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Human Electroencephalogram Based Biomarkers for Detection of 

Alzheimer’s Disease 

 

Ali H. Husseen Al-nuaimi 

Abstract 

Alzheimer’s disease (AD) is a progressive disorder that affects cognitive brain 

functions and develops many years before there are any clinical manifestations. A 

biomarker that provides a quantitative measure of changes in the brain in the early 

stages of AD would therefore be useful for early diagnosis. However, this would involve 

dealing with large numbers of people because up to 50% of dementia sufferers do not 

receive a formal diagnosis. Thus, there is a need for accurate, low-cost, robust, and 

easy to use biomarkers that can be used to detect AD in its early stages.  

Recent guidelines promote the use of biochemical and neuroimaging biomarkers to 

improve the diagnosis of AD. Cerebral spinal fluid (CSF) testing for AD is not widely 

used in clinical practice because it involves an invasive lumbar puncture procedure. 

Neuroimaging (e.g., positron emission tomography-PET), on the other hand, is 

expensive, available only in specialist centres, and may be unsuitable for patients with 

pacemakers or certain other implants. Blood-based biomarkers have shown promising 

results in terms of AD diagnosis, but these are not yet fully developed and low-cost 

biosensors to detect such biomarkers do not yet exist.  

However, electroencephalogram (EEG) based biomarkers can potentially fulfil these 

needs and play a vital role in the early diagnosis of AD. AD causes changes in EEGs 

that are thought to be associated with functional disconnections among cortical areas 

due to the death of brain cells. EEG analysis may therefore provide valuable 

information about brain dynamics in AD. Potentially, the EEG could be used to detect 

changes in brain signals even in the preclinical stages of the disease. This means it 
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could be used as a first line decision-support tool in AD diagnosis and complement 

other AD biomarkers.  

This thesis describes research into the development of EEG biomarkers that detect 

AD based on analysis of changes in the EEG. The most characteristic features in AD 

are slowing of the EEG activities, a decrease in coherence, and a reduction in 

complexity. These changes can be quantified as a biomarker of AD. In this study, we 

identified characteristic EEG features that have a significant association with AD. The 

most promising EEG features were then used to develop EEG biomarkers that can 

exhibit high diagnostic performance. 

Four measures of complexity were investigated and evaluated for their suitability as 

the basis for EEG-based biomarkers of AD: Tsallis entropy, Higuchi Fractal dimension, 

Lempel-Ziv complexity, and approximation entropy. Two EEG slowing measures were 

also investigated and evaluated: changes in zero-crossing intervals, and changes in 

the power spectrum of EEG. In addition, a new approach to quantifying the slowing of 

EEGs based on analysing changes in EEG amplitudes was developed and evaluated. 

The coherence of connections among cortical regions of the brain was also 

investigated to analyse EEG connectivity. 

A new biomarker was developed based on analysing changes in EEG amplitude 

(ΔEEGA). This is a marker for the subsequent rate of cognitive and functional decline 

in AD patients and provides high diagnostic performance. The performance of ΔEEGA 

measured 100% and 88.88% for sensitivity and specificity, respectively. Our results 

therefore show that EEG-based measures can potentially be a good biomarker for AD.  

An important contribution of the thesis is the development of a method to derive robust 

biomarkers from the EEG through selective band filtering and by combining key 

biomarkers.  Thus, this study provides a framework for constructing robust EEG 

biomarkers that can be used to detect AD with high diagnostic performance (e.g., in 

terms of sensitivity and specificity). 



VI 
 

Table of Contents 

Copyright Statement ....................................................................................................................................... 1 
Author's Declaration ......................................................................................................................................... I 
Acknowledgements ........................................................................................................................................ III 
List of Tables ................................................................................................................................................... IX 
List of Figures ................................................................................................................................................... X 
List of Abbreviations and Glossary ............................................................................................................. XII 
List of Symbols .............................................................................................................................................. XIII 

Chapter 1. Introduction 1 

1.1. Motivations ..................................................................................................................................... 1 
1.2. Aim and objectives ......................................................................................................................... 3 
1.3. Contributions of the thesis ............................................................................................................. 4 
1.4. Thesis outline .................................................................................................................................. 5 

Chapter 2. Background 7 

2.1. Alzheimer’s disease ........................................................................................................................ 7 
2.2. Biomarkers of Alzheimer’s disease ............................................................................................. 11 

2.2.1. Genetic markers ........................................................................................................................... 11 
2.2.2. Neuroimaging biomarkers ........................................................................................................... 12 
2.2.3. Biochemical markers ................................................................................................................... 12 

2.3. Electroencephalogram ................................................................................................................. 13 
2.3.1. Introduction .................................................................................................................................. 13 
2.3.2. Electrode montage ........................................................................................................................ 13 
2.3.3. Artefacts ........................................................................................................................................ 16 
2.3.4. Interpretation of Human EEGs .................................................................................................. 16 

2.4. Computational and signal processing methods ......................................................................... 20 
2.4.1. Introduction .................................................................................................................................. 20 
2.4.2. Changes in the EEG amplitude (ΔEEGA) .................................................................................. 23 
2.4.3. Zero-crossing intervals (ZCI) ...................................................................................................... 24 
2.4.4. Changes in the power spectrum (ΔPS) of EEG signal ............................................................... 25 
2.4.5. EEG coherence ............................................................................................................................. 25 
2.4.6. Tsallis entropy (TsEn) .................................................................................................................. 26 
2.4.7. Higuchi Fractal Dimension (HFD) .............................................................................................. 26 
2.4.8. Approximation Entropy (ApEn) ................................................................................................. 26 
2.4.9. Lempel Ziv Complexity (LZC) .................................................................................................... 27 

2.5. Main machine learning methodologies ....................................................................................... 28 
2.5.1. Supervised learning approach ..................................................................................................... 29 

2.5.1.1. Support Vector Machine ..................................................................................................... 30 
2.5.1.2. Linear Discriminant Analysis ............................................................................................. 33 
2.5.1.3. K-nearest neighbours ........................................................................................................... 34 

2.5.2. Some basic concepts in machine learning .................................................................................. 35 
2.5.2.1. Dimensionality reduction .................................................................................................... 35 
2.5.2.2. Training, testing, and validation sets .................................................................................. 36 
2.5.2.3. K-Fold Cross-Validation ..................................................................................................... 37 

2.6. Diagnostic performance measures .............................................................................................. 38 
2.6.1. Accuracy ....................................................................................................................................... 38 
2.6.2. Sensitivity and specificity ............................................................................................................ 39 
2.6.3. False positive rate and false negative rate .................................................................................. 39 
2.6.4. Positive predictive value (precision), and negative predictive value ........................................ 40 
2.6.5. F-measure and Matthew’s correlation coefficient ..................................................................... 40 
2.6.6. Receiver operating characteristic and area under the curve ................................................... 41 

2.7. Null and alternative hypotheses .................................................................................................. 44 
2.8. Multiple comparisons problem ................................................................................................... 45 



VII 
 

Chapter 3. Materials and Methods 48 

3.1. Electroencephalogram Datasets .................................................................................................. 48 
3.1.1. Dataset A ....................................................................................................................................... 48 

3.1.1.1. Data origin ............................................................................................................................ 48 
3.1.1.2. Diagnostic criteria and cohort information ....................................................................... 48 
3.1.1.3. Recording information ........................................................................................................ 49 

3.1.2. Dataset B ....................................................................................................................................... 49 
3.1.2.1. Data origin ............................................................................................................................ 50 
3.1.2.2. Diagnostic criteria and cohort information ....................................................................... 50 
3.1.2.3. Recording information ........................................................................................................ 52 

3.1.3. Dataset C ....................................................................................................................................... 52 
3.1.3.1. Data origin ............................................................................................................................ 52 
3.1.3.2. Diagnostic criteria and cohort information ....................................................................... 52 
3.1.3.3. Recording Information ........................................................................................................ 54 

3.1.4. Dataset D ....................................................................................................................................... 54 
3.1.4.1. Data origin ............................................................................................................................ 55 
3.1.4.2. Diagnostic criteria and cohort information ....................................................................... 55 
3.1.4.3. Recording Information ........................................................................................................ 58 

3.2. Pre-processing .............................................................................................................................. 58 
3.2.1. Chebyshev-II bandpass filter design for delta band ................................................................. 62 
3.2.2. Chebyshev-II bandpass filter design for theta band ................................................................. 62 
3.2.3. Chebyshev-II bandpass filter design for alpha band ................................................................ 63 
3.2.4. Chebyshev-II bandpass filter design for beta band ................................................................... 63 
3.2.5. Chebyshev-II bandpass filter design for gamma band ............................................................. 64 

3.3. Computational programs ............................................................................................................ 64 
3.3.1. Introduction .................................................................................................................................. 64 
3.3.2. MATLAB functions for filtering EEG signal ............................................................................ 67 

3.3.2.1. Chebyshev-II bandpass filter function for delta band ...................................................... 69 
3.3.2.2. Chebyshev-II bandpass filter function for theta band ...................................................... 69 
3.3.2.3. Chebyshev-II bandpass filters for alpha band................................................................... 69 
3.3.2.4. Chebyshev-II bandpass filters for beta band ..................................................................... 70 
3.3.2.5. Chebyshev-II bandpass filters for gamma band ............................................................... 70 

3.3.3. MATLAB code for computing EEG signal processing methods .............................................. 70 
3.3.3.1. Changes in the EEG amplitude (ΔEEGA) computation .................................................... 71 
3.3.3.2. Zero-crossing intervals (ZCI) computation ....................................................................... 72 
3.3.3.3. Changes in the power spectrum (ΔPS) of EEG signal computation ................................ 72 
3.3.3.4. EEG coherence computation ............................................................................................... 73 
3.3.3.5. Tsallis entropy (TsEn) computation function .................................................................... 73 
3.3.3.6. Higuchi Fractal Dimension (HFD) computation function ................................................ 74 
3.3.3.7. Approximation Entropy (ApEn) computation function ................................................... 74 
3.3.3.8. Lempel Ziv Complexity (LZC) computation function ...................................................... 75 

3.3.4. MATLAB machine learning approaches ................................................................................... 75 
3.3.4.1. Support Vector Machine (SVM) ......................................................................................... 77 
3.3.4.2. Linear Discriminant Analysis computation ....................................................................... 78 
3.3.4.3. K-nearest neighbour (KNN) computation ......................................................................... 78 
3.3.4.4. Model validation ................................................................................................................... 79 

3.4. Overview of EEG Based Biomarkers ......................................................................................... 80 
3.4.1. Introduction .................................................................................................................................. 80 
3.4.2. Slowing of EEG ............................................................................................................................ 81 
3.4.3. Reduction in EEG complexity ..................................................................................................... 82 
3.4.4. Decrease in EEG coherence ......................................................................................................... 83 

Chapter 4. Investigation of the Novel EEG Biomarker for Detection of Alzheimer’s 

Disease 84 

4.1. Introduction .................................................................................................................................. 84 
4.2. Methodology ................................................................................................................................. 85 



VIII 
 

4.2.1. Tsallis entropy (TsEn) computation ........................................................................................... 87 
4.2.2. Changes in the EEG amplitude (ΔEEGA) computation ............................................................ 88 
4.2.3. Higuchi fractal dimension (HFD) computation ......................................................................... 89 
4.2.4. Biomarker selection ..................................................................................................................... 89 

4.3. Results ........................................................................................................................................... 93 
4.3.1. Tsallis Entropy (TsEn) ................................................................................................................. 93 
4.3.2. Changes in the EEG Amplitude (ΔEEGA).................................................................................. 94 
4.3.3. Higuchi Fractal Dimension (HFD) .............................................................................................. 95 

4.4. Discussions .................................................................................................................................... 96 
4.5. Summary ....................................................................................................................................... 98 

Chapter 5. Complexity Measures for Quantifying Changes in Electroencephalogram in 

Alzheimer’s Disease 99 

5.1. Introduction .................................................................................................................................. 99 
5.2. Methodology ............................................................................................................................... 100 
5.3. Results ......................................................................................................................................... 102 

5.3.1. The performance of the EEG complexity-based measures ..................................................... 111 
5.4. Discussions .................................................................................................................................. 115 
5.5. Summary ..................................................................................................................................... 117 

Chapter 6. Robust EEG Based Biomarkers to Detect Alzheimer’s Disease in its Early 

Stages 118 

6.1. Introduction ................................................................................................................................ 118 
6.2. Methodology ............................................................................................................................... 119 

6.2.1. Identification of EEG features and Computation of Biomarkers (Steps 2 and 3) ................ 122 
6.2.2. Biomarker selection and biomarker panels ............................................................................. 122 
6.2.3. Diagnostic model to detect AD .................................................................................................. 123 

6.3. Result ........................................................................................................................................... 124 
6.3.1. Biomarker computations ........................................................................................................... 124 
6.3.2. Biomarker selection ................................................................................................................... 124 
6.3.3. Performance analysis ................................................................................................................. 131 
6.3.4. Diagnostic model to detect AD .................................................................................................. 139 

6.4. Discussions .................................................................................................................................. 141 
6.5. Summary ..................................................................................................................................... 145 

Chapter 7. Optimisation of Robust EEG Based Biomarkers 147 

7.1. Introduction ................................................................................................................................ 147 
7.2. Methodology ............................................................................................................................... 147 

7.2.1. Biomarker selection ................................................................................................................... 148 
7.2.2. Diagnostic model to detect AD .................................................................................................. 149 

7.3. Results ......................................................................................................................................... 149 
7.3.1. Biomarker computations and selections ................................................................................... 149 
7.3.2. Diagnostic model to detect AD .................................................................................................. 156 

7.4. Discussions .................................................................................................................................. 159 
7.5. Summary ..................................................................................................................................... 161 

Chapter 8. Review, Conclusions and Future Work 162 

8.1. Review ......................................................................................................................................... 162 
8.2. Conclusions ................................................................................................................................. 164 
Appendix 1: MATLAB functions for filter EEG signal ............................................................................. 167 
Appendix 2: MATLAB functions for computing EEG signal processing methods .............................. 172 
Appendix 3: MATLAB machine learning functions ................................................................................. 185 
Appendix 4: Summary of the biomarkers combination from length 1-4 ............................................... 193 
References ................................................................................................................................................... 195 

 



IX 
 

List of Tables 

Table 2-1: Shows twenty data and the score assigned to each by a scoring classifier .......................... 43 
Table 2-2: Bonferroni-corrected P-value computation .............................................................................. 47 
Table 3-1: Cohort information for Dataset A .............................................................................................. 49 
Table 3-2: Recording information for Dataset A ........................................................................................ 49 
Table 3-3: Cohort information for Dataset B .............................................................................................. 51 
Table 3-4: Recording information for Dataset A ........................................................................................ 52 
Table 3-5: Cohort information for Dataset C .............................................................................................. 54 
Table 3-6: Recording information for Dataset C ........................................................................................ 54 
Table 3-7: Cohort information for Dataset E .............................................................................................. 57 
Table 3-8: Recording information for Dataset D ........................................................................................ 58 
Table 3-9: Specifications for the bandpass filter for delta, theta, alpha, beta, and gamma bands ........ 61 
Table 3-10: Sample EEG dataset was used to illustrate  the execution of the  functions ...................... 71 
Table 3-11: CSV EEG data file for uploading in MATLAB toolbox (classification learner) ..................... 76 
Table 4-1: Performance analysis of TsEn entropy compared to types of entropies ............................... 85 
Table 4-2: Performance results of TsEn biomarker .................................................................................. 93 
Table 4-3: Performance results of ΔEEGA biomarker ............................................................................... 94 
Table 4-4: Performance results of HFD biomarker ................................................................................... 96 
Table 5-1: TsEn performance for whole EEG record .............................................................................. 112 
Table 5-2: TsEn Performance for delta band of the EEG signal ............................................................ 113 
Table 5-3: Summary of the best performance indices for the three complexity measures .................. 114 
Table 6-1: P-value and corrected p-values for theta/alpha band for TsEn method .............................. 125 
Table 6-2: Probability distribution ratio for all 25 features for each method .......................................... 126 
Table 6-3: The selected features that could be used in the classification ............................................. 128 
Table 6-4: Probability distribution ratio for all 25 EEG features and for all 19 EEG channels ............. 129 
Table 6-5: Probability distribution ratio for all 25 EEG features and for all 19 EEG channels ............. 131 
Table 6-6: Performance of the ApEn method for all the 11 biomarkers................................................. 132 
Table 6-7: Performance of LZC method for all the 11 biomarkers ......................................................... 133 
Table 6-8: Performance of HFD method for all the 11 biomarkers ........................................................ 134 
Table 6-9: Performance of TsEn method for all the 11 biomarkers ....................................................... 135 
Table 6-10: Performance of ΔPS method for all the 11 biomarkers ...................................................... 136 
Table 6-11: Performance of ΔEEGA method for all the 11 biomarkers .................................................. 137 
Table 6-12: Performance of ZCI method for all the 11 biomarkers ........................................................ 138 
Table 6-13: Performance of coherence method for all the 11 biomarkers ............................................ 139 
Table 6-14: Panel of robust EEG biomarkers .......................................................................................... 140 
Table 6-15: EEG biomarkers that may have a more significant association with AD ........................... 142 
Table 6-16: EEG channels that may have a more significant association with AD .............................. 143 
Table 6-17: Changes in EEG signal due to AD for the 17 robust EEG biomarker panels .................... 144 
Table 7-1: Number and distribution of panels with one, two, three and four biomarkers ..................... 149 
Table 7-2: Performance of the 69 single-biomarker panels.................................................................... 150 
Table 7-3: Summary of the performance of the best two-biomarker  panels ........................................ 152 
Table 7-4: Summary of the performance of the best three-biomarker panels ....................................... 153 
Table 7-5: Summary of the performance of the best four-biomarker panels ......................................... 155 
Table 7-6: The smallest subset of biomarkers that have a high performance in AD detection and their 

occurrence in Tables 7-3 to 7- 5 ............................................................................................ 157 

  



X 
 

List of Figures 

Figure 2-1: Cross-sections of a healthy brain (left) and a brain with extensive atrophy in the late 

stages of AD (right) [61].............................................................................................................. 9 
Figure 2-2: A healthy brain and an Alzheimer’s disease affected brain [62] ............................................. 9 
Figure 2-3: Illustration of the extracellular amyloid β (Aβ) plaques and intracellular neurofibrillary 

tangles (NFTs) in AD patients and in normal people ............................................................. 10 
Figure 2-4: AD development stages from normal – MCI – AD [63] ............................................................ 10 
Figure 2-5: Electrode locations on the scalp based on the standard 10-20 system ............................... 14 
Figure 2-6: Frontal view of electrode placement based on the 10-20 system ......................................... 15 
Figure 2-7: Side view of electrode placement based on the10-20 system. ............................................. 15 
Figure 2-8: Normal brain rhythms of the EEG signal ................................................................................ 18 
Figure 2-9:  The idea of SVM ...................................................................................................................... 31 
Figure 2-10: Two-out-of-many separating lines: a good one with a large margin (right) ........................ 32 
Figure 2-11: Two-dimensional, two-class data projected on W ............................................................... 33 
Figure 2-12: Example of 3-nearest neighbour classification .................................................................... 34 
Figure 2-13: The dataset is split into different sets, some for training, and some for validation ............ 37 
Figure 2-14: The ROC “curve” created by thresholding a test set ........................................................... 42 
Figure 3-1: Typical specifications of a bandpass filter .............................................................................. 59 
Figure 3-2: Magnitude response of (IIR) Chebyshev-II bandpass filters for delta band from 0Hz to 4Hz

 ................................................................................................................................................... 62 
Figure 3-3: Magnitude response of (IIR) Chebyshev-II bandpass filters for theta band from 4Hz to 8Hz

 ................................................................................................................................................... 62 
Figure 3-4:  Magnitude response of (IIR) Chebyshev-II bandpass filters for alpha band from 8Hz to 

12Hz ........................................................................................................................................... 63 
Figure 3-5: Magnitude response of (IIR) Chebyshev-II bandpass filters for beta band from 12Hz to 

30Hz ........................................................................................................................................... 63 
Figure 3-6: Magnitude response of (IIR) Chebyshev-II bandpass filters for gamma  band from 30Hz to 

45Hz ........................................................................................................................................... 64 
Figure 3-7: Main menu for the biomedical engineering toolbox ............................................................... 65 
Figure 3-8: The files submenu for the biomedical engineering toolbox ................................................... 66 
Figure 3-9: The methods submenu for the biomedical engineering toolbox ........................................... 66 
Figure 3-10: The diagnosis and performance analysis submenu containing operations related to 

diagnosis and performance analysis ....................................................................................... 67 
Figure 3-11: An original EEG signal and its delta, theta, alpha, beta, and gamma bands ..................... 68 
Figure 4-1: TsEn values for one AD patient and one normal subject ................................................................... 87 
Figure 4-2: Mean TsEn for AD patients and normal subjects ............................................................................. 87 
Figure 4-3: ΔEEGA values for one AD patient and one normal subject ................................................... 88 
Figure 4-4: Mean ΔEEGA for AD patients and normal subjects ............................................................... 88 
Figure 4-5: HFD values for one AD patient and one normal subject ................................................................... 89 
Figure 4-6: Mean HFD for AD patients and normal subjects .................................................................... 89 
Figure 4-7: P-values between AD patients and normal subjects for all 19 EEG channels of TsEn 

method ....................................................................................................................................... 91 
Figure 4-8: P-values between AD patients and normal subjects for all 19 EEG channels of ΔEEGA 

method ....................................................................................................................................... 92 
Figure 4-9: P-values between AD patients and normal subjects for all 19 EEG channels of HFD 

Method ....................................................................................................................................... 92 
Figure 4-10: ROC and AUC for the performance of TsEn biomarkers .................................................... 94 
Figure 4-11: ROC and AUC for the performance of ΔEEGA biomarkers ................................................. 95 
Figure 4-12: ROC and AUC for the performance of HFD biomarkers ..................................................... 96 
Figure 5-1: EEG biomarkers for TsEn ...................................................................................................... 104 
Figure 5-2: EEG biomarkers for HFD ....................................................................................................... 106 
Figure 5-3: EEG biomarkers for LZC........................................................................................................ 108 
Figure 5-4: P-values for TsEn between AD patients and normal subjects of the training EEG dataset

 ................................................................................................................................................. 109 



XI 
 

Figure 5-5: P-values for HFD between AD patients and normal subjects of the training EEG dataset ... 110 
Figure 5-6: P-values for LZC between AD patients and normal subjects of the training EEG dataset 110 
Figure 5-7: TsEn performance .................................................................................................................. 114 
Figure 5-8: HFD performance ................................................................................................................... 115 
Figure 5-9: LZC performance ................................................................................................................... 115 
Figure 6-1: A framework for developing robust EEG based biomarker ................................................. 121 
Figure 6-2: Construct panels of biomarkers for AD detection ................................................................ 123 
Figure 6-3: Probability distribution ratio for all 25 biomarkers ................................................................ 127 
Figure 6-4: Probability distribution ratio for all 19 EEG channels and for all eight methods ................ 129 
Figure 7-1: ROC and AUC of  the final diagnostic model based on a subset of six biomarkers using 

dataset C ................................................................................................................................. 158 
Figure 7-2: ROC and AUC of the final diagnostic model based on a subset of six biomarkers using 

dataset B ................................................................................................................................. 159 

 

  



XII 
 

List of Abbreviations and Glossary 

ACC Accuracy 

AD Alzheimer’s Disease 

ADHD Attention Deficit Hyperactivity Disorder 

ApEn Approximation Entropy 

APOE Apolipoprotein E 

APP Amyloid Peptide Precursor Protein 

AUC Area Under Curve 

Aβ Amyloid Beta 

C Central 

CSF Cerebral Spinal Fluid 

CT Computed Tomography 

EEG Electroencephalogram 

ERP Event-Related Potential 

F Frontal 

FFT Fast Fourier Transform  

FN False Negative  

FNR False Negative Rate 

FP False Positive 

Fp Frontopolar 

FPR False Positive Rate 

HFD Higuchi Fractal Dimension 

Hz Hertz 

KNN K-Nearest Neighbour 

LDA Linear Discriminant Analysis  

LZC Lempel Ziv Complexity 

MCC Matthew’s Correlation Coefficient  

MCI Mild Cognitive Impairment 

MEG Magnetoencephalogram 

MRI Magnetic Resonance Imaging 

NFTs Neurofibrillary Tangles 

NPV Negative Predictive Value  

O Occipital 

P Parietal 

PET Positron Emission Tomography 

Ph.D. Doctor Of Philosophy 

POST Positive Occipital Sharp Transient  

PPV Positive Predictive Value 

P-tau Phosphorylated Tau 

ROC Receiver Operating Characteristic 

Sen Sensitivity 



XIII 
 

Spec Specificity 

SPECT Single Photon Emission Computed Tomography 

SVM Support Vector Machine 

T Temporal 

Tcdf Student's T Cumulative Distribution 

TN True Negative 

TP True Positive  

TsEn Tsallis Entropy 

T-tau Total Tau  

UK United Kingdom 

US United States 

ZCI Zero-Crossing Intervals 

ΔEEGA Changes in The EEG Amplitude 

ΔPS Changes in the Power Spectrum 

List of Symbols 

$ American Dollar 

α Alpha 

β Beta 

γ Gamma  

δ) Delta 

θ Theta 

κ Kappa 

λ Lambda  

μ Micro 

ρ Rho  

σ Sigma 

τ Tau  

ϕ Phi 

χ Chi 

 

  



1 
 

Chapter 1. Introduction 

1.1. Motivations 

Alzheimer’s disease is an age-related, progressive and neurodegenerative disorder 

characterised by loss of memory and cognitive decline [1][2]. It represents 70%-80% 

of all dementias [3][4][5], is the main cause of disability among older people [6] and 

the sixth leading cause of death in the US [7]. The rapid increase in the number of 

people living with AD and other forms of dementia is due to an ageing population and 

represents a major challenge for health and social care systems worldwide [8]. 

Currently, there are over 46.8 million individuals living with dementia in the world and 

the annual cost of care is estimated at US$818 billion [9][10]. This number is projected 

to reach 74.7 million by 2030 at an annual cost of US$ 2 trillion [11]. The number of 

individuals with dementia worldwide is expected to exceed 131 million by 2050, the 

economic impact of which will be enormous [9]. However, many dementia sufferers 

do not receive an early diagnosis [9][12]. In fact, it is estimated that up to 50% of people 

living with dementia may not have received a formal diagnosis [12][13]. For example, 

in 2011, 28 million dementia sufferers out of a total of 36 million worldwide were as yet 

undiagnosed [14].  

The degeneration of brain cells due to AD begins many years prior to any clinical 

manifestations [8][15][16][17][18][19]. An early diagnosis of AD will therefore 

contribute to the development of effective treatments that could slow, stop, or prevent 

significant cognitive decline [18][20][21]. An early diagnosis of AD could also be useful 

in identifying dementia sufferers who have not received a formal early diagnosis and 

provide them with an opportunity to access appropriate health care services and would 

facilitate the development of new therapies [22][23][24][25][26][27][28].  

Age is the main risk factor for AD [29]. Loss of recent memory is one of the first 

symptoms of AD (early stage), followed by mild cognitive impairment (MCI), and then 
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severe AD, which is the advanced stage [30]. MCI usually denotes a transitional 

cognitive state between normal ageing and dementia [29][31], although only 80% of 

MCI cases go on to develop dementia [29][32]. This is sufficient, however, for MCI to 

help identify people at high risk of dementia [31].  

A biomarker that can measure the degeneration of brain cells caused by AD would 

help facilitate an early diagnosis [2][33][34][35]. Given the large number of people 

involved, there is a need for simple, non-invasive, low-cost, and reliable biomarkers 

that can be accessed in clinical practice for early diagnosis. There is therefore a need 

for simple, non-invasive, low-cost, and reliable biomarkers that can be accessed in 

clinical practice for early diagnosis [8][36][37]. Recent guidelines have promoted the 

use of biochemical and neuroimaging biomarkers to improve the diagnosis of AD. 

Among these, cerebral spinal fluid (CSF) testing for AD is not widely used in clinical 

practice because it involves an invasive lumbar puncture procedure [2][38][39]. 

Neuroimaging, on the other hand, is expensive, available only in specialist centres 

[40], and may not be suitable for patients with pacemakers or certain other implants 

[4]. Blood-based biomarkers have shown promising results in AD diagnosis but are 

not yet fully developed and low-cost biosensors to detect AD do not yet exist 

[2][36][41].  

Potentially, the electroencephalogram (EEG) can play a valuable role in the early 

diagnosis of AD [15][23][24][35][42][43][44]. EEG is non-invasive, low-cost, has a high 

temporal resolution, and provides valuable information about brain dynamics in AD 

[23][24][43][45][46]. The fundamental utility of EEG in detecting changes in brain 

signals, even in the preclinical stage of the disease, has been widely demonstrated 

[43][47][48]. Thus, EEG biomarkers may be used as a first line decision-support tool 

in AD diagnosis [15][45] and could complement other AD biomarkers [37].  
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In summary, there is an urgent need to develop low cost, non-invasive, robust 

biomarkers that can be used to detect AD and monitor its progression. 

1.2. Aim and objectives 

The aim of this project is to contribute to the investigation and development of 

automated EEG analysis techniques that can be used to detect Alzheimer’s disease 

in its pre-clinical stages. The degeneration of brain cells due to AD begins many years 

prior to any clinical manifestations. An early diagnosis of AD will contribute to the 

development of effective treatments that could slow, stop, or prevent significant 

cognitive decline. It could also be useful in identifying dementia sufferers who have 

not received a formal early diagnosis and provide an opportunity for them to access 

appropriate health care services. To achieve this, it is necessary to develop low-cost, 

easy to use, accurate, reliable, and robust biomarkers that can be used to quantify 

and detect changes in the EEG that are attributable to pre-clinical AD. This is a 

substantial challenge because the EEG is a complex, non-stationary signal that varies 

between people and is affected by their condition (age, gender, wakefulness, AD 

stage, other diseases, and so on). It is also affected by stimuli such as light in the eye, 

sounds applied to the ear, or the sensation of pain. The objectives of this study are 

therefore as follows: 

1. Review available techniques for EEG analysis for AD and identify those which are 

most promising.  

2. Investigate and evaluate EEG measures to detect AD.  

3. Identify promising EEG features related to AD that may lead to high diagnostic 

performance. 

4. Investigate the development of novel biomarkers for detecting AD based on the 

EEG measures. 



4 
 

5. Create a framework for the development of robust EEG based biomarkers that can 

be used in the detection of AD. 

6. Determine the smallest set of EEG biomarkers to detect AD with clinically 

acceptable performance. 

 

1.3. Contributions of the thesis 

This thesis therefore makes the following contributions to knowledge: 

1. It provides a detailed understanding of the three main EEG analysis techniques 

used for AD detection: slowing of EEG, decrease in EEG complexity, and reduction 

in EEG coherence. This includes the identification and evaluation of key methods 

to detect AD from the EEG.  

2. Development of novel EEG-based biomarkers based on analysing changes in 

EEG amplitude (ΔEEGA). The results show that ΔEEGA is a promising nonlinear 

EEG marker that can be used to quantify changes in EEG. It measures gradual 

changes in EEG amplitude. Its performance was found to be 100% and 88.88% 

for sensitivity and specificity, respectively. 

3. Development of a new approach to enhance complexity-based EEG biomarkers 

used to detect AD. Nonlinear analysis methods based on EEG complexity have 

shown promising results in detecting changes in the EEG that are thought to be 

attributable to AD. We found that AD patients have significantly lower complexity 

values than normal people. 

4. Creation of a new framework for the development of robust EEG-based biomarkers 

for the detection of AD. This has resulted in the development of biomarkers with 

high diagnostic performance (sensitivity and specificity close to 100%). 

5. The development of new software tools for EEG analysis and AD detection.   
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The majority of the work reported in this thesis has been published at three EMBC 

conferences [8][45][49], one short paper presented at the international workshop on 

biosensors for dementia [35], and one journal paper [50]. A final paper on the creation 

of robust EEG-based biomarkers has been submitted to the IEEE Transactions on 

Biomedical Engineering journal. 

1.4. Thesis outline  

This thesis comprises eight chapters. Chapter one (this chapter) provides an 

introduction that clarifies the motivations, aims and objectives, and contributions of 

the thesis. Chapter 2  provides important background to AD, the nature of the EEG 

signal, the computational and signal processing methods that were investigated in 

this study (e.g., Tsallis entropy, Higuchi fractal dimension, Lempel-Ziv complexity, 

changes in the EEG amplitude, zero-crossing interval, approximation entropy, EEG 

coherence, and changes in the power spectrum of EEG signal), machine learning 

approaches that were used in the study (e.g., support vector machine, K-nearest 

neighbours, and linear discriminant analysis), and the diagnostic performance 

measures used in AD classifications. Chapter 3 describes the materials and methods 

used in the investigations. These include a description of the EEG datasets used in 

the study   together  with the computational programs employed (e.g., MATLAB 

toolbox and the MATLAB functions), the pre-processing techniques for splitting the 

EEG signal into  five EEG frequency bands (e.g., bandpass filters for the delta, theta, 

alpha, beta, and gamma bands), and an overview of EEG based biomarkers (e.g., 

slowing of EEG, EEG complexity, and EEG coherence). In Chapter 4, the outcome of 

investigations of novel EEG biomarkers for detection of Alzheimer’s disease ( based 

on  Tsallis entropy,  changes in the EEG amplitude, and  Higuchi fractal dimension) 

are presented. In Chapter 5, three complexity measures are investigated: Tsallis 

entropy, Higuchi fractal dimension, and Lempel-Ziv complexity. These are used to 
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derive the biomarkers from the EEG frequency bands and from the entire EEG signal. 

The results show that EEG biomarkers extracted from EEG frequency bands exhibit 

greater performance than the biomarkers from the entire EEG record. In Chapter 6, 

the three main techniques used to analyse the EEG signal are investigated to create 

robust EEG biomarkers. These techniques are: slowing of EEG, reduction in EEG 

complexity, and EEG coherence. For EEG slowing, changes in EEG amplitude 

method, zero crossing interval, and changes in the power spectrum of EEG are 

investigated. For the reduction in EEG complexity, Tsallis entropy, Higuchi fractal 

dimension, Lempel-Ziv complexity, and approximation entropy are investigated. To 

analyse EEG connectivity, the reduction in EEG coherence among cortical regions is 

also investigated. The results show that EEG features can be used to construct robust 

EEG biomarkers by combining key features of the EEG. In Chapter 7, further 

investigations are carried out to identify the smallest subset of biomarkers to detect 

AD with clinically acceptable performance. A new EEG dataset was used in the 

investigation to avoid bias and to increase the sample size. Chapter 8, reviews the 

findings, presents final conclusions, and considers the potential for future work in this 

area. 
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Chapter 2. Background 

2.1. Alzheimer’s disease  

Alzheimer’s disease is an irreversible, neurodegenerative¸ and fatal disease of the 

brain. It is a progressive disease that leads to dementia [30][5] and is characterised 

by gradual cognitive impairments accompanied by abnormal behaviour, loss of 

memory, and personality changes[2][30][51]. The two main neuropathologic 

hallmarks of AD are extracellular amyloid beta (Aβ) plaques and intracellular 

neurofibrillary tangles (NFTs). The production of Aβ, which represents a vital stage in 

AD pathogenesis, is the result of an aberrant cleavage of the amyloid peptide 

precursor protein (APP) which is overexpressed in AD [52][53][54]. In 

histopathological terms, AD is characterised by the accumulation of senile plaques 

and neurofibrillary tangles [55]. The senile plaques consist mainly of β-amyloid 

peptides, while the fibrillary tangles consist of abnormal hyperphosphorylated 

insoluble forms of the TAU-protein [29][56]. AD is the most common form of dementia 

(others include vascular, Lewy body, or frontotemporal dementia) and accounts for 

between 60% to 80% of all dementias worldwide [4][5].  

Age is the main risk factor for AD [29]. Loss of recent memory is one of the first 

symptoms of AD (early stage), followed by mild cognitive impairment (MCI), and then 

severe AD, which is the advanced stage [30]. MCI describes a transitional cognitive 

state between normal ageing and dementia [29][31] and has been proposed as a 

disease describing elderly people with mild cognitive impairment but not dementia 

[17][31]. However, only 80% of MCI cases go on develop dementia [29][32], although 

this is sufficient to identify people at high risk of dementia [31]. At the macroscopic 

level, severe atrophy of the brain is the most common characteristic of AD patients, 

leading to enlargement of the ventricular system and shrinkage of cortical sulci [57]. 

In the preclinical stages of AD, the atrophy primarily affects medial temporal parts of 
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the brain, including the hippocampal formation [57]. Hippocampal atrophy is 

associated with more severe memory impairment in AD [58]. Such atrophy could 

therefore be used as a marker of disease development in clinical trials [4].  

The rapid increase in the number of people living with AD and other forms of dementia 

is due to an ageing population and presents a major challenge to health and social 

care services worldwide [8]. Currently, over 46.8 million individuals worldwide live 

with dementia and the annual cost of care is estimated to be US$818 billion [9][10]. 

The number of dementia patients is projected to reach 74.7 million by 2030 at an 

annual cost of US$ 2 trillion [11]. Furthermore, this number is then expected to exceed 

131 million by 2050 which will have a huge economic impact across the globe [9]. It 

is widely accepted that a preclinical AD diagnosis enables patients to gain access to 

appropriate health care services and facilitates the development of new therapies. 

However, many dementia sufferers do not receive an early formal diagnosis [9][12] 

and up to 50% of people living with dementia may never have received a formal 

diagnosis [12][13]. For example, in 2011, 28 million dementia sufferers out of a total 

of 36 million worldwide were undiagnosed [14].  

The neurodegeneration of brain cells caused by AD begins many years before any 

clinical manifestations [8][15][16][17][18]. Such neurodegeneration is estimated to 

occur 20–30 years before clinical onset; thus, the identification of biological markers 

for pre-clinical stages is the major aim of researchers concerned with AD diagnosis 

[29][38]. This is because diagnosis at the pre-clinical stage AD enables patients to 

gain access to appropriate health care services and facilitates the development of 

new therapies. Furthermore, the subsequent treatment of preclinical stage AD would 

be an effective way to prevent the ultimate cognitive decline caused by AD [59]. An 

early diagnosis may also lead to the development of effective treatments that could 

slow, stop or prevent cognitive decline [18][20][21]. It could also be useful for 
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identifying dementia sufferers who have not received a formal diagnosis, thus 

providing an opportunity for them to access appropriate health care services 

[22][23][24]. To be clinically useful, the performance of markers should exceed 80% 

for sensitivity and specificity, respectively [60]. 

Figure 2-1 presents cross-sections of a healthy brain (left) and a brain with 

extensive atrophy in the late stages of AD (right) while Figure 2-2 compares the 

brain of a normal person (left) with the brain of an AD patient (right) 

 

Figure 2-1: Cross-sections of a healthy brain (left) and a brain with extensive 
atrophy in the late stages of AD (right) [61] 

 

Figure 2-2: A healthy brain and an Alzheimer’s disease affected brain [62] 
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Figure 2-3 provides a schematic representation of the two main neuropathologic 

hallmarks of AD: extracellular amyloid β (Aβ) plaques and intracellular neurofibrillary 

tangles. 

