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Abstract: Widespread reports over the last six years confirm the establishment of lionfish (Pterois miles)
populations in the eastern Mediterranean. Accumulated knowledge on lionfish invasions in the
western Atlantic Ocean has shown that it is a successful invader and can have negative impacts
on native species, indirect ecological repercussions and economic effects on local human societies.
Here we analysed genetic sequences of lionfish from Cyprus as well as data from the whole distribution
of the species, targeting the mtDNA markers cytochrome c oxidase subunit 1 (COI) and the control
region (CR). Our results reflect a pattern of repeated introductions into the Mediterranean from the
northern Red Sea and a secondary spread of this species west to Rhodes and Sicily. Presented results
agree with previously published studies highlighting the genetic similarity with individuals from the
northern Red Sea. Nevertheless, some individuals from Cyprus, in addition to those coming via the
Suez Canal, were genetically similar to fish from the Indian Ocean, indicating genetic homogeneity
among populations of P. miles across its current distribution, possibly facilitated by the ornamental
fish trade and/or transport through ballast water.
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1. Introduction

Invasive species are one of the main threats to biodiversity and natural resources, as they can
cause severe changes in marine ecosystems [1–3]. The negative impacts often include alterations in
the structure of marine communities and ecosystem services, with significant economic cost and even
impacts on human health [4–6]. Monitoring, understanding and predicting the impacts of marine
invasions has attracted much scientific interest [7,8]. The Mediterranean Sea is a biodiversity hotspot,
as it currently hosts circa 17,000 known species, including more than 600 established alien spp.,
although its volume and surface are less than 1% of the world’s oceans [3,9,10].

Climate change is considered to be one of the main factors that facilitated the establishment of
thermophilic species that manage to reach the Mediterranean through the Suez Canal [11,12]. The Suez
Canal is the main source of origin of alien species in the Mediterranean Sea; 13 out of the first 14 species
that invaded at the beginning of the past century and 64% of the total number of species currently
found in the Mediterranean are Lessepsian migrants (reached the Mediterranean Sea through the Suez
canal from the Red Sea [9,13,14]).
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The lionfish, Pterois miles (Bennett, 1828) is one of the most successful marine invaders,
exhibiting a set of behavioral and life-history traits that enables it to proliferate and establish alien
populations [15,16]. The native distribution of P. miles includes the Indian Ocean, the Red Sea and some
parts of Indonesia [17]. It has now spread throughout the Caribbean, the western Atlantic Ocean and
recently into the Mediterranean Sea. More than 150 published studies in the last five years have focused
on the western Atlantic region and documented impacts of the invasion of congeneric Pterois miles and
P. volitans on local biodiversity, ecosystem services and the economy [3,16,18]. The presence of lionfish
off the southeast coast of the USA was recorded for the first time in 1985 [19]. Less than 20 years later
lionfish abundance was comparable to that of very common native species (e.g., Mycteroperca phenax
(Jordan and Swain, 1884 [20])). Currently, lionfish presence has expanded, reaching the southeast coast
of Brazil [21]. Based on genetic data, the spread of lionfish in the Caribbean and in the Mediterranean
has been attributed to human activities such as the ornamental fish trade and the opening/widening of
the Suez Canal, respectively [22–26]. Founder effects, bottlenecks, genetic drift and rapid population
expansions are the main factors that determined the genetic profile of P. volitans in the Atlantic
Ocean [27]. The close evolutionary relation of the congeneric species P. volitans and P. miles that invaded
the western Atlantic Ocean and the Mediterranean, respectively, is highlighted by their ability to
hybridize [28]. We still need to evaluate the effects of the lionfish presence in the Mediterranean,
including interactions with native taxa such as groupers and moray eels that are also present at its
native distribution range [29,30].

P. miles was first recorded in the Mediterranean Sea in 1991, off Israel [31]. More than two decades
later, in 2012, two individuals of the species were captured off the coast of Lebanon [32], while the
records from Cyprus started in 2013 [29]. Invasion through the Suez Canal is indicated by genetic
data [24]. Abundance patterns at the onset of the species establishment around Cyprus’ coastline
exhibited a gradient of decreasing density from the southeastern part of the island, where it is now
very common, to the southwestern part, where it is less abundant [33,34].

