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Due to the interplay between the forward Stokes drift and the backward wave-induced Eulerian

return flow, Lagrangian particles underneath surface gravity wave groups can follow different

trajectories depending on their initial depth below the surface. The motion of particles near the

free surface is dominated by the waves and their Stokes drift, whereas particles at large depths

follow horseshoe-shaped trajectories dominated by the Eulerian return flow. For unidirectional

wave groups, a small net displacement in the direction of travel of the group results near the

surface, and is accompanied by a net particle displacement in the opposite direction at depth.

For deep-water waves, we study these trajectories experimentally by means of Particle Tracking

Velocimetry in a two-dimensional flume. In doing so, we provide visual illustration of Lagrangian

trajectories under groups, including the contributions of both the Stokes drift and the Eulerian

return flow to both the horizontal and the vertical Lagrangian displacements. We compare our

experimental results to leading-order solutions of the irrotational water wave equations, finding

good agreement.

1. Introduction

The oscillatory motion of Lagrangian particles below surface gravity waves is subject to a net

drift in the direction of wave propagation known as Stokes drift (Stokes 1847). For wave groups,

the net positive transport associated with the Stokes drift becomes divergent on the group scale

and is accompanied by an opposing Eulerian return flow (Longuet-Higgins & Stewart 1962).

The total Lagrangian velocity is given by the sum of the Stokes drift and the induced Eulerian

flow, and the resulting particle trajectories and displacements have been examined theoretically

by van den Bremer & Taylor (2015, 2016).

In the ocean, Stokes drift can provide a significant contribution to the trajectories of drifters

(Röhrs et al. 2012) and must be accounted for in search and recovery missions such as the

search for debris from the presumed location of the 2014 MH370 airplane crash (Trinanes et al.

2016). Stokes drift can be important in the local modelling of oil spills (Christensen & Terrile

2009; Drivdal et al. 2014; Jones et al. 2016). In the near-surface transport and dispersion of

plastic pollution, Stokes drift plays a potentially important yet largely unexplored role (e.g.

Lebreton et al. (2018)). Furthermore, Stokes drift is considered a mechanism driving global

ocean circulation (McWilliams & Restrepo 1999; Belcher et al. 2012), Langmuir turbulence

(Craik & Leibovich 1976; D’Asaro et al. 2014; Sullivan & McWilliams 2010) and sub-mesoscale

ocean instability (Haney et al. 2015; McWilliams 2016).

Experimentally, many authors have considered Stokes drift in laboratory wave flumes. As a

visual illustration, Wallet & Ruellan’s (1950) seminal image of orbits that do not quite close is
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reproduced in van Dyke’s (1982) Album of Fluid Motion. Yet, there remains some confusion

in the literature whether a net drift should be observed (see the discussion in Monismith et al.

(2007), Weber (2011), Grue & Kolaas (2017), van den Bremer & Breivik (2017) and Deike et al.

(2017)). To explain this, three effects must be taken into account: boundary layers, the origin of

vorticity in the interior of the fluid and breaking.

Longuet-Higgins (1953) showed the mass-transport velocity can be significantly different from

the irrotational theory of Stokes (1847), with additional net transport arising in the oscillating

bottom and surface boundary layers. Explaining experiments by Bagnold (1947), Longuet-

Higgins (1953) showed the Lagrangian transport in the boundary layers is positive and does not

disappear in the limit of infinite Reynolds number. This boundary layer streaming has recently

been studied for very steep waves by Grue & Kolaas (2017), who observed significant additional

streaming and associated shear in both the bottom and free surface boundary layers, more than

can be predicted by the boundary layer streaming solution of Longuet-Higgins (1953), which

Grue & Kolaas (2017) noted may be invalid due to the large steepness of the waves.

For periodic waves, which are the focus of almost all experimental studies focussing on wave-

induced mean flows, the net depth-integrated mass flux must be zero in a closed flume. The

Stokes transport must be accompanied by a Eulerian return current driven by a setup in the

direction downstream of wave propagation, which is conceptually distinct from the return flow

forced by the packet structure examined herein. This closed-flume return flow is irrotational,

unless vorticity can be transported into the interior of the fluid. Longuet-Higgins (1953) derived

two classes of analytical solutions for this vorticity transport: a ‘conduction’ solution and a

‘convection’ solution. Depending on the ratio of the wave amplitude a to the thickness of the

boundary layer δ, the transport of vorticity takes place by viscous ‘conduction’ (a2/δ2 small)

from the bottom and free surface boundary layers, or convection with the mass-transport velocity

(a2/δ2 large), from the wavemaker or the beach at the other end, where vorticity can be generated.

If one considers a motion that is started from rest, the motion in the interior of the fluid will

always be initially irrotational, and it will take considerable time for vorticity to be advected or

diffused from the vertical or horizontal boundaries, respectively. Finally, as also pointed out by

Longuet-Higgins (1953), the convection solution may not be stable.