 

Figure 2-3: Illustration of the extracellular amyloid β (Aβ) plaques and intracellular 
neurofibrillary tangles (NFTs) in AD patients and in normal people  

Figure 2-4 presents the evaluative stages from healthy through to normal age-related 

memory loss (yellow line) or AD dementia (red line). The blue line represents the mild 

cognitive impairment (MCI) stage which typically affects memory domains while other 

cognitive domains are preserved.  

 

Figure 2-4: AD development stages from normal – MCI – AD [63]  
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2.2. Biomarkers of Alzheimer’s disease 

A biomarker is an indicator used to detect a specific biological state, such as 

functional and structural variations in organs and cells [2][33][34]. Biomarkers for AD 

are important tools that support a clinical diagnosis [17]. 

The ideal characteristics of a diagnostic biomarker for AD are as follows: 

1. The biomarker should detect an essential feature of the pathophysiologic 

processes active in AD. 

2. The biomarker should be validated in neuropathologically confirmed cases of AD. 

3. The biomarker should be accurate, i.e., able to detect AD in its early stages and 

distinguish it from other types of dementia. 

4. The measurement of the biomarker must be reliable, and the process must be 

non-invasive, easy to use, and low-cost [29][53][60].  

Biomarkers for the detection of AD can be divided into three main types: genetic, 

neuroimaging, and biochemical biomarkers [64]. 

2.2.1. Genetic markers 

Molecular genetic investigations of neurodegenerative disorders have been valuable 

in specifying genes that may be associated with specific diseases such as AD and in 

revealing the functional mechanisms supported by the products of those genes that 

may be markers of early detection. Genetics provides an assessment of who is at 

risk, but does not provide complete information in the case of rare genetic mutations 

[64]. The deposition rate and accumulation of b-amyloid protein (Aβ) in different parts 

of the brain represent the neuropathological key of AD [65][66]. Therefore, genes that 

reverse or inhibit these processes are an attractive candidate for the detection of AD 

[67]. The apolipoprotein E (APOE) gene is the only genetic risk factor that has thus 

far been linked to a risk of late-onset AD [68]. It represents the best example of a 

genetic association that increases the risk of developing late-onset AD. Genetic 
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studies provide the rationale for ongoing studies that evaluate the use of 

cerebrospinal fluid (CSF) markers of protein folding or accumulation as tools to detect 

early stage AD [64]. 

2.2.2. Neuroimaging biomarkers 

There are three different types of neuroimaging techniques: structural imaging, 

functional imaging, and molecular imaging. Structural imaging such as magnetic 

resonance imaging – MRI, and computed tomography – CT, provides measures of the 

shape, position, or volume of the brain. Functional imaging, such as positron emission 

tomography – PET and functional MRI – fMRI, provides information about the brain 

cells working in different regions by screening how actively cells use sugar or oxygen. 

Molecular imaging, such as single photon emission computed tomography – SPECT), 

uses highly targeted radiotracers to detect cellular or chemical changes [29][63]. 

Functional brain imaging provides potential insights into the pathological features of 

AD such as neuronal loss, tangle deposition, cholinergic depletion, and amyloid 

plaques, and also facilitates measurement of the neurophysiological correlates of 

disease-related changes in the brain [29]. Neuroimaging techniques have yielded 

good results for both preclinical and early diagnosis of AD [64]. 

2.2.3. Biochemical markers 

Biochemical markers of AD include CSF levels of total tau (T-tau), phosphorylated 

tau-181 (P-tau), and the 42-amino acid fragment of amyloid peptide (Aβ1-42) 

[38][69][70]. Those markers reflect the essential neuropathology of the development 

of AD [55][69][70][71]. T-tau is a marker of cortical axonal decline, P-tau reflects 

neurofibrillary pathology, and Aβ1-42 is a marker of plaque pathology which is reflected 

in the inverse relationship between plaque counts and Aβ1-42 levels in CSF [72]. 

Measuring amyloid-β accumulation and tau in CSF provide the earliest pathological 

signature of AD [73][74]. For example, levels of CSF Aβ1-42 are significantly lower in 
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the AD while levels of CSF tau are significantly higher [70][75][76]. Therefore, CSF 

measures have potential clinical utility as biomarkers of AD [75]. 

2.3. Electroencephalogram 

2.3.1. Introduction 

A biological signal describes the spontaneous activity of the human body [77]. An 

electroencephalogram (EEG) measures the electrical activity of the brain [77] by 

recording the activity generated by a large number of neurons [78]. The EEG plays a 

useful role in clinical diagnosis and the electrophysiological analysis of brain functions 

[77]. It records using electrodes that are attached to the scalp and have a range of 10 

to 100 μV [78]. EEG is non-invasive, low-cost, and has a temporal resolution that 

makes it more popular in the analysis of brain dynamics [15]. However, various 

conditions can affect the EEG (e.g., age, gender, disease, and so on).  

EEG analysis is very important in different clinical applications such as the detection 

and monitoring of brain injury, and in detecting abnormal brain states such as 

epilepsy and different types of dementia [78]. 

The concept of neurophysiology was first established by Carlo Matteucci (1811–1868) 

and Emil Du Bois-Reymond (1818–1896). They were the first people to register the 

electrical signals emitted from muscle nerves using a galvanometer. Later, Ernst 

Fleischl von Marxow (1845–1891) observed the cerebral electrical activity taking 

place in the visual cortex of different species of animals. Hans Berger (1873–1941) 

then became the first person to record human EEG signals [79]. 

2.3.2. Electrode montage 

Montage refers to the process of arranging the locations of EEG channels in a specific 

order on the scalp [1][2][3][4]. The international 10–20 system refers to the standard 

arrangement of electrodes placed on the scalp [5]. This system provides a consistent 

and replicable method of EEG recording with 21 electrodes located at a relative 
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distance 10% or 20% from the nasion to the inion and the head circumference, hence 

the name “10-20” [2][5][6]. Alternative montages are also used, such as a 10-10 

system for the placement of up to 74 channels, and a 10-5 system for the placement 

of up to 128-channel system based on the 10-20 system [4]. The standard 10-20 

system has now been modified and is known as the Maudsley system. Although this 

is similar to the 10-20 system, the outer electrodes are slightly lowered to capture 

signals more effectively. This provides more extensive coverage of the lower part of 

the cerebral convexity [79].  

Figure 2-5 shows the electrodes placed on the scalp based on the standard 10-20 

system [79].  

 

Figure 2-5: Electrode locations on the scalp based on the standard 10-20 system 

Different areas of the brain are identified as Fp (frontopolar), F (frontal), C (central), 

P (parietal), O (occipital), and T (temporal). Odd numbers denote the left side, even 

numbers the right side, and Z the midline placements. ‘A’ signifies an ear channel (A1 

for left ear, A2 for right) [77][80][81].  

Figures 2-6 and 2-7 show the frontal and side views of electrode placement based on 

the 10-20 system [79]. 
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Figure 2-6: Frontal view of electrode placement based on the 10-20 system 

 

Figure 2-7: Side view of electrode placement based on the10-20 system. 

The common referencing methods used in the montage are: 

1. Bipolar: Measurements made between selected pairs of electrodes. 

2. Common reference: Measurements taken between electrodes and a chosen 

reference point that is least affected by interference, such as the ear lobes (AI and 

A2). 
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3. Common average reference: Measurements taken between electrodes and the 

mean of the other electrodes used. 

2.3.3. Artefacts  

EEG measurement can be influenced by many factors including artefacts [78][82]. An 

ertefact refers to non-cerebral interference with the EEG [82]. The main artefacts can 

be divided into internal (patient-related) and external (system-related) artefacts [79]. 

Internal artefacts thus relate to body movement (e.g., eye movements-blinks, muscle 

movements), while external artefacts relate to the device (e.g., power supply 

interference, impedance fluctuation, cable defects, electrical noise from the electronic 

components) [78][79]. Artefacts present significant challenges in EEG analysis. 

2.3.4. Interpretation of Human EEGs   

Hans Berger (1873–1941) was the first person to measure human EEG signals. EEG 

analysis plays an important role in clinical diagnosis and the electrophysiological 

analysis of brain functions. It can be used to discover different brain disorders (e.g., 

AD, epilepsy, and attention deficit hyperactivity disorder-ADHD). However, it can also 

be used in non-medical applications (e.g., security, gaming and entertainment, and 

education). Since Berger’s discovery, many methods have been developed to 

analyse the EEG signal. For example, the specialist analyses the EEG based on 

visual interpretation (the graphic elements), whereas biomedical engineers use 

mathematical or geometrical analyses to interpret the EEG signal. 

Biomedical engineers therefore adhere to the following steps when interpreting the 

EEG signal: 

1. Pre-processing: This step removes the artefacts from the EEG signal (any 

unwanted part of the EEG). Also, filtering the EEG signal may help to detect 

EEG features that are significantly associated with specific disorders or 
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behaviours. Filtering technique has therefore been used to divide the EEG 

signal into several bands, each of which may have a specific function.  

2. Feature extraction: Some important features are extracted from the EEG 

signal to be used in the next step. These include mean, standard deviation, 

and so on. 

3. Decision making: In this step, the biomedical engineers compare features for 

two or more groups to differentiate them. Machine learning techniques can be 

used to classify the groups. 

Several brain disorders can be diagnosed through the visual interpretation of EEG 

signals. Clinicians specialising in brain disorder are familiar with the manifestation of 

brain rhythms in EEG signals. The amplitudes and frequencies of such signals differ 

from one state to another, such as sleep and wakefulness. Furthermore, the 

characteristics of waves also changes with age.  

There are five major brain waves (rhythms) that can be discriminated by their different 

frequency ranges [79][80][81]: 

1. Delta (δ): This band lies in the 0-4 Hz range and is associated with deep sleep, 

although it may be present in the waking state. It is seen in temporal regions 

during wakefulness, and in a generalised distribution, maximal anteriorly, 

during drowsiness. 

2. Theta (θ): This band lies in the 4-8 Hz range and is primarily observed when 

consciousness slips towards drowsiness. It is often present in children and 

young adults during wakefulness, whereas in adults it occurs predominantly 

during drowsiness. Theta activity may occur in the temporal regions in normal 

elderly adults during wakefulness. 

3. Alpha (α): This band lies in the 8-12 Hz range and is found in posterior regions 

(occipital and parietal). It varies with age. During wakefulness, the alpha 
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rhythm is present across posterior regions of the head and is maximal with the 

person relaxed and their eyes closed. 

4. Beta (β): This band lies in the 12-30 Hz range and is usually most prominent 

anteriorly. It often increases during drowsiness. 

5. Gamma (γ): This band lies in ranges over 30Hz and is clearly apparent 

following visual stimuli or just before a movement task. Gamma, along with 

other activities in the above bands, can be observed at approximately the 

same time after performing a movement task, such as finger movement, 

movement of the right toe, or rather broad and bilateral areas of tongue 

movement. 

Figure 2-8 depicts normal brain rhythms of the EEG signal. 
 

 

Figure 2-8: Normal brain rhythms of the EEG signal  

The above rhythms may persist if the state of the person does not change; therefore, 

they are approximately cyclic in nature. On the other hand, other brain waveforms 

exist, which may: 
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1. Have a wide frequency range or appear as spiky-type signals, such as K-

complexes, vertex waves (which occur during sleep), some seizure signals, or 

a breach rhythm (an alpha-type rhythm arising from a cranial bone defect) 

which does not respond to movement and is found mainly over the 

midtemporal region (under electrodes T3 or T4). 

2. Be transient, such as an event-related potential (ERP) and contain positive 

occipital sharp transient (POST) signals (also called rho (ρ) waves). 

3. Originate from defective regions of the brain, such as temporal brain lesions. 

4. Be spatially localised and ostensibly cyclic in nature yet easily blocked by 

physical movement such as mu rhythms. Mu denotes motor and is strongly 

related to the motor cortex. Rolandic (central) mu is related to posterior alpha 

in terms of amplitude and frequency. However, its topography and 

physiological significance are quite different. From the mu rhythm, it is possible 

to investigate cortical functioning and changes in EEG brain (mostly bilateral) 

activities subject to physical and imaginary movements. The mu rhythm has 

also been used in feedback training for a range of purposes such as the 

treatment of epileptic seizure disorder. 

5. Phi (ϕ) rhythm (less than 4Hz), which occurs within two seconds of eye closure.  

6. Kappa (κ) rhythm, which is an anterior temporal alpha-like rhythm. It is 

believed to result from discrete lateral oscillations of the eyeballs and is 

considered an artefact signal. 

7. Sleep spindles (also called the sigma (σ) activity) within the 11–15 Hz 

frequency range. 

8. Tau (τ) rhythm, which represents the alpha activity in the temporal region. 

Eyelid fluttering with closed eyes gives rise to frontal artefacts in the alpha 

band. 
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9. Chi (χ) rhythm is a mu-like activity believed to consist of a specific rolandic 

pattern of 11–17 Hz. This wave has been observed during Hatha Yoga 

exercises. 

10. Lambda (λ) waves are most prominent in waking patients but are not very 

common. They are sharp transients occurring across the occipital region of the 

head of walking participants during visual exploration. They are positive and 

time-locked to saccadic eye movement with varying amplitude, generally 

below 90 μV. 

2.4. Computational and signal processing methods 

2.4.1. Introduction 

AD is characterized by loss of memory and cognitive decline resulting from damage 

to brain cells which influence brain activity [48]. AD causes changes in the features 

of the EEG [45][48][83] and so EEG analysis may provide valuable information about 

brain dynamics due to AD [23][24][43][45]. The most characteristic features in EEG 

caused by AD are slowing of EEG, a decrease in EEG coherence, and reduction in 

EEG complexity [43][44][45][47][48][84][85]. These changes in the EEG can be 

quantified as a biomarker of AD. A variety of linear and nonlinear methods are being 

developed to quantify changes in EEG as AD biomarkers [86][87]. AD biomarkers 

based on the slowing in EEG and a decrease in EEG coherence are often derived 

using linear analysis methods (i.e., spectral analysis of the EEG signal) [47][88][89]. 

While biomarkers extracted by analysing the complexity of the EEG are based on 

nonlinear approaches (e.g., entropy methods, fractal dimension, and Lemple-Ziv 

complexity). The EEG complexity approaches have shown promising results in AD 

diagnosis [15][45][49] and appear to be appropriate for AD diagnosis [48][90][91]. 

Complexity is a measure of the extent to which the dynamic behaviour of a given 

sequence resembles a random one [92]. The cortical areas of the brain fire 

spontaneously and this dynamic behavior of the brain is complex [93][94]. AD causes 
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a reduction in neuronal activity of the brain [95] resulting in decreased capability of 

the brain to process information [96][97][98] and this may be reflected in the EEG 

signals [95]. EEG complexity can potentially be a good biomarker for AD diagnosis 

[48] as AD patients have a significant reduction in EEG complexity 

[48][84][85][95][99][100]. 

A number of entropy measures have also been used to derive EEG biomarkers, 

including Tsallis entropy [101][102], Shannon entropy  [99][101], permutation entropy 

[103][104], and Kolmogorov entropy [105]. In particular, TsEn approach has been 

shown to be one of the most promising information theoretic methods for quantifying 

changes in the EEG [102][106]. It has also been shown to be a reliable analysis tool 

to use with working memory tasks. As its computation is fast, it can serve as a basis 

for a real-time decision support tool for dementia diagnosis by both specialists and 

non-specialists [107]. Sneddon et al. [108] investigated TsEn of the EEG and was 

able to detect mild dementia due to AD with a sensitivity of 88% and specificity of 

94%. Bock et al. [102] found TsEn of the EEG to be a highly promising potential 

diagnostic tool for mild cognitive impairment (MCI) and early dementia with a 

sensitivity and specificity of 82% and 73%, respectively. Using TsEn approach, Al-

nuaimi et al. [45] detected AD from normal subjects with a sensitivity and specificity 

of 85.8% and 70.9%, respectively. Garn et al. [101], investigated the use of TsEn and 

Shannon entropy to diagnose AD based on EEG analysis and achieved a p-

value<0.0036 for channels T7 and T8 in discriminating between AD patients and 

normal subjects. McBride et al. [99], found there is a decrease in Shannon entropy in 

the alpha band in the left parietal region of AD patients. However, Shannon entropy 

has serious limitations when the time series under consideration is short and noisy 

such as EEG signal [109]. Deng et al. [103] found that the permutation entropy of AD 

patients are decreased in contrast with the normal subjects, especially in the theta 
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band. Mammon et al. [104], suggested the permutation entropy significantly 

increased in the delta and theta bands specifically in  MCI subjects who converted to 

AD. Hamadicharef et al. [105] used Kolmogorov entropy to detect AD patients  with a 

performance of 82%  and 50% for sensitivity and specificity, respectively.  

 LZC is a nonparametric, non-linear measure of complexity for finite length sequences 

[110]. It is a simple and powerful method which has been used in several biomedical 

applications [111]. LZC depends on coarse-grain processing of the measurements 

[112] and can be applied directly to physiologic signals without pre-processing [113]. 

LZC has been applied extensively in analysing biomedical signals to obtain a 

measure of complexity of discrete-time physiological signals [110]. Furthermore, it 

has been used to analyse brain functions, brain information transmission and EEG 

complexity in patients with AD [86]. The LZC approach produces a good biomarker 

for AD detection [113][114]. Hornero et al. [115] used LZC to analyse EEG and 

magnetoencephalogram (MEG) in AD patients. They found that LZC provides a good 

insight into the EEG background activity characteristics and the changes associated 

with AD. Hornero et al. [116] found that LZC values were lower in AD patients and 

suggested that the most relevant differences are in the posterior region. In addition, 

they suggested that the MEG activity from AD patients is characterized by a lower 

degree of irregularity and complexity and that the LZC measures can be used to 

detect AD with a sensitivity and specificity values of 65% and 76.2%, respectively. 

McBride et al. [99] analysed EEG complexity based on the LZC method to 

discriminate between patients with early mild cognitive impairment (MCI), AD 

patients, and normal subjects. They found EEG complexity features for specific EEG 

frequency bands with regional electrical activity provide promising results in 

discriminating between MCI, AD, and normal subjects. Fernandez et al. [117] 

analysed MEG complexity for MCI patients, AD patients, and normal subjects based 

https://scholar.google.co.uk/citations?user=MwXGkggAAAAJ&hl=en&oi=sra
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on LZC method for discriminating between the three groups. They found that a 

combination of age and posterior LZC scores allowed them to distinguish between 

AD patients and MCI patients with 94.4% sensitivity and specificity.  

EEG biomarkers can also be derived using fractal dimension methods, including 

HFD, and Adapted Box algorithms [118]. Henderson et al [117] found that the 

Adapted Box algorithms are the most consistent when used in the early detection of 

AD. HFD is a fast computational method for obtaining the fractal dimension of time 

series signals [119][120][121] even when very few data points are available [119]. It 

can track changes in a biosignal from a measure of its complexity [119][120] and it is 

suited to capturing region-specific neural changes due to AD [51][122]. In addition, 

HFD provides a more accurate measure of the complexity of signals compared to 

other methods [119][123][124] and it has been shown to be an efficient method for 

discriminating between AD patients and normal subjects [41][125]. HFD of the EEG 

is potentially a good biomarker of AD diagnosis as it is significantly lower in AD 

patients than in normal subjects [49][126][125]. Smits et al. found that HFD is 

sensitive to neural changes selectively related to AD patients and normal subjects. 

Al-nuaimi et al. [49] investigated HFD of EEG for AD diagnosis and found that HFD 

is a promising EEG biomarker that captures changes in the regions of the brain 

thought to be affected first by AD and it could be used to detect AD with a sensitivity 

and specificity values of 100% and 80%, respectively.  

2.4.2. Changes in the EEG amplitude (ΔEEGA) 

Changes in the EEG amplitude (ΔEEGA): ΔEEGA [8] is used as a measure of the 

slowing of the EEG. In particular, ΔEEGA is the sum of the differences between 

adjacent amplitudes of EEG values per second. The ΔEEGA calculation of an N-

samples data sequence x(1), x(2), ..., x(N) is obtained as,  
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where Δx represents the difference between adjacent amplitudes of the EEG in one 

second and Δt denotes the time interval: 

 ii xxx  1   (2.2) 

  ii ttt  1  (2.3) 

where xi and xi+1 are the current and next EEG amplitude values, respectively, and ti 

and ti+1 represent the corresponding times i. 

ΔEEGA is first computed using Equation 2.4 for each EEG channel. The mean ΔEEGA 

for the channel is then computed as, 
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where MC is the mean value of ΔEEGA, and N is the number of samples for the EEG 

signal. 

 

2.4.3. Zero-crossing intervals (ZCI)  

Zero-crossing intervals (ZCI): ZCI [15][126][127][128] is defined, in this context, as the 

time interval between a positive to negative voltage transition to the next positive to 

negative voltage transition. It is based on finding a set of instances when the waveform 

intersects with the time axis. The ZCI calculation for the N-samples EEG signal is 

obtained as, 
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where xt and xt+1 are the times that EEG amplitude changed from positive to a negative 

value, respectively, and inst is the vector that contains the time instances when the 

amplitude changed from positive to negative value. 



25 
 

 

1

1

K

i

ZCI t




   (2.6) 

 ii ttt  1  (2.7) 

ZCI is the zero-crossing interval value, k is the indicator for the number of instances, 

and ti and ti+1 represent the predecessor and successor corresponding to the 

instances. 

2.4.4. Changes in the power spectrum (ΔPS) of EEG signal 

Changes in the power spectrum (PS): ΔPS [129][130] biomarker computation is based 

on the magnitude square of the Fast Fourier transform (FFT) of an N-sample EEG 

data sequence x(1), x(2), …, x(N)   

 𝑃𝑜𝑤𝑒𝑟𝑋(𝑁) =  [|𝐹𝐹𝑇(𝑋(𝑁)|]2 (2.8) 

 

2.4.5. EEG coherence  

EEG Coherence (EEG-Coh): Coherence [131][132][133] biomarker computation of 

an N-sample EEG data sequence x(1), x(2), ..., x(N), is based on the coherence 

between each two EEG channels and was calculated as,  
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where a and b are EEG channels, PSDa , and PDSb are the power spectral density for 

EEG channels a and b, |Pa,b|2 is the square cross-spectral density of the channels a, 

and b. The EEG coherence is a value between 0 and 1 calculated using the Welch’s 

power spectral density. It represents the functional relationships between the two brain 

regions.   
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2.4.6. Tsallis entropy (TsEn)  

Tsallis entropy (TsEn):  The computation of the TsEn [134] biomarker  of an N-samples 

EEG data sequence x(1), x(2), ..., x(N), is based on the generalised measure of 

entropy, due to Tsallis:  

 )1/()(
1

 


qPPTsEn
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iiq  (2.10) 

where TsEnq is the Tsallis entropy value, k is the number of states that the amplitudes 

of the EEG are quantized into, Pi is a probability associated with the ith state, and q is 

Tsallis parameter (k=2200, and q=0.5).   

2.4.7. Higuchi Fractal Dimension (HFD) 

Higuchi fractal dimension (HFD): To compute HFD biomarker [49][119][121][135]  of 

an N-sample EEG data sequence x(1), x(2), ..., x(N), the data is first divided into a  k-

length sub-data set  as, 
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where [] is Gauss’ notation, k is constant, and m=1, 2, …, k. The length Lm(k) for each 

sub-data set is then computed as,  

 

1

1
( ) ( ) ( ( 1) ) /

N m

k

m

i

N
L k x m ik x m i k k

N m
k

k

 
 
 



 
    

                 



 (2.12) 

The mean of Lm(k) is then computed to find the HFD for the data as, 
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2.4.8. Approximation Entropy (ApEn)  

Approximation entropy (ApEn): ApEn [136][90][137][135] calculation  of an N-samples 

EEG signal, two input constants (m, and r) must be identified to calculate ApEn that 
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referred as ApEn (m, r, N), where m is the run length and r is the tolerance window. 

To calculate the ApEn: 

Initialise the vector sequences x1, x2, …, x(N-m+1), where xi=[xi, xi+1, …. , xi+m-1], i=1, …, N-

m+1. These vectors represent m successive x values beginning with the ith point. 

Then, the distance is defined between xi and xj as the maximum differences between 

successive scalar values. For the xi, the Nm(i) refers the number of j (j=1, …, N-m+1, 

j≠i) therefore, d[xi,xj] ≤ r. Therefore, for i = 1, …, N – m + 1: 
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where Cr
m values compute the regularity within a tolerance r to the specified window 

m. Then, compute the average natural logarithm of each 𝐶𝑟
𝑚 over i: 
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The dimension is increased to m + 1 and the previous steps will be repeated to get  

Cr
m+1and Cr

m+1. The final step the ApEn is defined as, 
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The average value of ApEn values was computed for each channel as, 
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where a is the channel number, and S is the number of subjects in their group (AD or 

normal). 

2.4.9. Lempel Ziv Complexity (LZC) 

Lempel-Ziv complexity (LZC): To compute the LZC [92][110][111][86][113] biomarker 

of an N-sample EEG data sequence x(1), x(2), ..., x(N), the EEG signal is first 

converted into binary string as, 
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where x(i) is the equivalent binary value of EEG(i), i is the index of all values in the 

EEG signal, and M is the median value of each EEG channel. The median value is 

used to manage the outliers. 

The binary string is then scanned from left to right until the end to produce new 

substrings. A complexity counter c(N) is the number of new substrings. The upper 

bound of c(N) is used to normalise c(N) to get an independent value from the sequence 

of length N. The upper bound of c(N) is N/log2(N). c(N) is then normalised by b(N) as, 
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where C(N) is the normalised value of the LZC, and b(N) is the upper bound of the 

c(N).  

2.5. Main machine learning methodologies 

Machine learning is a part of artificial intelligence. It involves programming computers 

to optimize a performance criterion using example data or past experience [138]. 

Machine Learning is generally taken to encompass automatic computing procedures 

based on logical or binary operations, that learn a task from a series of examples [139]. 

In particular, we define machine learning as a set of methods that can automatically 

detect patterns in data, and then use the uncovered patterns to predict future data, or 

to perform other kinds of decision making under uncertainty [140].  We have a model 

with defined parameters, and learning is the execution of a computer program to 

optimize the parameters of the model using the training data or experience. The model 

may be predictive to make predictions in the future, or descriptive to gain knowledge 

from data, or both.  
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Machine learning is usually divided into two main types - supervised and 

unsupervised learning. Also, there is a third type of machine learning, known as 

reinforcement learning [140]. 

Supervised learning involves learning from examples and it is described in more 

detail in the next section as it is used in a number of studies in this thesis. 

Unsupervised learning attempts to learn patterns and associations from a set of 

objects that do not have attached class labels [141]. There is no such supervisor and 

we only have input data. The aim is to find the regularities in the input. There is a 

structure to the input space such that certain patterns occur more often than others, 

and we want to see what generally happens and what does not [142]. 

Reinforcement learning is the most general form of learning. It tackles the issue of 

how to learn a sequence of actions called a control strategy from indirect and delayed 

reward information (reinforcement) [141]. Reinforcement learning fills the gap 

between supervised learning, where the algorithm is trained on the correct answers 

given in the target data, and unsupervised learning, where the algorithm can only 

exploit similarities in the data to cluster it [143]. 

2.5.1. Supervised learning approach 

Supervised learning deals with learning a target function from labelled examples 

[141]. The objective is to learn a model from a given dataset, {(x1, y1), . . . , (xN, yN)}, 

and then based on the learned model, to make accurate predictions of y for future 

values of x [144]. The goal is to learn a mapping from inputs x to outputs y, given a 

labelled set of input-output pairs  

 𝐷 = {(𝑥𝑖, 𝑦𝑖)}𝑖=1
𝑁  (2.20) 

where D is called the training set, and N is the number of training examples [140]. 
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In supervised learning, the aim is to learn a mapping from the input to an output whose 

correct values are provided by a supervisor [142].  

In the simplest setting, each training input xi is a D-dimensional vector of numbers, 

representing, say, the height and weight of a person. These are called features, 

attributes or covariates. In general, however, xi could be a complex structured object, 

such as an image, a sentence, an email message, a time series, a molecular shape, 

a graph, etc.  

Similarly, the form of the output or response variable can in principle be anything, but 

most methods assume that yi is a categorical or nominal variable from some finite 

set, yi ∈ {1, . . . , C} (such as male or female), or that yi is a real-valued scalar (such 

as income level). When yi is categorical, the problem is known as classification or 

pattern recognition, and when yi is real-valued, the problem is known as regression. 

Another variant, known as ordinal regression, occurs where label space Y has some 

natural ordering, such as grades A–F [140].  

Neural networks, fuzzy systems, and support vector machines are typical 

nonparametric classifiers. Through training using input-output pairs, classifiers 

acquire decision functions that classify an input datum into one of the given classes 

[145]. 

2.5.1.1. Support Vector Machine 

Support vector machine (SVM) is a set of related supervised learning methods used 

for classification and regression. SVM is a classification and regression prediction 

tool that uses machine-learning theory to maximize predictive accuracy while 

automatically avoiding over-fit to the data. SVM can be defined as systems which use 

hypothesis space of linear functions in a high dimensional feature space, trained with 

a learning algorithm from optimization theory that implements a learning bias derived 

from statistical learning theory [146]. Figure 2-9 shows the idea of SVM 
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Figure 2-9:  The idea of SVM 

Figure 2-9 shows the idea of SVM which map the training data into a higher-

dimensional feature space via ɸ, and construct a separating hyperplane with 

maximum margin there. This yields a nonlinear decision boundary in input 

space[147]. The goals of SVM are separating the data with hyperplane and extend 

this to non-linear boundaries using kernel trick [148]. For calculating the SVM we see 

that the goal is to correctly classify all the data [146]. 

To compute the linearly separable data [149], consider the problem of binary 

classification. Training data are given as,  

 (x1, y1), (x2, y2), . . . , (xl, yl), X∈Rn, Y∈{ +1,−1} (2.21) 

For reasons of visualization only, we will consider the case of two-dimensional input 

space, i.e., X∈R2. Data are linearly separable and there are many different 

hyperplanes that can perform separation, as shown in figure 2-10. For X∈R2, the 

separation is performed by,  

 w1x1 + w2x2 + b = 0 (2.22)  

In other words, the decision boundary, i.e., the separation line in input space is 

defined by the equation  

 w1x1 + w2x2 + b = 0 (2.23) 
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Figure 2-10: Two-out-of-many separating lines: a good one with a large margin 

(right) 

As shown in Figure 2-10, the dashed separation line shown in the right graph seems 

to promise good classification. It seems to probably be better in generalization than 

the dashed decision boundary having smaller margin shown in the left graph. 

By using given training examples, during the learning stage, our machine finds 

parameters W = [w1w2 . . . wn]T and b of a discriminant or decision function d(x,w,b) 

given as 

 𝑑(𝑥, 𝑤, 𝑏) = 𝑤𝑇𝑥 + 𝑏 = ∑ 𝑤𝑖
𝑛
𝑖=1 𝑥𝑖+𝑏 (2.24) 

where X,W ∈Rn, and the scalar b is called a bias. (Note that the dashed separation 

lines in figure 2-10 represent the line that follows from d(x,w,b) = 0). After the 

successful training stage, by using the weights obtained, the learning machine, given 

previously unseen pattern xp, produces output 0 according to an indicator function (iF) 

given as 

 iF = o = sign(d(xp,w, b)) (2.25) 

where o is the standard notation for the output from the learning machine. In other 

words the decision rule is: 

if d(xp,w, b) > 0, the pattern xp belongs to a class 1 (i.e., o = y1 = +1) ,  and  

if, d(xp,w, b) < 0 the pattern xp belongs to a class 2 (i.e., o = y2 = −1) [150]. 
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2.5.1.2. Linear Discriminant Analysis 

Linear discriminant analysis (LDA) [142] is a supervised method for dimensionality 

reduction for classification problems. We start with the case where there are two 

classes, then generalize to K > 2 classes. Given samples from two classes Cl and 

C2, we want to find the direction, as defined by a vector w, such that when the data 

are projected onto w, the examples from the two classes are as well separated as 

possible when, 

 Z = WTX (2.26) 

is the projection of X onto W and thus is a dimensionality reduction from d to 1. Figure 

2-11 shows the two-dimensional, two-class data projected on W. 

 

Figure 2-11: Two-dimensional, two-class data projected on W 

m1 and m1 are the means of samples from C1 before and after projection, 

respectively. Note that m1∈d and m1∈Rd. We are given a sample X ={xt, rt } such that 

rt = 1 if xt ∈ C1 and rt = 0 if xt ∈ C2. Where,  

 𝑚1 =
∑ 𝑤𝑇𝑥𝑡𝑟𝑡

𝑡

∑ 𝑟𝑡
𝑡

= 𝑤𝑇𝑚1 (2.27) 

 𝑚2 =
∑ 𝑤𝑇𝑥𝑡(1−𝑟𝑡

𝑡 )

∑ (1−𝑟𝑡
𝑡 )

= 𝑤𝑇𝑚2 (2.28) 
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2.5.1.3. K-nearest neighbours 

The K-nearest neighbour (KNN) algorithm is a supervised learning algorithm which 

classifies a new instance based upon some distance formula (e.g., Euclidean). The 

new instance is classified to a category relative to some majority of K-nearest 

neighbours. Traditionally, the KNN algorithm is viewed as a machine learner, rather 

than a method for dividing training and test data [141]. 

Nearest neighbour classification is quite straightforward; examples are classified 

based on the class of their nearest neighbours. It is often useful to take more than 

one neighbour into account so the technique is more commonly referred to as k-

Nearest Neighbour (KNN) Classification where k nearest neighbours are used in 

determining the class. KNN classification has two stages; the first is the determination 

of the nearest neighbours and the second is the determination of the class using 

those neighbours. The k-nearest neighbours are selected based on this distance 

metric. KNN classification has two stages; the first is the determination of the nearest 

neighbours and the second is the determination of the class using those neighbours 

[151], as shown in Figure 2-12. 

 

Figure 2-12: Example of 3-nearest neighbour classification 

Let us assume that we have a training dataset D made up of (xi)I ∈[1,|D|] training 

samples. The examples are described by a set of features F and any numeric features 

have been normalised to the range [0,1]. Each training example is labelled with a 
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class label yj∈Y. Our objective is to classify an unknown example q. For each xi∈D 

we can calculate the distance between q and xi as, 

 𝑑(𝑞, 𝑥𝑖) = ∑ 𝑤𝑓𝛿(𝑞𝑓 , 𝑥𝑖𝑓)𝑓∈F  (2.29) 

2.5.2. Some basic concepts in machine learning 

Pattern classification is to classify some object into one of the given categories called 

classes. For a specific pattern classification problem, a classifier, which is computer 

software, is developed so that objects are classified correctly with reasonably good 

accuracy. Inputs to the classifier are called features because they are determined so 

that they represent each class well or so that data belonging to different classes are 

well separated in the input space [145]. 

The complexity of any classifier depends on the number of inputs. This determines 

both the time and space complexity and the necessary number of training examples 

to train such a classifier [152]. 

2.5.2.1. Dimensionality reduction  

When dealing with high dimensional data, it is often useful to reduce the 

dimensionality by projecting the data to a lower dimensional subspace which 

captures the “essence” of the data. This is called dimensionality reduction [140]. 

There are two main methods for reducing dimensionality: feature selection and 

feature extraction. In feature selection, we are interested in finding n of the d 

dimensions that give us the most information and we discard the other (d - n) 

dimensions [152]. Feature selection, also known as variable selection, is the process 

of choosing relevant components of the vector X for use in model construction [153]. 

While, in feature extraction, we are interested in finding a new set of n dimensions 

that are the combination of the original d dimensions. These methods may be 

supervised or unsupervised depending on whether or not they use the output 

information. The best known and most widely used feature extraction methods are 
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Principal Components Analysis (PCA) and Linear Discriminant Analysis (LDA), which 

are both linear projection methods, unsupervised and supervised respectively [152].   

2.5.2.2. Training, testing, and validation sets 

Three sets of data (i.e. for training, testing, and validation) are needed, as shown in 

Figure 2-13. The training set is used to train the algorithm [143] with the goal of finding 

the training parameters that result in the best performance [154]. The validation set 

to keep track of how well it is doing as it learns [143]. It is a set of samples used to 

find the best training parameters [154], and the test set to produce the final results, 

and each algorithm is going to need some reasonable amount of data to learn [143].  

The dataset is randomly partitioned into K subsets, and one subset is used as a 

validation set, while the algorithm is trained on all of the others. A different subset is 

then left out and a new model is trained on that subset, repeating the same process 

for all of the different subsets. Finally, the model that produced the lowest validation 

error is tested and used [143]. 
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Figure 2-13: The dataset is split into different sets, some for training, and some for 

validation 

 

2.5.2.3. K-Fold Cross-Validation 

K-fold cross validation is a resampling method for validating a model. For this 

technique, data is partitioned into k-classes, and k models are constructed with each 

of the k-classes rotated into the test set. K-fold cross validation addresses the issue 

of data distribution between training and test sets but does not consider the difficulty 

in modelling the training data [141]. 

In K-fold cross-validation, the dataset X is divided randomly into K equal sized parts, 

Xi, i = 1, ... , K. To generate each pair, we keep one of the K parts out as the validation 

set, and combine the remaining K - 1 parts to form the training set. Doing this K times, 

each time leaving out another one of the K parts out, we get K pairs [152]: 

V1=X1, T1=X2, X3,X4 …, Xk 

V2=X2, T2=X1, X3, X4 …, Xk 

V3=X3, T1=X1, X2, X4…, Xk 
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2.6. Diagnostic performance measures 

This thesis aims to evaluate and develop EEG based biomarkers to detect AD in its 

early stages. The evaluation of current biomarkers and the development of novel 

biomarkers means their respective performance needs to be measured. Such 

measurement comprises a set of technical specifications (e.g., mathematical or 

statistical measurements) that define several important factors pertaining to the 

quality of diagnosis [155]. This enhances the quality of decisions made by 

biomarkers, provides feedback to clinicians, and represents an indicator of the quality 

of the diagnosis [156]. To facilitate a high quality diagnosis, multiple performance 

measures can be computed to provide an extensive and complete view of overall 

performance [156][157]. Finally, quantifying performance is an important step in 

improving the quality of healthcare [158].  

Clinically, diagnostic biomarkers are evaluated according to the following factors; 

sensitivity, specificity, p-value, accuracy, positive predictive value, negative 

predictive value, f-measure, Matthew’s correlation coefficient, receiver operating 

characteristic, and area under the curve. The terms positive and negative are 

traditionally defined in that a person is "positive" if they have the disease in question 

and "negative" if they do not, and a "true" diagnosis is a correct diagnosis while a 

"false" diagnosis is incorrect. Moreover, true positive (TP) denotes the number of AD 

patients who were diagnosed correctly, false positive (FP) denotes the number of AD 

patients who were diagnosed incorrectly, true negative (TN) denotes the number of 

normal people who were diagnosed correctly, and false negative (FN) denotes the 

number of normal people who were diagnosed incorrectly. 

2.6.1. Accuracy 

Accuracy refers to the ratio between the correct number of classified cases and the 

total number of all cases [122]. It measures how close the classification is to the 
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correct classification [159]. Accuracy (correct classification) as a performance 

measure is insufficient because it depends on the true classification and disregards 

false classifications [122]. Accuracy can be computed as follows: 

 Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (2.30) 

2.6.2. Sensitivity and specificity  

To resolve the drawbacks associated with using accuracy as a performance 

measure, two measurements can be used to describe performance; sensitivity and 

specificity. Sensitivity denotes the probability of correctly predicting positive cases, 

while specificity denotes the probability of correctly predicting negative cases [160]. 

