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RUNNING HEADER: TIME DISTRIBUTION OF PHENOLOGY 

 

ABSTRACT 

1. Phenological investigation can provide valuable insights into the ecological effects of 

climate change. Appropriate modelling of the time distribution of phenological events is 

key to determining the nature of any changes, as well as the driving mechanisms behind 

those changes. 

2. Here we present the nlstimedist R package, a distribution function and modelling 

framework that describes the temporal dynamics of unimodal phenological events. The 

distribution function is derived from first principles and generates three biologically 

interpretable parameters.   

3. Using seed germination at different temperatures as an example, we show how the 

influence of environmental factors on a phenological process can be determined from the 

quantitative model parameters. 

4. The value of this model is its ability to represent various unimodal temporal processes 

statistically. The three intuitively meaningful parameters of the model can make useful 

comparisons between different time periods, geographical locations or species’ 

populations, in turn allowing exploration of possible causes. 
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RESUMEN 

1. La investigación de procesos fenológicos puede proporcionar información valiosa sobre 

los efectos ecológicos del cambio climático. El modelado de la distribución temporal de 

eventos fenológicos es clave para determinar la naturaleza de cualquier cambio, así como 

los mecanismos responsables. 

2. Aquí presentamos el paquete nlstimedist R, una función de distribución y marco de 

modelado que describe la dinámica temporal de eventos fenológicos unimodales. La 

función es derivada a partir de principios básicos y consta de tres parámetros 

biológicamente interpretables. 

3. Utilizando la germinación de semillas a diferentes temperaturas como ejemplo, ilustramos 

cómo la influencia de factores ambientales en un proceso fenológico es cuantificada por 

los parámetros del modelo. 

4. El valor de este modelo es su capacidad para representar estadísticamente varios procesos 

temporales unimodales. Los tres parámetros del modelo tienen interpretación física simple 

y permiten hacer comparaciones útiles entre diferentes períodos, ubicaciones o 

poblaciones, lo que a su vez permite explorar posibles causas. 
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1 | INTRODUCTION 

Periodically recurring, often seasonal, biological events (phenology) are influenced by 

environmental factors and interactions between organisms (Lieth 1974). Such phenomena are 

of particular interest because anthropogenic influences, such as climate change, might alter 

important ecological processes that are intimately correlated (Forrest & Miller-Rushing 

2010). A biologically meaningful description of phenological events is essential to 

understanding their temporal dynamics, and offers an opportunity to assess the significance of 

its potential drivers (Rafferty et al. 2013).  

Certain phenological events are recorded as a binary change from one recognisable state into 

another, either for a whole organism, as when a winter migrant has arrived for the breeding 

season (Gordo 2007) or for individual parts, as when individual leaf or flower buds on a plant 

burst (Cole & Sheldon 2017). 

While it is clear that variability of individual events is expressed at the population level as a 

time distribution, phenological observations are often restricted to recording only extreme 

events, such as the date of the first flower to bloom (Fitter & Fitter 2002) or the first migrant 

of the season to arrive (Gordo & Sanz 2006). This approach ignores the population-level 

dynamics which contains a wealth of information regarding, for example, the duration of the 

phenomenon, its temporal skew, and its shape. Other scalar values may be conveniently-

chosen thresholds (Zhang et al. 2003), such as the 50% of completion commonly used in the 

investigation of canopy phenology (Richardson et al. 2006), and varying percentage values 

are a key feature of the BBCH-scale used to identify phenological developmental stages in 

plants (Meier 2001). All of these approaches result in a single date, which is intended to 

capture useful information about the phenological process. 
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When single dates are used to describe the timing of a phenological event, they are often 

compared across years or linked to changes in an environmental condition, such as 

temperature, using regression (Sparks & Tryjanowski 2010). As useful as these scalars may 

be to summarise key features and changes in phenology, they inevitably miss potentially 

important information about the shape of the overall time course (Clark & Thompson 2011; 

CaraDonna, Iler & Inouye 2014; Carter, Saenz & Rudolf 2018).   

A more thorough assessment should aim to model the entire phenological time distribution 

(CaraDonna, Iler & Inouye 2014; Carter, Saenz & Rudolf 2018). This is frequently 

accomplished using classic growth functions, such as the logistic and Richards (Yin et al. 