A recent study by Bariche et al. (2017) [24] that included individuals from Cyprus found low
genetic diversity and the authors asserted that a few founder individuals may have been responsible for
the invasion. Stern et al. (2018) [25] suggested there may have been more than one invasion of lionfish
into the Levantine Sea. It is still unknown under which conditions this invasion took place, including
whether it is ongoing with steady gene flow from the Red Sea to the Mediterranean. For this purpose,
this study incorporates, for the first time, data from the whole range of the species’ distribution.

Here we investigated the genetic diversity patterns of individuals sampled from Cyprus, enriching
our dataset with sequences from other regions of the species’ entire distribution in order to elucidate
the invasion and establishment history of lionfish in the Mediterranean.

2. Materials and Methods

2.1. Sampling—DNA Extraction

The examined material was collected in the framework of the research program RELIONMED-LIFE
(preventing a lionfish invasion in the mediterranean through early response and targeted removal)
during scuba diving expeditions organized by the Marine and Environmental Research (MER) Lab Ltd.
and the Enalia Physis Environmental Research Centre between September and October 2018 along
the Cypriot coast. Immediately after collection, dorsal fins were taken from the samples and were
placed in separate tubes containing 96% alcohol. All samples were stored at −20 ◦C until further
laboratory analyses.

The great majority of the samples were collected from the southeastern coasts of the island where
the population density was highest, but individuals from sites along the southern coasts of the island
were also included in our analyses. In total, 56 individuals from 4 sampling sites were collected from
Cyprus (Table S1).
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Small pieces of fins were used for total genomic DNA extraction with DNeasy Blood and Tissue
Kit (Qiagen, Hilden, Germany) following the manufacturer’s instructions. The final concentration and
purity (A260/A280nm absorption rate) of DNA extractions were determined with NanoDrop 2000/200c
(Thermo Fisher Scientific Inc., Waltham, MA, USA). In all cases the final DNA concentration was
>100 ng/µL and the purity ratio >1.7.

2.2. Amplification and Sequencing

Cytochrome c oxidase subunit 1 (COI) gene and the control region (CR) were targeted
following common PCR procedures for the amplification of the two regions using the primer pairs
FISH-BCL/FISHCOIHBC [35,36] and universal CR-A/CR-E [37]. These mitochondrial loci were selected
taking into account: (1) The availability of data already deposited in NCBI Genbank with which we can
enrich our dataset and identify genetic similarities with populations/sources of introduction and (2) that
the higher mutation rate of mtDNA compared to nDNA is more likely to provide useful information
for tracking the invasion history of the species in the Mediterranean. Targeted loci were amplified in
a Veriti thermocycler (Applied Biosystems, Foster City, CA, USA) with an initial denaturation step of
10 min at 94 ◦C, followed by 39 cycles of 1 min at 94 ◦C, 1 min at 52 ◦C and 1 min at 72 ◦C, with a final
extension of 72 ◦C that lasted for 10 min. The final reaction volume in all cases was 20 µL, 0.1 of
which was Kapa Taq DNA polymerase (5 U µL−1), 0.2 µL Kapa Taq DNA polymerase (5 U µL−1),
1.2 µL 25 mM MgCl2, 2 µL Kapa PCR buffer A, 0.6 µL 10mM dNTPs (Kapa, Sigma-Aldrich, St. Louis,
MO, USA) 0.6 µL of each primer (10 µM) and > 20 ng DNA template. PCR products were purified
with Qiaquick Purification Kit (Qiagen) following the manufacturer’s protocol. Purified products were
sent to Macrogen (Amsterdam, the Netherlands) for sequencing on both strands.

2.3. Data Elaboration and Phylogenetic Analyses

Sequencing results were reviewed and low quality ends were trimmed. The final dataset was
enriched with available NCBI Genbank mtDNA sequences (Table S1). Available sequences of P. miles
individuals from Genbank, representing the whole range of the species’ distribution, were also included
(Figure 1). Additional sequences of the closely related species Pterois volitans, P. russelii and P. lunulata
were also taken from the same database and included in the dataset as outgroups. Our final dataset
included molecular data from 129 individuals (Table S1).
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Multiple sequence alignments were performed with MAFFT v.7 [38]. Genetic divergence,
as p-distance, which is the proportion of nucleotide sites at which two sequences being compared
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are different, within and between geographical groups of specimens and species were calculated
using MEGA v.6.0 [39]. Likelihood scores for the selection of the best-fit nucleotide substitution
model were calculated with jModelTest v.2.1.1 [40] using the following settings: Three substitution
schemes, base frequencies estimation, gamma shape (four categories) and invariable sites
estimation. Models including both gamma distribution and invariable sites were neglected [41].
The combined information from both sequenced loci were fed to MrBayes v.3.2.6 [42] and RAxML
v.8.1.21 [43], where Bayesian inference (BI) and maximum likelihood (ML) phylogenetic analyses were
implemented. In this way we tried to ascertain any possible phylogenetic signal provided by our data.