Sensitivity and specificity represent how well a measure recognises a true positive 

and true negative, respectively [122][161]. Sensitivity and specificity can be 

computed as follows: 

 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (2.31)

  

 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
 (2.32) 

 

2.6.3. False positive rate and false negative rate 

False positive rate (FPR) and false negative rate (FNR) indicate the rates at which 

these errors occur in the classification. FPR indicates the rates with which the 

classifier makes an error by classifying negative cases as positive (e.g., normal but 

classified as AD). While, FNR indicates the rates with which the classifier makes an 

error by classifying positive cases as negative (e.g., AD but classified as normal) 

[162][163][164]. FPR and FNR can be computed as, 

 𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
 (2.33)

  

 𝐹𝑁𝑅 =
𝐹𝑁

𝐹𝑁+𝑇𝑃
 (2.34) 
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2.6.4. Positive predictive value (precision), and negative predictive value 

The main advantage of a diagnostic test is that it can be utilised in diagnosis. 

Sensitivity and specificity do not provide clinicians with the probability of the disease 

being present in a patient. The probability of the test provides this information, and 

thus facilitates successful diagnoses. Therefore, there is a need to direct the 

diagnostic test towards predictive values.  

The predictive values of the test rely on the prevalence of abnormality in the patients 

being tested. This can be defined as the probability that a patient has the disease 

before the test is performed. The positive and negative predictive values (PPV, NPV) 

are purified estimates of the same probability that people will be given the correct 

diagnosis [165][166]. 

PPV represents the probability that a person has a disease and is correctly classified. 

Mathematically, it is the ratio between the number of true positives and the number 

of true positives plus the number of false positives. Conversely, NPV represents the 

probability that a person does not have the disease and is correctly classified. 

Mathematically, it is the ratio between the number of true negatives and the number 

of true negatives plus the number of false negatives [167]. PPv and NPV can 

therefore be calculated as follows: 

 𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (2.35)

 𝑁𝑃𝑉 =
𝑇𝑁

𝑇𝑁+𝐹𝑁
 (2.36) 

2.6.5. F-measure and Matthew’s correlation coefficient 

F-measure is a harmonic mean of positive predictive value (precision-P) and 

sensitivity (recall-R) [168][169]. The two diagnostic measures (P and R) are combined 

to construct their harmonic mean [170]. It therefore represents a standard balance 

between precision and recall when evaluating the performance of classifiers. 

However, the f-measure is an alternative version of the area under curve (AUC) [171] 
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and provides a better way to evaluate classifiers because it can assign errors for 

positive and negative results [169]. The F-measure can be computed as follows: 

 𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2𝑃𝑅

𝑃+𝑅
 (2.37) 

Matthew’s correlation coefficient (MCC) is a correlation coefficient between the actual 

and predicted results in the binary classification with values ranging from -1 to 1. A 

correlation coefficient of 1 indicates that the prediction was completely correct while 

a value of -1 indicates that a completely opposite prediction was made [172]. MCC is 

used to measure the quality of the binary classification in machine learning by 

comparing the actual and predicted results [173][174]. MCC can be computed as 

follows: 𝑀𝐶𝐶 =
𝑇𝑃∗𝑇𝑁−𝐹𝑃∗𝐹𝑁

√(𝑇𝑃+𝐹𝑃)∗(𝐹𝑃+𝐹𝑁)∗(𝑇𝑁+𝐹𝑃)∗(𝑇𝑁+𝐹𝑁)
  (2.38) 

2.6.6. Receiver operating characteristic and area under the curve  

Receiver Operating Characteristic (ROC) analysis provides tools to distinguish 

classifiers that are optimal under some class and cost distributions from classifiers 

that are always sub-optimal, and to select the optimal classifier once the cost 

parameters are known [175]. ROC graphs are a useful technique for organizing 

classifiers and visualizing their performance. ROC graphs are commonly used in 

medical decision making, and in recent years have been increasingly adopted in the 

machine learning and data mining research communities [176]. One of the main 

advantages of ROC analysis is that it is threshold-agnostic; i.e. the performance of a 

predictor is estimated without a specific threshold and also gives a criteria to choose 

an optimal threshold based on a certain cost function or objective. Typically, an ROC 

analysis shows how sensitivity (true positive rate) changes with varying specificity 

(true negative rate or 1−false positive rate). Analyses also typically weigh false 

positives and false negatives equally [177]. ROC analysis for two classes is based on 

plotting the true positive rate (TPR) on the y-axis and the false-positive rate (FPR) on 

the x-axis. This gives a point for each classifier. A curve is obtained because, given 
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two classifiers, we can obtain as many derived classifiers as we want along the 

segment that connects them, just by voting them with different weights. 

Consequently, any point “below” that segment will have greater cost for any class 

distribution and cost matrix, because it has lower TPR and/or higher FPR. According 

to that property, given several classifiers, one can discard the classifiers that fall 

under the convex hull formed by the points representing the classifiers and the points 

(0,0) and (1,1), which represent the default classifiers always predicting negative and 

positive, respectively [175].  

Figure 2-14 shows an example of a ROC “curve” on a test set of twenty instances 

created by thresholding a test set. It shows the corresponding ROC curve with each 

point labelled by the threshold that produces it. Table 2-1 shows ten positive and ten 

negative instances and the score assigned to each by a scoring classifier. Any ROC 

curve generated from a finite set of instances is actually a step function, which 

approaches a true curve as the number of instances approaches infinity [176].  

 

 

Figure 2-14: The ROC “curve” created by thresholding a test set 
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Table 2-1: Shows twenty data and the score assigned to each by a scoring classifier 

Inst# Class Score Inst# Class Score 

1 p 0.9 11 p 0.4 

2 p 0.8 12 n 0.39 

3 n 0.7 13 p 0.38 

4 p 0.6 14 n 0.37 

5 p 0.55 15 n 0.36 

6 p 0.54 16 n 0.35 

7 n 0.53 17 p 0.34 

8 n 0.52 18 n 0.33 

9 p 0.51 19 p 0.3 

10 n 0.505 20 n 1 

 

In ROC analyses, the predictive performance is commonly summarized by the area 

under the curve (AUC), which can be found by integrating areas under the line 

segments [177]. The AUC, estimated simply from the ranks of the predicted scores, 

can remain unchanged even when the predicted scores change. This can lead to a 

loss of useful information, and may produce suboptimal results [178]. A ROC curve 

is a two-dimensional depiction of classifier performance. To compare classifiers we 

may want to reduce ROC performance to a single scalar value representing expected 

performance. A common method is to calculate the area under the ROC curve, 

abbreviated AUC. Since the AUC is a portion of the area of the unit square, its value 

will always be between 0 and 1.0. However, because random guessing produces the 

diagonal line between (0, 0) and (1, 1), which has an area of 0.5, no realistic classifier 

should have an AUC less than 0.5. The AUC has an important statistical property: the 

AUC of a classifier is equivalent to the probability that the classifier will rank a 

randomly chosen positive instance higher than a randomly chosen negative instance 

[176].  

Vk=Xk, T1=X1, X2, X4…, Xk-1 
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2.7. Null and alternative hypotheses  

The null hypothesis, denoted by H0, is the hypothesis that is to be tested. The 

alternative hypothesis, denoted by H1, is the hypothesis that in some sense 

contradicts the null hypothesis [179][180]. 

The null hypothesis of this study is that EEG based biomarkers can not be used to 

detect AD patients with high performance. The alternative hypothesis of the study is 

that EEG based biomarkers can be used to detect AD with high performance. P-value 

was used in this study to test the null hypothesis. It was computed between the  EEG 

biomarkers for AD patients and normal subjects for different analysis methods were 

used in this study e.g., between the Tsallis entropy values for AD patients and normal 

subjects.  

P-values 

P-value is a common statistical measure that is used in biomedical research to 

facilitate decisions regarding the independence of two different states [181]. It refers 

to the probability of obtaining results which show the null hypothesis is true [182]. The 

null hypothesis specifies that no association exists between the factors under 

investigation [181][122][183]. The p-value ranges between zero and one [184]. A p-

value that satisfies the threshold of significance is less than or equal to 0.05 

[182][185].  

 P-values are computed using t-tests [186][187][188]. A t-test can also be computed 

using Welch's t-test rather than the Student’s t-test [184][189]. To compute the p-

value between two data samples (e.g., X1, and X2), the following equation is used: 

 𝑃 = 2 ∗ 𝑇𝑐𝑑𝑓(−|𝑡|, 𝑉) (2.39) 

where Tcdf is the Student's T cumulative distribution with V degrees of freedom of 

the values in X, and t is the Welch’s t-test which is calculated as shown in Equation 

2.40. 
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 𝑡 =
�̅�1−�̅�2

√
𝑠1

2

𝑛1
−

𝑠2
2

𝑛2

 (2.40) 

where n1, and n2 are the size of X1 and X2, while, S1, and S2 are the variances of X1, 

and X2, respectively. 

The formula to calculate the degrees of freedom is known as the Welch-Sattertwaite-

equation and is computed as follows: 

 𝑉 =
(𝑠1

2/𝑛1+𝑠2
2/𝑛2)

2

(𝑠1
2/𝑛1)

2
/(𝑛1−1)+(𝑠2

2/𝑛2)
2

/(𝑛2−1)
 (2.41) 

Welch’s t-test divides the variance in the group by its size. Conversely, the 

Student’s t-test uses the standard deviations of each group [187]. 

 

2.8. Multiple comparisons problem 

When multiple tests are performed on a dataset, it is likely to reject the null hypothesis 

when it is true. This is a consequence of the logic of hypothesis testing; reject the null 

hypothesis if we find a rare event. But the larger the number of tests, the easier it is 

to find rare events and therefore the easier it is to make the mistake of thinking that 

there is an effect when there is none [190][191]. When rejecting a null hypothesis 

because a p-value is less than your critical value, it is possible this is wrong; the null 

hypothesis might really be true, and your significant result might be due to chance. A 

p-value of 0.05 means that there is a 5% chance of getting your observed result if the 

null hypothesis were true. It does not mean that there is a 5% chance that the null 

hypothesis is true [192]. 

Bonferroni correction 

There are several approaches for addressing multiple comparisons concerns. 

Bonferroni correction is a standard method to deal with multiple comparisons 

problems in statistics. Bonferroni correction involves dividing the p-value threshold 
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by the number of comparisons [193]. The Bonferroni correction is an adjustment 

made to p-values when several dependent or independent statistical tests are being 

performed simultaneously on a single data set [194]. The p-values so obtained can 

then be corrected for multiple comparisons [195].  

The classic approach to the multiple comparison problem is to control the familywise 

error rate. Instead of setting the critical P-level for significance, or alpha, to 0.05, a 

lower alpha is used. If the null hypothesis is true for all of the tests, the probability of 

getting one result that is significant at this new; lower-alpha level is 0.05. In other 

words, if the null hypotheses are true, the probability that the family of tests includes 

one or more false positives due to chance is 0.05. The most common way to control 

the familywise error rate is with the Bonferroni correction. The significance level 

(alpha) for an individual test is found by dividing the familywise error rate (usually 

0.05) by the number of tests. Thus if  100 statistical tests are being performed, the 

alpha level for an individual test would be 0.05/100=0.0005, and only individual tests 

with P<0.0005 would be significant [192]. 

The following steps summarise the computation of the Bonferroni-corrected P-values  

1. Let N be  the number of tests 

2. Compute the critical p-value 

 This is found by dividing the familywise error rate (usually 0.05) by the number 

of tests, i.e.  0.05/N 

3. If (P-values* number of tests)< 1 Then  

                    Bonferroni-corrected P-values=P-values* number of tests 

             Else 

                  Bonferroni-corrected P-values=1 

4. P-value is significant if it is less than the critical p-value 
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The following example highlights  the Bonferroni correction computation 

for N = 11. 

Critical p-value= 0.0045 (0.05/11) 

 

Table 2-2: Bonferroni-corrected P-value computation 

P-values 
Bonferroni-
corrected 

significance 

Bonferroni-
corrected 
P-value 

0.001 Significant 0.0110 

0.008 Not significant 0.0880 

0.039 Not significant 0.4290 

0.041 Not significant 0.4510 

0.042 Not significant 0.4620 

0.002 Significant 0.0220 

0.074 Not significant 0.8140 

0.205 Not significant 1.0000 

0.003 Significant 0.0330 

0.216 Not significant 1.0000 

0.004 Significant 0.0440 
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Chapter 3. Materials and Methods 

3.1. Electroencephalogram Datasets 

In this section, we provide detailed descriptions of each dataset including information 

about the cohort, recording information and so on. Detailed descriptions of the 

recording format which is specific to each dataset are also given. Four EEG datasets 

were used in this study e.g., B, C, and D.  

3.1.1. Dataset A 

This data set consists of 11 cases: nine normal subjects, and three AD patients. 

3.1.1.1. Data origin 

Data were recorded in Derriford Hospital and a memory clinic in Plymouth, UK as part 

of an existing protocol.  All subjects are from UK.    

3.1.1.2. Diagnostic criteria and cohort information  

All patients were referred to the EEG department in the hospital from a specialist 

memory clinic.  Prior to referral, all patients underwent a battery of psychometric tests 

(including the MMSE [196], The Rey Auditory Verbal Learning Test [197], Benton 

Visual Retention Test [198] and memory recall tests [199]).  All normal subjects were 

healthy volunteers and had normal EEGs, which were reviewed and confirmed by the 

consultant clinical neurophysiologist. Two of the normal subjects were young subjects 

(aged < 10 years).  Each of these subjects had three EEG recordings. The remaining 

were age-matched (> 65 years old). MRI data was not recorded because this facility 

was not available at the hospital at that time. The ethnicities of subjects were unknown. 

Details of the cohort are summarised in Table 3-1. 
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Table 3-1: Cohort information for Dataset A 

No. Subject 
Age 

(yrs) 
Diagnosis 

Clinical 

Notes 

Comments/ 

Notes 

1 AD1 - Prob. AD Probable AD - 

2 AD2 - Prob. AD 
Probable 

AD 
- 

3 AD3 - Prob. AD Probable AD - 

4 Vol1 

> 65 

Normal 

Normal who 

went on to 

develop 

Alzheimer's 

Used as a 

pre-AD case 

5 Vol2 Normal - - 

6 Vol3 Normal - - 

7 Vol4 Normal - - 

8 Vol5 Normal - - 

9 Vol6 Normal - - 

10 Vol7 Normal - - 

11 Vol8 Normal - - 

 

3.1.1.3. Recording information 

All subjects were recorded at rest comprising of various states: awake, drowsy, alert 

with periods of eyes closed and open.  The EEGs were obtained using the 10-20 

system. Details of the recording are given in Table 3-2 recording information for 

dataset A.    

Table 3-2: Recording information for Dataset A 

Description Details 

Montage Common Reference Montage 

Sampling Frequency (Hz) 256, downsampled to 128 for storage reasons 

Number of Channels 21 

Channel Labels 

Fp1 = 1, Fp2 = 2, F7 = 3, F3 = 4, FZ = 5, F4 =  6, F8 = 7, A1 = 8, T3 = 9, C3 

= 10, CZ = 11, C4 = 12, T4 = 13, A2 = 14, T5 = 15, P3 = 16, PZ = 17, P4 = 

18, T6 = 19, O1 = 20, O2 = 21 

Duration (sec) 240 

Equipment Settings Not Applicable 

 

3.1.2. Dataset B 

This data set consists of 41 cases: 21 normal subjects, and 17 mild AD patients.  
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3.1.2.1. Data origin 

As with Dataset A, the data in this dataset were recorded in Derriford Hospital and a 

memory clinic in Plymouth, UK as part of an existing protocol.  All subjects were from 

UK. 

3.1.2.2. Diagnostic criteria and cohort information 

All patients were referred to the EEG department in the hospital from a specialist 

memory clinic.  A battery of psychometric tests (including the MMSE [196], The Rey 

Auditory Verbal Learning Test [197], Benton Visual Retention Test [198] and memory 

recall tests [199]) were performed on all patients at the memory clinic. The 

classification of subjects with dementia was based on the working diagnosis provided 

by the specialist memory clinic. All healthy volunteers and AD patients had their EEG 

confirmed by a consultant clinical neurophysiologist at the hospital as normal and 

probable mild AD respectively. MRI data was not recorded because this facility was 

not available at the hospital at the time. The ethnicities of subjects were unknown. 

Details of the cohort are summarised in Table 3-3. 

  



51 
 

Table 3-3: Cohort information for Dataset B 

No. Subject Age (yrs) Gender Diagnosis Clinical Notes 

1 AD1 

77.6 + 10, max.= 93,min. = 50 9M, 8F 

Prob. AD Probable AD 

2 AD2 Prob. AD Probable AD 

3 AD3 Prob. AD Probable AD 

4 AD4 Prob. AD Probable AD 

5 AD5 Prob. AD Probable AD 

6 AD6 Prob. AD Probable AD 

7 AD7 Prob. AD Probable AD 

8 AD8 Prob. AD Probable AD 

9 AD9 Prob. AD Probable AD 

10 AD10 Prob. AD Probable AD 

11 AD11 Prob. AD Probable AD 

12 AD12 Prob. AD Probable AD 

13 AD13 Prob. AD Probable AD 

14 AD14 Prob. AD Probable AD 

15 AD15 Prob. AD Probable AD 

16 AD16 Prob. AD Probable AD 

17 AD17 Prob. AD Probable AD 

18 NORM1 
69.4 + 11.5, 10M, 14F 

Normal - 

19 NORM2 Normal - 

20 NORM3 

max. = 84, min. = 40  

Normal - 

21 NORM4 Normal - 

22 NORM5 Normal - 

23 NORM6 Normal - 

24 NORM7 Normal - 

25 NORM8 Normal - 

26 NORM9 Normal - 

27 NORM10 Normal - 

28 NORM11 Normal - 

29 NORM12 Normal - 

30 NORM13 Normal - 

31 NORM14 Normal - 

32 NORM15 Normal - 

33 NORM16 Normal - 

34 NORM17 Normal - 

35 NORM18 Normal - 

36 NORM19 Normal - 

37 NORM20 Normal - 

38 NORM21 Normal - 

39 NORM22 Normal - 

40 NORM23 Normal - 

41 NORM24 Normal - 
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3.1.2.3. Recording information 

All subjects were recorded at rest comprising of various states: awake, drowsy, alert 

with periods of eyes closed and open. The EEGs were obtained using the 10-20 

system. Details of the recording are given in Table 3-4.   

Table 3-4: Recording information for Dataset A 

Description  Details  

Montage  Common Reference Montage  

Sampling Frequency (Hz)  256, downsampled to 128 for storage reasons   

Number of Channels  21  

Channel Labels  Fp1 = 1, Fp2 = 2, F7 = 3, F3 = 4, FZ = 5, F4 =  6, F8 = 7, A1 = 8, T3 = 9, C3 

= 10, CZ = 11, C4 = 12, T4 = 13, A2 = 14, T5 = 15, P3 = 16, PZ = 17, P4 = 

18, T6 = 19, O1 = 20, O2 = 21  

Duration (sec)  240  

Equipment Settings  Not Applicable  

  

3.1.3. Dataset C 

This dataset consists of 20 cases: 10 normal subjects, and 10 mild AD patients.  

3.1.3.1. Data origin 

The data in this dataset were recorded in Rome and were provided by La Sapienza, 

University of Rome. Local institutional ethics committees approved the study and all 

experiments were performed with the informed and overt consent of each participant 

or caregiver, in line with the Code of Ethics of the World Medical Association 

(Declaration of Helsinki) and the standards established by the Author's Institutional 

Review Board. All subjects were from Italy.    

3.1.3.2. Diagnostic criteria and cohort information 

The data were collected from 10 mild AD patients (78.3 + 4.03 years) and 10 normal 

age-matched healthy old subjects (78 + 4.24 years). Probable AD was diagnosed 

according to NINCDS-ADRDA [200] and DSM IV criteria. The recruited AD patients 

underwent general medical, neurological and psychiatric assessments. Patients were 

also rated with a number of standardized diagnostic and severity instruments that 

included MMSE [196], Clinical Dementia Rating Scale (CDRS) [201], Geriatric 

Depression Scale (GDS) [202], Hachinski Ischemic Scale (HIS) [203], and 
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Instrumental Activities of Daily Living scale (IADL) [204]. Neuroimaging diagnostic 

procedures (CT or MRI) and complete laboratory analyses were carried out to exclude 

other causes of progressive or reversible dementias, in order to have a homogenous 

mild AD patient sample. Exclusion criteria included, in particular, any evidence of (i) 

fronto-temporal dementia, (ii) VAD (i.e. the VaD was also diagnosed according to 

NINDS-AIREN criteria; [205], (iii) extra-pyramidal syndromes, (iv) reversible 

dementias (including pseudo-dementia of depression), and (v) fluctuations in cognitive 

performance (suggestive of a possible Lewy body dementia). The normal control 

subjects were recruited mainly among patients’ spouses. All normal subjects 

underwent physical and neurological examinations as well as cognitive screening 

(including MMSE). Subjects affected by chronic systemic illnesses (i.e. diabetes 

mellitus or organ failure) were excluded, as were subjects receiving psychoactive 

drugs. Subjects with a history of present or previous neurological or psychiatric 

disease were also excluded. All normal subjects had a GDS score lower than 14. The 

ethnicities of the subjects were unknown. Details of the cohort are summarised in 

Table 3-5.   
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Table 3-5: Cohort information for Dataset C 

No. Subject 
Age 
(yrs) 

Gender 
Education 

(yrs) 
MMSE Diagnosis 

1 AD-s01 78  F  2 21 Prob. AD 

2 AD-s02 77  M  9 27 Prob. AD 

3 AD-s03 78  F  5 21.7 Prob. AD 

4 AD-s04 83  M  13 23.1 Prob. AD 

5 AD-s05 78  F  5 18.7 Prob. AD 

6 AD-s06 72  F  5 23.3 Prob. AD 

7 AD-s07 77  F  5 21.7 Prob. AD 

8 AD-s08 80  M  13 22.1 Prob. AD 

9 AD-s09 74  M  18 25.7 Prob. AD 

10 AD-s10 86  M  8 23.8 Prob. AD 

11 Nold-s01 85  F  5 30 Normal 

12 Nold-s02 77  M  13 30 Normal 

13 Nold -s03 78  M  5 28.7 Normal 

14 Nold -s04 71  F  8 28.4 Normal 

15 Nold -s05 72  M  5 29.3 Normal 

16 Nold -s06 83  M  13 29.1 Normal 

17 Nold -s07 78  F  5 28.7 Normal 

18 Nold -s08 78  F  5 28.7 Normal 

19 Nold -s09 79  F  5 29 Normal 

20 Nold -s10 79  M  18 30 Normal 

 

3.1.3.3. Recording Information 

All subjects were recorded at rest with eyes closed. The EEGs were obtained using 

the 10-20 system. Details of the recordings are given in Table 3-6.  

  

Table 3-6: Recording information for Dataset C 

Description  Details  

Montage  Common Reference Montage  

Sampling Frequency (Hz)  128   

Number of Channels  19  

Channel Labels/Order  Fp1 = 1, Fp2 = 2, F7 = 3, F3 = 4, FZ = 5, F4 = 6, F8 = 7, T3 = 8, C3 = 9, CZ 

= 10, C4 = 11, T4 = 12, T5 = 13, P3 = 14, PZ = 15, P4 = 16, T6 = 17, O1 = 

18, O2 = 19.  Channels A1 and A2 were not used.  

Duration (sec)  60  

Equipment Settings  Not Applicable  

  

3.1.4. Dataset D 

This dataset consists of 40 cases: 20 normal subjects, and 20 mild AD patients.  
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3.1.4.1. Data origin 

As with Dataset C, this dataset was recorded in Rome and was provided by La 

Sapienza, University of Rome. The study was approved by the local institutional ethics 

committees and all experiments were performed with the informed and overt consent 

of each participant or caregiver, in line with the Code of Ethics of the World Medical 

Association (Declaration of Helsinki) and the standards established by the Author's 

Institutional Review Board. All subjects were from Italy.    

3.1.4.2. Diagnostic criteria and cohort information 

The data were collected from 20 normal age-matched healthy old subjects (78.5 + 

3.85 years), 20 MCI patients (74.1 + 5.47 years) and 20 mild AD patients (77.8 + 5.50 

years). Probable AD was diagnosed according to NINCDS-ADRDA [200] and DSM IV 

criteria. The recruited AD patients underwent general medical, neurological and 

psychiatric assessments. Patients were also rated with a number of standardized 

diagnostic and severity instruments that included MMSE [196], Clinical Dementia 

Rating Scale (CDRS) [201], Geriatric Depression Scale (GDS) [202], Hachinski 

Ischemic Scale (HIS) [203], and Instrumental Activities of Daily Living scale (IADL) 

[204]. Neuroimaging diagnostic procedures (CT or MRI) and complete laboratory 

analyses were carried out to exclude other causes of progressive or reversible 

dementias, in order to have a homogenous mild AD patient sample. Exclusion criteria 

included, in particular, any evidence of (i) fronto-temporal dementia, (ii) VAD (i.e. the 

VaD was also diagnosed according to NINDS-AIREN criteria; [205], (iii) extra-

pyramidal syndromes, (iv) reversible dementias (including pseudo-dementia of 

depression), and (v) fluctuations in cognitive performance (suggestive of a possible 

Lewy body dementia). The normal control subjects were recruited mainly among 

patients’ spouses. All normal subjects underwent physical and neurological 

examinations as well as cognitive screening (including MMSE). Subjects affected by 

chronic systemic illnesses (i.e. diabetes mellitus or organ failure) were excluded, as 
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were subjects receiving psychoactive drugs. Subjects with a history of present or 

previous neurological or psychiatric disease were also excluded. All normal subjects 

had a GDS score lower than 14. The ethnicities of the subjects were unknown. Details 

of the cohort are summarised in Table 3-7.  
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Table 3-7: Cohort information for Dataset E 

No. Subject 
Age 

(yrs) 
Gender 

Education 

(yrs) 
MMSE Diagnosis 

1  AD-s01 77  M  9  27  Prob. AD 

2  AD-s02 78  F  5  18.7  Prob. AD 

3  AD-s03 72  F  5  23.3  Prob. AD 

4  AD-s04 74  M  18  25.7  Prob. AD 

5  AD-s05 86  M  8  23.8  Prob. AD 

6  AD-s06 67  M  18  25.2  Prob. AD 

7  AD-s07 79  M  13  25  Prob. AD 

8  AD-s08 82  F  5  18.4  Prob. AD 

9  AD-s09 79  F  8  20  Prob. AD 

10  AD-s10 81  F  8  19  Prob. AD 

11  AD–s11 77  F  5  21.7  Prob. AD 

12  AD–s12 71  F  5  23  Prob. AD 

13  AD–s13 80  F  8  21  Prob. AD 

14  AD–s14 83  F  5  19.4  Prob. AD 

15  AD–s15 83  F  13  17.1  Prob. AD 

16  AD–s16 68  M  3  18.4  Prob. AD 

17  AD–s17 74  M  4  21.7  Prob. AD 

18  AD–s18 81  M  17  22  Prob. AD 

19  AD–s19 87  M  3  17  Prob. AD 

20  AD–s20 77  M  5  16.7  Prob. AD 

21  Nold -s01 72  F  5  27.3  Normal 

22  Nold -s02 77  M  13  30  Normal 

23  Nold -s03 78  M  5  28.7  Normal 

24  Nold -s04 71  F  8  28.4  Normal 

25  Nold -s05 72  M  5  29.3  Normal 

26  Nold -s06 83  M  13  29.1  Normal 

27  Nold -s07 78  F  5  28.7  Normal 

28  Nold -s08 78  F  5  28.7  Normal 

29  Nold -s09 79  F  5  29  Normal 

30  Nold -s10 79  M  18  30  Normal 

31  Nold –s11 73  F  5  29.3  Normal 

32  Nold –s12 73  F  17  26.7  Normal 

33  Nold –s13 83  M  10  28  Normal 

34  Nold –s14 70  F  5  27.3  Normal 

35  Nold –s15 79  F  5  27.7  Normal 

36  Nold –s16 74  M  10  28.4  Normal 

37  Nold –s17 77  F  13  28.3  Normal 

38  Nold –s18 72  M  5  28.3  Normal 

39  Nold –s19 73  M  6  26.3  Normal 

40  Nold –s20 74  M  10  27.4  Normal 
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3.1.4.3. Recording Information 

All subjects were recorded at rest with eyes closed. The EEGs were obtained using 

the 10-20 system. Details of the recordings are given in Table 3-8.  

  
Table 3-8: Recording information for Dataset D 

Description  Details  

Montage  Common Reference Montage  

Sampling Frequency (Hz)  128   

Number of Channels  19  

Channel Labels/Order  Fp1 = 1, Fp2 = 2, F7 = 3, F3 = 4, FZ = 5, F4 = 6, F8 = 7, T3 = 8, C3 = 9, CZ 

= 10, C4 = 11, T4 = 12, T5 = 13, P3 = 14, PZ = 15, P4 = 16, T6 = 17, O1 = 

18, O2 = 19.  Channels A1 and A2 were not used.  

Duration (sec)  60  

Equipment Settings  Not Applicable  

 

3.2. Pre-processing  

The EEG data was used in two different ways in this study. In the first way, the entire 

EEG record was analysed to compute EEG based biomarkers. In the second way, 

instead of using the entire EEG record, EEG data was filtered into the traditional five 

EEG frequency bands i.e., delta, theta, alpha, beta, and gamma. The low 

computational infinite impulse response (IIR) Chebyshev-II bandpass filter was used 

to retain computational efficiency in extracting the biomarkers [206].  

The normal specifications of a bandpass filter H(s) as shown in Figure 3-5 are the 

cutoff frequencies ω1 and ω2, the maximum value of the magnitude in the passband 

between the cutoff frequencies, the maximum attenuation in this passband or the 

minimum magnitude at the cutoff frequencies ω1 and ω2, and a frequency ωs (= ω3 

or ω4) in the stopband at which the minimum attenuation or the maximum magnitude 

are specified. The type of passband response required may be a Butterworth or 

Chebyshev response. 
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Figure 3-1: Typical specifications of a bandpass filter 

 

The lowpass–bandpass (LP–BP) frequency transformation p = g(s) that is used for the 

design of a specified bandpass filter is 

 𝑝 =
1

𝐵
(

𝑠2+𝜔0
2

𝑠
) (3.1)

where B = ω2 − ω1 is the bandwidth of the filter and ω0 =√𝜔1𝜔2 is the geometric 

mean frequency of the bandpass filter. A frequency s = jΩk in the bandpass filter is 

mapped to a frequency p = jk under this transformation, which is obtained by 

 jΩk =
𝑗

𝐵
(
ω0−

2 ω𝑘
2

ω𝑘
) (3.2)

  

 =
𝑗ω0

𝐵
(
ω𝑘

ω0
−
ω0

ω𝑘
) (3.3) 

Therefore the frequencies ω1 and ω2 map to Ω =∓1, and the frequencies −ω1 and −ω2 

map to Ω =±1. Similarly, the positive value of the stopband frequency Ωs to which the 

frequency ωs maps is calculated from  
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 Ω𝑠= |
1

𝐵
(

𝜔0
2−𝜔𝑠

2

𝜔𝑠
)| (3.4)  

The magnitude or the attenuation at the frequencies  Ω = 1and Ωs for the prototype 

filter are the same as those at the corresponding frequencies of the bandpass filter. 

From the specification of the lowpass prototype filter, we obtain its transfer function 

H(p), following the appropriate design procedure discussed earlier. Then we 

substitute (3.1) in H(p) to get the transfer function H(s) of the bandpass filter specified 

[207]. 

Chebyshev II filter minimizes the absolute difference between the ideal and the actual 

frequency response over the entire stopband by using an equal ripple in the stopband. 

Passband response is maximally flat. The stopband does not approach zero as 

quickly as the type I filter (and does not approach zero at all for even-valued filter 

order n). The absence of ripple in the passband, however, is often an important 

advantage. 

A Chebyshev-II filter is an equiripple filter that has the ripples in the stopband rather 

than the passband [208]. 

Fdatool of MATLAB R2017b was used to design the (IIR) Chebyshev-II bandpass 

filters for the delta, theta, alpha, beta, and gamma bands, as shown in the Figures 3-

2 to 3-6.  The fdatool is a MATLAB toolbox for filters development. Filter design by 

using fdatool needs to detect the specification of the required filter.  

The specifications for the bandpass filters are summarised in Table 3-9. 
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Table 3-9: Specifications for the bandpass filter for delta, theta, alpha, beta, and 
gamma bands 

Filter parameters Delta Theta Alpha Beta Gamma 

Sampling Frequency, Fs (Hz) 128 128 128 128 128 

First Stopband Frequency, Fstop1 (Hz) 0.1 3.5 7.5 11.5 29.5 

First passband Frequency, Fpass1 (Hz) 0.5 4 8 12 30 

Second passband Frequency, Fpass1 (Hz) 4 8 12 30 45 

Second Stopband Frequency, Fstop2 (Hz) 4.5 8.5 12.5 30.5 45.5 

Stopband attenuation, Astop1 (dB) 60 60 60 60 60 

Stopband attenuation, Astop 2 (dB) 80 80 80 80 80 

The choice of filter parameters are determined by the requirements of the pre-

processing. For example, for the delta filter, there is often a need to remove the low 

frequency baseline and this necessitates a low stop band frequency (0.1 Hz). The 

second passband frequencies are determined by the widely accepted band edge 

frequencies for the EEG activities.  After designing the required filters, the MATLAB 

fdatool is used to generate the corresponding  MATLAB function for the designed 

filters. The functions can then be used to filter the  EEG signal, as shown in Section 

3.3.2. 

 In Sections 3.2.1 to 3.2.5, the design of the filters is presented.  
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3.2.1.  Chebyshev-II bandpass filter design for delta band 

 

 

Figure 3-2: Magnitude response of (IIR) Chebyshev-II bandpass filters for delta 

band from 0Hz to 4Hz 

3.2.2.  Chebyshev-II bandpass filter design for theta band 

 

 

Figure 3-3: Magnitude response of (IIR) Chebyshev-II bandpass filters for theta 

band from 4Hz to 8Hz 
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3.2.3.  Chebyshev-II bandpass filter design for alpha band 

 

 

Figure 3-4:  Magnitude response of (IIR) Chebyshev-II bandpass filters for alpha 

band from 8Hz to 12Hz 

3.2.4.  Chebyshev-II bandpass filter design for beta band 

 

 

Figure 3-5: Magnitude response of (IIR) Chebyshev-II bandpass filters for beta band 

from 12Hz to 30Hz 
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3.2.5.  Chebyshev-II bandpass filter design for gamma band 

 

 

Figure 3-6: Magnitude response of (IIR) Chebyshev-II bandpass filters for gamma  

band from 30Hz to 45Hz 

3.3. Computational programs 

3.3.1. Introduction 

The mathematical computation, signal processing and analysis, statistical analysis, 

and machine learning techniques used in this study were carried out using MATLAB 

toolboxes (i.e., the signal processing toolbox, and machine learning toolbox). 

Different versions of MATLAB were used throughout (MATLAB® 2015 to MATLAB® 

2018).  

MATLAB was selected because most biomedical engineering analysis for EEG signal 

is based on MATLAB. For example, EEGLAB was developed using MATLAB and this 

means it is likely to be compatible with other biomedical applications. Furthermore, it 

is an interactive system with a high-performance programming language for technical 

computing that integrates computation, visualisation, and programming, and is easy-
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to-use. It is therefore the tool of choice for high-productivity research, development, 

and analysis.  

A biomedical engineering toolbox was then developed during the study that can be 

used to detect AD based on EEG analysis. 

The following figures show the toolbox that was developed. 

Figure 3-7 shows the main menu for the biomedical engineering toolbox and the 

toolbar that contains the main tasks. 

 

Figure 3-7: Main menu for the biomedical engineering toolbox 

Figure 3-8 shows the files submenu which contains operations related to file 

processing. 
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Figure 3-8: The files submenu for the biomedical engineering toolbox 

Figure 3-9 shows the methods submenu which contains operations related to 

computation methods. 

 

Figure 3-9: The methods submenu for the biomedical engineering toolbox 

Figure 3-10 shows the diagnosis and performance analysis submenu which contains 

operations related to diagnosis and performance computations. 
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Figure 3-10: The diagnosis and performance analysis submenu containing 

operations related to diagnosis and performance analysis 

Figure 3-10 shows the diagnosis and performance analysis submenu which contains 

operations related to diagnosis and performance computations. 

As shown in Figures 3-7 to 3-10, there are several menus and each menu has multiple 

selections, and there is a specific function associated with each selection. These 

functions are not standard MATLAB functions but were created by using MATLAB 

codes. The MATLAB codes developed for the functions are given in the Appendixes 

1, 2 and 3 for convenience. 

For example, to compute the ZCI values for a given input EEG dataset,  the 

zci_function can be used. 

The developed functions are explained in Sections 3.3.2, 3.3.3, and 3.3.4 below. 

 

3.3.2. MATLAB functions for filtering EEG signal 

EEG signal was filtered into five EEG frequency bands i.e., delta, theta, alpha, beta, 

and gamma. For each band, a MATLAB function was developed using the fdatool, as 
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shown in Sections 3.2.1 to 3.2.5. The whole body of each function was placed in 

Appendix 1.  

Figure 3-11 demonstrates the effect of using  Chebyshev-II bandpass filter for filtering 

real EEG signal into five traditional EEG frequency bands e.g., delta, theta, alpha, 

beta, and gamma. The MATLAB codes were used to generate Figure 3-11 are given  

in Appendix 1.  

 

Figure 3-11: An original EEG signal and its delta, theta, alpha, beta, and gamma 

bands 
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3.3.2.1. Chebyshev-II bandpass filter function for delta band 

Purpose: Filter EEG signal into delta band. 

Syntax: [output] = delta (data, Fs) 

Description: The function delta was used to filter the input signal into delta band. data 

is the input EEG signal, Fs is the sampling frequency for the input EEG 

signal, and output is the filtered signal.  

Example: output = delta (data,128); 

An illustrative example for data is given below. 

  

3.3.2.2.  Chebyshev-II bandpass filter function for theta band 

 

Purpose: Filter EEG signal into theta band. 

Syntax: [output] = theta (data, Fs) 

Description: The function theta was used to filter the input signal into theta band. data 

is the input EEG signal, Fs is the sampling frequency for the input EEG 

signal, and output is the filtered signal.  

Example: output = theta (data,128); 

 

3.3.2.3.  Chebyshev-II bandpass filters for alpha band 

 

Purpose: Filter EEG signal into alpha band. 

Syntax: [output] = alpha (data, Fs) 

Description: The function alpha was used to filter the input signal into alpha band. 

data is the input EEG signal, Fs is the sampling frequency for the input 

EEG signal, and output is the filtered signal.  

Example: output = alpha (data,128); 
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3.3.2.4.  Chebyshev-II bandpass filters for beta band 

 

Purpose: Filter EEG signal into beta band. 

Syntax: [output] = beta (data, Fs) 

Description: The function beta was used to filter the input signal into beta band. data 

is the input EEG signal, Fs is the sampling frequency for input EEG 

signal, and output is the filtered signal.  