2003; Zhang et al. 2003; Richardson et al. 2006; Sun & Frelich 2011) as their sigmoid shape 

resembles the time course of a phenological event. The logistic model is symmetrical around 

its point of inflection which is always halfway along the asymptotes (Birch 1999), but there is 

no theoretical basis for a phenological event to be symmetrical around its mid-point. The 

Richards (or generalised logistic) model is more flexible due to an additional shape parameter 

but its parameters cannot be interpreted in a meaningful way (Richards 1959; Zeide 1993; 

Birch 1999; Damgaard & Weiner 2008).  

An alternative approach builds on an existing body of work on niche overlap (Pleasants 1980; 

Fleming & Partridge 1984; Totland 1993; Castro-Arellano et al. 2010), and allows species 

interactions to be compared as measures of temporal overlap (e.g., Carter, Saenz & Rudolf 

2018). These approaches take account of whole phenological distributions through time, 

accommodating multimodal or skewed responses. Temporal overlap is an outcome of 

interactions between distributions rather than a direct consideration of their shapes, but is a 

sensible approach where the comparison focuses on time alone and where there are 

multimodal, complex probability distributions.  
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For unimodal phenology distributions, a model that describes the entire phenological time 

distribution well, is sufficiently flexible to accommodate asymmetrical distributions, and 

generates biologically interpretable shape parameters would be more useful. In particular, the 

model should be derived from basic principles applicable to a wide spectrum of biological 

time distributions. Importantly, goodness-of-fit alone should not be used to justify model 

selection; it is always preferable to choose a model that has biologically meaningful 

parameters (Paine et al. 2012). 

Here, we present a model for describing the temporal dynamics of unimodal phenological 

events. It has been derived from first principles and generates biologically meaningful 

parameters that can be compared and used to assess potential driving mechanisms. 

 

2 | THE MODEL 

A phenological process of events (y) unfolding over time (x) at a constant rate (r) would 

follow an exponential distribution (Franco 2018). Phenological processes, however, do not 

occur at a constant rate (Sparks & Tryjanowski 2010) and individual events are more likely to 

be distributed according to a probabilistic process described by the inverse logit governed by 

an additional parameter, c (Franco 2018). Finally, phenological processes do not occur 

instantly, but happen sometime after exposure to a specific set of conditions (Wu et al. 2015), 

which requires a third parameter, the time lag, t. By incorporating the lagged form of the 

inverse logit function into the exponential distribution, a suitable biological time distribution 

can be derived (Franco 2018). This cumulative distribution function (cdf) has the form: 

     
 

          
 
 

 

 The derivative of this function quantifies the probability density function (pdf): 
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which describes the population-level rate at which the phenomenon occurs. Each of the 

function’s parameters has clear meaning and units: r quantifies the maximum proportional 

rate at which the process occurs (it is dimensionless); c is the rate at which r converges on its 

maximum value (units: time
-1

); and t is an overall measure of the process’ time lag (units: 

time) (Fig. 1). Parameter t can also be thought of as a weighted measure of the process’ 

duration – weighted in relation to the values of r and c, that is. It correlates with, but is not 

equivalent to any of the distribution’s various measures of central tendency. 

3 | THE R PACKAGE 

nlstimedist is an R package that provides a convenient way to fit the time course of a 

unimodal phenological time distribution employing nonlinear regression. nlstimedist 

combines functions for data preparation, model fitting and data visualisation into one 

complete package, allowing efficient, accurate and meaningful analysis. 

The model is fitted to data using the timedist() function.  The function requires data in the 

form of the proportion of cumulative number of events through time, together with column 

identifiers (allowing the analysis of multi-column data) and starting values for r, c and t.  If 

data are in their raw form of counts versus time, they can be cleaned and converted to 

proportions (range: 0-1) for model use, using the built-in tidy function tdData().     

The timedist() function returns an object which contains all of the fitted model information. 

This includes the equation used to fit the estimated time distribution, estimated values for r, c 

and t, the model fit’s residual sum of squares, and the number of iterations to convergence.  