BI analysis was conducted with four independent runs and eight chains per run for 107 generations
with a sampling frequency of 100. Hence, the analysis was based on 105 sampled trees from each run.
Convergence among runs was monitored in MrBayes through the average standard deviation of split
frequencies and by inspection of generation versus log probability of the data plot viewed in TRACER
v.1.5.0 [44]. Finally, the 50% majority rule tree was constructed relying on 75,004 trees, since the 25% of
sampled trees were discarded in the burn-in phase.

2.4. Geographic Population Structure—Haplotype Networks Construction

Analyses of molecular variance (AMOVA) and FST values were estimated using Arlequin
v3.5.2.2 [45]. Prior to analysis, available sequences were assigned to different local groups according to
their geographic origin. Furthermore, three regional groups were formed in order to make comparisons
between larger geographic regions. In particular, the Mediterranean group included individuals from
Cyprus, Lebanon, Rhodes and Sicily; the Indian Ocean group included individuals from Madagascar,
South Africa, Sri Lanka and Indonesia; and the Red Sea regional group included individuals from the
local Red Sea and Gulf of Aqaba groups. Two different datasets representing each targeted genetic
locus were created. Different haplotype networks for each gene were constructed using PopART
v.1.7 [46]. The haplotypes detected by the software were distinguished according to their origin using
traits block. Median-joining network haplotype networks [47], presenting pies proportional in size
to the frequency of each haplotype and with different colors indicating the origin of each haplotype,
were constructed.

3. Results

Sequences from 56 individuals of P. miles sampled along Cypriot coasts were obtained and
deposited in NCBI Genbank (Accession codes MN150185 - MN150294). Possible contamination from
Numts (mitochondrial sequences of nuclear origin) for both targeted genes was eliminated by the
unambiguous alignment of retrieved sequences and the high similarity with already published GenBank
sequences. Furthermore, in the case of the COI gene, no gaps or internal stop codons were detected
after translation [48].

Individuals from very distant and geographically separate areas revealed extremely low genetic
diversity among examined P. miles samples. The final alignment, including data retrieved from NCBI
Genbank, of the concatenated dataset of both sequenced genes consisted of 968 bp coming from
129 individuals. More specifically, out of 612 bp examined for COI including/excluding outgroup, 517/593
were conserved, 41/19 were variable and 31/6 parsimony informative. For CR, out of 356 inspected
sites, 96/105 were conserved, 261/251 were variable and 244/242 parsimony informative.

Calculated mean genetic distances for COI between geographic groups were extremely low,
varying from 0.00% to 0.58% The range of variation for CR is 0.00% to 2.88%. For both genes within
geographic group genetic divergence was in many cases higher than between groups. In the case of
individuals from the Mediterranean region in particular, the highest genetic divergence was identified
within the Cyprus populations, reaching up to 0.26 and 1.06 for COI and CR, respectively. The highest
values of genetic distance for CR were found between USA and the Indian Ocean and for COI between
South Africa and the Indian Ocean groups (Tables 1 and 2).
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Table 1. Percentage sequence divergence (p-distance) among taxa and/or geographical groups for the
COI gene. Values at the diagonal are within group distances.

Group 1 2 3 4 5 6 7 8 9 10 11

1 Cyprus 0.26
2 Lebanon 0.16 n/c
3 Italy (Sicily) 0.16 0.00 0.00
4 Gulf of Aqaba 0.24 0.08 0.08 0.16
5 Indian ocean 0.53 0.38 0.38 0.40 0.74
6 South Africa 0.36 0.28 0.28 0.36 0.58 0.55
7 Madagascar 0.15 0.00 0.00 0.08 0.38 0.27 n/c
8 Indonesia 0.16 0.00 0.00 0.09 0.38 0.29 0.00 n/c
9 P. russelii 4.86 4.66 4.55 4.85 5.06 4.82 4.77 4.70 n/c
10 P. volitans 4.67 4.49 4.38 4.69 4.96 4.66 4.58 4.53 0.99 n/c
11 P. lunulata 4.38 4.28 4.28 4.37 4.53 4.28 4.28 4.28 0.93 0.56 n/c

Table 2. Percentage sequence divergence (p-distance) among taxa and/or geographical groups for the
CR gene. Values at the diagonal are within group distances.