Example: output = beta (data,128); 

 

3.3.2.5.  Chebyshev-II bandpass filters for gamma band 

 

Purpose: Filter EEG signal into gamma band. 

Syntax: [output] = gamma (data, Fs) 

Description: The function gamma was used to filter the input signal into gamma band. 

data is the input dataset of EEG signal, Fs is the sampling frequency for 

the input EEG signal, and output is the filtered signal.  

Example: output = gamma (data,128); 

 

3.3.3. MATLAB code for computing EEG signal processing methods 

The EEG based biomarkers were investigated based on eight analysis methods. 

These methods include ΔEEGA, ΔPS, ZCI, TsEn, HFD, ApEn, LZC, and EEG 

Coherence. For each analysis method, a MATLAB function was developed. All the 

functions were used in this study are not standard MATLAB functions.    

The whole body of each function was placed in Appendix 2. 
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To illustrate the execution of the functions, suppose we have an array e.g., 

data(12,10). As shown in Table 3-10, it contains 10 columns and 12 arrows. This 

means we have an EEG dataset for one subject and it has 10 EEG channels, and 

each EEG signal has 12 samples. Suppose the sampling frequency is 10Hz.   

Table 3-10: Sample EEG dataset was used to illustrate  the execution of the  
functions  

4.41 7.93 -3.59 2.34 1.57 3.51 2.67 -3.66 0.00 -0.51 

4.31 13.95 -8.84 4.13 2.33 5.89 2.65 -5.22 0.06 0.61 

3.94 17.58 -11.74 5.77 3.02 7.72 0.83 -5.64 0.40 1.66 

3.28 18.32 -12.22 6.77 3.41 8.68 -1.57 -5.34 1.18 2.31 

2.46 16.81 -11.07 6.87 3.38 8.61 -2.70 -4.91 2.29 2.36 

1.73 14.45 -9.47 6.15 2.92 7.62 -1.18 -4.69 3.35 1.85 

1.31 12.65 -8.44 4.95 2.19 6.05 3.02 -4.65 3.89 1.01 

1.27 12.20 -8.46 3.69 1.35 4.45 8.32 -4.41 3.60 0.22 

1.39 12.92 -9.44 2.67 0.50 3.24 12.20 -3.66 2.61 -0.20 

1.26 13.83 -10.96 1.98 -0.38 2.59 12.48 -2.41 1.43 -0.13 

0.40 13.72 -12.58 1.48 -1.42 2.31 8.37 -1.09 0.75 0.35 

4.41 7.93 -3.59 2.34 1.57 3.51 2.67 -3.66 0.00 -0.51 

  

3.3.3.1. Changes in the EEG amplitude (ΔEEGA) computation  

 

Purpose: Compute the ΔEEGA for EEG signal. 

Syntax: [output] = EEG_amplitude(data,Fs) 

Description: The function EEG_amplitude was used to compute changes in the EEG 

amplitude values for the input signal. ‘data’ is the input dataset of EEG 

signal, Fs is the sampling frequency for input EEG signal, and output is 

the resulted values from applying EEG_amplitude function. 

Computation of that function was based on applying Equations 2.1 – 2.4 

as mentioned in Section 2.4.2. 

Example: output = EEG_amplitude(data,10); 

Result: 
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22.24 50.74 42.00 15.19 19.40 79.65 33.93 64.24 29.16 36.63 

 Each value in the result represents the ΔEEGA value for each EEG channel.   

3.3.3.2. Zero-crossing intervals (ZCI) computation  

 

Purpose: Compute the ZCI for EEG signal. 

Syntax: [output] = zci_function (data,Fs) 

Description: The function zci_function was used to compute zero-crossing intervals 

values for the input signal. ‘data’ is the input dataset of EEG signal, Fs 

is the sampling frequency for the input EEG signal, and output is the 

resulted values from applying the zci_function function. Computation of 

that function was based on applying Equations 2.5 – 2.7 as mentioned 

in Section 2.4.3. 

Example: output = zci_function(data,10); 

Result: 

0.83 1.81 3.05 0.69 0.00 -4.61 2.77 2.97 -0.99 0.00 

 

Each value in the result represents the ZCI value for each EEG channel.   

 

3.3.3.3. Changes in the power spectrum (ΔPS) of EEG signal computation 

 

Purpose: Compute the ΔPS for EEG signal. 

Syntax: [output] = power_spectrum(data) 

Description: The function power_spectrum was used to compute changes in the 

power spectrum values of the input signal. data is the input dataset of 

EEG signal, and output is the resulted values from applying 

power_spectrum function. Computation of that function was based on 

applying Equations 2.8 – 2.9 as mentioned in Section 2.4.4. 
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Example: output = power_spectrum (data,10); 

Result: 

0.83 1.81 3.05 0.69 0.00 -4.61 2.77 2.97 -0.99 0.00 

Each value in the result represents the ΔPS value for each EEG channel.   

3.3.3.4. EEG coherence computation  

 

Purpose: Compute the EEG coherence for EEG signal. 

Syntax: [output] = coherence_function (data,Fs) 

Description: The function coherence_function was used to compute coherence 

values of the input signal. data is the input dataset of EEG signal, Fs is 

the sampling frequency for the input EEG signal, Ch is the EEG channel 

numbers e.g. [1 2 3], and output is the resulted values from applying the 

coherence_function function. Computation of that function was based 

on applying Equation 2.9 as mentioned in Section 2.4.5. 

Example: output = coherence_function(data,[1 2 3 4 5],10); 

Result: 

0.83 1.81 3.05 0.69 0.00 -4.61 2.77 2.97 -0.99 0.00 

 

Each value in the result represents the coherence value for each EEG channel.   

   

3.3.3.5. Tsallis entropy (TsEn) computation function 

 

Purpose: Compute the TsEn for EEG signal. 

Syntax: [output] = Tsallis_entro (data,q) 

Description: The function Tsallis_entro was used to compute Tsallis entropy values 

of the input signal. q is a Tsallis factor, data is the input dataset of EEG 

signal, and output is the resulted values from applying Tsallis_entro 
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function. Computation of that function was based on applying Equation 

2.10 as mentioned in Section 2.4.6. 

Example: output = Tsallis_entro (data,0.5); 

Result: 

-23.08 29.19 -6.17 91.90 67.77 31.45 26.79 7.38 29.42 16.91 

Each value in the result represents the TsEn value for each EEG channel.   

3.3.3.6. Higuchi Fractal Dimension (HFD) computation function 

 

Purpose: Compute the HFD for EEG signal. 

Syntax: [output] = Higuchi_function (data) 

Description: The function Higuchi_function was used to compute HFD values of the 

input signal. data is the input dataset of EEG signal, and output is the 

resulted values from applying Higuchi_function function. Computation 

of that function was based on applying Equations 2.11 - 2.13 as 

mentioned in Section 2.4.7. 

Example: output = Higuchi_function (data); 

Result: 

-0.45 -0.42 -0.27 -0.42 -1.21 0.32 -0.63 -0.35 -0.82 -0.57 

Each value in the result represents the HFD value for each EEG channel.   

 

3.3.3.7. Approximation Entropy (ApEn) computation function 

 

Syntax: [output] = ApEn( dim, r, data) 

Description: The function ApEn was used to compute ApEn values of the input signal. 

dim is the embedded dimension, r is tolerance (typically 0.2 * std), data 

is the input dataset of EEG signal, and output is the resulted values from 



75 
 

applying ApEn function. Computation of that function was based on 

applying Equations 2.14 - 2.16 as mentioned in Section 2.4.8. 

Example: output = ApEn( 2, 5.12, data ) 

Result: 

0.29 0.61 0.37 0.03 0.08 -0.15 -0.18 -0.22 0.07 -0.41 

Each value in the result represents the ApEn value for each EEG channel.   

3.3.3.8. Lempel Ziv Complexity (LZC) computation function 

 

Purpose: Compute the LZC for EEG signal. 

Syntax: [output] = LZC (data) 

Description: The function LZC was used to compute LZC values of the input signal. 

data is the input dataset of EEG signal, and output is the resulted values 

from applying LZC function. Computation of that function was based on 

applying Equations 2.18 - 2.19 as mentioned in Section 2.4.9. 

Example: output = LZC (data); 

Result: 

1.49 1.79 1.49 1.79 1.79 1.19 1.49 1.19 1.49 1.19 

Each value in the result represents the LZC value for each EEG channel.   

 

3.3.4. MATLAB machine learning approaches 

The EEG based biomarkers were investigated to assess their performance. Machine 

learning model was developed for each biomarker using the MATLAB machine 

learning toolbox (classification learner). The biomarkers were extracted for eight 

analysis methods. These methods include ΔEEGA, ΔPS, ZCI, TsEn, HFD, ApEn, 

LZC, and EEG Coherence. 10-fold cross-validation was used to learn the developed 

models. For each machine learning approach, a MATLAB function was developed. 
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All functions were used in this study are not standard MATLAB functions. The whole 

body of each function was placed in Appendix 3. 

The following steps explain using MATLAB functions for uploading EEG data into 

MATLAB and using the developed machine learning functions e.g., SVM, LDA, and 

KNN. 

1. Prepare CSV file contains the biomarker for AD patients and normal subjects as 

shown in Table 3-11. Suppose we have a data file saved in Excel format e.g., 

data.xlsx as shown in Table 3-11. 

Table 3-11: CSV EEG data file for uploading in MATLAB toolbox (classification 
learner) 

VarName1 VarName2 VarName3 VarName4 VarName5 VarName6 Stat 

10.716 0.018364 0.638427 0.152862 0.068752 0.856114 AD 

10.733 0.018318 0.639364 0.153254 0.068966 0.856175 AD 

10.745 0.018243 0.637837 0.15297 0.069534 0.856224 AD 

10.732 0.018086 0.637822 0.153039 0.068979 0.854451 AD 

10.723 0.0177 0.635625 0.152946 0.068819 0.855088 AD 

10.75 0.017454 0.635193 0.152995 0.069432 0.856945 AD 

10.745 0.017056 0.635536 0.152566 0.07119 0.85299 AD 

10.747 0.016569 0.636369 0.152796 0.072434 0.85044 AD 

0.008587 0.342673 0.000735 0.03965 0.035008 0.016558 Norm 

0.008772 0.233128 0.000752 0.039545 0.034953 0.016595 Norm 

0.008593 0.120405 0.000736 0.039161 0.035027 0.016589 Norm 

0.007657 0.087793 0.000648 0.039442 0.034994 0.016666 Norm 

0.008925 0.051825 0.000759 0.039408 0.035011 0.016543 Norm 

0.007679 0.034675 0.000647 0.038812 0.034979 0.016685 Norm 

0.008645 0.025307 0.000734 0.039181 0.035008 0.016582 Norm 

The variables in Table 3-10 refers to the biomarkers e.g., Var1 for 

TsEn(Alpha/theta(T6)), Var2 for ZCI(Alpha/theta(P3)), Var3 for 

ZCI(Delta/alpha(P3)), and so on. 

2. Uploading the CSV file into the MATLAB by using MATLAB function importfile. 

The developed importfile function was used to import the EEG data into 

MATLAB, as shown: 

Purpose: Upload data file into MATLAB. 
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Syntax: tableout = importfile(workbookFile,sheetName,startRow,endRow) 

Description: The function importfile was used to read the data from the worksheet in 

the Microsoft Excel spreadsheet file named workbookFile. It then 

returns the data as a  table e.g., tableout into MATLAB toolbox 

(classification learner), sheetName is worksheet name e.g., ‘Sheet1’. 

Specify startRow and endRow as a pair of scalars or vectors of 

matching size for dis-contiguous row intervals. To read to the end of the 

file specify an endRow. 

Example: Table = importfile (“data.xlsx”, “Sheet1”,1,15); 

3. The uploaded EEG data can be classified using the developed machine 

learnings functions e.g., SVM, LDA, and KNN.   

The following Sections 3.3.4.1 – 3.3.4.3 explain using the developed machine learning 

approaches to detect AD patients. 

3.3.4.1. Support Vector Machine (SVM)  

Function trainClassifier_SVM was used to develop an SVM classification model using 

10-fold cross-validation. The developed model was used to detect AD patients as 

shown in Section 3.3.4.4. 

Function trainClassifier_SVM returns a trained classifier and its accuracy. 

Purpose: Develop an SVM classification model using 10-fold cross-validation. 

Syntax: [trainedClassifier, validationAccuracy] = trainClassifier_SVM(trainingData) 

Description: The function trainClassifier_SVM was used to develop an SVM 

classification model using 10-fold cross-validation, trainingData is EEG 

dataset table was used to develop the classification model, 

trainedClassifier is a struct containing the trained classifier, and 

validationAccuracy  is the accuracy of the developed model.  
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Example: [trainedClassifier, validationAccuracy] = trainClassifier_SVM(Table) 

3.3.4.2. Linear Discriminant Analysis computation 

Function trainClassifier_LDA was used to develop an LDA classification model using 

10-fold cross-validation. The developed model was used to detect AD patients as 

shown in Section 3.3.4.4. 

Function trainClassifier_ LDA returns a trained classifier and its accuracy. 

Purpose: Develop an LDA classification model using 10-fold cross-validation. 

Syntax: [trainedClassifier, validationAccuracy] = trainClassifier_ LDA (trainingData) 

Description: The function trainClassifier_LDA was used to develop an LDA 

classification model using 10-fold cross-validation, trainingData is EEG 

dataset table was used to develop the classification model, 

trainedClassifier is a struct containing the trained classifier, and 

validationAccuracy  is the accuracy of the developed model.  

Example: [trainedClassifier, validationAccuracy] = trainClassifier_ LDA (Table) 

 

3.3.4.3. K-nearest neighbour (KNN) computation 

 

Function trainClassifier_ KNN was used to develop an KNN classification model using 

10-fold cross-validation. The developed model was used to detect AD patients as 

shown in Section 3.3.4.4. 

Function trainClassifier_KNN returns a trained classifier and its accuracy. 

Purpose: Develop an KNN classification model using 10-fold cross-validation. 

Syntax: [trainedClassifier, validationAccuracy] = trainClassifier_ KNN (trainingData) 

Description: The function trainClassifier_KNN was used to develop an KNN 

classification model using 10-fold cross-validation, trainingData is EEG 
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dataset table was used to develop the classification model, 

trainedClassifier is a struct containing the trained classifier, and 

validationAccuracy  is the accuracy of the developed model.  

Example: [trainedClassifier, validationAccuracy] = trainClassifier_KNN (Table) 

 

3.3.4.4. Model validation 

The developed model can be validated by using another EEG dataset. The developed 

models e.g., trainedClassifier for the SVM, LDA, and KNN were used for validation 

using different EEG dataset. The function predictFcn was used to make a prediction 

using a new dataset (unseen EEG dataset e.g., New_EEG_data). 

For example, to validate the SVM developed model using the New_EEG_data the 

function would be used as  shown: 

Yfit_SVM = trainedModel_SVM.predictFcn(New_EEG_data); 

the output (results) in yfit_SVM as shown, 

yfit_SVM =  

  20×1 categorical array 

     AD  

     AD  

     AD  

     AD  

     AD  

     AD  

     AD  

     AD  

     AD  

     AD  

     Norm  

     Norm  

     Norm  

     Norm  

     Norm  

     Norm  

     Norm  
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     Norm  

     Norm  

     Norm 

 

3.4. Overview of EEG Based Biomarkers 

3.4.1. Introduction 

A biomarker is an indicator used to detect a specific biological state, along with 

functional and structural variations in organs and cells [2][33][34]. AD is characterised 

by loss of memory and cognitive decline resulting from damage to brain cells which 

affects brain activity [48]. Damage to nerve cells/pathways in the brain due to AD 

causes changes in the information-processing activity of the brain. These changes 

are thought to be reflected in the informational content of the EEG [23]. The 

electroencephalogram (EEG) can therefore play a potentially valuable role in the 

early detection of AD [15][23][24][42][43][44][50]. EEG is non-invasive, low-cost, has 

a high temporal resolution, and provides valuable information about brain dynamics 

related to AD [23][24][43][45]. EEG exhibits high sensitivity when discriminating 

between AD patients and normal people [49][50][209] . The fundamental utility of 

EEG in detecting changes in brain signals, even in the preclinical stage of the 

disease, has been widely demonstrated [47]. EEG based biomarkers have proved to 

be of great value in the identification of preclinical AD [41]. EEG based biomarkers 

can thus be used as a first line decision-support tool for AD diagnosis in clinical 

practice.  

The most characteristic features evident in an EEG that detects AD are slowing of the 

EEG, a decrease in EEG coherence, and a reduction in EEG complexity 

[43][45][47][48][84][85]. These changes can thus be quantified as biomarkers of AD. 

EEG based biomarkers can therefore be divided into three main categories: the 

slowing of the EEG, reduction in complexity, and a decrease in the coherence 

between cortical regions [43][44][45][47][48][50][84][85]. 
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3.4.2. Slowing of EEG 

The slowing of the EEG is one of the most consistent features relating to the detection 

of AD. Slowing may therefore be quantified as a biomarker of AD [15][48][210]. It can 

be measured in several ways such as changes in EEG amplitude (ΔEEGA), zero-

crossing intervals (ZCI) [15], and changes in the power spectrum (ΔPS) of the EEG 

signal [15][43][44][48][85][211][212][213][214][215][216][217][218]. Al-nuaimi et al. 

[8] quantified slowing in EEG by measuring the ΔEEGA. Their results showed that 

ΔEEGA is a promising nonlinear EEG marker in the time domain. It can be measured 

through changes in EEG amplitude and can track changes in the EEG over time [8]. 

Their results showed that a gradual change in EEG amplitude is a marker for the 

subsequent rate of cognitive and functional decline in AD patients [8]. The reduction 

of ZCI of an EEG signal has also been shown to be a promising biomarker of AD [15] 

[126].The slowing of the EEG can also be quantified by the power of the EEG signal 

in different frequency bands (i.e., delta, theta, alpha, beta, and gamma) where 

slowing is manifest in a decrease in power of high frequency bands (alpha and beta) 

and an increase in power of low frequency bands (delta and theta). These changes 

can be used to distinguish AD patients from those with other types of dementia 

[15][43][44][48][85]. An increase in the power ratio of the alpha/middle alpha bands 

is an indicator of mild cognitive impairment (MCI) in people who may go on to develop 

AD [211]. Conversely, an increase in the power ratio of theta/gamma bands has been 

associated with MCI patients who may not develop AD [219]. This increase was 

related to a decline in memory and can therefore be used to identify MCI patients in 

a cohort of normal people [47]. Numerous studies have shown that power changes in 

the EEG frequency bands are promising markers of AD 

[211][212][213][214][215][216][217] [218]. 
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3.4.3. Reduction in EEG complexity 

Complexity is a measure of the extent to which the dynamic behaviour of a given 

sequence resembles one that is random [92]. The cortical areas of the brain fire 

spontaneously and such dynamic behaviour is complex [93][94]. AD causes a 

reduction in the neuronal activity of the brain [95] resulting in a decreased ability to 

process information [96][97][98] which may be reflected in EEG signals [95]. EEG 

complexity can potentially be a good biomarker for AD diagnosis [48] as AD patients 

exhibit a significant reduction in EEG complexity [48][50][84][85][95][99][100]. This 

reduction can be measured using Tsallis entropy (TsEn) [45][220][102], Higuchi 

Fractal Dimension (HFD) [125], Approximation Entropy (ApEn) [136][221][222][115], 

and Lempel Ziv Complexity (LZC) [86][223]. TsEn is one of the most promising 

information theoretic methods for quantifying EEG complexity [45][220][102] 

[105][106]. Its capacity for rapid computation may serve as the basis for real-time 

decision support tools for diagnosing AD [45][220][105][224][107]. HFD is a fast, 

nonlinear computational method for obtaining the fractal dimension of time series 

signals [119][120][121], even when very few data points are available [119]. The 

fractal dimension of EEG signals is significantly lower in AD patients than in normal 

people [126][125]. HFD of the EEG is therefore a potentially good biomarker of AD 

[49][125]. ApEn is a powerful nonlinear powerful method that can be used to analyse 

the dynamic behaviour of the brain based on complex biological signals such as the 

EEG [90][225]. ApEn is less affected by noise, robust to outliers, and offers good 

reproducibility with medium-sized datasets [225][226][137]. The reduction in ApEn of 

EEG is thus a good indicator of AD [136][221][115][90][135] . LZC is a nonparametric 

and nonlinear method that provides a powerful method for quantifying the complexity 

of finite length sequences [110][111]. It has previously been used to analyse EEG 

complexity in patients with AD [86][112]. The reduction of LZC values may therefore 

be a good biomarker for AD [86][112][113]. 
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3.4.4. Decrease in EEG coherence 

AD causes changes in the cortical electrical activity of the brain [131] which affects 

the coherence of structural connectivity among cortical regions of the brain [48]. 

These changes may then be reflected in EEG coherence, which can be quantified by 

assessing the functional coupling between brain regions [48][227]. Coherence 

measures depend on the channel location and frequency bands of the EEG signal 

[131][228][229][132][230]. AD patients show a significant reduction of coherence in 

the alpha band, especially in the temporo-parieto-occipital regions, and an increase 

in the coherence of the delta band. AD patients show a reduction in both the left 

temporal alpha band and interhemispheric theta band [132]. Analysis of left temporal 

alpha coherence may enhance the usefulness of an EEG in AD diagnosis [132]. 

Furthermore, a positive association has been found between EEG coherence in the 

frontal region for delta and beta bands, and incoherence between frontal and 

posterior in the theta band [229]. EEG coherence is therefore a sensitive and 

selective method for assessing the integrity of structural connections between brain 

areas in AD patients [230]. As such, it is a useful marker for AD diagnosis [48][133].  
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Chapter 4. Investigation of the Novel EEG Biomarker for Detection of 

Alzheimer’s Disease 

4.1. Introduction 

Many techniques exist for deriving AD biomarkers from the EEG [87]. However, time 

domain-based approaches are potentially one of the most reliable ways to derive 

robust EEG biomarkers for AD [15][220][231]. In this chapter, new and emerging EEG 

biomarkers were investigated and developed. 

AD biomarkers based on analysis of the complexity and slowing of EEG signal 

provided promising results [99][106][232]. Two analysis of complexity methods in EEG 

signal such as Tsallis entropy (TsEn) and Higuchi fractal dimension (HFD) were 

investigated and we present a new approach to quantify the slowing of the EEG in the 

time domain by measuring changes in the EEG amplitudes.  

TsEn was selected form the other types of entropies e.g., Shannon entropy, 

permutation entropy, and Kolmogorov entropy because our experiments showed the 

performance of Tsallis entropy in AD detection was better than the others types of 

entropies as shown in Table 4-1. 

The changes in the amplitudes over time may be viewed as the mean velocity of the 

EEG [233]. The approach is easy to implement and is computationally efficient.  

The aim of this chapter is to investigate the promising EEG analysis methods used to 

detect AD. Therefore, new and emerging EEG biomarkers were investigated and 

developed.  The research question in this chapter: is it possible to develop EEG based 

biomarkers using a minimal number of EEG channels. The hypothesis of this study is 

that it is possible to identify the candidate EEG channels that can be used to detect 

AD. The whole EEG record and all 19 EEG channels were investigated. The analysis 

of EEG signal was achieved in time domain. P-value was used as a criterion to detect 

EEG channels that can be used to develop a diagnostic model for AD detection. KNN 
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was used to develop a diagnostic model for each analysis method. The performance 

of each biomarker was assessed by its sensitivity, specificity.   

Table 4-1 shows the performance of TsEn entropy compared to other types of entropy 

e.g., Shannon entropy, permutation entropy, and Kolmogorov entropy. EEG datasets 

A, and B were selected in the experiments. Euclidian distance measure was used to 

compute the distance between AD patients and normal subjects. The results 

suggested that the TsEn was better than the other entropies for the detection of   AD.     

Table 4-1: Performance analysis of TsEn entropy compared to types of entropies 

Analysis method Sensitivity Specificity Accuracy F-measure 

Tsallis entropy 65.38 88.46 76.92 73.91 

Shannon entropy 53.85 

 

76.92 

 

65.38 

 

60.87 

 permutation entropy 50.00 

 

71.43 

 

61.54 

 

54.55 

 Kolmogorov entropy 48.15 

 

72.00 

 

59.62 

 

55.32 

   

4.2. Methodology 

The EEG data used in this chapter consists of two datasets (A, and B). Dataset A 

includes 11 age-matched subjects (3 AD patients, and 8 normal subjects). Dataset B 

includes 41 subjects that were not perfectly age-matched with 24 normal subjects (10 

males and 14 females) and 17 were probable AD patients (9 males and 8 females). 

The EEG dataset was split into training and testing data (60% for training and 40% for 

testing) with subjects selected at random. More details are given in Chapter 3.  

In our approach, the process of deriving the EEG biomarker from the TsEn, ΔEEGA, 

and HFD methods was divided into training and testing phases. Dataset  B was used 

for training (developing the KNN classification model) because of its larger size which 

meant it has more diversity and covered most of the problem space and dataset A with 

the remaining of dataset B were used for testing (testing the developed KNN 

classification model). The training dataset has 20 normal subjects and 12 AD patients 
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were selected at random from dataset B. The testing dataset has 12 normal subjects 

and 8 AD patients; 5 AD patients and 4 normal subjects were selected from dataset B 

that combined with the 3 AD patients and 8 normal subjects of dataset A. 10-fold cross 

validation was used for developing the KNN classification model. The EEG biomarkers 

were computed for the whole EEG record in time domain for all 19 EEG channels.  

The following steps outline the procedure for deriving the biomarkers 

1. Compute TsEn, ΔEEGA, and HFD values for each the 19 EEG channel for the 

EEG dataset (i.e., Fp1, Fp2, F7, F3, FZ, F4, F8, T3, C3, CZ, C4, T4, T5, P3, PZ, 

P4, T6, O1, and O2). 

2. Determine which features have a significant statistical association with AD. P-

value between AD patients and normal subject for each of the TsEn, ΔEEGA, 

and HFD method was computed. 

3. For each of the candidate method, identify the EEG channels that show a 

significant separation between AD patients and normal subjects based on p-

value analysis. EEG channels with the smallest p-values between AD patients 

and normal subject are selected to detect AD. 

4. Select identified EEG channels for each of the candidate methods to construct 

an EEG panel as a feature vector that can be used in the classification between 

AD patients and normal subjects. 

5. Use machine learning techniques to develop diagnostic models. The selected 

EEG channels from each method were used to develop a KNN classification 

model for each of the candidate methods. Therefore, three KNN classification 

models were developed. 

6. The performance of each model was assessed based on its sensitivity, 

specificity, accuracy, f-measure, PPV, NPV, and ROC. 
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4.2.1. Tsallis entropy (TsEn) computation 

TsEn values were computed for the 19 EEG channels of EEG dataset. Figure 4-1 

shows the TsEn values for one AD patient and one normal subject for the 19 EEG 

channels. The mean values of TsEn were computed for AD patients and normal 

subjects as shown in Figure 4-2.  

 

Figure 4-1: TsEn values for one AD patient and one normal subject 

Figure 4-1 shows the actual TsEn values for one AD patient and one normal subject.  

 

Figure 4-2: Mean TsEn for AD patients and normal subjects 

Figure 4-2 shows the mean TsEn values for AD patients and normal subjects.  
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4.2.2. Changes in the EEG amplitude (ΔEEGA) computation 

The ΔEEGA values were computed for the 19 EEG channels of EEG dataset. Figure 

4-3 shows the ΔEEGA values for one AD patient and one normal subject for the 19 

EEG channels. The mean values of ΔEEGA were computed for AD patients and 

normal subjects as shown in Figure 4-4.  

 

Figure 4-3: ΔEEGA values for one AD patient and one normal subject 

 

Figure 4-4: Mean ΔEEGA for AD patients and normal subjects 
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4.2.3. Higuchi fractal dimension (HFD) computation 

The HFD values were computed for the 19 EEG channel of EEG dataset. Figure 4-5 

shows the HFD values for one AD patient and one normal subject for the 19 EEG 

channels.. The mean values of HFD were computed for AD patients and normal 

subjects as shown in Figure 4-6.  

 

Figure 4-5: HFD values for one AD patient and one normal subject 

 

Figure 4-6: Mean HFD for AD patients and normal subjects 

4.2.4. Biomarker selection 

Figures 4-1, 4-3, and 4-5 show TsEn, ΔEEGA, and HFD values for all 19 EEG channels 
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TsEn, ΔEEGA, and HFD values between AD patients and normal subjects in some of 

EEG channels, not for all the channels. EEG channels have less overlap may be used 

to discriminate between AD patients and normal subjects. 

Figures 4-2, 4-4, and 4-6 show the mean TsEn, ΔEEGA, and HFD values of AD 

patients are lower than those in normal subjects. This reduction in TsEn, ΔEEGA, and 

HFD  values of EEG is because AD causes a reduction in neuronal activity of the brain 

and this may be reflected in the content of EEG signals [215][234]. It can be seen from 

those figures that there is little or no difference in mean of TsEn, ΔEEGA, and HFD 

values for all 19 channels. This is because the changes in the EEG of AD are 

qualitatively similar to those in normal subjects [235]. It may therefore be difficult to 

develop a diagnosis model based on the 19 EEG channels. For example, the mean 

TsEn values for EEG channels T3, C3, and C4 show no discernible difference, but 

channels Fp1, Fp2, Fz, F8, Cz, and Pz showed a difference between AD patients and 

normal subjects as shown in Figure 4-2. Figure 4-4 shows ΔEEGA values of EEG for 

all 19 channels, the mean ΔEEGA values for channels F7, F8, and T3 show less 

discernible difference, but channels Fz, F4, Cz, and Pz show significant differences 

between AD patients and normal subjects. Of all the 19 EEG channels, the mean HFD 

values for channels F3, F4, and C3 showed the least discernible difference between 

AD patients and normal subjects whereas the mean values for channels Fp1, Fp, Fz, 

Cz, Pz, and T6 showed the most difference (see Figure 4-6). This suggests that it may 

therefore be possible to discriminate between AD patients and normal subjects based 

on the analysis of the biomarker values for the EEG channels for the candidate 

methods.  

P-values between AD patients and normal subjects were analysed for all 19 EEG 

channels to identify the channels have a significant separation between AD patients 

and normal subjects. EEG channels have a minimum p-value were selected as a 
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feature vector that can be used to discriminate between AD patients and normal 

subjects. EEG channels that have the lowest p-value compared to other channels 

were selected. A threshold of 0.09 was set for the p-values for this based on the 

analysis of p-values between AD patients and normal subjects. 

Figure 4-7 shows the p-values between AD patients and normal subjects for the 

training dataset for all 19 EEG channel of TsEn method. 

 

Figure 4-7: P-values between AD patients and normal subjects for all 19 EEG 
channels of TsEn method 

Figure 4-7 shows EEG channels Fp1, Fp2, F8, and Cz have the minimum p-values 

between the two groups e.g., AD and normal, but other channels such as T3, and C3 

have the maximum p-values.  

Figure 4-8 shows the p-values between AD patients and normal subjects for training 

dataset for all 19 EEG channel of ΔEEGA method. 
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Figure 4-8: P-values between AD patients and normal subjects for all 19 EEG 
channels of ΔEEGA method 

 

Figure 4-8 shows channels Fz, F8, Cz, C4, T4, Pz, P4, and T6 have the minimum p-

values between the two groups e.g., AD and normal, but other channels such as F3, 

T3, and C3 have the maximum p-values.  

Figure 4-9 shows the p-values between AD patients and normal subjects for training 

dataset for all 19 EEG channels for the  HFD method. 

 

Figure 4-9: P-values between AD patients and normal subjects for all 19 EEG 
channels of HFD Method 
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Figure 4-9 shows channels Fz, F8, Cz, T5, Pz, P4, and T6 have the minimum p-values 

between the two groups e.g., AD and normal, but other channels such as F3, T4, and 

T3 have the maximum p-values.  

4.3. Results 

4.3.1. Tsallis Entropy (TsEn) 

The EEG channels: Fp1, Fp2, F8, and Cz were selected in discriminating between AD 

patients and normal subjects e.g., TsEn(Fp1), TsEn(Fp2), TsEn(F8), and TsEn(Cz). 

Table 4-2 shows the performance of the KNN-based classification model of TsEn 

biomarkers for the whole EEG record for the 19 EEG channels. In this case, the 

sensitivity and specificity were 72.7% and 100%, respectively. 

Table 4-2: Performance results of TsEn biomarker 

Sensitivity 72.7% 

Specificity 100% 

Accuracy 85% 

F-measure 84% 

PPV 100% 

NPV 75% 

Figure 4-10 shows the ROC and AUC for the performance of the KNN classification 

model for TsEn biomarkers. 
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Figure 4-10: ROC and AUC for the performance of TsEn biomarkers 

 

4.3.2. Changes in the EEG Amplitude (ΔEEGA) 

The EEG channels Fz, F8, Cz, C4, T4, Pz, P4, and T6 were selected to  discriminate 

between AD patients and normal subjects e.g., ΔEEGA(Fz), ΔEEGA(F8), ΔEEGA(Cz), 

ΔEEGA(C4) , ΔEEGA(T4), ΔEEGA(Pz), ΔEEGA(P4), and ΔEEGA(T6). Table 4-3 shows 

the performance of the KNN-based classification model of ΔEEGA biomarkers for the 

whole EEG record for the 19 EEG channels. In this case, the Sensitivity and Specificity 

were 87.5% and 91.6%, respectively. 

Table 4-3: Performance results of ΔEEGA biomarker 

Sensitivity 87.5% 

Specificity 91.6% 

Accuracy 90.0% 

F-measure 87.5% 

PPV 87.5% 

NPV 91.6% 
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Figure 4-11 shows the ROC and AUC for the performance of the KNN classification 

model for ΔEEGA biomarkers. 

 

Figure 4-11: ROC and AUC for the performance of ΔEEGA biomarkers 

4.3.3. Higuchi Fractal Dimension (HFD) 

The EEG channels Fz, F8, Cz, T5, Pz, P4, and T6 were selected to discriminate 

between AD patients and normal subjects e.g., HFD(Fz), HFD(F8), HFD(Cz), 

HFD(T5), HFD(Pz), HFD(P4), and HFD(T6). Table 4-4 shows the performance of the 

KNN-based classification model of ΔEEGA biomarkers for the whole EEG record for 

the 19 EEG channels. In this case, the sensitivity and specificity were 77.7% and 

90.9%, respectively. 
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Table 4-4: Performance results of HFD biomarker 

Sensitivity 77.7% 

Specificity 90.9% 

Accuracy 85% 

F-measure 82.3% 

PPV 87.5% 

NPV 83.3% 

Figure 4-12 shows the ROC and AUC for the performance of the KNN classification 

model for HFD biomarkers. 

 

Figure 4-12: ROC and AUC for the performance of HFD biomarkers 

4.4. Discussions 

AD causes a reduction in the neuronal activity of the brain [95] resulting in a decreased 

ability to process information [96][97][98] which may be reflected in EEG signals [95]. 

The EEG signal was investigated in AD detection based on the analysis of the 
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complexity and slowing in EEG. The slowing of the EEG is one of the most consistent 

features which is relating to the detection of AD. Slowing may therefore be quantified 

as a biomarker of AD [15][48][210]. Furthermore, AD patients exhibit a significant 

reduction in EEG complexity [48][50][84][85][95][99][100]. In this chapter, the whole 

EEG record was investigated in the time domain. TsEn and HFD were used to 

compute the complexity and ΔEEGA was used to compute the slowing in EEG. TsEn, 

ΔEEGA, and HFD were computed for all 19 EEG channels. P-value was used between 

AD patients and normal subjects for all 19 EEG channels and it was used as criteria 

to identify the EEG channels that have a significant association with AD. For TsEn, 

four EEG channels were selected i.e., Fp1, Fp2, F8, and Cz. For ΔEEGA, eight EEG 

channels were selected i.e., Fz, F8, Cz, C4, T4, Pz, P4, and T6. For HFD, seven EEG 

channels were selected i.e., Fz, F8, Cz, T5, Pz, P4, and T6. Most of the  channels are 

located at  the back part of the brain and this is compatible with the findings in other 

studies that demonstrated that the gradual slowing of the brain wave activity caused 

by AD starts from the back of the brain and then spreads out to  other parts over  time 

[210][236][237]. The candidate EEG channels from the 19 EEG channels were four 

for TsEn, seven for ΔEEGA, and eight for HFD have  proved the  hypothesis that it is 

possible to identify the  EEG channels that can be used to detect AD. The selected 

channels were then used to construct a KNN classification model for each method. 

The results suggest that AD can be detected with high performance using a few EEG 

channels. The performance for TsEn values of EEG was 72.7% for sensitivity and 

100% for specificity, for ΔEEGA it  was 87.5% for sensitivity and 91.6% for specificity, 

and for HFD it was 77.7% for sensitivity and 90.9% for specificity.  These results are 

consistent with those of others and show that EEG based biomarkers can play a 

potentially valuable role in the early detection of AD [15][23][24][42][43][44][50].   



98 
 

4.5. Summary 

Three promising EEG analysis methods were investigated to detect AD based on the 

analysis of EEG signal. The results suggest that the EEG signal could be used to 

detect AD with a small number of channels which have a significant association with 

AD. Also, the results suggest that Tsallis entropy-based biomarkers, ΔEEGA based 

biomarkers, and HFD-based biomarkers are suitable for the detection of dementia. At 

this level of performance, these approaches may serve as a basis for a first line of a 

decision support tool for detection of dementia. In addition, the results suggest that 

TsEn, ΔEEGA , and HFD biomarkers are promising biomarkers that identify  the EEG 

channels thought to be affected first by AD  and so could be used to detect subjects 

at high risk of dementia. As AD subjects have significantly lower TsEn, ΔEEGA, and 

HFD values, this provides an effective way to discriminate between AD patients and 

normal subjects. Potentially, the complexity and slowing of the EEG could be markers 

for the subsequent rate of cognitive and functional decline in AD patients.  
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Chapter 5. Complexity Measures for Quantifying Changes in 

Electroencephalogram in Alzheimer’s Disease 

5.1. Introduction 

Several studies have investigated EEG complexity as a potential AD biomarker using 

whole EEG record with the objective of achieving a high performance. Given the 

association of EEG activities (e.g. alpha, delta activities) with AD, we hypothesised 

that complexity measures based on the EEG frequency bands would provide better 

results than those derived directly from the whole EEG record. The aim was to 

enhance the performance of the complexity measures and to demonstrate their 

usefulness in quantifying changes in EEG due to AD. 

This is a cross-sectional study aimed at demonstrating the usefulness of EEG-based 

complexity measures to detect AD. In this chapter, we investigated an important class 

of complexity measures, information theoretic methods, which offers a potentially 

powerful approach for quantifying changes in the EEG due to AD [220]. Information 

theoretic methods (i.e., TsEn and LZC) have emerged as a potentially useful 

complexity-based approach to derive robust EEG biomarkers of AD [220][102][105] 

[90][238][239]. They are attractive because of the potential natural link between 

information theory-based biomarkers and changes in the brain caused by AD [220]. 

Conceptually, information processing activities in the brain are thought to be reflected 

in the information content of the EEG.  

It is widely accepted that AD causes a decrease in the power of high frequencies 

(alpha, beta, and gamma) and an increase in the power of low frequencies (delta and 

theta) [15][43][44][48][85].  