The object can be examined with all of the generic nls functions, such as summary(), and can 

also be used by packages such as ‘nlstools’ (Baty et al. 2015). Functions and packages such 
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as these can be used to assess how well the model fits the data and the reliability of the 

parameter estimates. The statistical moments and percentiles of the fitted distribution can be 

obtained from the model object. The nlstimedist package also has two built-in functions for 

plotting the estimated time distribution as either a cumulative distribution function (cdf) 

tdCdfPlot(object, …) or a probability density function (pdf) tdPdfPlot(object, …).   

nlstimedist is based on the framework provided by nlsLM from the minpack.lm package 

(Elzhov et al. 2016).  nlsLM is a modification of the standard nls function that uses the 

Levenberg-Marquardt algorithm (Marquardt 1963) for model fitting (Elzhov et al. 2016). 

This fitting procedure was chosen because it is considered robust (Lourakis 2005). Because 

the method of non-linear regression fitting uses an iterative optimisation procedure to 

converge on the least squares solution, fairly accurate starting values need to be chosen 

(Ruckstuhl 2010).  nlstimedist is not a self-starting model, therefore guidelines are provided 

to assist with the selection of appropriate starting values for the three parameters (see package 

vignette). 

Fitting to the underlying cumulative distribution function (opposed to the more usual practice 

of fitting a probability density function to binned data) allows datasets with few observations 

to be analysed. The temporal resolution of the data must be sensible and representative of the 

whole phenology under investigation. This model cannot be applied to complex, multimodal 

phenologies.  

As shown in Fig. 1, each parameter has a unique effect on three different aspects of the 

distribution’s shape. In summary, r is a scaled rate of completion (without units), c is a 

measure of its temporal concentration (units: time
-1

), and t is an overall measure of temporal 

delay (units: time). In combination, these parameters provide insight into potential drivers and 

mechanisms associated with the phenological process, such as rates of development, climate 

change, competition between species, genetic diversity, resource availability and 
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environmental heterogeneity. Exploring the relationships between model parameters and 

statistical moments with biological and environmental variables might offer additional 

understanding of possible determinants. 

4 | APPLICATION OF THE MODEL 

The model can be applied across a wide range of phenological studies, including aspects of 

reproduction and development (e.g., pollination, gestation, egg-laying, egg-hatching, 

germination, life stages), seasonal population dynamics (of leaves, flowers, whole organisms, 

etc.), species interactions (trophic mismatch, predator-prey dynamics, competition, pest 

outbreaks), migration and dispersal (in relation to cues and invasion dynamics), and mortality 

in response to environmental challenge (climate change, ecotoxicology). The model has also 

been fitted successfully to the distribution of reproductive value of perennial plants as a 

means of quantifying the duration (by parameter t) and the speed (parameter c) of life 

(Mbeau-Ache & Franco 2013).  

As a worked example, we present data from a controlled seed germination experiment for 

Puya raimondii, a giant rosette plant from the Andes. The experiment tested the effect of 

temperature on germination along a temperature gradient ranging from 8.4° C to 23.7° C. We 

use this example to illustrate how the new function is able to quantify accurately the changing 

temporal dynamics of a phenological process. We also show how quantification of the models 

parameters can be used to determine the influence that an environmental factor, in this case 

temperature, has on seed germination.   

The dataset used in this example is available on the Dryad Digital Repository. The file can be 

read directly into R using the following command. 
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> Puya <- read.csv ("PuyaGermination.csv", header = TRUE, sep = ",")  

To obtain the estimated parameter values (r, c, t) at each temperature, the model was fitted to 

each column in the “Puya Germination” dataset separately using the timedist() function.  

Starting values for parameter estimates are dependent on the length of the time course under 

investigation and as such, starting values were adjusted for each model fit. 

> Puya1.1 <- timedist (Puya, x = "x", y = "T8.4", r = 0.04, c = 0.5, t = 

40) 

> Puya1.1 

 

Nonlinear regression model 

  model: T8.4 ~ 1 - (1 - (r/(1 + exp(-c * (x - t)))))^x 

   data: data 

       r        c        t  

 0.07347  0.44714 37.36754  

 residual sum-of-squares: 0.008334 

 

Number of iterations to convergence: 7  

Achieved convergence tolerance: 1.49e-08 

 

Fitting accuracy was verified using a range of functions. The reliability of the parameter 

estimates was obtained for each fit using the generic summary() function for nls objects. 