Group 1 2 3 4 5 6 7 8 9

1 Cyprus 1.06
2 Lebanon 0.73 n/c
3 Red Sea 2.67 1.61 2.01
4 Rhodes 0.73 0.00 1.61 n/c
5 Gulf of Aqaba 2.78 1.78 2.04 1.78 2.13
6 Indian Ocean 2.77 1.96 2.21 1.96 2.42 2.32
7 Indonesia 0.96 0.00 0.77 0.00 1.03 1.73 n/c
8 USA 1.54 1.04 2.05 1.04 1.97 2.88 0.98 n/c
9 P. volitans 8.72 9.42 14.86 9.42 14.75 14.72 10.84 10.84 n/c

The best substitution model selected for the concatenated dataset under Akaike Information
Criterion (AIC) [49] was GTR + I with –In = 1131.2262 for COI and HKY + G with –In = 925.0418 for
CR. Separate phylogenetic analyses for each gene were also conducted. These analyses resulted in
gene trees exhibiting polytomies, unresolved phylogenetic relationships and low statistical support
values. Hence, they are not presented herein. Nevertheless, concatenated, partitioned dataset analyses
separated available P. miles sequences into two distinct clades (Figure 2). Clade A is separated in
two different sub-clades from which one is statistically supported. In subclade A(b), some individuals
from Cyprus are grouped with samples from South Africa and the Indian Ocean (Figure 2 and
Figure S1). Nevertheless, the majority of samples from these regions formed a second unsupported
sub-clade. Even though it is grouped with the rest of P. miles specimens included in our analyses,
a single individual from the Indian Ocean forms a separate clade, Clade B, of which it is the only
representative. Details about the representatives of clades and subclades are given in Table S1.

Statistically significant AMOVA and FST values were calculated only in the case of CR gene.
The great majority of variation (81.53%) was attributed to within population differentiation (Table 3).
The same results were also indicated by the relatively high genetic distances within geographic groups
in both genes (Tables 1 and 2). Slightly different FST values between the Mediterranean–Red Sea and
Mediterranean–Indian Ocean regional groups support the genetic similarity of the invasive population
in both regions (Table 4).

In total, six and three different haplotypes were identified for COI and CR genes, respectively,
from samples collected along Cypriot coasts. Sicily and Rhodes appear to share the same haplotype,
which is the most common haplotype found in Cyprus. The common “Mediterranean haplotype”
is also found in the Red Sea as well as in very distant places such as Indonesia and South Africa
(Figures 3 and 4). Unique haplotypes were found in Cyprus and the diversity of haplotypes from the
Red Sea and the Indian Ocean, where the lionfish is native, was high.
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Table 3. Results from AMOVA analysis for the CR gene.

Source of Variation df Sum of Squares % of Variation FST p-Value

Among populations 2 5.032 18.47 0.185 >0.001
Within populations 102 38.549 81.53

Total 104 43.581 100

Table 4. Pairwise FST values between regional groups. Above the diagonal with a + are indicated the
statistically well-supported estimations (p value < 0.01).