Digital filters were used to extract the five EEG frequency bands (i.e., delta, theta, 

alpha, beta, and gamma). Complexity measures were then obtained for each of the 
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five EEG frequency bands and for each channel using each of the three methods of 

computing complexity measures (TsEn, HFD, and LZC). 

For each method, we computed a panel of 114 biomarkers (i.e., 19 biomarkers for 

the whole EEG record, and 19 biomarkers for each of the five EEG frequency bands). 

The performance measures for each biomarker was computed (including the 

sensitivity and specificity).  

5.2. Methodology 

The following steps outline the procedure that was used to derive the biomarkers for 

the three complexity methods (i.e., TsEn, HFD, and LZC) 

1. The EEG signal was filtered using infinite impulse response (IIR) Chebyshev-II 

band pass filter into five frequency bands (i.e., delta 0-4Hz, theta 4-8Hz, alpha 8-

12Hz, beta 12-30Hz, and gamma 30-45Hz). A low computational IIR filter was 

used to retain the computational efficiency of the derived complexity-based 

biomarkers [206]. 

2. The biomarkers were then derived first from the whole EEG record and then for 

each of EEG frequency bands for each of the three EEG complexity methods. 

3. For each biomarker of the EEG complexity methods (i.e., TsEn, HFD, and LZC), 

p-values were computed between AD patients and normal subjects using student 

t-test. 

4. The performance of each complexity measure to detect AD is then assessed. For 

each complexity measure, a classification model, based on the support vector 

machine (SVM), was used to detect AD.   

A panel of 114 biomarkers was computed (19 biomarkers for the whole EEG record 

and 19 biomarkers for each of EEG frequency band (i.e., delta, theta, alpha, beta, 

and gamma). To determine which features have a significant statistical association 

with AD, we computed p-values between AD patients and normal subjects using 
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student t-test. This allowed us to identify significant features that may be useful to 

discriminate between AD patients and normal subjects. The EEG data used in this 

chapter consists of two datasets (A and B). Dataset A includes 11 age-matched 

subjects over 65 years old (3 AD patients, and 8 normal subjects). Dataset B includes 

41 subjects that were not perfectly age-matched with 24 normal subjects (10 males 

and 14 females) and 17 were probable AD patients (9 males and 8 females). The 

dataset was split into training and testing data (60% for training and 40% for testing) 

with subjects selected at random. For the training dataset, 1-AD patients from dataset 

A and 3-AD patients from dataset B, and 2-normal subjects from dataset A and 10-

normal subjects from sub dataset B were selected. But for the testing dataset, 2-AD 

patients from dataset A and 10-AD patients from dataset B, and 6-normal subjects 

from dataset A and 14-normal subjects from dataset B were selected. P-values were 

computed using the training EEG dataset. Machine learning techniques were used to 

develop models based on biomarkers. As a classifier, we used support vector 

machine (SVM) to model biomarkers extracted using TsEn, HFD, and LZC methods. 

SVM classifier was  

used because it is widely used in machine learning and has found application in 

dementia diagnosis. It has shown better performance in biomedical data analysis and 

in automatic AD diagnosis compared to other conventional classifiers (e.g., Euclidean 

distance classifier), good capability to learn from experimental data [240][241], and it 

has a stable classification performance [242]. It has also been shown to outperform 

other machine learning techniques (e.g., Naive Bayes, Multilayer Perceptron, Bayes 

Network, egging, Logistic Regression, Random Forest,) in diagnosis of MCI and 

dementia [243]. We used the testing EEG dataset to test the performance of the 

models. For each complexity method, six performance tables were created (whole 

EEG record, and table for each EEG frequency band).  



102 
 

The performance of the TsEn, HFD, and LZC biomarkers for AD diagnosis was 

assessed in terms of Sen, Spec, ACC, F-measure, FPR, FNR, PPV, and NPV. MCC 

was computed to measure the quality of the binary classification (AD and normal) 

between the actual and predicted results [173][174].  

5.3. Results 

We analysed the performance of the three different complexity measures in 

quantifying changes in EEG due to AD. For this purpose, we examined the 

differences between the values of the complexity measures derived from EEG signals 

of AD subjects and  those of  normal subjects. Biomarkers that do not show significant 

differences between AD patients and normal subjects may not be suitable for 

quantifying changes in EEG due to AD as they may not be capable of being used to 

discriminate between AD and normal subjects.  

We found that complexity measures derived from the EEG frequency bands for AD 

patients were significantly different to those of normal subjects compared to 

complexity measures derived from the whole EEG record. This suggests that they 

may be better suited to quantifying changes in the EEG due to AD and potentially 

may provide better results in AD diagnosis.  

Figure 5-1 shows the EEG biomarkers derived from whole EEG record (i.e. unfiltered) 

and those derived from the five EEG bands (delta, theta, alpha, beta, and gamma 

bands) using the TsEn method. The results show that TsEn values for AD patients 

are lower than those for normal subjects for the whole EEG record. This is consistent 

with the findings in other studies [45][220][102][107]. Figure 5-1 also shows that the 

differences between the TsEn values for AD patients and for normal subjects for the 

EEG bands (delta and theta bands in particular) are larger than those for whole EEG 

record. This is a desirable feature in a biomarker as it suggests that TsEn biomarkers 
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derived the EEG bands may provide better performance in detecting AD than those 

from whole EEG record. 
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Figure 5-1: EEG biomarkers for TsEn
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Figure 5-2 shows the EEG biomarkers derived from whole EEG record and those 

derived from the five EEG bands (delta, theta, alpha, beta, and gamma bands) using 

the HFD method. In this case, the results show that HFD values for AD patients are 

lower than those for normal subjects. This result is consistent with the finding in other 

studies [49][125]. As with the TsEn, the differences between HFD biomarkers for AD 

patients and normal subjects for the five EEG frequency bands (delta, theta, and 

alpha bands) were larger than those for the whole EEG record suggesting that the 

use of biomarkers derived from the frequency bands would be better at detecting AD 

than the use of whole EEG record.   
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Figure 5-2: EEG biomarkers for HFD 
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Figure 5-3 shows similar results for the LZC method. In this case, the results show 

that LZC values for AD patients were lower than those for normal subjects and these 

are consistent with the finding in other studies [86][223]. Again, the differences 

between the LZC biomarkers for AD patients and normal subjects for the five EEG 

frequency bands (the theta, beta and gamma bands, in particular) were larger those 

for the whole EEG record, suggesting that the use of biomarkers derived from the 

frequency bands would be better at detecting AD than the use of whole EEG record.  
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Figure 5-3: EEG biomarkers for LZC 

   

0

0.065

0.13

0.195

0.26

0.325

0.39

0.455

0.52

0.585

0.65

Fp1 Fp2 F7 F3 FZ F4 F8 T3 C3 CZ C4 T4 T5 P3 PZ P4 T6 O1 O2

LZ
C

 v
al

u
e

EEG channel

Whole EEG recor AD Whole EEG recor Norm AD delta Norm delta AD theta Norm theta

AD alpha Norm alpha AD beta Norm beta AD gamma Norm gamma



109 
 

We analysed the complexity measures using  p-values  to determine the statistical 

significance in detecting AD  

Figure 5-4 shows p-values of the differences in TsEn measures between AD patients 

and normal subjects for the whole EEG record and those from the EEG frequency 

bands. The results show that TsEn biomarkers that were extracted from theta bands 

have the smallest p-values while the TsEn biomarkers derived from gamma band 

have the maximum p-value between AD patients and normal subjects. This suggests 

that biomarkers that are extracted from theta band may provide the best performance 

in AD diagnosis. Figure 5-4 also shows that biomarkers that were extracted from EEG 

frequency bands may have a more significant association with AD than the EEG 

biomarkers that are derived from whole EEG record based on p-value analysis. 

Therefore, the complexity measures derived from the EEG frequency band may 

provide better results in the classification between AD patients and normal subjects.  

 

Figure 5-4: P-values for TsEn between AD patients and normal subjects of the 

training EEG dataset 

 

Figures 5-5 and 5-6 depict the results of similar p-value analysis for HFD and LZC 

measures, respectively. The results show that in both HFD and LZC methods, the 

complexity measures derived from the EEG frequency bands theta band have 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fp1 Fp2 F7 F3 FZ F4 F8 T3 C3 CZ C4 T4 T5 P3 PZ P4 T6 O1 O2

P
-v

al
u

e
 

EEG channel 

Delta Theta Alpha Beta Gamma Whole EEG record



110 
 

significantly smaller p-values compared to those of measures derived from the whole 

EEG record. In both methods, complexity measures derived from the theta band gave 

the smallest p-value. This implies that biomarkers derived from the frequency bands, 

the theta band in particular, may provide the best possible performance in AD 

diagnosis using the HFD and LZC methods.  

 

Figure 5-5: P-values for HFD between AD patients and normal subjects of the training EEG 

dataset 

 

 

Figure 5-6: P-values for LZC between AD patients and normal subjects of the 

training EEG dataset 
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complexity methods (i.e., TsEn, HFD, and LZC). Thus, EEG biomarkers derived from 

EEG frequency bands are better than the biomarkers were extracted from whole EEG 

record. The biomarkers derived from theta band may provide the best performance 

in AD diagnosis across all three methods.  

5.3.1. The performance of the EEG complexity-based measures   

Table 5-1 shows the performance of the SVM-based classification model using TsEn 

biomarkers for whole EEG record for the 19 EEG channels. In this case, the best 

Sensitivity and Specificity were 46.67% and 80%, respectively, for Fp2 and F7 EEG 

channels.  

Similar performance indices were computed for each of the five EEG bands using the 

TsEn.  As an example, Table 5-2 shows the performance indices for TsEn biomarkers 

for the delta band for the 19 EEG channels. The best Sensitivity and Specificity were 

85.71%, and 84.62%, respectively, for T4, O1, and O2 EEG channels.  

Similar performance indices were computed for each of the five EEG bands using 

HFD and LZC methods. Table 5-3 summarises the best performance indices for the 

three complexity measures. 
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Table 5-1: TsEn performance for whole EEG record 

EEG 

channel 

Sen. 

% 

Spec. 

% 

Acc. 

% 

F-measure 

% 
MCC 

FPR 

% 

FNR 

% 

PPV 

% 

NPV 

% 

Fp1 43.75 75.00 50.00 58.33 0.153 25.00 56.25 87.50 25.00 

Fp2 46.67 80.00 55.00 60.87 0.236 20.00 53.33 87.50 33.33 

F7 46.67 80.00 55.00 60.87 0.236 20.00 53.33 87.50 33.33 

F3 43.75 75.00 50.00 58.33 0.153 25.00 56.25 87.50 25.00 

FZ 44.44 100.00 50.00 61.54 0.272 0.00 55.56 100.00 16.67 

F4 44.44 100.00 50.00 61.54 0.272 0.00 55.56 100.00 16.67 

F8 44.44 100.00 50.00 61.54 0.272 0.00 55.56 100.00 16.67 

T3 37.50 50.00 40.00 50.00 -0.102 50.00 62.50 75.00 16.67 

C3 35.71 50.00 40.00 45.45 -0.134 50.00 64.29 62.50 25.00 

CZ 42.11 100.00 45.00 59.26 0.187 0.00 57.89 100.00 8.33 

C4 44.44 100.00 50.00 61.54 0.272 0.00 55.56 100.00 16.67 

T4 35.29 33.33 35.00 48.00 -0.229 66.67 64.71 75.00 8.33 

T5 33.33 50.00 40.00 40.00 -0.167 50.00 66.67 50.00 33.33 

P3 28.57 33.33 30.00 36.36 -0.356 66.67 71.43 50.00 16.67 

PZ 37.50 50.00 40.00 50.00 -0.102 50.00 62.50 75.00 16.67 

P4 35.71 50.00 40.00 45.45 -0.134 50.00 64.29 62.50 25.00 

T6 26.67 20.00 25.00 34.78 -0.471 80.00 73.33 50.00 8.33 

O1 27.27 44.44 35.00 31.58 -0.287 55.56 72.73 37.50 33.33 

O2 30.00 50.00 40.00 33.33 -0.204 50.00 70.00 37.50 41.67 
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Table 5-2: TsEn Performance for delta band of the EEG signal 

EEG 

channel 

Sen. 

% 

Spec. 

% 

Acc. 

% 

F-measure 

% 
MCC 

FPR 

% 

FNR 

% 

PPV 

% 

NPV 

% 

Fp1 50.00 66.67 60.00 50.00 0.167 33.33 50.00 50.00 66.67 

Fp2 50.00 62.50 60.00 33.33 0.102 37.50 50.00 25.00 83.33 

F7 55.56 72.73 65.00 58.82 0.287 27.27 44.44 62.50 66.67 

F3 80.00 73.33 75.00 61.54 0.471 26.67 20.00 50.00 91.67 

FZ 50.00 62.50 60.00 33.33 0.102 37.50 50.00 25.00 83.33 

F4 50.00 61.11 60.00 20.00 0.068 38.89 50.00 12.50 91.67 

F8 57.14 69.23 65.00 53.33 0.257 30.77 42.86 50.00 75.00 

T3 71.43 76.92 75.00 66.67 0.471 23.08 28.57 62.50 83.33 

C3 60.00 66.67 65.00 46.15 0.236 33.33 40.00 37.50 83.33 

CZ 100.00 63.16 65.00 22.22 0.281 36.84 0.00 12.50 100.00 

C4 71.43 76.92 75.00 66.67 0.471 23.08 28.57 62.50 83.33 

T4 85.71 84.62 85.00 80.00 0.685 15.38 14.29 75.00 91.67 

T5 80.00 73.33 75.00 61.54 0.471 26.67 20.00 50.00 91.67 

P3 75.00 83.33 80.00 75.00 0.583 16.67 25.00 75.00 83.33 

PZ 100.00 75.00 80.00 66.67 0.612 25.00 0.00 50.00 100.00 

P4 83.33 78.57 80.00 71.43 0.579 21.43 16.67 62.50 91.67 

T6 83.33 78.57 80.00 71.43 0.579 21.43 16.67 62.50 91.67 

O1 85.71 84.62 85.00 80.00 0.685 15.38 14.29 75.00 91.67 

O2 85.71 84.62 85.00 80.00 0.685 15.38 14.29 75.00 91.67 
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Table 5-3: Summary of the best performance indices for the three complexity 

measures 

Method TsEn HFD LZC 

Feature Delta Theta Theta Alpha Theta 

EEG channel T4, O1, O2 F4 C4 T5, P3 C3 

Sen. % 85.71 85.71 66.67 66.67 100 

Spec. % 84.62 84.62 100 100 92.31 

Acc. % 85 85 80 80 95 

F-measure % 80 80 80 80 93.33 

MCC 0.685 0.685 0.667 0.667 0.9 

FPR % 15.38 15.38 0 0 7.69 

FNR % 14.29 14.29 33.33 33.33 0 

PPV% 75 75 100 100 87.5 

NPV% 91.67 91.67 66.67 66.67 100 

 

Figures 5-7, 5-8, and 5-9 summarise the performance indices of the TsEn, HFD and 

LZC methods. 

The results show that TsEn, HFD and LZC EEG biomarkers derived from the EEG 

frequency bands provide better performance than EEG biomarkers derived from the 

whole EEG record.  

 

 

Figure 5-7: TsEn performance 
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Figure 5-8: HFD performance 

 

 

Figure 5-9: LZC performance 
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provide significantly better performance in detecting AD than measures derived from 

whole EEG records.  This comes from the greater differences between the complexity 

measures for AD and normal subjects when they are derived from the frequency 

bands compared to when they are derived from whole record which is a desirable 

property of a good biomarker. 

In particular, we found that for the TsEn and HFD complexity measures derived from 

the delta and theta bands gave the best performance.  For the delta band, three EEG 

channels (T4, O1, and O2) gave the best performance.  For the theta band, F4 gave 

the best performance. 

Similar results were obtained for the LZC complexity measures, except that the best 

EEG channel was C3 for the theta band. This is consistent with the findings of other 

studies which suggested that AD starts from the back of the brain and then spreads 

gradually to other parts of the brain [8][210][49][237][236]. This implies that it may be 

possible to use only a small number of EEG channels to detect AD. 

Table 5-3 shows the best performance indices for the three complexity measures i.e., 

TsEn, HFD, and LZC was for theta band. Therefore, analysis of the theta band based 

on EEG in AD diagnosis has high impact and this is compatible with the findings of 

others that found the theta analysis is most closely related to AD severity [101].       

Our findings in AD diagnosis were based on EEG complexity measures and could be 

used with other types of EEG analysis e.g., slowing, and coherence in EEG signal. In 

addition, our results show that EEG complexity methods can be used to diagnose AD 

patients with low cost biomarkers (only one EEG channel was used in AD diagnosis). 

Our study has a number of limitations. At present, our methods have been applied 

only to the detection of AD, the most common form of dementia.  A more detailed 

study is necessary to evaluate the methods using much larger and diverse EEG 
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datasets. This includes using the methods to differentiate between normal, MCI and 

AD subjects [100][106][116]. 

This study shows that the abnormalities caused by AD can be detected by the 

complexity measures. However, similar changes may be caused by other 

neurodegenerative diseases, such as other types of dementia. To enhance the 

diagnostic usefulness of the methods, it may be necessary to enhance them further 

to differentiate between  dementias. 

5.5. Summary 

AD causes changes in the EEG due to loss of memory and cognitive decline and 

these changes are thought to be associated with functional disconnections among 

cortical areas resulting from the death of brain cells. Therefore, EEG analysis may 

provide valuable information about brain dynamics in AD. AD causes a reduction in 

neuronal activity of the brain and this may be reflected in EEG signals. Non-linear 

methods based on EEG complexity approaches have shown promising results in 

detected changes in the EEG thought to be due to AD. Therefore, EEG complexity 

can potentially be a good biomarker for AD diagnosis. We investigated three 

complexity measures, TsEn, HFD, and LZC methods, derived from EEG frequency 

bands.  We found that AD subjects have significantly lower TsEn, HFD, and LZC 

values in specific EEG frequency bands and specific EEG channels compared to 

normal patients. This may provide an effective way to discriminate between AD 

patients and normal subjects.  
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Chapter 6. Robust EEG Based Biomarkers to Detect Alzheimer’s Disease 

in its Early Stages 

6.1. Introduction 

Although a  large number of EEG-based biomarkers for AD exists, no single 

biomarker is robust enough for use in clinical practice or provides a clear-cut 

detection of AD in the early stages [2][209][113][244][245][246][247]. A robust 

biomarker of AD should be consistent and have high detection performance (e.g. in 

terms of sensitivity and specificity)[2][51][248]. Potentially, a combination of 

biomarkers could provide the required level of robustness necessary for clinical use 

[2][8][37][36]. Few studies have investigated how to combine different EEG 

biomarkers to exploit their strengths. Hamadicharef et al. [105] developed a  logistic 

regression model to combine AD  biomarkers, however the study did not investigate 

factors that determine the optimal set of biomarkers. In addition, only a small number 

of specific biomarkers were considered. Houmani et al. [249] developed an EEG 

diagnostic model for AD detection based on two EEG features, namely epoch-based 

entropy (a measure of signal complexity) and bump modelling (a measure of 

synchrony). They found these two features are sufficient for discriminating among 

subjective cognitive impairment (SCI) patients, MCI patients, possible AD patients, 

and patients with other pathologies groups. A classification accuracy of 91.6% 

(specificity = 100%, sensitivity = 87.8%) was obtained when discriminating SCI 

patients from possible AD patients and 81.8% to 88.8% accuracy was obtained for 

the 3-class classification of SCI, possible AD and other patients. They did not 

investigate other key characteristics of dementia EEG (i.e. slowing of the EEG, 

reduction in EEG complexity and reduction in EEG coherence). The development of 

robust EEG biomarkers requires a comprehensive study of key EEG features with 

significant association with AD and the integration of the most appropriate biomarkers 

into a composite biomarker. The aim of this chapter is to provide a methodological 
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framework for the development of robust EEG biomarkers to detect AD with clinically 

acceptable performance by exploiting the combined strengths of different EEG based 

biomarkers. A large number of biomarkers were investigated based on the three key 

characteristics of dementia EEG (slowing of the EEG, reduction in EEG coherence 

and reduction in EEG complexity). Furthermore, the five EEG bands (delta, theta, 

alpha, beta, and gamma), channel locations, and all possible combinations of the 

biomarkers were investigated. This is the first such study and this approach has made 

it possible to achieve high performance (close to 100% for sensitivity and specificity) 

and should facilitate acceptance of EEG biomarkers. 

6.2. Methodology 

Figure 6-1 provides an overview of the methodological framework for the 

development of robust EEG biomarkers to detect AD with clinically acceptable 

performance by exploiting the combined strengths of different EEG based 

biomarkers. It supports the investigation, development, integration and assessment 

of the performance of new and promising biomarkers based on the three main 

characteristics of the dementia EEG (slowing of the EEG, reduction in complexity and 

reduction in coherence). The emphasis is on finding the best possible combination of 

biomarkers to detect AD accurately. The development of robust and composite EEG 

biomarkers requires the identification of EEG features which have a significant 

association with AD. The features were extracted from the five traditional EEG bands 

(i.e., delta, theta, alpha, beta, and gamma). Previous studies have shown that such 

an approach may enhance the performance of biomarkers (i.e., using EEG frequency 

bands instead of using the entire EEG record) [38]. The features were then used to 

derive the EEG biomarkers and the best performing biomarkers found using support 

vector machine (SVM) because of its robustness with high-dimensional data and 

because it has been shown to perform well in automated AD studies compared to 
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other machine learning methods. A linear discriminant analysis (LDA) model was then 

used to combine the selected biomarkers to create the final model to detect AD. The 

biomarkers investigated included those based on ΔEEGA, ΔPS, ZCI, TsEn, HFD, 

ApEn, LZC, and EEG Coherence which have shown promise.  

The following steps outline the procedure for deriving the biomarkers 

1. Filter the EEG signals into five frequency bands (i.e., delta 0-4Hz, theta 4-8Hz, 

alpha 8-12Hz, beta 12-30Hz, and gamma 30-45Hz). Previous studies have 

shown that biomarkers derived from the EEG frequency bands (instead of the 

entire EEG) have enhanced performance [50]. For this step, a low computational 

infinite impulse response (IIR) Chebyshev-II bandpass filters were used to retain 

computational efficiency in extracting the biomarkers [206]. 

2. Identify EEG features and compute the EEG indices based on the slowing of EEG 

(i.e., ΔPS, ΔEEGA, and ZCI), reduction in EEG complexity (i.e., TsEn, HFD, LZC, 

and ApEn) and reduction in coherence for each of the five EEG frequency bands 

and each EEG channel.   

3. Compute the EEG biomarkers from the indices in Step 2 above (e.g., 

TsEn(delta)/TsEn(theta), TsEn(delta)/TsEn(alpha), …, etc), and select  the 

biomarkers and EEG channels that have a significant association with AD (in 

terms of  the p-values).  

4. Construct panels of biomarkers from the selected biomarkers. 

5. For each panel of biomarkers, develop a classification model using SVM and 

assess its performance in detecting AD.  

6. Select EEG biomarkers panels with sensitivity and specificity values above a 

specified threshold (80% in this case).  
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7. Develop a diagnostic model to detect AD by combining the selected biomarkers. 

In the study, a linear discriminant analysis model was used to combine the 

biomarkers and to produce the diagnostic model [250].  

8. Validate the diagnostic model using unseen dataset.  
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Figure 6-1: A framework for developing robust EEG based biomarker 

The EEG dataset that was used in this chapter consists of two datasets (A and B). 

Dataset A includes 11 age-matched subjects (3 AD patients and 8 normal subjects). 

Dataset B consists of 41 subjects (24 normal subjects and 17 probable AD patients). 

More details are given in Chapter 3. 



122 
 

6.2.1. Identification of EEG features and Computation of Biomarkers (Steps 2 

and 3) 

The EEG signals are first filtered into the five EEG frequency bands using a low 

computational IIR filter as described in chapter 3 and the main features identified. 

The main EEG features in dementia are those associated with the slowing of the EEG 

(e.g. shifts in the EEG power to the lower frequencies), reduction in EEG complexity 

(reduction in complexity measures) and reduction in EEG coherence. These features 

are quantified by computing appropriate indices in each of the five EEG frequency 

bands - for EEG slowing the indices are  ΔPS, ΔEEGA, and ZCI; for reduction in EEG 

complexity, the indices are TsEn, HFD, LZC, and ApEn; for coherence, the indices 

are the coherence values between the channels. 

6.2.2. Biomarker selection and biomarker panels 

The methodological framework involves a thorough consideration of all possible 

biomarkers. This creates a large number of biomarkers at the biomarker computation 

stage and so it is necessary to select biomarkers with significant statistical 

association with AD as these may be useful in discriminating between AD patients 

and normal subjects.  P-values are used here as a statistical criterion to select the 

biomarkers. Dataset B was split 60% for training and 40% for testing for this purpose, 

and 10 fold cross-validation was used for training the developed model. Biomarkers 

with p-values no greater than 0.001 are selected as having significant association 

with AD. Similarly, EEG channels for which the biomarkers have significant 

association with AD (p-values <= 0.001) are taken to have a significant association 

with AD and was also selected to use in the classification.  Figure 6-2 shows the 

procedure used to select the EEG biomarkers of AD. 

The selected biomarkers are then used to construct panels of biomarkers for AD 

detection. A machine learning model is then developed for each panel and the 

performance of each in detecting AD assessed. This allowed us to determine the best 
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performing biomarker panels. Support vector machine (SVM) is used to develop the 

models.  

AD patients 

biomarkers

Normal subject 

biomarkers

Compute p-value between AD patients and 

normal subjects for each biomarker 

P-value<=0.001
Ignore this 

biomarker

Add biomarker to 

panel

No

Yes

 

Figure 6-2: Construct panels of biomarkers for AD detection 

 

6.2.3. Diagnostic model to detect AD 

The outcome of biomarker selection is a set of panels of biomarkers from the different 

methods of computing biomarkers. The next step is to find the best possible 

combination of biomarkers to allow the detection of AD with high accuracy. To do this, 

we first select biomarker panels that satisfied the threshold for sensitivity and 

specificity of at least 80% for inclusion in the final model. Then, the biomarkers with 

the highest performance are analysed. Biomarkers with the fewest number of EEG 

channels are selected for inclusion in the development of the diagnostic model. These 

are then combined into to produce the robust diagnostic model using LDA. LDA is a 

supervised method which is commonly used in classification and provides optimal 

separation in classification  [251][138][141]. The performance of the LDA model is 

then assessed using unseen data.  
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6.3. Result 

6.3.1. Biomarker computations 

For each of the seven methods (i.e., ΔPS, ΔEEGA, ZCI, TsEn, HFD, ApEn, and LZC) 

and for each channel, 25 biomarkers were computed, five biomarkers for the five EEG 

frequency bands and 20 for ratios between bands. Examples of the biomarkers are 

ZCI(alpha), TsEn(delta), TsEn(alpha/beta), ΔEEGA(theta/beta), …. etc. Thus, 475 

biomarkers were computed and analysed for each of the seven methods (25 

biomarkers x 19 EEG channels for each method). Thus after biomarker computations,  

there was a total of 3325 biomarkers for the seven methods (475 x 7). 

For the coherence based approach, there were 171 coherence values between pairs 

of EEG channels (e.g., Fp1-Fp2, Fp1-F7, …, O1-O2) for each of the traditional EEG 

band and 20 ratios. The total number of biomarkers computed for the method was 

4275 (171 biomarkers for each of the 25 biomarkers). Thus, a total of 7600 (3325 + 

4275 biomarkers) candidate biomarkers were used to determine a panel of robust 

EEG biomarkers based on the promising EEG methods (i.e., ΔPS, ΔEEGA, ZCI, 

TsEn, HFD, ApEn, LZC, and EEG coherence).  

6.3.2. Biomarker selection 

P-values were computed for each of the 7600 extracted biomarkers. For example, 

Table 6-1 shows theta/alpha ratio for TsEn method. There are two EEG channels (T5, 

and T6) satisfied the criterion. The TsEn method showed two EEG channels that 

satisfied the p-value criterion for the theta/alpha ratio (as shown in Table 6-1).  

To assess the relative effects of the EEG bands and EEG channels in the detection 

of AD, the probability distribution ratios were computed by using Equation 6.1: 

 𝑃𝑋 =
𝑥𝑖

∑ 𝑥𝑖
𝑁
𝑖=1  

  (6.1) 

where PX is the probability distribution ratio for an N-sample data sequence x(1), x(2), 

..., x(N). 
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Bonferroni correction [192] was used for adjusting p-values as shown in Table 6-1. 

The corrected p-values show the two EEG channels T5, and T6 for theta/alpha ration 

of TsEn are the two significant channels and this is consistent with our analysis.    

Table 6-1: P-value and corrected p-values for theta/alpha band for TsEn method 

Ch 
No. 

EEG 
channel 

P-value 
Bonferroni-
corrected P-

value 

Bonferroni-
corrected 

significance 

1 Fp1 0.0264 0.5016 Not Significant 

2 Fp2 0.0394 0.7486 Not Significant 

3 F7 0.4883 1 Not Significant 

4 F3 0.5511 1 Not Significant 

5 FZ 0.3612 1 Not Significant 

6 F4 0.1582 1 Not Significant 

7 F8 0.3105 1 Not Significant 

8 T3 0.1352 1 Not Significant 

9 C3 0.2859 1 Not Significant 

10 CZ 0.8901 1 Not Significant 

11 C4 0.5549 1 Not Significant 

12 T4 0.2418 1 Not Significant 

13 T5 0.0010 0.019 Significant 

14 P3 0.0048 0.0912 Not Significant 

15 PZ 0.0207 0.3933 Not Significant 

16 P4 0.0036 0.0684 Not Significant 

17 T6 0.0002 0.0038 Significant 

18 O1 0.0028 0.0532 Not Significant 

19 O2 0.0035 0.0665 Not Significant 

The critical p-value was 0.00263 (e.g., 005/19). 

The probability distribution ratio and Bonferroni correction of p-value for each 

biomarker may reflect their significance in AD detection. The Probability distribution 

ratio was computed for the 25 biomarkers for each of the eight methods (i.e., ΔPS, 

ΔEEGA, ZCI, TsEn, HFD, ApEn, LZC, and EEG coherence). It was also computed for 

the 19 EEG channels for all biomarkers.  

Table 6-2 summarises the results for the 25 EEG biomarkers that were analysed for 

the eight methods. For each biomarker, 19 EEG channels were analysed by 

computing the p-value to determine the biomarkers that may have significant 
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association with AD. The EEG biomarkers have significant separation between AD 

patients and normal subjects were selected.  

Table 6-2: Probability distribution ratio for all 25 features for each method 

EEG bands 
Number of EEG channel for the 

Sum. 
Probability 
distribution 

ratio ApEn LZC HFD TsEn ΔPS ΔEEGA ZCI Coh 

Theta/alpha 12 5 9 2 18 12 15 1 74 15.579 

Alpha/theta 12 7 0 2 17 15 15 0 68 14.316 

Alpha/delta 0 0 0 0 18 11 8 0 37 7.789 

Beta/theta 13 0 0 0 2 10 9 1 35 7.368 

Theta/beta 12 0 3 0 4 5 9 0 33 6.947 

Alpha 2 0 4 0 19 3 4 0 32 6.737 

Delta/alpha 1 0 0 0 18 4 7 0 30 6.316 

Delta 0 0 0 0 19 0 0 3 22 4.632 

Theta 0 0 0 0 18 0 0 3 19 4.000 

Theta/delta 0 0 0 0 17 0 0 0 18 3.789 

Delta/theta 8 0 0 1 0 4 4 0 17 3.579 

Gamma/theta 0 0 0 0 16 0 0 0 17 3.579 

Beta/delta 0 0 0 0 2 7 3 2 14 2.947 

Beta 2 0 4 0 1 1 3 2 13 2.737 

Theta/gamma 6 0 0 1 0 0 4 0 11 2.316 

Alpha/beta 0 4 0 0 4 0 0 0 8 1.684 

Gamma/delta 3 0 0 0 1 3 1 0 8 1.684 

Delta/beta 0 0 0 0 2 0 2 0 4 0.842 

Alpha/gamma 0 4 0 0 0 0 0 0 4 0.842 

Gamma 0 2 0 0 1 0 0 2 3 0.632 

Gamma/alpha 0 0 1 0 2 0 0 0 3 0.632 

Gamma/beta 0 1 0 0 1 0 0 0 3 0.632 

Beta/alpha 0 0 0 0 1 0 0 0 2 0.421 

Delta/gamma 0 0 0 0 0 0 0 0 0 0.000 

Beta/gamma 0 0 0 0 0 0 0 0 0 0.000 

Summation 71 23 21 6 181 75 84 14 475 100 

Table 6-2 shows the number of EEG channels (out of 19 channels) that satisfied the 

p-value threshold (less than or equal to 0.001) for each biomarker. This means the 
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theta/alpha ratio has the highest number of channels that have a p-value which is 

less than or equal to 0.001. While delta/gamma and beta/gamma biomarkers have 

no EEG channels that satisfied the threshold of p-value. To rank the biomarkers, the 

probability distribution ratio was computed for each biomarker, as shown in Figure 6-

3. 

 

Figure 6-3: Probability distribution ratio for all 25 biomarkers 

Figure 6-3 shows the probability distribution ratio for all EEG biomarkers. The 

maximum probability distribution ratio was 15.579 for the theta/alpha ratio. It was 

computed by dividing the probability distribution ratio of theta/alpha i.e., 74 by the 

total probability distribution ratio of all bands i.e., 475, and multiply the resulted value 

by 100. 

To determine the EEG biomarkers that could be used in discriminating between AD 

patients and normal subjects with the best performance, we selected the biomarkers 

that occupied 80% of the normal distribution ratios to all biomarkers. Therefore, 11 

biomarkers were selected that have a more significant in AD diagnosis. Table 6-3 

shows the EEG biomarkers have a more significant with AD and can be used to 

diagnose AD with the best performance. 
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Table 6-3: The selected features that could be used in the classification 

Seq. Features 

1 Theta/Alpha 

2 Alpha/Theta 

3 Alpha/Delta 

4 Beta/Theta 

5 Theta/Beta 

6 Alpha 

7 Delta/Alpha 

8 Delta 

9 Theta 

10 Theta/Delta 

11 Delta/Theta 

 

These 11 biomarkers were used to develop a classification model for AD diagnosis. 

To determine the EEG channels that have a more significant association with AD, we 

selected channels that met the p-value threshold of less than or equal to 0.001. Then, 

the probability distribution ratio was computed for all the 19 EEG channels. The 

probability distribution ratio was computed to identify the EEG channels that are 

considered promising in terms of having a significant association with AD. The EEG 

channels are ranked in Table 6-4 in terms of probability distribution ratio.  
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Table 6-4: Probability distribution ratio for all 25 EEG features and for all 19 EEG 

channels 

EEG 
Channels 

Number of biomarkers 
Sum. 

Probability 
distribution 

ratio 
ApEn LZC HFD TsEn ΔPS ΔEEGA ZCI 

P4 7 5 4 0 10 10 12 48 10.412 

P3 9 2 4 0 9 8 13 45 9.761 

PZ 8 2 3 2 11 9 10 45 9.761 

T6 3 6 2 2 9 7 7 36 7.809 

T5 2 3 4 2 9 6 7 33 7.158 

C4 6 0 0 0 11 6 4 27 5.857 

T4 4 2 1 0 8 7 3 25 5.423 

T3 4 0 1 0 14 3 2 24 5.206 

C3 4 0 0 0 12 4 4 24 5.206 

CZ 6 0 0 0 9 3 6 24 5.206 

O2 3 3 1 0 10 3 4 24 5.206 

O1 4 0 1 0 8 3 4 20 4.338 

F8 2 0 0 0 12 1 2 17 3.688 

F7 3 0 0 0 9 2 2 16 3.471 

F3 3 0 0 0 9 1 2 15 3.254 

FZ 3 0 0 0 7 2 2 14 3.037 

Fp1 0 0 0 0 9 0 0 9 1.952 

F4 0 0 0 0 9 0 0 9 1.952 

Fp2 0 0 0 0 6 0 0 6 1.302 

Sum. 71 23 21 6 181 75 84 461 100 

 

Table 6-4 shows the number of EEG channels for the methods (i.e., ΔPS, ΔEEGA, 

ZCI, TsEn, HFD, ApEn, and LZC) that met the p-value threshold and the probability 

distribution ratio for each channel. Figure 6-4 shows the probability distribution ratio 

for all EEG channels. The maximum probability distribution ratio is for P3, PZ and P4.      

 

Figure 6-4: Probability distribution ratio for all 19 EEG channels and for all eight 

methods 
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The rank of each EEG channel in terms of the number of biomarkers is shown in 

Table 6-4 and Figure 6-.5. Channel P4 was the top-ranked channel among the 25 

biomarkers, with channels P3 and PZ the second highest ranked channels. Whilst 

channel Fp2 is the lowest ranked channel. This is consistent with findings in the 

literature where it is thought that AD starts from the back of the brain and then spread 

to other parts [126][120][110][111][86][113].   

Based on the analysis of the 25 biomarkers for each EEG channel (see Tables 6-2 

and 6-4, and Figures 6-4 and 6-5), 12 EEG channels (P4, P3, PZ, T6, T5, C4, T3, C3, 

CZ, T4, O2, and O1) were selected in the classification as having a significant 

association with AD. These channels accounted for more than 80% in the probability 

distribution ratios of all EEG channels.  

For each of the 11 EEG biomarkers that were selected, 4082 combinations were 

investigated for the 12-EEG channels (all combinations from length 1 to length 10 

were constructed for the 12-EEG channels). For each method, we investigated 44902 

biomarkers (11- biomarkers x 4082-combinations). 

Based on analysis of the probability distribution ratio for each of the 25 biomarkers, 11 

biomarkers and 12 EEG channels were selected in discriminating between AD 

patients and normal subjects as shown in Tables 6-1 and 6-3, and Figure 6-5.   

For EEG coherence, 10 pairs of EEG channels that satisfied the p-value threshold 

(less than or equal to 0.001) were selected for discriminating between AD patients 

and normal subjects as shown in Table 6-5. 
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Table 6-5: Probability distribution ratio for all 25 EEG features and for all 19 EEG 

channels  

EEG 
Channel 

No. of 
biomarkers 

Probability 
distribution 

ratio 

F4-F8 3 21.4286 

Fz-F8 2 14.2857 

T3-T4 2 14.2857 

Fp2-F4 1 7.1429 

F4-T3 1 7.1429 

F4-T4 1 7.1429 

F8-P4 1 7.1429 

T3-P4 1 7.1429 

T3-T6 1 7.1429 

T4-P3 1 7.1429 

Summation 14 100 

6.3.3. Performance analysis 

For seven of the methods investigated (i.e.,  ΔPS, ΔEEGA, ZCI, TsEn, HFD, ApEn, 

and LZC), 11 EEG bands and 12 EEG channels for each band were selected to 

develop the SVM classification models using the testing dataset. For EEG coherence, 

11 EEG bands and 10 pairs of EEG channels for each band were also selected to 

develop the SVM classification models. 