Standard errors of parameter estimates were very small, and model fit was highly significant 

in all cases (p < 0.001; Table 1).   

> summary (Puya1.1, correlation = TRUE, symbolic.cor = FALSE) 

 

Formula: T8.4 ~ 1 - (1 - (r/(1 + exp(-c * (x - t)))))^x 
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Parameters: 

   Estimate Std. Error t value Pr(>|t|)     

r  0.073472   0.005016   14.65 4.51e-11 *** 

c  0.447144   0.024582   18.19 1.40e-12 *** 

t 37.367538   0.344737  108.39  < 2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 0.02214 on 17 degrees of freedom 

 

Correlation of Parameter Estimates: 

  r     c     

c -0.64       

t  0.92 -0.82 

 

Number of iterations to convergence: 7  

Achieved convergence tolerance: 1.49e-08 

 

Nonlinear regression has no direct R
2
. However, a pseudo R

2
 calculated as 1 – [    

              , which defines a similar quantity for nonlinear regression and is able to 

describe the proportion of variance explained by the model (Kvålseth 1985; Cameron & 

Windmeijer 1997). Extracting this quantity from each model object provided another measure 

of how well the model fitted the data.  R
2
 was over 0.99 for all temperature treatments (Table 

1), although we recommend caution in the interpretation of this statistic, as it provides an 

over-optimistic measure of fit (Spiess & Neumeyer 2010). 
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> Puya1.1$m$rss() 

[1] 0.99693 

 

The statistical moments and the percentiles of the distribution can also be extracted from each 

model object. These facilitate comparison of different temperature treatments throughout time 

(Table 1).  

> Puya1.1$m$getMoments() 

      mean variance       sd     skew kurtosis  entropy 

1 35.66111 34.71189 5.891679 4.156171 36.20471 4.096621 

 

Plotting the model fits as both cumulative distribution functions and probability density 

functions provides a useful summary of how germination is affected across a range of 

temperatures (Fig. 2). These plots provide an informative visual summary of the maximum 

per capita rate of germination, temporal spread and time delay of seed germination at each 

temperature.  

A key feature of the model is the production of numerically meaningful parameter values. 

These parameters, when plotted against biological or environmental variables, allow potential 

driving mechanisms to be tested. In this example, temperature affected all three parameter 

estimates in a curvilinear fashion (Fig. 3). Parameters r, c and t displayed significant 

quadratic relationships with temperature, helping to identify the temperature at which 

germination was fastest, more concentrated and least delayed after sowing. This optimal 

temperature was remarkably similar for all three parameters: r = 15.6° C, c = 15.5° C and t = 

15.9° C.  
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Although the quadratic relationship with temperature was significant and each parameter 

predicted similar optimal temperatures, there is no reason to expect either a similar optimum 

for all three parameters or a symmetrical response on either side of the optima. The analysis 

of other phenological processes may yield different statistical relationships. Temperature was 

used in this example to illustrate the effect that an environmental factor has on the time 

course of seed germination. However, the same principles would apply to other 

environmental conditions that vary on a continuous scale. 

 

5 | CONCLUSIONS 

The nlstimedist package was built to facilitate the application of Franco’s (2018) distribution 

function to phenological data. The model adequately describes a unimodal phenological 

process of events that are usually recorded as completions, i.e., on a binary scale. It is 

conceptually simple and is able to capture the essence of a phenological process because its 

three parameters quantify properties of the distribution with known units: a maximum net per 

capita rate (dimensionless), a rate at which this maximum rate is achieved (units: time
-1

) and 

an overall measure of the process’ time lag (units: time).  Both biological and environmental 

variables have been shown to affect the individual parameters in a predictable way (Mbeau-

Ache & Franco 2013; Franco 2018), and examples provided here. The flexibility of the model 

in representing various continuous distributions, the interpretability of its parameters and its 

ability to estimate the underlying statistical distribution of an often highly asymmetrical 

temporal process make it a useful tool in the analysis of unimodal phenological phenomena. 
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7 | CITATION OF NLSTIMEDIST 

Studies using nlstimedist should cite this article. 

