responses to a series of maximal 
dynamic apnoeas performed by EBHD and ND. Increases 
in serum EPO in response to the dynamic apnoea protocol 
occurred only in the EBHD group, with no effect of the 
static apnoea or eupnoea protocol on EPO (Fig. 1). Addition-
ally, there was no relationship between post-apnoeic EPO 
concentrations and blood volume, red cell volume or plasma 
volume (Fig. 3). Collectively, this suggests that the signifi-
cant increases in serum EPO that occurred only in EBHD 
after completing the dynamic apnoea protocol were likely 
caused by the greater dynamic apnoea-induced hypoxia 
compared with ND and not by a circadian rhythm of EPO 
production, water immersion or due to haemoconcentration 
(Cahan et al. 1992; Klausen et al. 1996). In addition, in line 
with the literature, we identified for both groups (EBHD and 
ND) a moderate negative correlation between end-apnoeic 
SpO2 and peak post-apnoeic EPO concentrations (Fig. 2). 
Therefore, the lower SpO2 attained by the EBHD compared 
with ND during the dynamic apnoea protocol may have elic-
ited a greater hypoxic stimulus for EPO release.

Despite the relative short (< 10  min), intermittent 
nature of the hypoxic exposures utilised in the current 
study, the observed serum EPO increases reported 3 h post 
(4.02 mlU/mL; 63% increase) a series of only five maximal 
dynamic apnoeas in EBHD are greater than those previ-
ously reported by de Bruijn et al. (2008) (1.38 mlU/mL; 
16% increase) following a series of 15 maximal dry static 
apnoeas and by Kjeld et al. (2015) (1.8 mlU/mL; 17% 
increase) post a series of a combined maximal static and 
dynamic apnoea. The higher serum EPO concentrations 
observed in the present study, despite only one third of the 
number of apnoeas compared with de Bruijn et al. (2008), 
are probably attributed to the lower SpO2 levels attained 
by our EBHD group as a result of the longer apnoeic 
durations achieved. Additionally, the EBHD individual 
maximum serum EPO concentrations post the dynamic 
apnoea protocol are higher than those reported by Klausen 
et al. (1996) following 2 h of pokilocapnic hypoxia (28%, 

Table 2   Change in mean haemoglobin (g/dl) and haematocrit (%) (mlU/mL) concentrations from baseline to 180 min post-apnoeas

Data are presented as mean ± SD
A Static apnoea, B Dynamic apnoea, EBHD elite breath-hold divers, ND non-divers

Protocol Haemoglobin (g/dl) Haematocrit (%)

Baseline 30 90 180 Baseline 30 90 180

EBHD
 A 15 ± 0.60 14.54 ± 0.99 14.73 ± 1.05 15.01 ± 0.57 44 ± 1.62 42 ± 2.36 42 ± 2.77 42 ± 2.09
 B 14.96 ± 0.77 15.37 ± 1.79 15.17 ± 2.03 43 ± 2.62 42 ± 5.50 43 ± 6.06

ND
 A 14.9 ± 0.44 14.81 ± 0.56 14.68 ± 0.57 14.67 ± 0.51 45 ± 1.76 44 ± 2 44 ± 1.66 44 ± 1.32
 B 14.83 ± 0.74 14.57 ± 0.91 14.71 ± 0.86 45 ± 3.30 44 ± 4.08 44 ± 4.42
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8 ± 0.84 to 10.24 ± 0.95 mlU/mL) and by Ge et al. (2002) 
following 6 h at a simulated altitude of 2800 m and 24 h 
at 1780 m and 2085 m. However, it is currently unknown 
whether the present increases in serum EPO after repeated 
dynamic apnoeas, would ultimately translate to chronic 
increases in red blood cell mass and haemoglobin con-
centrations. Accordingly, future research should aim to 

investigate the longitudinal effects of dynamic apnoea 
training.

No differences in serum EPO from baseline were 
observed post the static apnoea protocol for either group 
(Fig. 1). This is contrary to de Bruijn et al. (2008) who 
demonstrated a 16% (1.38 mlU/L) increase 3 h post a 
series of repeated dry static apnoeas in ND. Although the 
lack of EPO release in our ND group may be explained by 
their lower end-apnoeic desaturation levels attained com-
pared with de Bruijn et al. (2008) ND group, our breath-
hold divers’ end-apnoeic SpO2 levels are comparable to 
those of de Bruijn et al. (2008). However, similarly to 
our ND group no significant erythropoietic differences 
were observed in the EBHD post the static apnoea pro-
tocol. This novel observation might suggest that chronic 
apnoeic training (exposure to prolonged and repetitive 
hypoxic periods) may attenuate the decrease in renal 
blood flow and subsequently suppress the release of EPO. 
Indeed, endurance training can attenuate the reduction of 
renal vascular blood flow at a given absolute work rate in 
humans and rodents (Clausen et al. 1973; Armstrong and 
Laughlin 1984; DiCarlo and Bishop 1990; Musch et al. 
1991; Lash et al. 1993; Yen et al. 1995; Proctor et al. 
2001). In rabbits, endurance exercise reduced renal sym-
pathetic nerve activity, partly, due to enhanced cardiac 
baroreflex inhibition of sympathetic outflow to the mes-
enteric and renal circulation (DiCarlo et al. 1997; Mueller 
et al. 1998; De Moraes et al. 2004). Moreover, in vitro 
studies examining the conduit arteries and microcircula-
tion of the renal vasculature revealed enhanced production 
of and/or sensitivity to endogenous endothelial dilators 
(Chen et al. 1999, 2001; Chies et al. 2004; De Moraes 
et al. 2004; Moyna and Thompson 2004). Collectively, the 
insignificant erythropoietic responses in our EBHD group 
following the static apnoea protocol might be explained 
by the training-induced renal adaptations and attenuation 
of renal vasoconstriction. However, further research is 
necessary to determine the extent to which our findings 
are the result of a training-induced adaptation of the renal 
vasculature.

In conclusion, we demonstrated that repeated maximal 
dynamic apnoeas significantly reduced SpO2 compared with 
static apnoeas in both EBHD and ND. Hypoxemia was great-
est in EBHD in response to the dynamic apnoeas and this 
was associated with an increase in serum EPO in EBHD 
only. Accordingly, future research should aim to assess the 
longitudinal effects of dynamic apnoea training.
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