Each method was assessed by computing its performance in discriminating between 

AD patients and normal subjects. For each biomarker, a support vector machine 

(SVM) model was developed based on the training dataset and assessed by using 

the testing dataset. The best biomarkers for each method were determined based on 

their performance (in terms of sensitivity, specificity, and the number of EEG channels 

used). Sensitivity and specificity thresholds of at least 80% in the detection of AD 

were set for the biomarkers. Table 6-6 shows the performance of ApEn method in AD 

diagnosis. 
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Table 6-6: Performance of the ApEn method for all the 11 biomarkers 

EEG 
Biomarker 

Sen. 
% 

Spec. 
% 

Acc. 
% 

F-measure 
% 

MCC PPV % 
NPV 

% 
EEG 

channel 

Alpha/theta 100.00 100.00 100.00 100.00 1.00 100.00 100.00 (C4) 

Theta/alpha 100.00 100.00 100.00 100.00 1.00 100.00 100.00 (C4) 

Alpha/delta 75.00 88.89 82.35 80.00 0.65 85.71 80.00 (P3) 

Beta/theta 70.00 100.00 82.35 82.35 0.70 100.00 70.00 (T3) 

Alpha 100.00 83.33 88.24 83.33 0.77 71.43 100.00 
(P3, T6, 

O1) 

Delta/alpha 75.00 88.89 82.35 80.00 0.65 85.71 80.00 (C3, P3) 

Theta/beta 70.00 100.00 82.35 82.35 0.70 100.00 70.00 (T3) 

Theta/delta 71.43 80.00 76.47 71.43 0.51 71.43 80.00 

(T3, CZ, 
P3,P4), 

and  (C3, 
T5, PZ, 

P4) 

Delta 50.00 71.43 58.82 58.82 0.21 71.43 50.00 
(T3,  P3), 
and (T5, 

P3) 

Theta 66.67 87.50 76.47 75.00 0.55 85.71 70.00 (C4) 

Delta/theta 71.43 80.00 76.47 71.43 0.51 71.43 80.00 

(T3, 
C3,CZ, 
T5, P3, 

P4), and 
(C3, CZ, 
T4, T5, 
P3, P4) 

The best performance for ApEn method was for the biomarkers 

ApEn(alpha/theta(C4)), ApEn(theta/alpha(C4)), and ApEn(alpha(P3, T6, O1)). Table 

6-7 shows the performance of LZC method in the detection of AD. 
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Table 6-7: Performance of LZC method for all the 11 biomarkers 

EEG bands 
Sen. 

% 
Spec. 

% 
Acc. 
% 

F-measure 
% 

MCC 
PPV 

% 
NPV 

% 
EEG 

channel 

Alpha/theta 100.00 90.91 94.12 92.31 0.88 85.71 100.00 (T3, T6) 

Theta/alpha 100.00 90.91 94.12 92.31 0.88 85.71 100.00 (T3, T6) 

Alpha/delta 100.00 83.33 88.24 83.33 0.77 71.43 100.00 

(CZ, C4, P3, 
P4), (CZ, T4, 
P3, P4), and 

(CZ) 

Beta/theta 83.33 81.82 82.35 76.92 0.63 71.43 90.00 

(C4, P3, T6, 
O1), and 

(C4, P3, T6, 
O2) 

Alpha 87.50 100.00 94.12 93.33 0.89 100.00 90.00 
(C3, CZ, PZ, 

T6, O1) 

Delta/alpha 100.00 83.33 88.24 83.33 0.77 71.43 100.00 

(CZ, T4, P3, 
P4), (CZ, T4, 
P3, T6 ), and 
(CZ, T4, P3, 

O2 ) 

Theta/beta 77.78 100.00 88.24 87.50 0.79 100.00 80.00 
(C4, T5, PZ, 
P4, O1, O2) 

Theta/delta 71.43 80.00 76.47 71.43 0.51 71.43 80.00 (CZ) 

Delta 71.43 80.00 76.47 71.43 0.51 71.43 80.00 
(CZ, P3), 

and (CZ, P4) 

Theta 100.00 100.00 100.00 100.00 1.00 100.00 100.00 (T3, C3, P3) 

Delta/theta 71.43 80.00 76.47 71.43 0.51 71.43 80.00 (CZ) 

The best performance for LZC method was for the biomarkers LZC(alpha/theta(T3, 

T6)), LZC(theta/alpha(T3, T6)), LZC(alpha/delta(CZ, C4, P3, P4)), …. , and 

LZC(theta(T3, C3, P3)). Table 6-8 shows the performance of HFD method in AD 

diagnosis. 
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Table 6-8: Performance of HFD method for all the 11 biomarkers 

EEG 
Biomarker 

Sen. 
% 

Spec. 
% 

Acc. 
% 

F-measure 
% 

MCC 
PPV 

% 
NPV 

% 
EEG 

channel 

Alpha/theta 70.00 100.00 82.35 82.35 0.70 100.00 70.00 
(CZ, C4, T4, 

P4) 

Theta/alpha 100.00 100.00 100.00 100.00 1.00 100.00 100.00 (T3), (T5) 

Alpha/delta 83.33 81.82 82.35 76.92 0.63 71.43 90.00 
(CZ, PZ, 

O2) 

Beta/theta 70.00 100.00 82.35 82.35 0.70 100.00 70.00 
(CZ, C4, T4, 

P4) 

Alpha 87.50 100.00 94.12 93.33 0.89 100.00 90.00 

(T5, PZ), 
(PZ, T6), 
(T6, O1), 
and (T6, 

O2) 

Delta/alpha 80.00 75.00 76.47 66.67 0.51 57.14 90.00 (O1) 

Theta/beta 70.00 100.00 82.35 82.35 0.70 100.00 70.00 
(C3, CZ, 

C4) 

Theta/delta 60.00 85.71 70.59 70.59 0.46 85.71 60.00 
(CZ, C4,T4, 
PZ, O1,O2) 

Delta 62.50 77.78 70.59 66.67 0.41 71.43 70.00 
(T3, C3, CZ, 

T5, P3) 

Theta 66.67 87.50 76.47 75.00 0.55 85.71 70.00 
(T3, C4), 
and (C3, 

C4) 

Delta/theta 70.00 100.00 82.35 82.35 0.70 100.00 70.00 
(CZ, C4, T4, 

P4) 

The best performance for HFD method was for the biomarkers HFD(theta/alpha(T3)), 

HFD(alpha/delta( CZ, PZ, O2)), , …… , and HFD(alpha(T6, O2)). Table 6-9 shows the 

performance of TsEn method in AD diagnosis. 
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Table 6-9: Performance of TsEn method for all the 11 biomarkers 

EEG 
Biomarker 

Sen. 
% 

Spec. 
% 

Acc. 
% 

F-measure 
% 

MCC 
PPV 

% 
NPV 

% 
EEG channel 

Alpha/theta 85.71 90.00 88.24 85.71 0.76 85.71 90.00 
(T3, CZ, P3, T6), 
and (C3, CZ, O1, 

O2) 

Theta/alpha 85.71 90.00 88.24 85.71 0.76 85.71 90.00 
(T3, CZ, C4, T6, 

O1), and (T3, CZ, 
T5, P4, O1) 

Alpha/delta 100.00 90.91 94.12 92.31 0.88 85.71 100.00 (C3, T6) 

Beta/theta 60.00 66.67 64.71 50.00 0.25 42.86 80.00 

(T3, P3, PZ, O1), 
(C3, C4, T4, O1), 
(C3, T4, PZ, O1), 
and (P3, PZ, O1, 

O2) 

Alpha 75.00 88.89 82.35 80.00 0.65 85.71 80.00 
(T3, T6, O1), and 

(T3, T6, O2) 

Delta/alpha 100.00 90.91 94.12 92.31 0.88 85.71 100.00 (C3, T6) 

Theta/beta 57.14 70.00 64.71 57.14 0.27 57.14 70.00 (T5, O1) 

Theta/delta 66.67 87.50 76.47 75.00 0.55 85.71 70.00 (PZ) 

Delta 100.00 76.92 82.35 72.73 0.66 57.14 100.00 

(T3, C4), (T3, 
P4), (T3, O1), 
(T3, O2), (T5, 
P3), (T5, O1), 
and (T5, O2) 

Theta 62.50 77.78 70.59 66.67 0.41 71.43 70.00 (C3) 

Delta/theta 66.67 87.50 76.47 75.00 0.55 85.71 70.00 (PZ) 

 

The best performance for TsEn method was for the biomarkers TsEn(alpha/theta(T3, 

CZ, P3, T6)), TsEn(alpha/theta(C3, CZ,O1, O2)) , …, and TsEn(delta/alpha(C3, T6)). 

Table 6-10 shows the performance for ΔPS method in AD diagnosis. 
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Table 6-10: Performance of ΔPS method for all the 11 biomarkers 

EEG 
Biomarker 

Sen. 
% 

Spec. 
% 

Acc. 
% 

F-measure 
% 

MCC 
PPV 

% 
NPV 

% 
EEG 

channel 

Alpha/theta 100.00 100.00 100.00 100.00 1.00 100.00 100.00 

(T3), (C3), 
(T4), (P3), 
(PZ), and 

(P4) 

Theta/alpha 100.00 100.00 100.00 100.00 1.00 100.00 100.00 
(C3), (CZ), 
(C4), (P4), 
and (O1) 

Alpha/delta 100.00 100.00 100.00 100.00 1.00 100.00 100.00 
(T3, T4, P3, 

P4, O1) 

Beta/theta 100.00 100.00 100.00 100.00 1.00 100.00 100.00 (C3) 

Alpha 100.00 100.00 100.00 100.00 1.00 100.00 100.00 

(T3), (C3), 
(CZ), (C4), 
(T4), (T5), 
(P3), (PZ), 
(P4), (T6), 
(O1), and 

(O2) 

Delta/alpha 100.00 100.00 100.00 100.00 1.00 100.00 100.00 
(T3), (C3), 
and (CZ) 

Theta/beta 100.00 83.33 88.24 83.33 0.77 71.43 100.00 (C4) 

Theta/delta 100.00 100.00 100.00 100.00 1.00 100.00 100.00 (P3, T6) 

Delta 100.00 100.00 100.00 100.00 1.00 100.00 100.00 

(C3), (CZ), 
(C4), (T4), 
(T5), (P3), 
(PZ), (P4), 
(T6), (O1), 
and (O2) 

Theta 100.00 100.00 100.00 100.00 1.00 100.00 100.00 
(CZ), (P4), 
and (O2) 

Delta/theta 100.00 100.00 100.00 100.00 1.00 100.00 100.00 

(T3), (T4), 
(P3), (PZ), 
(P4), and 

(T6) 

 The best performance for ΔPS method was for the biomarkers ΔPS(alpha/theta(T3)), 

ΔPS(alpha/theta(C3)) , …, and ΔPS(delta/theta (T6)). Table 6-11 shows the 

performance of ΔEEGA method in AD diagnosis. 
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Table 6-11: Performance of ΔEEGA method for all the 11 biomarkers 

EEG 
Biomarker 

Sen. 
% 

Spec. 
% 

Acc. 
 % 

F- measure 
% 

MCC 
PPV  

% 
NPV 
 % 

EEG channel 

Alpha/theta 100.00 100.00 100.00 100.00 1.00 100.00 100.00 (T3) 

Theta/alpha 100.00 100.00 100.00 100.00 1.00 100.00 100.00 
(T3), (C3), 
(T5), (P3), 

(PZ), and (P4) 

Alpha/delta 100.00 100.00 100.00 100.00 1.00 100.00 100.00 (T6) 

Beta/theta 87.50 100.00 94.12 93.33 0.89 100.00 90.00 (C4), and (P4) 

Alpha 87.50 100.00 94.12 93.33 0.89 100.00 90.00 (T6) 

Delta/alpha 100.00 90.91 94.12 92.31 0.88 85.71 100.00 
(P4, T6), (T6, 
O1), and (T6, 

O2) 

Theta/beta 100.00 90.91 94.12 92.31 0.88 85.71 100.00 
(T3, CZ, T4, 

O1, O2) 

Theta/delta 75.00 88.89 82.35 80.00 0.65 85.71 80.00 

(CZ, C4, T5, 
O1), (CZ, T5, 
PZ, O1), and 
(CZ, T5, O1, 

O2) 

Delta 71.43 80.00 76.47 71.43 0.51 71.43 80.00 (P3) 

Theta 77.78 100.00 88.24 87.50 0.79 100.00 80.00 (C3) 

Delta/theta 66.67 87.50 76.47 75.00 0.55 85.71 70.00 
(T3, C4), (C4, 
T5), and (C4, 

P3) 

The best performance for ΔEEGA method was the biomarkers 

ΔEEGA(alpha/theta(T3)), ΔEEGA(theta/alpha (T3)), …, and ΔEEGA(theta/beta (T3, 

CZ, T4, O1, O2)). Table 6-12 shows the performance of ZCI method in AD diagnosis. 
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Table 6-12: Performance of ZCI method for all the 11 biomarkers 

EEG 
Biomarker 

Sen. 
% 

Spec. 
% 

Acc. 
% 

F-measure 
% 

MCC 
PPV 

% 
NPV 

% 
EEG channel 

Alpha/theta 100.00 100.00 100.00 100.00 1.00 100.00 100.00 
(C3), (P3), 

(PZ), and (P4) 

Theta/alpha 100.00 100.00 100.00 100.00 1.00 100.00 100.00 
(C3), (P3), and 

(P4) 

Alpha/delta 87.50 100.00 94.12 93.33 0.89 100.00 90.00 
(C3, P4, T6, 

O1) 

Beta/theta 77.78 100.00 88.24 87.50 0.79 100.00 80.00 

(C3, T5, PZ), 
(C3, P3, PZ), 
(C3, P3, P4), 
(C3, PZ, P4), 
(C4, T4, PZ),  
(T4, P3, PZ), 
(T4, P3, O1), 
(T4, P3, O2), 
and (T4, P4, 

O1) 

Alpha 87.50 100.00 94.12 93.33 0.89 100.00 90.00 
(T6, O1), and 

(T6, O2) 

Delta/alpha 100.00 90.91 94.12 92.31 0.88 85.71 100.00 (C3, P3, O1) 

Theta/beta 77.78 100.00 88.24 87.50 0.79 100.00 80.00 

(T3, P4, O1), 
(C3, T5, PZ), 
(C3, P3, P4), 
(C3, PZ, P4), 
(C4, T4, P3), 
(T4, P3, O1), 
(T4, P3, O2), 
and (T4, P4, 

O2) 

Theta/delta 62.50 77.78 70.59 66.67 0.41 71.43 70.00 
(T3, C3, C4, 

PZ) 

Delta 50.00 80.00 58.82 63.16 0.28 85.71 40.00 (PZ) 

Theta 66.67 87.50 76.47 75.00 0.55 85.71 70.00 (C4) 

Delta/theta 62.50 77.78 70.59 66.67 0.41 71.43 70.00 

(T3, C4, P3, PZ), 
and (T3, C4, PZ, 

P4) 

The best performance for ZCI method was the biomarkers ZCI(alpha/theta(C3)), 

ZCI(alpha/theta(P3)), … , and ZCI(delta/alpha (C3, P3, O1)). Table 6-13 shows the 

performance of coherence method in AD diagnosis. 
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Table 6-13: Performance of coherence method for all the 11 biomarkers 

EEG 
Biomarker 

Sen. 
% 

Spec. 
% 

Acc. 
% 

F-measure 
% 

MCC 
PPV 

% 
NPV 

% 
EEG channel 

Alpha/theta 85.71 90.00 88.24 85.71 0.76 85.71 90.00 

(Fp2-F4, Fz-
F8, F4-T4, F8-
P4, T3-T4, T3-

P4) 

Theta/alpha 63.64 100.00 76.47 77.78 0.62 100.00 60.00 (F8-P4, T3-P4) 

Alpha/delta 75.00 88.89 82.35 80.00 0.65 85.71 80.00 
(F4-T3, F4-T4, 
T3-T4, T3-P4) 

Beta/theta 85.71 90.00 88.24 85.71 0.76 85.71 90.00 
(Fp2-F4, F4-

F8, F4-T3, F4-
T4) 

Alpha 71.43 80.00 76.47 71.43 0.51 71.43 80.00 (F8-P4, T4-P3) 

Delta/alpha 53.85 100.00 64.71 70.00 0.46 100.00 40.00 (T3-P4) 

Theta/beta 83.33 81.82 82.35 76.92 0.63 71.43 90.00 
(F4-F8, F4-T3, 

F4-T4) 

Theta/delta 53.85 100.00 64.71 70.00 0.46 100.00 40.00 

(Fp2-F4, F4-
T3, F4-T4, T3-
T4), and (Fp2-
F4, F4-T3, F8-

P4, T3-T4) 

Delta 77.78 100.00 88.24 87.50 0.79 100.00 80.00 (F4-T4, T3-T4) 

Theta 77.78 100.00 88.24 87.50 0.79 100.00 80.00 (T3-T4) 

The best performance for coherence method was for the biomarkers Coh(alpha/theta 

(Fp2-F4, Fz-F8, F4-T4, F8-P4, T3-T4, T3-P4)), Coh(beta/theta(Fp2-F4, F4-F8, F4-

T3, F4-T4)), and Coh(theta/beta(F4-F8, F4-T3, F4-T4)).  Tables 6-6 to 6-13 showed 

the highest performance were selected of each EEG frequency band for the eight 

methods investigated. A few of the single biomarkers could provide with a high 

performance (e.g., ApEn(Alpha/theta(C4)) and ΔEEGA(alpha/theta(T3))) because the 

size of the used EEG dataset was not large enough to demonstrate the actual 

performance to each biomarker.  

6.3.4. Diagnostic model to detect AD 

The key goal in the study is to find the best combination of EEG based biomarkers to 

detect AD patients with high sensitivity and specificity. Tables 6-6 to 6-13 summarise 

the best performing EEG biomarkers for the eight methods investigated. Biomarkers 

that satisfied the threshold for sensitivity and specificity of at least 80% were selected 

for inclusion in the final model. Then, the biomarkers with the highest performance 
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were analysed. Biomarker panels emerge high sensitivity and specificity that include 

the fewest number of EEG channels were selected for inclusion in the development 

of the diagnostic model. Table 6-14 shows the best 69 EEG biomarkers panel 

selected (69 out of 325567). The 69 EEG biomarkers were then combined in a model 

using LDA. For example, ApEn(Alpha(P3, T6, O1)), ApEn(Alpha/theta(C4)), …. , and 

ΔPS(Alpha/theta(T3, C3, T4, P3, PZ, P4) were computed and used to develop the 

LDA model. The training and testing EEG datasets were used in the model 

development. Dataset A was used to validate the model and the performance found 

to be 100% for sensitivity and specificity.  

Table 6-14 shows the EEG based biomarkers selected and used in the diagnostic 

model. 

Table 6-14: Panel of robust EEG biomarkers 

Seq. Method 
EEG 

Biomarker 
EEG channel Category 

1 ApEn Alpha P3, T6, O1 

 
 

EEG complexity 
 
 
 
 
 

2 ApEn Alpha/theta C4 

3 HFD Alpha T5, PZ, T6, O1, O2 

4 HFD Theta/alpha T3, T5 

5 LZC Alpha C3, CZ, PZ, T6, O1 

6 LZC Alpha/delta CZ, C4, T4, P3, P4, T6 

7 TsEn Alpha/delta C3, T6 

8 TsEn Alpha/theta T3, C3, CZ, P3, T6, O1 

9 ZCI Alpha T6, O1, O2 

EEG slowing 

10 ZCI Alpha/theta C3, P3, PZ, P4 

11 ZCI Delta/alpha C3, P3, O1 

12 ΔEEGA Alpha/delta T6 

13 ΔEEGA Theta/alpha T3, C3, T5, P3, PZ, P4 

14 PS Alpha T3, C3, P3, P4, T6 

15 PS Alpha/delta T3, T4, P3, P4, O1 

16 PS Alpha/theta T3, C3, T4, P3, PZ, P4 

17 Coh Alpha/theta 
Fp2-F4, Fz-F8, F4-T4, F8-P4, T3-T4, 
T3-P4 

EEG 
connectivity 

For example, the performance for ApEn(Alpha(P3, T6, O1)) was 100% and 88% for 

sensitivity and specificity, respectively as shown in Table 6-6, and the performance 

for Coh (Alpha/theta (Fp2-F4, Fz-F8, F4-T4, F8-P4, T3-T4, T3-P4)) was 86% and 
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90% for sensitivity and specificity, respectively as shown in Table 6-13. We can 

conclude, the performance of inclusion multiple biomarkers in one diagnostic model 

guided us to high diagnostic performance. 

6.4. Discussions 

AD affects cognitive memory and brain functions [1][2], each EEG frequency band 

has been shown to be associated with specific brain functions [1][244]. Furthermore, 

each lobe of the brain has specific tasks [23][24][42][245][246][22] and does not 

generate the same brainwave frequency simultaneously [247]. Each EEG band is 

related to specific functions (e.g., drowsiness, wakefulness, and deep sleep) 

[80][81][79]. Thus, decline in brain functions may be reflected in the EEG activities 

and  EEG frequency bands [23][252][253]. Consequently, deriving  EEG biomarkers 

from frequency bands is thought to provide a better performance in detecting AD 

compared to EEG biomarkers derived from the whole EEG record [50]. Furthermore, 

EEG measurement can be influenced by many artefacts (e.g. muscle and eye 

movements) [78][82]. Filtering EEG signal into frequency bands could reduce these 

artefacts. For example, the peak frequency of the masseter muscle around 50–60Hz, 

40–80Hz for temporal muscles, posterior head muscles sternocleidomastoids, 

splenius capitus, and trapezius higher peak frequencies around 100Hz, and the 

extraocular muscles that contain both striate and smooth fibres and control saccadic 

eye movements produce activity that peaks around 65Hz [254].  

The development of robust EEG based biomarkers requires a thorough investigation 

of all the possible factors that affect AD detection. These factors may include the 

basis for the biomarkers (e.g. EEG slowing, reduction in complexity, reduction in 

coherence), the EEG features used and hence the methods used to derive the 

biomarkers, and the EEG channels from which the biomarker is derived. Considering 

these factors and integrating biomarkers into a composite biomarker should lead to 
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robust EEG based biomarkers. Our methodological framework makes it possible to 

do so and our results support this. 

We selected EEG biomarkers and channels with a significant association with AD 

detection as having high performance in distinguishing between AD patients and 

normal subjects. These biomarkers and EEG channels were then used to find the 

best combination of the EEG biomarkers that is robust enough to be used to detect 

AD.  

The total number of EEG biomarkers were used to detect AD was 325567 

biomarkers.  

From 325567 biomarkers, 69 biomarkers were determined that may have a more 

significant with AD as shown in Table 6-14 with performance greater than or equal to 

80% for sensitivity and specificity.  

In this study, we found that the robust EEG biomarkers that can be used in AD 

diagnosis with performance close to 100% for sensitivity and specificity. Table 6-15 

shows the probability distribution ratio for the selected EEG biomarkers, but Table 6-

16 shows the probability distribution ratio for the selected EEG channels. These 

biomarkers and channels were evaluated to develop a robust diagnostic model for 

AD.  

Table 6-15: EEG biomarkers that may have a more significant association with AD 

Biomarker Total  
Probability 
distribution 

ratio 

Alpha 5 29.41 

Alpha/Theta 5 29.41 

Alpha/Delta 4 23.53 

Theta/Alpha 2 11.76 

Delta/Alpha 1 5.88 

Summation 17 100 
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Table 6-16: EEG channels that may have a more significant association with AD 

EEG 
channel 

Total 
Probability 
distribution 

ratio 

P3 11 12.50 

T6 11 12.50 

T3 9 10.23 

C3 9 10.23 

P4 9 10.23 

O1 8 9.09 

T4 7 7.95 

PZ 7 7.95 

CZ 6 6.82 

O2 5 5.68 

C4 3 3.41 

T5 3 3.41 

Summation 88 100 

 

To illustrate the effect of AD on EEG signal. The changes in EEG due to AD can be 

shown for the 69 robust EEG biomarkers that may have a more significant association 

with AD, as shown in Table 6-14. Table 6-17 shows the changes in EEG signal due 

to AD for the 17 EEG features (e.g., ApEn(Alpha), ApEn(Alpha/Theta)) that may have 

a more significant association with AD for the three key characteristics of dementia 

EEG (i.e. slowing of the EEG, reduction in EEG complexity and reduction in EEG 

coherence). The shaded boxes in Table 6-17 referred to the decrease in EEG 

biomarkers due to AD, otherwise it means the increase. Table 6-17 shows the 

changes in EEG characteristics due to AD. 
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Table 6-17: Changes in EEG signal due to AD for the 17 robust EEG biomarker 

panels 

Category Method Biomarker AD Norm 

EEG 
complexity 

ApEn Alpha   

ApEn Alpha/Theta   

HFD Alpha   

HFD Theta/Alpha   

LZC Alpha   

LZC Alpha/Delta   

TsEn Alpha/Delta   

TsEn Alpha/Theta   

EEG 
slowing 

Power Alpha   

Power Alpha/Delta   

Power Alpha/Theta   

ZCI Alpha   

ZCI Alpha/Theta   

ZCI Delta/Alpha   

ΔEEGA Alpha/Delta   

ΔEEGA Theta/Alpha   

EEG 
coherence 

Coherence Alpha/Theta 

  
 

We analysed the performance of the main three approaches on which EEG 

biomarkers are based   (i.e., reduction in EEG complexity, slowing of the EEG signal, 

and decrease in EEG coherence) in quantifying changes in EEG due to AD. 

Therefore, we investigated the differences between the values of the slowing, 

complexity, and coherence measures derived from EEG signals of AD subjects to 

those from normal subjects. From Table 6-17, we can conclude AD cause changes 

in the characteristics of EEG. These characteristics include decrease in EEG 

complexity, slowing in EEG and decrease in EEG coherence among cortical regions. 

This finding is consistent with the finding in other studies that referred that AD leads 

to a decrease in the performance of information processing activity of the brain and 

these changes are reflected in the content of EEG signal 

[43][50][44][45][47][84][48][85][255]. 
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6.5. Summary 

AD causes a reduction in neuronal activity of the brain and this may be reflected in 

EEG signals, which may be used to detect AD accurately. The changes in the EEG 

may provide useful information about AD development which may be used to detect 

AD with high performance (e.g., close to 100%). We analysed eight promising 

methods for quantifying changes in EEG based on three approaches to EEG analysis 

(i.e., the decrease in EEG complexity, slowing in EEG, and decrease in EEG 

coherence among cortical regions). For the slowing of EEG, we analysed three 

promising methods (i.e., changes in the power of EEG, changes in EEG amplitude, 

and zero crossing interval). For the EEG complexity, four promising methods were 

analysed (i.e., approximation entropy, Tsallis entropy, Lempel Ziv Complexity, and 

Higuchi Fractal Dimension). For EEG connectivity, EEG coherence was analysed. We 

analysed EEG changes based on the five EEG frequency bands (i.e., delta, theta, 

alpha, beta, and gamma) and the 20 ratios between features in traditional EEG 

frequency bands. The results showed that AD detection  with high performance could 

be achieved by combining multiple biomarkers to create a robust biomarker and this 

is consistent with the results in other studies; Mao et al. [256] suggested the 

combination of markers of AD can improve the identification effect for auxiliary 

diagnosis of AD. This study provides a framework for constructing robust biomarkers 

that could be used to detect AD with high performance for sensitivity and specificity 

closed to 100%. We develop a robust diagnostic model from 69 EEG biomarkers that 

have shown promise in AD diagnosis. We believe that the combination of these 

biomarkers could be used to provide a reliable model for AD diagnosis. 

However, although the diagnostic model gave good results there are significant 

limitations in the study, the most important of which is the low sample sizes of the 

datasets for  AD patients and normal subjects (37 AD and 35 normals). Given the 
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number of biomarkers involved, there is a potential for over-fitting of the model. Further 

investigation  is necessary to identify the smallest subset of biomarkers that might give 

similar performance and if possible to increase the sample sizes. 
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Chapter 7. Optimisation of Robust EEG Based Biomarkers 

7.1. Introduction 

In Chapter 6, 69 robust EEG based biomarkers were identified  (see Table 6-14) and 

combined into one diagnostic model. The combined biomarker consisted of 30 

biomarkers from analysis of the reduction in EEG complexity, 33 biomarkers from 

analysis of the slowing of the EEG, and 6 biomarkers from the analysis of the 

reduction in EEG coherence. Although the results were good, this may not be the 

smallest possible subset of EEG biomarkers.  

Further investigation is necessary to identify the smallest subset of EEG biomarkers 

from the 69 biomarkers. A new EEG dataset was used in the investigation to avoid 

bias if the same datasets were used. Using a new EEG dataset would also help to 

assess how the method would perform in different clinical settings. The new EEG 

datasets (C and D) were recorded in Rome and were provided by La Sapienza, 

University of Rome.        

7.2. Methodology 

10-fold cross-validation was used for developing the model to help mitigate against 

over-fitting. The selection of the training and testing datasets was performed 

randomly.   

The EEG dataset used in this chapter consists of four datasets (A, B, C, and D). EEG 

dataset D was used for training and cross-validation. Datasets A, B and C were used 

for subsequent testing. 

Dataset A includes 11 age-matched subjects over 65 years old (3 AD patients, and 8 

normal subjects). Dataset B includes 41 subjects that were not perfectly age-matched 

with 24 normal subjects (10 males and 14 females) and 17 were probable AD patients 

(9 males and 8 females). Dataset C includes 10 mild AD patients and 10 normal age-

matched healthy old subjects. Dataset D includes 20 normal age-matched healthy 
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old subjects and 20 mild AD patients. Altogether, a total of 112 subjects were 

involved, 57 AD and 55 normals. More details are given in Chapter 3. 

The following steps outline the procedure for extracting the best combination of 

biomarkers from the 69 robust EEG based biomarkers.  

1. Following the methodology in Chapter 6, the 69 biomarkers (see Table 6-14) 

were computed using dataset D: Steps 1 – 6 in Chapter 6, Section 6.2 

2. Create panels of biomarkers from the 69 biomarkers (i.e. by combining one or 

more biomarkers). The maximum panel size is limited to 4 biomarkers to avoid 

the excessive number of possible panels and given that the goal is to find the 

smallest subset of biomarkers (i.e. panels with the fewest number of 

biomarkers) to give satisfactory performance compared to the use of all 69 

biomarkers.  

3. Develop and test a  model for each panel to detect AD. In the study, an SVM 

model was used to combine the biomarkers in each  panel  [250].  

4. Select panels and hence the subset of biomarkers that meet the diagnostic 

criteria and develop a diagnostic model from these. 

5. Test the diagnostic model using unseen datasets (datasets A, B and C).  

7.2.1. Biomarker selection 

The methodological framework involves a thorough consideration of all 69 extracted 

biomarkers. Starting with the 69 biomarkers, finding the smallest subset of 

biomarkers involved creating panels of biomarkers by combining the biomarkers. The 

maximum number of biomarkers in a panel was limited to 4 because the goal is to 

find the smallest subset of biomarkers to detect AD with acceptable performance and 

the need to avoid the exponential increase in the number of possible biomarker 

panels as panel size increases. Limiting the panel size to 4 still yielded 919310 

biomarker panels (see Table 7-1).  
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A machine learning model was developed for each biomarker panel. The 

performance of each model was assessed based on its sensitivity and specificity for 

detecting AD patients. SVM was used to develop the models. Biomarker panels with 

performance more than or equal to 80% for sensitivity and specificity were selected . 

This allowed us to determine the best performing biomarker panels. 

Table 7-1: Number and distribution of panels with one, two, three and four 

biomarkers 

No. of biomarkers 
in a panel 

No. of panels  

1 69 

2 2346 
3 52394 
4 864501 

Total  919310 
 

7.2.2. Diagnostic model to detect AD 

The next step is to select the smallest subset of biomarkers with acceptable 

performance. The selected biomarkers are then combined into one model to produce 

the best diagnostic model. To achieve this, first we select biomarker panels that 

satisfied the selection criterion and from these a subset of biomarkers was selected 

based on their performance and then combined  into one biomarker panel. The new 

biomarker panel was used to develop a new SVM model. The performance of the 

SVM model is then assessed using unseen EEG dataset.  

7.3. Results 

7.3.1. Biomarker computations and selections 

A new EEG dataset (dataset D) was used to compute the 919310 EEG biomarker 

panels. For each of the 919310 biomarker panels, an SVM diagnostic model was 

developed. To minimise overfitting, a 10-fold cross validation was used in model 

development [257]. As a result, 919310 SVM models were developed. Each 

biomarker panel of 919310 was assessed based on its performance and the number 
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of biomarkers in the panel. Biomarker panels with high performance and fewest 

number of biomarkers were selected to develop the fina model.  

Table 7-2 summarises the performance of the single-biomarker panels in order of 

performance. Only the first six biomarkers in Table 7.1 have satisfactory performance 

(sensitivity and specificity equal to or greater than 80%).  

Table 7-2: Performance of the 69 single-biomarker panels 

EEG biomarker 
Sen. 

% 
Spec. 

% 
Acc. 
% 

F-measure 
% 

MCC 
PPV 
% 

NPV 
% 

TsEn(Alpha/theta(T6)) 100.00 100.00 100.00 100.00 1.00 100.00 100.00 

ZCI(Alpha/theta(P3)) 100.00 100.00 100.00 100.00 1.00 100.00 100.00 

ZCI(Delta/alpha(P3)) 100.00 100.00 100.00 100.00 1.00 100.00 100.00 

ΔEEGA(Alpha/delta(T6)) 100.00 100.00 100.00 100.00 1.00 100.00 100.00 

ΔEEGA(Theta/alpha(T3)) 100.00 100.00 100.00 100.00 1.00 100.00 100.00 

ΔEEGA(Theta/alpha(T5)) 100.00 100.00 100.00 100.00 1.00 100.00 100.00 

ApEn(Alpha/theta(C4)) 66.67 100.00 75.00 80.00 0.58 100.00 50.00 

ΔPS(Alpha(P3)) 69.23 85.71 75.00 78.26 0.52 90.00 60.00 

ΔPS(Alpha(T6)) 62.50 100.00 70.00 76.92 0.50 100.00 40.00 

ΔPS(Alpha/delta(P4)) 62.50 100.00 70.00 76.92 0.50 100.00 40.00 

ΔPS(Alpha/delta(O1)) 62.50 100.00 70.00 76.92 0.50 100.00 40.00 

ΔPS(Alpha/theta(T3)) 62.50 100.00 70.00 76.92 0.50 100.00 40.00 

ΔPS(Alpha/theta(C3)) 62.50 100.00 70.00 76.92 0.50 100.00 40.00 

Coh(Alpha/theta(F4-T4)) 72.73 77.78 75.00 76.19 0.50 80.00 70.00 

Coh(Alpha/theta(Fz-F8)) 64.29 83.33 70.00 75.00 0.44 90.00 50.00 

LZC(Alpha/delta(T6)) 55.56 100.00 60.00 71.43 0.33 100.00 20.00 

ΔPS(Alpha/theta(P3)) 61.54 71.43 65.00 69.57 0.31 80.00 50.00 

LZC(Alpha/delta(P3)) 56.25 75.00 60.00 69.23 0.25 90.00 30.00 

LZC(Alpha/delta(C4)) 52.63 100.00 55.00 68.97 0.23 100.00 10.00 

HFD(Alpha(PZ)) 52.94 66.67 55.00 66.67 0.14 90.00 20.00 

HFD(Alpha(O1)) 52.94 66.67 55.00 66.67 0.14 90.00 20.00 

LZC(Alpha(O1)) 52.94 66.67 55.00 66.67 0.14 90.00 20.00 

LZC(Alpha/delta(T4)) 52.94 66.67 55.00 66.67 0.14 90.00 20.00 

ΔPS(Alpha/theta(P4 52.94 66.67 55.00 66.67 0.14 90.00 20.00 

ZCI(Alpha(O2)) 50.00 0.00 50.00 66.67 0.00 100.00 0.00 

LZC(Alpha/delta(CZ)) 50.00 50.00 50.00 64.29 0.00 90.00 10.00 

ΔEEGA(Theta/alpha(PZ)) 60.00 60.00 60.00 60.00 0.20 60.00 60.00 

ΔPS(Alpha/theta(PZ)) 60.00 60.00 60.00 60.00 0.20 60.00 60.00 

Coh(Alpha/theta(Fp2-F4)) 71.43 61.54 65.00 58.82 0.31 50.00 80.00 

ApEn(Alpha(O1)) 80.00 60.00 65.00 53.33 0.35 40.00 90.00 

ΔPS(Alpha(P4)) 80.00 60.00 65.00 53.33 0.35 40.00 90.00 

ΔPS(Alpha/delta(T4)) 80.00 60.00 65.00 53.33 0.35 40.00 90.00 

LZC(Alpha(C3)) 55.56 54.55 55.00 52.63 0.10 50.00 60.00 

HFD(Theta/alpha(T5)) 42.86 33.33 40.00 50.00 -0.22 60.00 20.00 
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LZC(Alpha(PZ)) 66.67 57.14 60.00 50.00 0.22 40.00 80.00 

ΔPS(Alpha/theta(T4)) 66.67 57.14 60.00 50.00 0.22 40.00 80.00 

Coh(Alpha/theta(T3-P4)) 42.86 33.33 40.00 50.00 -0.22 60.00 20.00 

LZC(Alpha(T6)) 57.14 53.85 55.00 47.06 0.10 40.00 70.00 

ΔEEGA(Theta/alpha(P3)) 57.14 53.85 55.00 47.06 0.10 40.00 70.00 

ΔEEGA(Theta/alpha(P4)) 57.14 53.85 55.00 47.06 0.10 40.00 70.00 

ΔPS(Alpha/delta(P3)) 57.14 53.85 55.00 47.06 0.10 40.00 70.00 

Coh(Alpha/theta(F8-P4)) 37.50 0.00 30.00 46.15 -0.50 60.00 0.00 

ApEn(Alpha(P3)) 50.00 50.00 50.00 44.44 0.00 40.00 60.00 

Coh(Alpha/theta(T3-T4)) 38.46 28.57 35.00 43.48 -0.31 50.00 20.00 

ΔPS(Alpha(C3)) 42.86 46.15 45.00 35.29 -0.10 30.00 60.00 

HFD(Alpha(O2)) 100.00 55.56 60.00 33.33 0.33 20.00 100.00 

LZC(Alpha(CZ)) 50.00 50.00 50.00 28.57 0.00 20.00 80.00 

ZCI(Alpha/theta(PZ)) 23.08 0.00 15.00 26.09 -0.73 30.00 0.00 

TsEn(Alpha/delta(T6)) 33.33 42.86 40.00 25.00 -0.22 20.00 60.00 

TsEn(Alpha/theta(T3)) 33.33 42.86 40.00 25.00 -0.22 20.00 60.00 

ΔPS(Alpha(T3)) 33.33 42.86 40.00 25.00 -0.22 20.00 60.00 

ΔPS(Alpha/delta(T3)) 50.00 50.00 50.00 16.67 0.00 10.00 90.00 

ApEn(Alpha(T6)) 33.33 47.06 45.00 15.38 -0.14 10.00 80.00 

TsEn(Alpha/delta(C3)) 33.33 47.06 45.00 15.38 -0.14 10.00 80.00 

TsEn(Alpha/theta(CZ)) 16.67 35.71 30.00 12.50 -0.44 10.00 50.00 

TsEn(Alpha/theta(P3)) 16.67 35.71 30.00 12.50 -0.44 10.00 50.00 

HFD(Alpha(T5)) 0.00 47.37 45.00 0.00 -0.23 0.00 90.00 

HFD(Alpha(T6)) 0.00 47.37 45.00 0.00 -0.23 0.00 90.00 

HFD(Theta/alpha(T3)) 0.00 44.44 40.00 0.00 -0.33 0.00 80.00 

LZC(Alpha/delta(P4)) 0.00 41.18 35.00 0.00 -0.42 0.00 70.00 

TsEn(Alpha/theta(C3)) 0.00 44.44 40.00 0.00 -0.33 0.00 80.00 

TsEn(Alpha/theta(O1)) 0.00 50.00 50.00 0.00 0.00 0.00 100.00 

ZCI(Alpha(T6)) 0.00 0.00 0.00 0.00 -1.00 0.00 0.00 

ZCI(Alpha(O1)) 0.00 50.00 50.00 0.00 0.00 0.00 100.00 

ZCI(Alpha/theta(C3)) 0.00 28.57 20.00 0.00 -0.65 0.00 40.00 

ZCI(Alpha/theta(P4)) 0.00 37.50 30.00 0.00 -0.50 0.00 60.00 

ZCI(Delta/alpha(C3)) 0.00 50.00 50.00 0.00 0.00 0.00 100.00 

ZCI(Delta/alpha(O1)) 0.00 50.00 50.00 0.00 0.00 0.00 100.00 

ΔEEGA(Theta/alpha(C3)) 0.00 50.00 50.00 0.00 0.00 0.00 100.00 

 

As shown in Table 7-2 the performance of biomarkers  started at  100% for sensitivity 

and specificity for the first six biomarkers and then droped significantly  to 66.67% for 

sensitivity for the biomarker ApEn(Alpha/theta(C4)). Our criterion is to select the 

biomarkers with the highest performace and so  the first six biomarkers were selected 

from single-biomarker. This table shows that the biomarkers [TsEn(Alpha/theta(T6))], 

[ZCI(Alpha/theta(P3))], [ZCI(Delta/alpha(P3))], [ΔEEGA(Alpha/delta(T6))], 
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[ΔEEGA(Theta/alpha(T3))], and Δ[EEGA(Theta/alpha(T5))] have the highest 

performance, and that biomarkers [ZCI(Delta/alpha(C3))], [ZCI(Delta/alpha(O1))], 

and [ΔEEGA(Theta/alpha(C3))] have the lowest performance.  