 

8 | DATA ACCESSIBILITY 

The package is available on CRAN https://cran.r-project.org/package=nlstimedist and the 

data and R script used in this study are available on the Dryad Digital Repository 

https://doi.org/10.5061/dryad.f01pr47 (Steer, Ramsay & Franco 2019).  
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Table 1.  Number of seeds germinated (N) and percentage of germination (ymax) in each 

temperature category, estimated parameter values (with standard errors in parenthesis), 

*** p < 0.001, proportion of variance explained by the model (R
2
) and statistical moments 

for each of the predicted distributions. 

 

Temp. 

(°C) 

N 

ymax  

(%) 

r     

(s.e.) 

Sig. 

c    

(s.e.) 

Sig. 

t     

(s.e.) 

Sig. R
2
 Mean SD Skew Kurtosis Entropy 

8.4 148 74.0 
0.073 

(0.005) 
*** 

0.447 

(0.025) 
*** 

37.368 

(0.345) 
*** 99.7 35.661 5.892 4.156 36.205 4.097 

9.3 156 78.0 
0.075 

(0.003) 
*** 

0.653 

(0.032) 
*** 

29.532 

(0.158) 
*** 99.8 29.461 6.334 4.848 37.191 3.823 

12.5 161 80.5 
0.112 

(0.008) 
*** 

0.806 

(0.062) 
*** 

22.018 

(0.230) 
*** 99.6 21.421 3.925 4.621 38.424 3.354 

13.8 164 82.0 
0.129 

(0.004) 
*** 

1.485 

(0.083) 
*** 

16.133 

(0.071) 
*** 99.9 16.360 3.571 5.188 39.817 2.748 

14.7 160 80.0 
0.126 

(0.006) 
*** 

1.418 

(0.117) 
*** 

15.113 

(0.104) 
*** 99.7 15.580 3.988 4.774 33.338 2.911 

16.7 147 73.5 
0.134 

(0.003) 
*** 

2.230 

(0.108) 
*** 

13.992 

(0.037) 
*** 99.9 14.597 3.639 5.116 36.541 2.393 

17.6 157 78.5 
0.139 

(0.005) 
*** 

1.917 

(0.158) 
*** 

14.028 

(0.074) 
*** 99.8 14.452 3.418 5.144 37.802 2.500 

19.5 159 79.5 
0.121 

(0.008) 
*** 

0.801 

(0.080) 
*** 

15.970 

(0.226) 
*** 99.3 16.061 4.431 3.893 25.498 3.526 

20.0 155 77.5 
0.090 

(0.004) 
*** 

0.487 

(0.041) 
*** 

17.896 

(0.259) 
*** 99.4 18.775 7.089 3.218 17.477 4.307 

21.7 146 73.0 
0.080 

(0.003) 
*** 

0.504 

(0.025) 
*** 

25.638 

(0.212) 
*** 99.8 25.516 6.712 3.898 26.187 4.154 

22.4 144 72.0 
0.058 

(0.003) 
*** 

0.283 

(0.024) 
*** 

30.436 

(0.560) 
*** 99.1 30.989 10.882 3.133 17.629 4.992 

23.7 88 44.0 
0.052 

(0.005) 
*** 

0.201 

(0.015) 
*** 

43.426 

(0.992) 
*** 99.2 41.159 11.452 2.641 16.558 5.242 
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Figure 1. The influence of the three model parameters (r, c, and t) on the cumulative 

distribution function (left panels) and probability density function (right panels). The central 

panels show how each parameter varies, while the other two are held constant. 
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Figure 2. Cumulative distribution functions (left) and corresponding probability density 

functions (right) for Puya raimondii germination occurring along a temperature gradient 

ranging from 8.4°C to 23.7°C. Probability density functions describe the population-level rate 

of germination and the area under each curve is equal to the maximum percentage of 

germination. 
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Figure 3. The relationship between temperature and the values of parameter estimates 

produced from each model fit (a) parameter r, (b) parameter c, and (c) parameter t. All three 

quadratic relationships were significant (a) R
2
 = 0.915, p < 0.000, (b) R

2
 = 0.672, p = 0.007, 

(c) R
2
 = 0.945, p < 0.000. Error bars represent the standard errors of parameter estimates.  