Group 1 2 3

1. Mediterranean + +
2. Indian Ocean 0.23 −

3. Red Sea 0.20 >0.01

4. Discussion

The increasing number of reports of lionfish around the coasts of Cyprus show that the species is
already established in the Mediterranean and is becoming more and more common [33,34]. While the
ecological impacts of the invasion in the Atlantic Ocean have proved to be severe, we still do not know
the magnitude of impacts in the Mediterranean [50]. In the case of the west Atlantic Ocean, lionfish
are thought to have been released or escaped from marine aquaria [26,51,52]. While lionfish is not
a common aquarium species in Cyprus, it is very common in neighbouring countries such as Lebanon
(Bariche M, pers. comm.). As a result, the introduction of the species to the Mediterranean Sea through
aquarium releases is also a possibility.
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Our data for both examined genes are in line with the results of previous studies, as the same
haplotypes are found in the Mediterranean and the neighboring Red Sea/Gulf of Aqaba. It is worth
noticing that Italy, Rhodes and Lebanon share a common haplotype which in both genes is the most
common in Cyprus. This fact strengthens the hypothesis that the first populations established in the
eastern part of the Mediterranean were the source for the populations that are currently expanding
westwards, reaching Rhodes and Sicily. On the other hand, the presence of six different, some of them
unique, COI haplotypes in Cyprus may indicate ongoing gene flow between the northern Red Sea
and the Levantine Basin. Beyond the presence of different haplotypes for COI and CR, a pattern of
repeated introductions is also indicated by the fact that the species was reported for the first time in
1991 and then, after a long gap of 20 years, in 2012. The occasional presence of the species indicates its
ability to reach the Mediterranean Sea and, at the same time, an initial failure to become established.
Furthermore, the same pattern was documented in other invasive species of the same origin, such as the
bluespotted cornetfish Fistularia commersonii [24,25,53]. In line with previously published genetic data
from the Mediterranean Sea, the genetic similarity with individuals from the Red Sea is highlighted and
also, at the same time, the low genetic diversity among Mediterranean populations [24,25]. Therefore,
published studies support the idea that the lionfish, as many other species, invaded the Mediterranean
Sea through the Suez Canal [8,11,54].

Nevertheless, as revealed by our phylogenetic analyses and haplotype networks, some of the
individuals captured in Cyprus are genetically closer to individuals from the Indian Ocean and
South Africa than to each other. This might be due either to underrepresentation of Red Sea populations
or to a contribution of long-distance dispersal via the aquarium trade and/or ballast waters.

The presence of a dominant haplotype in the Cyprus population could be associated with
a founder effect and rapid population expansion. However, the same level of genetic similarity with
populations from the Red Sea and the broad geographic range of the Indian Ocean, as shown by the
estimated FST values, indicate the possibility of alternative pathways of the species’ introduction in the
Mediterranean Sea. Moreover, the attribution of total variance by AMOVA analysis to within-population
differentiation (Table 3) along with the calculated genetic distance values (Tables 1 and 2), reflect
the recent invasion of P. miles in the Mediterranean; hence, a limited time available for evolutionary
divergence. Given the short period after the lionfish invasion, within the Mediterranean Sea population
divergence is more likely to be the result of multiple introductions than of random genetic drift after
a unique introduction event.

Dispersal to new areas is more effective when individuals are in the pelagic larval phase
(14–17 days old) when they can disperse up to circa 900 km from the spawning area, taking advantage
of the presence of local currents [16,55]. Nevertheless, if currents facilitated the transport of larvae from
the Red Sea to the Mediterranean, then genetic divergence should correlate with geographical distance,
as predicted by a ‘stepping stone’ model [56]. Our results do not show any correlation of geographic
and genetic distances, as haplotypes from the Mediterranean are found also in remote regions, while the
unique Mediterranean haplotypes have not been found in the Red Sea by this or previous studies [25].
Taking into account the possibility of introduction from very distant areas, P. volitans may also arrive
and hybridize with P. miles in the Mediterranean [28]. This would alter the dynamics of the invasive
population and hence the impact of the invasion on the native ecosystem. The introduction of new
species into the Mediterranean through shipping ballast water is well documented, as circa 22% of
all alien species currently present were introduced through this pathway [9]. The risk of lionfish
larval transfer from the western Atlantic Ocean to the eastern Pacific Ocean through the Panama
Canal was highlighted by MacIsaac et al. [57]. The present study verifies the genetic similarity of the
Mediterranean lionfish populations with individuals from the Red Sea and at the same time points out
the possibility of introduction from very distant areas following various pathways. These findings
urge the competent authorities towards the direction of targeted measures. Biosecurity measures
focusing on ornamental fish trade, ballast water treatment and the Suez Canal, which is one of the
main paths that invasive species follow to reach the Mediterranean basin, are a clear priority to prevent
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continued introduction of lionfish and other invasive species. The latter is becoming an urgent need
after the recent widening and deepening of the canal since the effects of these actions have not been
evaluated yet.

Overall, no geographical pattern of genetic divergence among the lionfish populations studied
was detected. It seems that the species is taking advantage of a variety of human activities and is
expanding its distribution in the Mediterranean basin; this may have serious impacts on native species,
ecosystems and the economy.
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