 

Table 7-3 summarises the performance of the best two-biomarker panels  (out of the 

2346 two-biomarker panels in  Table 7-1), with sensitivity and specificity greater than 

or equal to 80%.  

Table 7-3: Summary of the performance of the best two-biomarker  panels 

Biomarker 1 Biomarker 2 
Sen. 

% 
Spec. 

% 
Acc. 

% 

LZC(Alpha(C3)) ZCI(Alpha/theta(P3)) 100.00 100.00 100.00 

LZC(Alpha/delta(P3)) ZCI(Delta/alpha(P3)) 100.00 100.00 100.00 

TsEn(Alpha/theta(CZ)) ΔEEGA(Theta/alpha(T3)) 100.00 100.00 100.00 

ΔEEGA(Theta/alpha(T5)) Coh(Alpha/theta(T3-P4)) 100.00 100.00 100.00 

LZC(Alpha(O1)) TsEn(Alpha/theta(T6)) 90.91 100.00 95.00 

TsEn(Alpha/theta(T6)) ΔPS(Alpha(T3)) 90.91 100.00 95.00 

ZCI(Alpha/theta(P3)) ΔPS(Alpha/theta(T3)) 90.91 100.00 95.00 

ΔEEGA(Alpha/delta(T6)) ΔPS(Alpha(T6)) 90.91 100.00 95.00 

ZCI(Alpha/theta(P3)) Coh(Alpha/theta(F4-T4)) 83.33 100.00 90.00 

ZCI(Alpha/theta(P3)) ΔEEGA(Theta/alpha(P4)) 81.82 88.89 85.00 

 

As shown in Table 7-3 the performance of biomarkers was started at  100% for 

sensitivity and specificity for the first four biomarkers and then reduced gradually to 

81.82% for sensitivity and  88.89% for specificity for biomarker the 

[ZCI(Alpha/theta(P3)),  ΔEEGA(Theta/alpha(P4))].  

Table 7-4 summarises the performance of the best three-biomarker panels (out of 

52394 three-biomarker panels in Table 7-1), with sensitivity and specificity greater 

than or equal to 80%.  
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Table 7-4: Summary of the performance of the best three-biomarker panels 

Biomarker 1 Biomarker 2 Biomarker 3 Sen. % Spec. % Acc. % 

ApEn(Alpha(P3)) ApEn(Alpha(T6)) TsEn(Alpha/theta(T6)) 100.00 100.00 100.00 

ApEn(Alpha(P3)) ApEn(Alpha(O1)) ZCI(Delta/alpha(P3)) 100.00 100.00 100.00 

ApEn(Alpha(P3)) ApEn(Alpha/theta(C4)) ZCI(Alpha/theta(P3)) 100.00 100.00 100.00 

ApEn(Alpha(P3)) HFD(Alpha(PZ)) ΔEEGA(Theta/alpha(T3)) 100.00 100.00 100.00 

ApEn(Alpha(P3)) ZCI(Alpha/theta(P3)) ΔEEGA(Theta/alpha(P3)) 90.91 100.00 95.00 

LZC(Alpha(O1)) ZCI(Delta/alpha(P3)) Coh(Alpha/theta(T3-T4)) 90.91 100.00 95.00 

HFD(Alpha(PZ)) LZC(Alpha(O1)) ΔEEGA(Theta/alpha(T5)) 100.00 90.91 95.00 

LZC(Alpha(O1)) ΔEEGA(Alpha/delta(T6)) ΔPS(Alpha/theta(C3)) 100.00 90.91 95.00 

ΔEEGA(Theta/alpha(T5)) ΔPS(Alpha/delta(T3)) ΔPS(Alpha/theta(P4)) 100.00 90.91 95.00 

ΔEEGA(Alpha/delta(T6)) Coh(Alpha/theta(F4-T4)) Coh(Alpha/theta(T3-P4)) 100.00 83.33 90.00 
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As shown in Table 7-4 the performance of biomarkers  started at  100% for sensitivity 

and specificity for the first four biomarkers and then reduced gradually to 100% for 

sensitivity and 83.33% for specificity for the biomarker [ ΔEEGA(Alpha/delta(T6)) 

Coh(Alpha/theta(F4-T4)) Coh(Alpha/theta(T3-P4))] .  

 

Table 7-5 summarises the performance of the best four-biomarker panels (out of the 

864501 four-biomarker panels in Table 7-1), with sensitivity and specificity greater 

than or equal to 80%.  
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Table 7-5: Summary of the performance of the best four-biomarker panels 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Biomarker 1 Biomarker 2 Biomarker 3 Biomarker 4 
Sen. 

% 
Spec. 

% 
Acc. 
% 

ApEn(Alpha(P3)) ApEn(Alpha(T6)) ApEn(Alpha(O1)) TsEn(Alpha/theta(T6)) 100.00 100.00 100.00 

ApEn(Alpha(P3)) ApEn(Alpha(T6)) LZC(Alpha(CZ)) ZCI(Delta/alpha(P3)) 100.00 100.00 100.00 

ApEn(Alpha(P3)) ApEn(Alpha(T6)) LZC(Alpha/delta(T6)) ZCI(Delta/alpha(P3)) 100.00 100.00 100.00 

ApEn(Alpha(P3)) ApEn(Alpha(T6)) ZCI(Alpha(O1)) ΔEEGA(Theta/alpha(T5)) 100.00 100.00 100.00 

ApEn(Alpha(P3)) ApEn(Alpha(T6)) LZC(Alpha/delta(CZ)) ZCI(Alpha/theta(P3)) 90.91 100.00 95.00 

ApEn(Alpha(P3)) ΔEEGA(Theta/alpha(T3)) TsEn(Alpha/theta(T6)) ΔPS(Alpha/delta(P3)) 90.91 100.00 95.00 

ApEn(Alpha(P3)) ApEn(Alpha(T6)) ΔEEGA(Alpha/delta(T6)) ΔPS(Alpha/theta(PZ)) 100.00 90.91 95.00 

ApEn(Alpha(P3)) HFD(Theta/alpha(T5)) LZC(Alpha(O1)) ZCI(Alpha/theta(P3)) 100.00 90.91 95.00 

ApEn(Alpha(P3)) ApEn(Alpha(T6)) ΔEEGA(Alpha/delta(T6)) ΔPS(Alpha(P3)) 83.33 100.00 90.00 

ApEn(Alpha(P3)) ApEn(Alpha(T6)) ZCI(Alpha/theta(P3)) ΔEEGA(Theta/alpha(P4)) 81.82 88.89 85.00 
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As shown in Table 7-5 the performance of biomarkers started at  100% for sensitivity 

and specificity for the first four biomarkers and reduced gradually to 81.82% for 

sensitivity and 88.89% for specificity for biomarker [ApEn(Alpha(P3)) 

ApEn(Alpha(T6)) ZCI(Alpha/theta(P3)) ΔEEGA(Theta/alpha(P4))].  

7.3.2. Diagnostic model to detect AD 

The key goal of this study is to find the smallest subset of biomarkers that may give 

a similar or close performance to that of the robust 69 biomarkers in Chapter 6. Tables 

7-2 to 7-5 summarise the performance of the best biomarker panels for single, two, 

three, and four biomarker panels, respectively.  

To select the best biomarkers from Tables 7-2 to 7-5, we  focused on the smallest 

subset of biomarkers that have a high performance in AD detection. Based on that 

criterion, we found from  analysis of  the  biomarker panels in Tables 7-2 to 7-5 that 

six biomarkers are shared between the best performing biomarker panels  in Tables 

7-2 to 7-5. To illustrate  the single-biomarker panel TsEn(Alpha/theta(T6)) in Table 7-

2 appears twice in Table 7-3, once in Table 7-4, and twice in Table 7-5. Therefore, 

the single-biomarker panel TsEn(Alpha/theta(T6)) was selected as it has a high 

performance and it has only one parameter. Table 7-6 summarises the first six single-

biomarker panels  in Table 7-2 and their occurrence  in Tables 7-3, 7-4, and 7-5. 

Table 7-6 summarises the smallest subset of biomarkers that have a high 

performance in AD detection (6 out of 919310). These six biomarkers represent the 

smallest subset of biomarkers that have a high performance in AD detection. The  six 

biomarkers  were combined into one SVM model. Dataset D using 10-fold cross-

validation was used in the development of the final SVM model.  
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Table 7-6: The smallest subset of biomarkers that have a high performance in AD 

detection and their occurrence in Tables 7-3 to 7- 5 

No. EEG biomarker Table 7-3 Table 7-4 Table 7-5 Total 

1 TsEn(Alpha/theta(T6)) 2 1 2 5 

2 ZCI(Alpha/theta(P3)) 4 2 3 9 

3 ZCI(Delta/alpha(P3)) 1 2 2 5 

4 ΔEEGA(Alpha/delta(T6)) 1 3 2 6 

5 ΔEEGA(Theta/alpha(T3)) 1 1 1 3 

6 ΔEEGA(Theta/alpha(T5)) 1 1 1 3 

 

The resulting model was then tested using unseen datasets. In particular, datasets 

A, B, and C were used to validate the developed model. 

The performance of the final model using dataset C was 100% for sensitivity and 

specificity, respectively as shown in Figure 7-1. Also, the performance of the final 

diagnostic model using dataset A was also 100% for sensitivity and specificity, 

respectively. 
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Figure 7-1: ROC and AUC of  the final diagnostic model based on a subset of six 

biomarkers using dataset C  

 

The performance of final model using dataset B was 85% for sensitivity and 100% for 

specificity. Figure 7-2 shows the ROC and AUC for the final diagnostic model based 

on dataset B.   
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Figure 7-2: ROC and AUC of the final diagnostic model based on a subset of six 

biomarkers using dataset B   

 

7.4. Discussions 

Identification of the best possible subset of EEG biomarkers for AD detection requires 

a detailed investigation of the subsets of the 69 robust EEG biomarkers found in 

Chapter 6. Starting with 69 biomarkers, the number of possible subsets (or panels) 

of the 69 biomarkers grows exponentially with the number of biomarkers in the 

subsets. To keep the number of possible biomarker panels (or subsets of biomarkers) 

manageable and given that the goal is to find the smallest subset of biomarkers to 

give satisfactory performance, the number of biomarkers in a panel was limited to 

four. The best performing 1, 2, 3 and 4 biomarker panels were identified and 

analysed. The biomarkers common in the best performing biomarker panels and 

which also have high performance were selected. The outcome of this is the six 

biomarkers as shown in Table 7-6. The selected biomarkers were then used to 
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develop the final diagnostic model which is then tested using unseen EEG datasets 

i.e. datasets A, B and C (see Figures 7-1, and 7-2). To mitigate over-fitting, a10-fold 

cross validation was used in model development [257]. 

The selected biomarkers included  one biomarker based on  the reduction in EEG 

complexity i.e., TsEn(Alpha/theta(T6)), and  5 biomarkers based on  the slowing of 

the EEG i.e., ZCI(Alpha/theta(P3)), ZCI(Delta/alpha(P3)), ΔEEGA(Alpha/delta(T6)), 

ΔEEGA(Theta/alpha(T3)), and ΔEEGA(Theta/alpha(T5)). Furthermore, analysis of the 

results show that the EEG channels in the  temporal and parietal lobes (i.e. T6, T3, 

T5, and P3) gave  better results compared to other channels that relate to other lobes 

e.g., the frontal lobe.  

Although the performance of the diagnostic model is good, there are a number of 

significant limitations of the study. First, the size of the dataset used in the model 

development and testing of the model is small. In the study, 40 cases were used for 

training the model (i.e. 20 AD patients and 20 normal subjects (dataset D)), and 72 

cases for testing l (i.e. 30 AD patients and 42 normal subjects (datasets A, B, and C)). 

Although this compares well with the size of the dataset in  other studies (e.g.,  

Amezquita-Sanchez et al. [258] used 74 cases,    37 MCI and 37 AD patients with an 

accuracy of 90.3%. Chai et al. [259] used  20 cases, 10 AD patients and 10 healthy 

people with AUC reaching 0.89),   the number of subjects is still quite low and there 

is a risk of over-fitting. For clinical acceptance, there is a need for further study using 

larger datasets from different settings to assess the full potential of the model and 

methodology. Finding the smallest subset of biomarkers from 69 biomarkers involves 

examining excessively large number of biomarker panels. As a result, the maximum 

number of biomarkers in a panel was limited to four and the determination of the 

smallest subset was based on these. Thus, the subset we used to develop the final 

diagnostic model may not be the optimal subset (in terms of performance, number 



161 
 

and type of biomarkers). In future, it should be possible to examine all the possible 

subsets of biomarkers if the computational resources are available. 

7.5. Summary 

In this chapter, we have developed a method to find the smallest set of biomarkers 

from the 69 biomarkers developed in Chapter 6. This led to the selection of six 

biomarkers which featured in the best performing 1, 2, 3 and 4 biomarker panels. A 

diagnostic model based on the six biomarkers were then developed and tested with 

unseen datasets. A new dataset was used to develop the model. 10 fold cross-

validation was used throughout in the model development to mitigate against over-

fitting. The performance of the final model compares well with other studies, but 

further studies is necessary using a much larger dataset to develop and fully evaluate 

the diagnostic model.  
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Chapter 8. Review, Conclusions and Future Work 

8.1. Review  

Alzheimer’s disease is a progressive disorder that affects cognitive brain functions 

and begins many years prior to any clinical manifestations. A biomarker that provides 

a quantitative measure of early stage changes in the brain due to AD would therefore 

be useful for the early diagnosis of AD. However, because up to 50% of dementia 

sufferers do not receive a formal diagnosis, this would involve dealing with large 

numbers of people. Thus, there is a need for accurate, low-cost, robust, and easy to 

use biomarkers that can be used to detect AD in its early stages.  

Degeneration of brain cells due to AD begins many years before any clinical issues 

arise [8][15][16][17][18][19]. Early diagnosis of AD will therefore contribute to the 

development of effective treatments that could slow, stop or prevent significant 

cognitive decline [18][20][21]. Early diagnosis of AD could also be useful for 

identifying dementia sufferers who have not received a formal early diagnosis and 

will provide them with an opportunity to access appropriate health care services 

[22][23][24].  

Potentially, the electroencephalogram (EEG) can play a valuable role in the early 

diagnosis of AD [15][23][24][42][43][44] as it is non-invasive, low-cost, has a high 

temporal resolution, and provides valuable information about brain dynamics 

[23][24][43][45][46]. The fundamental utility of EEG in detecting changes in brain 

signals, even in the preclinical stage of the disease, has been widely demonstrated 

[43][47][48]. Thus, EEG biomarkers may be used as a first line decision-support tool 

in AD diagnosis [15][45] and could complement other AD biomarkers [37].  

In this thesis, we described research into the development of EEG biomarkers to 

detect AD based on an analysis of changes in the EEG. The most characteristic 

features of an EEG that detects AD are the slowing of the EEG, a decrease in EEG 

coherence, and a reduction in EEG complexity. These changes can be quantified as 
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biomarkers of AD. In this study, we focused on detecting EEG features that have a 

more significant association with AD. Promising EEG features were extracted from 

the main three techniques of EEG analysis and used to develop EEG biomarkers with 

high diagnostic performance. A cross-sectional EEG dataset was used in this study. 

Four measures of complexity were investigated: Tsallis entropy, Higuchi fractal 

dimension, Lempel-Ziv complexity, and approximation entropy. Two slowing 

measures were also investigated: zero-crossing intervals, and changes in the power 

spectrum of EEG. We also proposed a new approach to quantify the slowing of the 

EEG that was based on analysing changes in EEG amplitude. EEG connectivity was 

investigated by analysing the coherence of electrical structural connectivity among 

cortical regions of the brain. 

A thorough investigation was performed for the eight methods selected. The EEG 

features were extracted in both time and frequency domains. In the frequency 

domain, traditional EEG frequency bands and the ratios between those bands were 

explored. The results showed that EEG biomarkers extracted from the frequency 

bands were better at detecting AD than EEG biomarkers extracted from the entire 

EEG record. This is because each EEG frequency band is associated with specific 

brain functions, each lobe of the brain carries specific tasks, and bands do not emit 

the same brain wave frequency simultaneously. Thus, any decline in brain function 

may be reflected in the content of EEG frequency bands. This complements our 

results showing that slowing of the EEG, a decrease in EEG coherence, and a 

reduction in EEG complexity are potentially good biomarkers for AD diagnosis.  

This study thus provides a framework for constructing robust EEG biomarkers that 

can be used to detect AD with high diagnostic performance.  
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8.2. Conclusions 

AD causes changes in the EEG and these are thought to be associated with 

functional disconnections among cortical areas resulting from the death of brain cells. 

Therefore, EEG analysis may provide valuable information about brain dynamics in 

patients with AD. AD causes a reduction in neuronal activity in the brain and this may 

be reflected in EEG signals. Potentially, the EEG may be able to detect changes in 

brain signals even in the early stages of the disease. Thus, EEG may be used as a 

first line decision-support tool in AD diagnosis and could complement other AD 

biomarkers. 

EEG biomarkers can therefore be used to detect AD in its early stages and have 

exhibited high performance in AD detection. Our results showed that EEG biomarkers 

are stable because their performance remained high when different evaluation 

methods were used in both time and frequency domains. These were based on 

traditional EEG frequency bands and the ratio between those bands. Thus, the EEG 

signal can be used to develop robust EEG biomarkers for AD detection.  

The results showed that EEG analysis based on specific frequency bands is more 

valuable than an analysis of the entire EEG signal because each EEG frequency 

band has specific functions. Furthermore, we found that the analysis of a specific 

EEG channel may provide better results in terms of AD detection because the 

pathological analysis of AD shows that it spreads from specific parts of the brain to 

others.  

In our analysis, we found that combining of multiple EEG biomarkers provides a high 

level of performance. This may be because each method exploits different 

characteristics of the EEG signal; combining those characteristics into one biomarker 

therefore means the inclusion of more characteristics associated with AD. 

However, this approach creates a large number of EEG biomarkers and it can be 

difficult to find the best combination of EEG biomarkers to use in the diagnostic model. 
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There is also the possibility of over-fitting in the model.  However, our study suggests 

that combining the best biomarkers of EEG can  lead to the development of an EEG 

diagnostic model with  a high diagnostic performance.   

However, large datasets of EEG will be neededto fully evaluate the usefulness of the 

methodology.  

Future work 

The outcomes of this study suggest several areas that can be addressed in future 

work. These include the following: 

1. Evaluate the techniques using a larger EEG dataset 

As noted previously, there are over 46.8 million individuals living with dementia 

worldwide and a rapid increase in the number of people living with AD and other 

forms of dementia due to the ageing population presents a major challenge to 

health and social care systems. For these reasons, it is necessary to include a 

large EEG dataset because this will permit exploration of a wide variety of AD 

cases from the entire AD population and may also help identify reasons for the 

development of AD.   

2. Evaluate the use of EEG biomarkers to detect changes in EEG signals in different 

stages of AD using a longitudinal EEG dataset (normal, MCI, and AD). 

AD progression occurs in different stages ranging from moderate to severe 

[260][261]. The treatment of AD at an early stage is more effective than at a later 

stage. Therefore, it is important to analyse the progression of AD as early as 

possible. This will also help to determine the extent of AD progression at each 

stage.  

3. Evaluate the use of EEG biomarkers in detecting different types of dementia, such 

as AD, vascular dementia, dementia with Lewy bodies (DLB), and mixed dementia 
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because of potential overlap between AD and other types of dementia [262][263]. 

Therefore, biomarkers that can distinguish between different types of dementia 

may help to detect AD in its early stages and contribute to the development of 

effective treatments that could slow, stop, or prevent significant cognitive decline 

[18][20][21]. 

4. Collect different types of AD dataset, such as MRI, EEG, amyloid-β, and CSF, at 

different times (maybe every four months) from the same patient (i.e., construct a 

bio profile for each patient) as this will help to benchmark results and to provide 

new insights. 

Studies investigating different biomarkers of AD from the same patient are 

relatively rare yet may help counter the rapid increase in AD cases. There is 

currently no certain clinical biomarker of AD that can be used in clinical diagnosis 

[264]. However, a certain diagnosis of AD can be made following an autopsy of 

patients’ brains [265][266]. We suggest that analysing different types of biomarker 

for the same individual may therefore provide a more precise diagnosis of AD. 

Furthermore, this may help in detecting the progression of AD long before its 

symptoms become manifest. 

5. Investigate different types of EEG analysis 

This will help in the evaluation of available EEG biomarkers and may contribute to 

the development of new methods of analysis.  
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Appendix 1: MATLAB functions for filter EEG signal 

1. (IIR) Chebyshev-II bandpass filter for theta band 

 
function [out] = delta(x,Fs) 
% MATLAB Code 
% Generated by MATLAB(R) 9.3 and DSP System Toolbox 9.5. 
% Chebyshev Type II Bandpass filter designed using FDESIGN.BANDPASS. 
% All frequency values are in Hz. 

% x is the input signal 

 
% Fs is Sampling Frequency 
Fstop1 = 0.1;         % First Stopband Frequency 
Fpass1 = 0.5;         % First Passband Frequency 
Fpass2 = 4;           % Second Passband Frequency 
Fstop2 = 4.5;         % Second Stopband Frequency 
Astop1 = 60;          % First Stopband Attenuation (dB) 
Apass  = 1;           % Passband Ripple (dB) 
Astop2 = 80;          % Second Stopband Attenuation (dB) 
match  = 'passband';  % Band to match exactly 

  
% Construct an FDESIGN object and call its CHEBY2 method. 
h  = fdesign.bandpass(Fstop1, Fpass1, Fpass2, Fstop2, Astop1, Apass, 

... 
    Astop2, Fs); 
Hd = design(h, 'cheby2', 'MatchExactly', match); 

out=filter(Hd,x) 
% [EOF] 

 

2. (IIR) Chebyshev-II bandpass filter for theta band 

 

function [out] = theta(x,Fs) 

 
% MATLAB Code 
% Generated by MATLAB(R) 9.3 and DSP System Toolbox 9.5. 
% Chebyshev Type II Bandpass filter designed using FDESIGN.BANDPASS. 
% All frequency values are in Hz. 

% x is the input signal 

 
% Fs is Sampling Frequency 
Fstop1 = 3.5;         % First Stopband Frequency 
Fpass1 = 4;           % First Passband Frequency 
Fpass2 = 8;           % Second Passband Frequency 
Fstop2 = 8.5;         % Second Stopband Frequency 
Astop1 = 60;          % First Stopband Attenuation (dB) 
Apass  = 1;           % Passband Ripple (dB) 
Astop2 = 80;          % Second Stopband Attenuation (dB) 
match  = 'passband';  % Band to match exactly 
% Construct an FDESIGN object and call its CHEBY2 method. 
h  = fdesign.bandpass(Fstop1, Fpass1, Fpass2, Fstop2, Astop1, Apass, 

... 
                      Astop2, Fs); 
Hd = design(h, 'cheby2', 'MatchExactly', match); 

out=filter(Hd,x) 
% [EOF] 

 

3. (IIR) Chebyshev-II bandpass filter for alpha band 
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function [out] = alpha(x,Fs) 
 

% MATLAB Code 
% Generated by MATLAB(R) 9.3 and DSP System Toolbox 9.5. 
% Chebyshev Type II Bandpass filter designed using FDESIGN.BANDPASS. 
% All frequency values are in Hz. 

% x is the input signal 

 
% Fs is Sampling Frequency 

  
Fstop1 = 7.5;         % First Stopband Frequency 
Fpass1 = 8;           % First Passband Frequency 
Fpass2 = 12;          % Second Passband Frequency 
Fstop2 = 12.5;        % Second Stopband Frequency 
Astop1 = 60;          % First Stopband Attenuation (dB) 
Apass  = 1;           % Passband Ripple (dB) 
Astop2 = 80;          % Second Stopband Attenuation (dB) 
match  = 'passband';  % Band to match exactly 

  
% Construct an FDESIGN object and call its CHEBY2 method. 
h  = fdesign.bandpass(Fstop1, Fpass1, Fpass2, Fstop2, Astop1, Apass, 

... 
                      Astop2, Fs); 
Hd = design(h, 'cheby2', 'MatchExactly', match); 

out=filter(Hd,x) 

  
% [EOF] 

 

4. (IIR) Chebyshev-II bandpass filter for beta band 

 

function [out] = beta(x,Fs) 
 

% MATLAB Code 
% Generated by MATLAB(R) 9.3 and DSP System Toolbox 9.5. 
% Chebyshev Type II Bandpass filter designed using FDESIGN.BANDPASS. 
% All frequency values are in Hz. 

% x is the input signal 

 
% Fs is Sampling Frequency 

  
Fstop1 = 11.5;        % First Stopband Frequency 
Fpass1 = 12;          % First Passband Frequency 
Fpass2 = 30;          % Second Passband Frequency 
Fstop2 = 30.5;        % Second Stopband Frequency 
Astop1 = 60;          % First Stopband Attenuation (dB) 
Apass  = 1;           % Passband Ripple (dB) 
Astop2 = 80;          % Second Stopband Attenuation (dB) 
match  = 'passband';  % Band to match exactly 

  
% Construct an FDESIGN object and call its CHEBY2 method. 
h  = fdesign.bandpass(Fstop1, Fpass1, Fpass2, Fstop2, Astop1, Apass, 

... 
                      Astop2, Fs); 
Hd = design(h, 'cheby2', 'MatchExactly', match); 
out=filter(Hd,x) 

  
% [EOF] 
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5. (IIR) Chebyshev-II bandpass filter for gamma band 

 

          Suppose the EEG data was saved in excel file e.g., Sample_EEG.xlsx. 

 

function [out] = gamma(x,Fs) 

 
% MATLAB Code 
% Generated by MATLAB(R) 9.3 and DSP System Toolbox 9.5. 
% Chebyshev Type II Bandpass filter designed using FDESIGN.BANDPASS. 

  
% All frequency values are in Hz. 

% x is the input signal 

 
% Fs is Sampling Frequency 

  
Fstop1 = 29.5;        % First Stopband Frequency 
Fpass1 = 30;          % First Passband Frequency 
Fpass2 = 45;          % Second Passband Frequency 
Fstop2 = 45.5;        % Second Stopband Frequency 
Astop1 = 60;          % First Stopband Attenuation (dB) 
Apass  = 1;           % Passband Ripple (dB) 
Astop2 = 80;          % Second Stopband Attenuation (dB) 
match  = 'passband';  % Band to match exactly 

  
% Construct an FDESIGN object and call its CHEBY2 method. 
h  = fdesign.bandpass(Fstop1, Fpass1, Fpass2, Fstop2, Astop1, Apass, 

... 
                      Astop2, Fs); 
Hd = design(h, 'cheby2', 'MatchExactly', match); 
out=filter(Hd,x) 

  
% [EOF] 

 

6. Applying (IIR) Chebyshev-II bandpass filter into a real EEG signal 

 

num= xlsread(‘Sample_EEG.xlsx');  

% Sample_EEG.xlsx is an EEG signal 

x1=num(1:1280); 

  

d1=delta(x1,128); 

% delta is the Chebyshev Type II Bandpass filter 

 

t1=theta(x1,128); 

% theta is the Chebyshev Type II Bandpass filter 

 

a1=alpha(x1,128); 

% alpha is the Chebyshev Type II Bandpass filter 

 

b1=beta(x1,128); 

% beta is the Chebyshev Type II Bandpass filter 

 

g1=gamma(x1,128); 
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% gaMMA is the Chebyshev Type II Bandpass filter 

 

lim1=0:128:1280; 

figure 

subplot(6,1,1) 

plot(x1) 

xlim([0 1280]); 

min1=min(x1); 

max1=max(x1); 

ylim([min1 max1]); 

xticks([lim1]); 

xlabel('Time'); 

ylabel('EEG amplitude'); 

title('Original EEG signal'); 

  

  

subplot(6,1,2) 

plot(d1) 

xlim([0 1280]); 

min1=min(d1); 

max1=max(d1); 

ylim([min1 max1]); 

xticks([lim1]); 

xlabel('Time'); 

ylabel('EEG amplitude'); 

title('Delta 0-4Hz'); 

  

  

  

subplot(6,1,3) 

plot(t1) 

xlim([0 1280]); 

min1=min(a1); 

max1=max(a1); 

ylim([min1 max1]); 

xticks([lim1]); 

xlabel('Time'); 

ylabel('EEG amplitude'); 

title('Theta 4-8Hz'); 

  

subplot(6,1,4) 

plot(a1) 

xlim([0 1280]); 

min1=min(a1); 

max1=max(a1); 

ylim([min1 max1]); 

xticks([lim1]); 

xlabel('Time'); 

ylabel('EEG amplitude'); 

title('Alpha 8-13Hz'); 

  

subplot(6,1,5) 

plot(b1) 
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xlim([0 1280]); 

min1=min(b1); 

max1=max(b1); 

ylim([min1 max1]); 

xticks([lim1]); 

xlabel('Time'); 

ylabel('EEG amplitude'); 

title('Beta 13-30Hz'); 

  

subplot(6,1,6) 

plot(g1) 

xlim([0 1280]); 

min1=min(g1); 

max1=max(g1); 

ylim([min1 max1]); 

xticks([lim1]); 

xlabel('Time'); 

ylabel('EEG amplitude'); 

title('Gamma 30-45Hz'); 
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Appendix 2: MATLAB functions for computing EEG signal processing 

methods 

1. Changes in the EEG amplitude (ΔEEGA) computation function 

 
function [ x ] = EEG_amplitude(x2,Fs1) 

 

% X2 is EEG signal 

% Fs1 is sampling frequency 

  
[r1 c1]=size(x2); 
Seconds1=(r1/Fs1); 
for m1=1:c1 
    Y2=x2(:,m1); 
    [t1 t2]=size(Y2); 
    Y2=reshape(Y2,t2,t1); 
    i=1; 
    for k=1:Seconds1 
        for j=1:Fs1 
            times(k,j)=Y2(1,i); 
            i=i+1; 
        end; 
    end; 
    avg1(m1)=mean(times(:)); 
end; 
mast_avg=reshape(avg1,1,m1); 
x= mast_avg ; 
end 

  

2. Zero-crossing intervals (ZCI) computation function 

 

function zci = zci_function( x,fs ) 

 
% This function to compute the ZCI method for one EEG file 

% X is EEG signal 

% fs is sampling frequency 

 

 
[m n]=size(x); 
data3(m,n)=0; 
t=((0:m-1)/fs)'; 
dt=0.5; 
frac_dim(1:n)=0; 
for j=1:n 
    data2(1:m,1:6)=0; 
    data=x(:,j); 
    zero_array=[]; 
    k=0; 
    for i=2:m 
          if (data(i,1)<0 && data(i-1,1)>0)   
            data(i,2)=data(i,1); 
            k=k+1; 
            zero_array(k,1)=i; 
        end; 
    end 
    data2(1:m1,1)=zero_array; 
    temp=0; 



173 
 

    p1=1; 
    p2=1; 
    for i=2:m1 
        temp=(data2(i,2)-data2(p1,2)); 
        if temp>dt 
           data2(i-1,3)=(data2(i-1,2)-data2(p1,2)); 
           data2(i-1,4)=p2; 
        else 
           p2=p2+1; 

           p1=i; 
        end     
    end 
    inst1=data2(find(data2(:,4)>0),4); 
    N=length(inst1); 
    % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% 
    maxstep=length(inst1); 
    xx=1:maxstep; 
    yy=inst1; 
    xx=xx*log(2); 
    yy=log2(yy); 

  
    % To estimate the fractal dimension, the slope of the line 
    % "closest" (in the least square sense) to the points (x,y) is 

calculated: 
    A = zeros(maxstep, 2); % set up the matrix 
    A(:, 1) = xx; % the first column 
    A(:, 2) = ones(maxstep,1); % the second column 
    [Q,R] = qr(A); % compute the QR-decomposition 
    c = Q'*yy; % solution step 1 
    param = R\c; % solution step 2 
    frac_dim(1,j) = abs(log(inst1(1,1))-(param(2))); % the estimated 

fractal dimension 
end; 
zci=frac_dim; 

 

3. Changes in the power spectrum (ΔPS) of EEG signal computation function 

 

function [ Z1 ] = power_spectrum(sig1) 
%UNTITLED2 Summary of this function goes here 
%   Detailed explanation goes here 
% Fs is the frequency of the signal 
% sig1 is the data samples of the EEG signal 

  
      data=sig1; 
      [m n]=size(data); 

  
      %% Transform and visualise in frequency domain 

  
      fdata=abs(fft(data,m)); 
      Mag = abs(fdata);             %Compute magnitude complex array 
      PS = Mag.^2;                  % Take power sepctrum as 

magnitude squared   

     
      Z1=PS; 
end 

 

4. EEG coherence computation function 
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function [ coh ] = coherence_function( x,ch,Fs ) 
%  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%              x is the EEG data file                 % 
%             ch is the channels e.g. [1 2 3 ...]     % 
%              Fs is the sampling frequency           % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

   
l=length(ch); 
c=1; 
ch_pairs=[]; 
for i=1:l 
    for j=(i+1):l 
        if i~=j 
            ch_pairs(c,1)=ch(i); 
            ch_pairs(c,2)=ch(j); 
            c=c+1; 
        end 
    end 
end 

 
for i=1:k 
    

temp1=mscohere(x(:,ch_pairs(i,1)),x(:,ch_pairs(i,2)),kaiser(win_size)

,[],[],Fs); 
    ch_pairs(i,3)=mean(temp1); 
end 
coh=ch_pairs; 
end 

  

5. Tsallis entropy (TsEn) computation function 

 

function y=Tsallis_entro(x,q) 

 

% x is EEG signal 

% q is Tsallis factor 

 
[M N]=size(x); 
y=zeros(1,N); 
for l=1:N 
    sum1=sum(x(:,l)-(x(:,l).^q)); 
    sum2=sum1/(q-1); 
    y(1,l)=sum2; 
end; 

 

 

6. Higuchi Fractal Dimension (HFD) computation function 

 

function [ z1 ] = Higuchi_function(d ) 
 

% d is EEG signal 

  
[sr yr]=size(d); 
for r1=1:yr 
    x=d(:,r1); 
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    [N,m] = size(x); 
    width = max(size(x));    % largest size of the box 
    p = log(width)/log(2);     
    % remap the array if the sizes are not all equal, 
    % or if they are not power of two 
    % (this slows down the computation!) 

    
    n=zeros(1,p); % pre-allocate the number of box of size r4 
    for i=1:N/p:N 
        i; 
    end; 

     
    k=3; 
    in1=1; 
    L=(1:k); 
    L(:)=0; 
    L1=(1:k); 
    for m=1:k 
        j=0; 
        for i=m:k:(m+fix((N-m)/k)*k) 
            j=j+1; 
            x1(m,j)=x(i); 
        end; 
    end; 

     
    [N1 m1]=size(x1); 
    for j=2:m1 
        t1=0; 
        for i=1:N1 
            t1=t1+abs(x1(i,j-1)-x1(i,j)); 
        end; 
        x2(j-1)=(t1/k)/k; 
    end; 

     
    xx2(r1,:)=x2*(N-1)/(((N-m1)/k)*k)/k; 

     
    xx3(r1,:)=xx2(r1,:); % This array contains the fractal Higuchi 

distance 
    xx4(r1,:)=log(xx3(r1,:)); % This array contains the LOG of 

fractal Higuchi distance 
end; 
z1=xx4; 

 

7. Approximation Entropy (ApEn) computation function 

 

function apen = ApEn( dim, r, data) 
%ApEn 
%   dim : embedded dimension 
%   r : tolerance (typically 0.2 * std) 
%   data : time-series data 

     
N = length(data); 
result = zeros(1,2); 

  
for j = 1:2 
    m = dim+j-1; 
    phi = zeros(1,N-m+1); 
    dataMat = zeros(m,N-m+1); 
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    % setting up data matrix 
    for i = 1:m 
        dataMat(i,:) = data(i:N-m+i); 
    end 

     
    % counting similar patterns using distance calculation 
    for i = 1:N-m+1 
        tempMat = abs(dataMat - repmat(dataMat(:,i),1,N-m+1)); 
        boolMat = any( (tempMat > r),1); 
        phi(i) = sum(~boolMat)/(N-m+1); 
    end 

     
    % summing over the counts 
    result(j) = sum(log(phi))/(N-m+1); 
end 

  
apen = result(1)-result(2); 

  
end 

  

8. Lempel Ziv Complexity (LZC) computation function 

 
function [ z ] = LZC(d) 
  

% d is EEG signal 

 
[sr yr]=size(d); 
for r1=1:yr 
    data1=d(:,r1); 

     
    m1=median(data1); 
    [x y]=size(data1); 
    data2 = zeros(x,y); 
    for i=1:x 
        for j=1:y 
            if data1(i,j)>=m1 
                data2(i,j)=1; 
            end 
        end 
    end 
    [C, H] = calc_lz_complexity(data2, 'exhaustive', true); 
    [x y]=size(H); 
    mast = zeros(x,y); 

     
    for i=1:y 
        b=double(H{i}); 
        %b1=binary_seq_to_string(b) 
        [x1 y1]=size(b); 
        for i1=1:x1 
            for j1=1:y1 
                mast(i,j1)=b(i1,j1); 
            end; 
        end; 
    end; 
    mast_dec=bi2de(mast)'; 

     
    Cn(r1)=C; 

     
end 
z=Cn; 
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end 

  
%CALC_LZ_COMPLEXITY Lempel-Ziv measure of binary sequence complexity.  
%   This function calculates the complexity of a finite binary 

sequence, 
%   according to the algorithm published by Abraham Lempel and Jacob 

Ziv in 
%   the paper "On the Complexity of Finite Sequences", published in  
%   "IEEE Transactions on Information Theory", Vol. IT-22, no. 1, 

January 
%   1976.  From that perspective, the algorithm could be referred to 

as  
%   "LZ76". 
%    
%   Usage: [C, H] = calc_lz_complexity(S, type, normalize) 
% 
%   INPUTS: 
%    
%   S:  
%   A vector consisting of a binary sequence whose complexity is to 

be 
%   analyzed and calculated.  Numeric values will be converted to 

logical 
%   values depending on whether (0) or not (1) they are equal to 0. 
% 
%   type:  
%   The type of complexity to evaluate as a string, which is one of: 
%       - 'exhaustive': complexity measurement is based on 

decomposing S  
%       into an exhaustive production process. 
%       - 'primitive': complexity measurement is based on decomposing 

S  
%       into a primitive production process. 
%   Exhaustive complexity can be considered a lower limit of the 

complexity 
%   measurement approach proposed in LZ76, and primitive complexity 

an 
%   upper limit. 
% 
%   normalize: 
%   A logical value (true or false), used to specify whether or not 

the  
%   complexity value returned is normalized or not.   
%   Where normalization is applied, the normalized complexity is  
%   calculated from the un-normalized complexity, C_raw, as: 
%       C = C_raw / (n / log2(n)) 
%   where n is the length of the sequence S. 
% 
%   OUTPUTS: 
% 
%   C: 
%   The Lempel-Ziv complexity value of the sequence S. 
% 
%   H: 
%   A cell array consisting of the history components that were found 

in 
%   the sequence S, whilst calculating C.  Each element in H consists 

of a 
%   vector of logical values (true, false), and represents 
%   a history component. 
% 
%   gs: 
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%   A vector containing the corresponding eigenfunction that was 

calculated 
%   which corresponds with S. 
% 
% 
% 
%   Author: Quang Thai (qlthai@gmail.com) 
%   Copyright (C) Quang Thai 2012 

 
function [C, H, gs] = calc_lz_complexity(S, type, normalize) 

  
%% Some parameter-checking. 

  
% Make sure S is a vector. 
if ~isvector(S) 
    error('''S'' must be a vector'); 
end 

  
% Make sure 'normalize' is a scalar. 
if ~isscalar(normalize) 
    error('''normalize'' must be a scalar'); 
end 

  
% Make sure 'type' is valid. 
if ~(strcmpi(type, 'exhaustive') || strcmpi(type, 'primitive')) 
    error(['''type'' parameter is not valid, must be either ' ... 
        '''exhaustive'' or ''primitive''']); 
end 

  

  
%% Some parameter 'conditioning'. 
S = logical(S); 
normalize = logical(normalize); 

  

 
%% ANALYSIS 

  
% NOTE: Many of these comments will refer to the paper "On the 

Complexity 
% of Finite Sequences" by Lempel and Ziv, so to follow this code, it 

may  
% be useful to have the manuscript in front of you! 

  

 
% Allocate memory for eigenfunction (vector of eigenvalues). 
% The first value of this vector corresponds with gs(0), and is 

always 
% equal to 0. 
% Please note that, since MATLAB array indices start at 1, gs(n) in 

MATLAB 
% actually holds gs(n-1) as defined in the paper. 
n = length(S); 
gs = zeros(1, n + 1); 
gs(1) = 0;  % gs(0) = 0 from the paper 

  

 
% The approach we will use to find the eigenfunction values at each 
% successive prefix of S is as follows: 
% - We wish to find gs(n), where 1 <= n <= l(S) (l(S) = length of S) 
% - Lemma 4 says: 
%       k(S(1,n-1)) <= k(S(1,n)) 
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%           equivalently 
%       gs(n-1) <= gs(n) 
%   In other words, the eigenfunction is a non-decreasing function of 

n. 
% - Theorem 6 provides the expression that defines the 

eigenvocabulary of 
%   a sequence: 
%       e(S(1,n)) = {S(i,n) | 1 <= i <= k(S(1,n))} 
%           equivalently 
%       e(S(1,n)) = {S(i,n) | 1 <= i <= gs(n)} 
%   Note that we do not know what gs(n) is at this point - it's what 

we're 
%   trying to find!!! 
% - Remember that the definition of the eigenvocabulary of a sequence 

S(1,n),  
%   e(S(1,n)), is the subset of the vocabulary of S(1,n) containing 

words  
%   that are not in the vocabulary of any proper prefix of S(1,n), 

and the  
%   eigenvalue of S(1,n) is the subset's cardinality: gs(n) = 

|e(S(1,n))| 
%   (p 76, 79) 
% - Given this, a corollary to Theorem 6 is: 
%       For each S(m,n) | gs(n) < m <= n, S(m,n) is NOT a member of 
%       the eigenvocabulary e(S(1,n)). 
%       By definition, this means that S(m,n) is in the vocabulary of 

at 
%       least one proper prefix of S(1,n). 
% - Also note that from Lemma 1: if a word is in the vocabulary of a 
%   sequence S, and S is a proper prefix of S+, then the word is also  
%   in the vocabulary of S+. 
%  
% As a result of the above discussion, the algorithm can be expressed 

in 
% pseudocode as follows: 
%  
% For a given n, whose corresponding eigenfunction value, gs(n) we 

wish to  
% find: 
% - gs(0) = 0 
% - Let m be defined on the interval: gs(n-1) <= m <= n 
% - for each m 
%       check if S(m,n) is in the vocabulary of S(1,n-1) 
%       if it isn't, then gs(n) = m 
%       end if 
%   end for 
% 
% An observation: searching linearly along the interval  
% gs(n-1) <= m <= n will tend to favour either very complex sequences  
% (starting from n and working down), or very un-complex sequences 
% (starting from gs(n-1) and working up).  This implementation will 
% attempt to balance these outcomes by alternately searching from 

either 
% end and working inward - a 'meet-in-the-middle' search. 
% 
% Note that: 
% - When searching from the upper end downwards, we are seeking  
% the value of m such that S(m,n) IS NOT in the vocabulary of S(1,n-

1). 
% The eigenfunction value is then m. 
% - When searching from the lower end upwards, we are seeking the 

value 
% of m such that S(m,n) IS in the vocabulary of S(1,n-1).  The 
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% eigenfunction value is then m-1, since it is the MAXIMAL value of m 
% whereby S(m,n) IS NOT in the vocabulary of S(1,n-1) 

  

 
%% Calculate eigenfunction, gs(n) 

  
% Convert to string form - aids the searching process! 
S_string = binary_seq_to_string(S); 
gs(2) = 1;  % By definition.  Remember: gs(2) in MATLAB is actually 

gs(1) 
            % due to the first element of the gs array holding the 
            % eigenvalue for n = 0. 

  
for n = 2:length(S) 

     
    eigenvalue_found = false; 

     
    % The search space gs(n-1) <= m <= n. 
    % Remember: gs(n) in MATLAB is actually gs(n-1). 
    % Note that we start searching at (gs(n-1) + 1) at the lower end, 

since 
    % if it passes the lower-end search criterion, then we subtract 1 
    % to get the eigenvalue. 
    idx_list = (gs(n)+1):n; 
    for k = 1:ceil(length(idx_list)/2); 

  
        % Check value at upper end of interval 
        m_upper = idx_list(end - k + 1); 
        if ~numel(strfind(S_string(1:(n-1)), S_string(m_upper:n))) 
            % We've found the eigenvalue! 
            gs(n+1) = m_upper;    % Remember:  
                                  % gs(n+1) in MATLAB is actually 

gs(n) 
            eigenvalue_found = true; 
            break; 
        end  

         
        % Check value at lower end of interval. 
        % 
        % Note that the search at this end is slightly more 

complicated,  
        % in the sense that we have to find the first value of m 

where the 
        % substring is FOUND, and then subtract 1.  However, this is 
        % complicated by the 'meet-in-the-middle' search adopted, as 
        % described below... 
        m_lower = idx_list(k); 
        if numel(strfind(S_string(1:(n-1)), S_string(m_lower:n))) 
            % We've found the eigenvalue! 
            gs(n+1) = m_lower-1;    % Remember:  
                                    % gs(n+1) in MATLAB is actually 

gs(n) 
            eigenvalue_found = true; 
            break; 
        elseif (m_upper == m_lower + 1) 
            % If we've made it here, then we know that: 
            % - The search for substring S(m,n) from the upper end 

had a 
            %   FOUND result 
            % - The search for substring S(m,n) from the lower end 

had a  
            %   NOT FOUND result 
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            % - The value of m used in the upper end search is one 

more 
            %   than the value of m used in this lower end search 
            % 
            % However, when searching from the lower end, we need a 

FOUND 
            % result and then subtract 1 from the corresponding m. 
            % The problem with this 'meet-in-the-middle' searching is 

that 
            % it's possible that the actual eigenfunction value 

actually 
            % does occur in the middle, such that the loop would 

terminate 
            % before the lower-end search can reach a FOUND result 

and the 
            % upper-end search can reach a NOT FOUND result. 
            % 
            % This branch detects precisely this condition, whereby 
            % the two searches use adjacent values of m in the 

middle, 
            % the upper-end search has the FOUND result that the 

lower-end 
            % search normally requires, and the lower-end search has 

the 
            % NOT FOUND result that the upper-end search normally 

requires. 

             
            % We've found the eigenvalue! 
            gs(n+1) = m_lower;      % Remember:  
                                    % gs(n+1) in MATLAB is actually 

gs(n) 
            eigenvalue_found = true; 
            break; 
        end 

                 
    end 

     
    if ~eigenvalue_found 
        % Raise an error - something is not right! 
        error('Internal error: could not find eigenvalue'); 
    end 

     
end 

 
%% Calculate the terminal points for the required production 

sequence. 

  
% Histories are composed by decomposing the sequence S into the 

following 
% sequence of words: 
%       H(S) = S(1,h_1)S(h_1 + 1,h_2)S(h_2 + 1,h_3)...S(h_m-1 + 

1,h_m) 
% The indices {h_1, h_2, h_3, ..., h_m-1, h_m} that characterise a 

history 
% make up the set of 'terminals'. 
% 
% Alternatively, for consistency, we will specify the history as: 
%       H(S) = ... 
%           S(h_0 + 1,h_1)S(h_1 + 1,h_2)S(h_2 + 1,h_3)...S(h_m-1 + 

1,h_m) 
% Where, by definition, h_0 = 0. 
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% Efficiency measure: we don't know how long the histories will be 

(and 
% hence, how many terminals we need).  As a result, we will allocate 

an 
% array of length equal to the eigenfunction vector length.  We will 

also 
% keep a 'length' counter, so that we know how much of this array we 

are 
% actually using.  This avoids us using an array that needs to be 

resized 
% iteratively! 
% Note that h_i(1) in MATLAB holds h_0, h_i(2) holds h_1, etc., since 
% MATLAB array indices must start at 1. 
h_i = zeros(1, length(gs)); 
h_i_length = 1;     % Since h_0 is already present as the first 

value! 

  
if strcmpi(type, 'exhaustive') 

     
    % - From Theorem 8, for an exhaustive history, the terminal 

points h_i, 
    % 1 <= i <= m-1, are defined by: 
    %       h_i = min{h | gs(h) > h_m-1} 
    % - We know that h_0 = 0, so this definition basically bootstraps 

our 
    % search process, allowing us to find h_1, then h_2, etc. 

     
    h_prev = 0;     % Points to h_0 initially 
    k = 1; 
    while ~isempty(k) 
        % Remember that gs(1) in MATLAB holds the value of gs(0). 
        % Therefore, the index h_prev needs to be incremented by 1 
        % to be used as an index into the gs vector. 
        k = find(gs((h_prev+1+1):end) > h_prev, 1); 

         
        if ~isempty(k) 
            h_i_length = h_i_length + 1; 

             
            % Remember that gs(1) in MATLAB holds the value of gs(0). 
            % Therefore, the index h_prev needs to be decremented by 

1 
            % to be used as an index into the original sequence S. 
            h_prev = h_prev + k; 
            h_i(h_i_length) = h_prev; 
        end 
    end 

     
    % Once we break out of the above loop, we've found all of the 
    % exhaustive production components. 
else 

     
    % Sequence type is 'primitive' 

    
    % Find all unique eigenfunction values, where they FIRST occur. 

  
    % - From Theorem 8, for a primitive history, the terminal points 

h_i,  
    % 1 <= i <= m-1, are defined by: 
    %        h_i = min{h | gs(h) > gs(h_i-1)} 
    % - From Lemma 4, we know that the eigenfunction, gs(n), is 
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    % monotonically non-decreasing. 
    % - Therefore, the following call to unique() locates the first 
    % occurrance of each unique eigenfunction value, as well as the 

values 
    % of n where the eigenfunction increases from the previous value. 
    % Hence, this is also an indicator for the terminal points h_i. 

  
    [~, n] = unique(gs, 'first'); 

  
    % The terminals h_i, 1 <= i <= m-1, is ultimately obtained from n 

by  
    % subtracting 1 from each value (since gs(1) in MATLAB actually 
    % corresponds with gs(0) in the paper) 
    h_i_length = length(n); 
    h_i(1:h_i_length) = n - 1; 
end 

  
% Now we have to deal with the final production component - which may 

or 
% may not be exhaustive or primitive, but can still be a part of an 
% exhaustive or primitive process. 
% 
% If the last component is not exhaustive or primitive, we add it 

here 
% explicitly. 
% 
% - From Theorem 8, for a primitive history, this simply enforces 
% the requirement that: 
%       h_m = l(S) 
if h_i(h_i_length) ~= length(S) 
    h_i_length = h_i_length + 1; 
    h_i(h_i_length) = length(S); 
end 

  
% Some final sanity checks - as indicated by Theorem 8. 
% Raise an error if these checks fail! 
% Also remember that gs(1) in the MATLAB code corresponds with gs(0). 
if strcmpi(type, 'exhaustive') 
    % Theorem 8 - check that gs(h_m - 1) <= h_m-1 
    if gs(h_i(h_i_length) - 1 + 1) > h_i(h_i_length-1) 
        error(['Check failed for exhaustive sequence: ' ... 
            'Require: gs(h_m - 1) <= h_m-1']); 
    end 
else 
    % Sequence type is 'primitive' 

     
    % Theorem 8 - check that gs(h_m - 1) = gs(h_m-1) 
    if gs(h_i(h_i_length) - 1 + 1) ~= gs(h_i(h_i_length-1) + 1) 
        error(['Check failed for primitive sequence: ' ... 
            'Require: gs(h_m - 1) = gs(h_m-1)']);  
    end 
end 

  

 
%% Use the terminal points to construct the production sequence. 

  
% Note the first value in h_i is h_0, so its length is one more than 

the  
% length of the production history. 
H = cell([1 (h_i_length-1)]); 
for k = 1:(h_i_length-1) 
    H{k} = S((h_i(k)+1):h_i(k+1)); 
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end 

  
%% Hence calculate the complexity. 
if normalize 
    % Normalized complexity 
    C = length(H) / (n / log2(n)); 
else 
    % Un-normalized complexity 
    C = length(H); 
end 

 
%% Eigenfunction is returned. 
% The (redundant) first value (gs(0) = 0) is removed first. 
gs = gs(2:end); 
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Appendix 3: MATLAB machine learning functions 

 

1. The following function will be generated to import the EEG data into MATLAB 

toolbox (classification learner) 

 

function tableout = 

importfile(workbookFile,sheetName,startRow,endRow) 
%IMPORTFILE Import data from a spreadsheet 
%   DATA = IMPORTFILE(FILE) reads data from the first worksheet in 

the 
%   Microsoft Excel spreadsheet file named FILE and returns the data 

as a 
%   table. 
% 
%   DATA = IMPORTFILE(FILE,SHEET) reads from the specified worksheet. 
% 
%   DATA = IMPORTFILE(FILE,SHEET,STARTROW,ENDROW) reads from the 

specified 
%   worksheet for the specified row interval(s). Specify STARTROW and 
%   ENDROW as a pair of scalars or vectors of matching size for 
%   dis-contiguous row intervals. To read to the end of the file 

specify an 
%   ENDROW of inf.% 
% Example: 
%   data = importfile('data.xlsx','Sheet1',2,16); 
% 
%   See also XLSREAD. 

  

 
%% Input handling 

  
% If no sheet is specified, read first sheet 
if nargin == 1 || isempty(sheetName) 
    sheetName = 1; 
end 

  
% If row start and end points are not specified, define defaults 
if nargin <= 3 
    startRow = 2; 
    endRow = 16; 
end 

  
%% Import the data 
[~, ~, raw] = xlsread(workbookFile, sheetName, 

sprintf('A%d:G%d',startRow(1),endRow(1))); 
for block=2:length(startRow) 
    [~, ~, tmpRawBlock] = xlsread(workbookFile, sheetName, 

sprintf('A%d:G%d',startRow(block),endRow(block))); 
    raw = [raw;tmpRawBlock]; %#ok<AGROW> 
end 
stringVectors = string(raw(:,7)); 
stringVectors(ismissing(stringVectors)) = ''; 
raw = raw(:,[1,2,3,4,5,6]); 

  
%% Create output variable 
I = cellfun(@(x) ischar(x), raw); 
raw(I) = {NaN}; 
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data = reshape([raw{:}],size(raw)); 

  
%% Create table 
tableout = table; 

  
%% Allocate imported array to column variable names 
tableout.VarName1 = data(:,1); 
tableout.VarName2 = data(:,2); 
tableout.VarName3 = data(:,3); 
tableout.VarName4 = data(:,4); 
tableout.VarName5 = data(:,5); 
tableout.VarName6 = data(:,6); 
tableout.Stat = categorical(stringVectors(:,1)); 

 

 

2. Support Vector Machine (SVM) function 

 

function [trainedClassifier, validationAccuracy] = 

trainClassifier_SVM(trainingData) 

% [trainedClassifier, validationAccuracy] = 

trainClassifier_SVM(trainingData) 

% returns a trained classifier and its accuracy. This code recreates 

the 

% classification model trained in Classification Learner app. Use the 

% generated code to automate training the same model with new data, 

or to 

% learn how to programmatically train models. 

% 

%  Input: 

%      trainingData: a table containing the same predictor and 

response 

%       columns as imported into the app. 

% 

%  Output: 

%      trainedClassifier: a struct containing the trained classifier. 

The 

%       struct contains various fields with information about the 

trained 

%       classifier. 

% 

%      trainedClassifier.predictFcn: a function to make predictions 

on new 

%       data. 

% 

%      validationAccuracy: a double containing the accuracy in 

percent. In 

%       the app, the History list displays this overall accuracy 

score for 

%       each model. 

% 

% Use the code to train the model with new data. To retrain your 

% classifier, call the function from the command line with your 

original 

% data or new data as the input argument trainingData. 

% 

% For example, to retrain a classifier trained with the original data 

set 

% T, enter: 

%   [trainedClassifier, validationAccuracy] = trainClassifier(T) 
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% 

% To make predictions with the returned 'trainedClassifier' on new 

data T2, 

% use 

%   yfit = trainedClassifier.predictFcn(T2) 

% 

% T2 must be a table containing at least the same predictor columns 

as used 

% during training. For details, enter: 

%   trainedClassifier.HowToPredict 

  

  

% Extract predictors and response 

% This code processes the data into the right shape for training the 

% model. 

inputTable = trainingData; 

predictorNames = {'VarName1', 'VarName2', 'VarName3', 'VarName4', 

'VarName5', 'VarName6'}; 

predictors = inputTable(:, predictorNames); 

response = inputTable.Stat; 

isCategoricalPredictor = [false, false, false, false, false, false]; 

  

% Train a classifier 

% This code specifies all the classifier options and trains the 

classifier. 

template = templateSVM(... 

    'KernelFunction', 'linear', ... 

    'PolynomialOrder', [], ... 

    'KernelScale', 'auto', ... 

    'BoxConstraint', 1, ... 

    'Standardize', true); 

classificationSVM = fitcecoc(... 

    predictors, ... 

    response, ... 

    'Learners', template, ... 

    'Coding', 'onevsone', ... 

    'ClassNames', categorical({'AD'; 'Norm'; 'Stat'})); 

  

% Create the result struct with predict function 

predictorExtractionFcn = @(t) t(:, predictorNames); 

svmPredictFcn = @(x) predict(classificationSVM, x); 

trainedClassifier.predictFcn = @(x) 

svmPredictFcn(predictorExtractionFcn(x)); 

  

% Add additional fields to the result struct 

trainedClassifier.RequiredVariables = {'VarName1', 'VarName2', 

'VarName3', 'VarName4', 'VarName5', 'VarName6'}; 

trainedClassifier.ClassificationSVM = classificationSVM; 

trainedClassifier.About = 'This struct is a trained model exported 

from Classification Learner R2017b.'; 

trainedClassifier.HowToPredict = sprintf('To make predictions on a 

new table, T, use: \n  yfit = c.predictFcn(T) \nreplacing ''c'' with 

the name of the variable that is this struct, e.g. ''trainedModel''. 

\n \nThe table, T, must contain the variables returned by: \n  

c.RequiredVariables \nVariable formats (e.g. matrix/vector, datatype) 

must match the original training data. \nAdditional variables are 

ignored. \n \nFor more information, see <a 

href="matlab:helpview(fullfile(docroot, ''stats'', ''stats.map''), 

''appclassification_exportmodeltoworkspace'')">How to predict using 

an exported model</a>.'); 

  

% Extract predictors and response 

% This code processes the data into the right shape for training the 
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% model. 

inputTable = trainingData; 

predictorNames = {'VarName1', 'VarName2', 'VarName3', 'VarName4', 

'VarName5', 'VarName6'}; 

predictors = inputTable(:, predictorNames); 

response = inputTable.Stat; 

isCategoricalPredictor = [false, false, false, false, false, false]; 

  

% Perform cross-validation 

partitionedModel = crossval(trainedClassifier.ClassificationSVM, 

'KFold', 10); 

  

% Compute validation predictions 

[validationPredictions, validationScores] = 

kfoldPredict(partitionedModel); 

  

% Compute validation accuracy 

validationAccuracy = 1 - kfoldLoss(partitionedModel, 'LossFun', 

'ClassifError'); 

 

 

3. Linear Discriminant Analysis (LDA) function 

function [trainedClassifier, validationAccuracy] = 

trainClassifier_LDA(trainingData) 

% [trainedClassifier, validationAccuracy] = 

trainClassifier(trainingData) 

% returns a trained classifier and its accuracy. This code recreates 

the 

% classification model trained in Classification Learner app. Use the 

% generated code to automate training the same model with new data, 

or to 

% learn how to programmatically train models. 

% 

%  Input: 

%      trainingData: a table containing the same predictor and 

response 

%       columns as imported into the app. 

% 

%  Output: 

%      trainedClassifier: a struct containing the trained classifier. 

The 

%       struct contains various fields with information about the 

trained 

%       classifier. 

% 

%      trainedClassifier.predictFcn: a function to make predictions 

on new 

%       data. 

% 

%      validationAccuracy: a double containing the accuracy in 

percent. In 

%       the app, the History list displays this overall accuracy 

score for 

%       each model. 

% 

% Use the code to train the model with new data. To retrain your 

% classifier, call the function from the command line with your 

original 

% data or new data as the input argument trainingData. 

% 
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% For example, to retrain a classifier trained with the original data 

set 

% T, enter: 

%   [trainedClassifier, validationAccuracy] = trainClassifier(T) 

% 

% To make predictions with the returned 'trainedClassifier' on new 

data T2, 

% use 

%   yfit = trainedClassifier.predictFcn(T2) 

% 

% T2 must be a table containing at least the same predictor columns 

as used 

% during training. For details, enter: 

%   trainedClassifier.HowToPredict 

 

% Auto-generated by MATLAB on 27-Jul-2019 12:32:25 

 

 

% Extract predictors and response 

% This code processes the data into the right shape for training the 

% model. 

inputTable = trainingData; 

predictorNames = {'VarName1', 'VarName2', 'VarName3', 'VarName4', 

'VarName5', 'VarName6'}; 

predictors = inputTable(:, predictorNames); 

response = inputTable.AD; 

isCategoricalPredictor = [false, false, false, false, false, false]; 

 

% Train a classifier 

% This code specifies all the classifier options and trains the 

classifier. 

classificationDiscriminant = fitcdiscr(... 

    predictors, ... 

    response, ... 

    'DiscrimType', 'linear', ... 

    'Gamma', 0, ... 

    'FillCoeffs', 'off', ... 

    'ClassNames', categorical({'AD'; 'Norm'})); 

 

% Create the result struct with predict function 

predictorExtractionFcn = @(t) t(:, predictorNames); 

discriminantPredictFcn = @(x) predict(classificationDiscriminant, x); 

trainedClassifier.predictFcn = @(x) 

discriminantPredictFcn(predictorExtractionFcn(x)); 

 

% Add additional fields to the result struct 

trainedClassifier.RequiredVariables = {'VarName1', 'VarName2', 

'VarName3', 'VarName4', 'VarName5', 'VarName6'}; 

trainedClassifier.ClassificationDiscriminant = 

classificationDiscriminant; 

trainedClassifier.About = 'This struct is a trained model exported 

from Classification Learner R2017b.'; 

trainedClassifier.HowToPredict = sprintf('To make predictions on a 

new table, T, use: \n  yfit = c.predictFcn(T) \nreplacing ''c'' with 

the name of the variable that is this struct, e.g. ''trainedModel''. 

\n \nThe table, T, must contain the variables returned by: \n  

c.RequiredVariables \nVariable formats (e.g. matrix/vector, datatype) 

must match the original training data. \nAdditional variables are 

ignored. \n \nFor more information, see <a 

href="matlab:helpview(fullfile(docroot, ''stats'', ''stats.map''), 

''appclassification_exportmodeltoworkspace'')">How to predict using 

an exported model</a>.'); 
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% Extract predictors and response 

% This code processes the data into the right shape for training the 

% model. 

inputTable = trainingData; 

predictorNames = {'VarName1', 'VarName2', 'VarName3', 'VarName4', 

'VarName5', 'VarName6'}; 

predictors = inputTable(:, predictorNames); 

response = inputTable.AD; 

isCategoricalPredictor = [false, false, false, false, false, false]; 

 

% Perform cross-validation 

partitionedModel = 

crossval(trainedClassifier.ClassificationDiscriminant, 'KFold', 10); 

 

% Compute validation predictions 

[validationPredictions, validationScores] = 

kfoldPredict(partitionedModel); 

 

% Compute validation accuracy 

validationAccuracy = 1 - kfoldLoss(partitionedModel, 'LossFun', 

'ClassifError'); 

 

4. K-nearest neighbour (KNN) function 

function [trainedClassifier, validationAccuracy] = 

trainClassifier_KNN(trainingData) 

% [trainedClassifier, validationAccuracy] = 

trainClassifier(trainingData) 

% returns a trained classifier and its accuracy. This code recreates 

the 

% classification model trained in Classification Learner app. Use the 

% generated code to automate training the same model with new data, 

or to 

% learn how to programmatically train models. 

% 

%  Input: 

%      trainingData: a table containing the same predictor and 

response 

%       columns as imported into the app. 

% 

%  Output: 

%      trainedClassifier: a struct containing the trained classifier. 

The 

%       struct contains various fields with information about the 

trained 

%       classifier. 

% 

%      trainedClassifier.predictFcn: a function to make predictions 

on new 

%       data. 

% 

%      validationAccuracy: a double containing the accuracy in 

percent. In 

%       the app, the History list displays this overall accuracy 

score for 

%       each model. 

% 

% Use the code to train the model with new data. To retrain your 

% classifier, call the function from the command line with your 

original 

% data or new data as the input argument trainingData. 

% 
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% For example, to retrain a classifier trained with the original data 

set 

% T, enter: 

%   [trainedClassifier, validationAccuracy] = trainClassifier(T) 

% 

% To make predictions with the returned 'trainedClassifier' on new 

data T2, 

% use 

%   yfit = trainedClassifier.predictFcn(T2) 

% 

% T2 must be a table containing at least the same predictor columns 

as used 

% during training. For details, enter: 

%   trainedClassifier.HowToPredict 

  

  

% Extract predictors and response 

% This code processes the data into the right shape for training the 

% model. 

inputTable = trainingData; 

predictorNames = {'VarName1', 'VarName2', 'VarName3', 'VarName4', 

'VarName5', 'VarName6'}; 

predictors = inputTable(:, predictorNames); 

response = inputTable.AD; 

isCategoricalPredictor = [false, false, false, false, false, false]; 

  

% Train a classifier 

% This code specifies all the classifier options and trains the 

classifier. 

classificationKNN = fitcknn(... 

    predictors, ... 

    response, ... 

    'Distance', 'Euclidean', ... 

    'Exponent', [], ... 

    'NumNeighbors', 1, ... 

    'DistanceWeight', 'Equal', ... 

    'Standardize', true, ... 

    'ClassNames', categorical({'AD'; 'Norm'})); 

  

% Create the result struct with predict function 

predictorExtractionFcn = @(t) t(:, predictorNames); 

knnPredictFcn = @(x) predict(classificationKNN, x); 

trainedClassifier.predictFcn = @(x) 

knnPredictFcn(predictorExtractionFcn(x)); 

  

% Add additional fields to the result struct 

trainedClassifier.RequiredVariables = {'VarName1', 'VarName2', 

'VarName3', 'VarName4', 'VarName5', 'VarName6'}; 

trainedClassifier.ClassificationKNN = classificationKNN; 

trainedClassifier.About = 'This struct is a trained model exported 

from Classification Learner R2017b.'; 

trainedClassifier.HowToPredict = sprintf('To make predictions on a 

new table, T, use: \n  yfit = c.predictFcn(T) \nreplacing ''c'' with 

the name of the variable that is this struct, e.g. ''trainedModel''. 

\n \nThe table, T, must contain the variables returned by: \n  

c.RequiredVariables \nVariable formats (e.g. matrix/vector, datatype) 

must match the original training data. \nAdditional variables are 

ignored. \n \nFor more information, see <a 

href="matlab:helpview(fullfile(docroot, ''stats'', ''stats.map''), 

''appclassification_exportmodeltoworkspace'')">How to predict using 

an exported model</a>.'); 

  

% Extract predictors and response 
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% This code processes the data into the right shape for training the 

% model. 

inputTable = trainingData; 

predictorNames = {'VarName1', 'VarName2', 'VarName3', 'VarName4', 

'VarName5', 'VarName6'}; 

predictors = inputTable(:, predictorNames); 

response = inputTable.AD; 

isCategoricalPredictor = [false, false, false, false, false, false]; 

  

% Perform cross-validation 

partitionedModel = crossval(trainedClassifier.ClassificationKNN, 

'KFold', 10); 

  

% Compute validation predictions 

[validationPredictions, validationScores] = 

kfoldPredict(partitionedModel); 

  

% Compute validation accuracy 

validationAccuracy = 1 - kfoldLoss(partitionedModel, 'LossFun', 

'ClassifError'); 
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Appendix 4: Summary of the biomarkers combination from length 1-4 

The following table shows a summary of the combinations EEG biomarkers from 1 – 

4. The actual table consists of 919310 combinations.  

No Biomarker 1 Biomarker 2 Biomarker 3 Biomarker 4 

1 ApEn(Alpha(O1))       

2 Coh(Alpha/theta(F4-T4))       

3 HFD(Alpha(O1))       

4 LZC(Alpha(C3))       

5 TsEn(Alpha/delta(C3))       

6 ΔEEGA(Alpha/delta(T6))       

7 ΔPS(Alpha(P4))       

8 ApEn(Alpha(O1)) Coh(Alpha/theta(F4-T4))     

9 HFD(Alpha(O1)) Coh(Alpha/theta(F4-T4))     

10 LZC(Alpha(C3)) Coh(Alpha/theta(F4-T4))     

11 TsEn(Alpha/delta(C3)) Coh(Alpha/theta(F4-T4))     

12 ΔEEGA(Alpha/delta(T6)) Coh(Alpha/theta(F4-T4))     

13 ΔPS(Alpha(P4)) Coh(Alpha/theta(F4-T4))     

14 ApEn(Alpha(O1)) HFD(Alpha(O2))     

15 HFD(Alpha(O1)) HFD(Alpha(O2))     

16 ApEn(Alpha(O1)) LZC(Alpha(CZ))     

17 HFD(Alpha(O1)) LZC(Alpha(CZ))     

18 LZC(Alpha(C3)) LZC(Alpha(CZ))     

19 ApEn(Alpha(O1)) TsEn(Alpha/theta(P3))     

20 HFD(Alpha(O1)) TsEn(Alpha/theta(P3))     

21 LZC(Alpha(C3)) TsEn(Alpha/theta(P3))     

22 TsEn(Alpha/delta(C3)) TsEn(Alpha/theta(P3))     

23 ApEn(Alpha(O1)) ΔEEGA(Theta/alpha(T5))     

24 HFD(Alpha(O1)) ΔEEGA(Theta/alpha(T5))     

25 LZC(Alpha(C3)) ΔEEGA(Theta/alpha(T5))     

26 TsEn(Alpha/delta(C3)) ΔEEGA(Theta/alpha(T5))     

27 ΔEEGA(Alpha/delta(T6)) ΔEEGA(Theta/alpha(T5))     

28 ApEn(Alpha(O1)) ΔPS(Alpha/theta(T3))     

29 HFD(Alpha(O1)) ΔPS(Alpha/theta(T3))     

30 LZC(Alpha(C3)) ΔPS(Alpha/theta(T3))     

31 TsEn(Alpha/delta(C3)) ΔPS(Alpha/theta(T3))     

32 ΔEEGA(Alpha/delta(T6)) ΔPS(Alpha/theta(T3))     

33 ΔPS(Alpha(P4)) ΔPS(Alpha/theta(T3))     

34 ApEn(Alpha(O1)) HFD(Alpha(O2)) HFD(Theta/alpha(T3))   

35 HFD(Alpha(O1)) HFD(Alpha(O2)) HFD(Theta/alpha(T3))   

36 ApEn(Alpha(O1)) HFD(Alpha(O2)) LZC(Alpha(T6))   

37 HFD(Alpha(O1)) HFD(Alpha(O2)) LZC(Alpha(T6))   

38 ApEn(Alpha(O1)) LZC(Alpha(CZ)) LZC(Alpha(T6))   

39 HFD(Alpha(O1)) LZC(Alpha(CZ)) LZC(Alpha(T6))   
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No Biomarker 1 Biomarker 2 Biomarker 3 Biomarker 4 

40 LZC(Alpha(C3)) LZC(Alpha(CZ)) LZC(Alpha(T6))   

41 ApEn(Alpha(O1)) HFD(Alpha(O2)) ΔEEGA(Theta/alpha(T5))   

42 HFD(Alpha(O1)) HFD(Alpha(O2)) ΔEEGA(Theta/alpha(T5))   

43 ApEn(Alpha(O1)) LZC(Alpha(CZ)) ΔEEGA(Theta/alpha(T5))   

44 HFD(Alpha(O1)) LZC(Alpha(CZ)) ΔEEGA(Theta/alpha(T5))   

45 LZC(Alpha(C3)) LZC(Alpha(CZ)) ΔEEGA(Theta/alpha(T5))   

46 ApEn(Alpha(O1)) TsEn(Alpha/theta(P3)) ΔEEGA(Theta/alpha(T5))   

47 HFD(Alpha(O1)) TsEn(Alpha/theta(P3)) ΔEEGA(Theta/alpha(T5))   

48 LZC(Alpha(C3)) TsEn(Alpha/theta(P3)) ΔEEGA(Theta/alpha(T5))   

49 TsEn(Alpha/delta(C3)) TsEn(Alpha/theta(P3)) ΔEEGA(Theta/alpha(T5))   

50 ApEn(Alpha(O1)) HFD(Alpha(O2)) HFD(Theta/alpha(T3)) LZC(Alpha(C3)) 

51 HFD(Alpha(O1)) HFD(Alpha(O2)) HFD(Theta/alpha(T3)) LZC(Alpha(C3)) 

52 ApEn(Alpha(O1)) HFD(Alpha(O2)) HFD(Theta/alpha(T3)) LZC(Alpha(T6)) 

53 HFD(Alpha(O1)) HFD(Alpha(O2)) HFD(Theta/alpha(T3)) LZC(Alpha(T6)) 

. . . . . 

. . . . . 

. . . . . 

. . . . . 

. . . . . 

. . . . . 

. . . . . 

919295 ApEn(Alpha(O1)) HFD(Alpha(O2)) HFD(Theta/alpha(T3)) ΔPS(Alpha/theta(T3)) 

919296 HFD(Alpha(O1)) HFD(Alpha(O2)) HFD(Theta/alpha(T3)) ΔPS(Alpha/theta(T3)) 

919297 ApEn(Alpha(O1)) HFD(Alpha(O2)) LZC(Alpha(T6)) ΔPS(Alpha/theta(T3)) 

919298 HFD(Alpha(O1)) HFD(Alpha(O2)) LZC(Alpha(T6)) ΔPS(Alpha/theta(T3)) 

919299 ApEn(Alpha(O1)) LZC(Alpha(CZ)) LZC(Alpha(T6)) ΔPS(Alpha/theta(T3)) 

919300 HFD(Alpha(O1)) LZC(Alpha(CZ)) LZC(Alpha(T6)) ΔPS(Alpha/theta(T3)) 

919301 LZC(Alpha(C3)) LZC(Alpha(CZ)) LZC(Alpha(T6)) ΔPS(Alpha/theta(T3)) 

919302 ApEn(Alpha(O1)) HFD(Alpha(O2)) ΔEEGA(Theta/alpha(T5)) ΔPS(Alpha/theta(T3)) 

919303 HFD(Alpha(O1)) HFD(Alpha(O2)) ΔEEGA(Theta/alpha(T5)) ΔPS(Alpha/theta(T3)) 

919304 ApEn(Alpha(O1)) LZC(Alpha(CZ)) ΔEEGA(Theta/alpha(T5)) ΔPS(Alpha/theta(T3)) 

901905 HFD(Alpha(O1)) LZC(Alpha(CZ)) ΔEEGA(Theta/alpha(T5)) ΔPS(Alpha/theta(T3)) 

919306 LZC(Alpha(C3)) LZC(Alpha(CZ)) ΔEEGA(Theta/alpha(T5)) ΔPS(Alpha/theta(T3)) 

919307 ApEn(Alpha(O1)) TsEn(Alpha/theta(P3)) ΔEEGA(Theta/alpha(T5)) ΔPS(Alpha/theta(T3)) 

919308 HFD(Alpha(O1)) TsEn(Alpha/theta(P3)) ΔEEGA(Theta/alpha(T5)) ΔPS(Alpha/theta(T3)) 

919309 LZC(Alpha(C3)) TsEn(Alpha/theta(P3)) ΔEEGA(Theta/alpha(T5)) ΔPS(Alpha/theta(T3)) 

919310 TsEn(Alpha/delta(C3)) TsEn(Alpha/theta(P3)) ΔEEGA(Theta/alpha(T5)) ΔPS(Alpha/theta(T3)) 
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