In the conduction regime, Groeneweg & Klopman (1998) compare their more generally appli-

cable generalized Lagrangian mean model for wave-current interaction to the conduction solution

of Longuet-Higgins (1953), showing near perfect agreement, and to the laboratory measurements

in a very shallow and long closed flume by Mei et al. (1972), finding good agreement for

intermediate water depth (kh = 1.0), but less good agreement for deeper water (kh = 1.8).

However, most experimental studies are in the convection regime. Swan (1990) demonstrated

that convection indeed plays an important part within a relatively deep experimental wave flume:

vorticity generated at the end conditions is convected backwards with the mass transport velocity

and the near-shore region progressively influences the entire length of the wave flume, although

the flow field is not always stable. By installing a plastic sheet at the toe of the beach, Swan

& Sleath (1990) could obtain long-time stable conditions that agreed better with their 4th-order

finite-depth extension of the irrotational solution for Lagrangian transport in a closed domain.

Umeyama (2012) performed a similar expansion, but focused explicitly on particle trajectories

and found reasonable agreement with experimentally obtained trajectories. Paprota et al. (2016),

who took their measurements after a relatively short wave train of periodic waves in a relatively

long flume, found good agreement with the irrotational theory of Stokes (1847), supplemented

by a closed-flume return current. For waves of intermediate water depth (kh = O(1)) and very

large steepness, Grue & Kolaas (2017) found good agreement with nonlinear irrotational theory

in the interior of the fluid in a set of very high-quality experiments. Their experiments were

stopped long before the first waves reach the end of their open-ended flume, but the length of

their wave train remains long relative to the water depth. Based on their experiments, Monismith
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et al. (2007) have suggested a cancellation of the Stokes drift by a Eulerian mean flow that is

equal and opposite at every depth. Their experiment were done in the presence of a pre-existing

sheared current in a recirculating flume, which could help explain their observation. The current

could also advect vorticity at a faster rate than the wave-induced mean flow.

If the waves are breaking, transport of Lagrangian particles near the surface will be consider-

ably enhanced, as observed experimentally by Melville & Rapp (1988) and recently explained

using numerical simulations and a scaling argument for breaking by Deike et al. (2017) with

implications for surfing (Pizzo 2017). Breaking also has the capacity to transport vorticity into

the interior of the fluid (Pizzo & Melville 2013).

This paper presents an experimental study of Lagrangian trajectories and transport by uni-

directional, deep-water, small-amplitude, short-length yet quasi-monochromatic surface gravity

wave groups. In doing so, we visualize experimentally for the first time the wave-induced

Eulerian return flow for groups. We also show that our experimental observations in this regime

are in good agreement with leading-order solutions to the irrotational water wave equations. Our

experiments using short-length groups in an otherwise quiescent flume have the advantage of not

generating a closed-flume return flow, which may transport vorticity, is potentially unstable, and

difficult to control experimentally.

Furthermore, our experiments demonstrate the existence of a vertical component to the Stokes

drift, which only exists for wave groups and results in a positive (temporary) vertical particle

displacement underneath the centre of the group. This positive vertical displacement by the

Stokes drift has been predicted by Herbers & Janssen (2016), who showed the set-down of the

wave-averaged free surface in Eulerian records can appear as (significant) set-up in Lagrangian

(buoy) records. Nevertheless, a vertical component to the Stokes drift (for groups) has been

contentious in adaptations of the work by Craik & Leibovich (1976) in the context of ocean

circulation and Langmuir circulation. McWilliams et al. (2004) noted that the vertical Stokes

drift is zero and introduced a vertically-divergent vertical pseudo-velocity to compensate for

the horizontal divergence of the Stokes drift. Although Mellor (2016) allows for a horizontally-

divergent Stokes drift, he still requires the vertical Stokes drift component to be zero. We

emphasize that the Stokes drift velocity is generally divergent for groups; this is consistent with

generalized Lagrangian-mean theory (Andrews & McIntyre 1978), as shown by McIntyre (1988).

Accordingly, a vertical Stokes drift component arises for groups, as can be easily derived for

irrotational surface gravity waves and is confirmed experimentally herein.

This paper is laid out as follows. First, §2 briefly summarizes the irrotational solutions for wave

groups, followed by a description of our experimental methodology in §3. We present results in

§4, including illustrations of the Lagrangian orbits, a comparison with irrotational water wave

theory and an assessment of the experimental error, and draw conclusions in §5.

2. Irrotational water wave theory for wave groups

2.1. Governing equations and leading-order solutions

In a two-dimensional body of water of depth d with coordinate system (x, z) and z the vertical

coordinate measured from the undisturbed water level upwards, inviscid, incompressible and

irrotational flow leads to Laplace ∇2φ = 0 for −d 6 z 6 η(x, t) as the governing equation, where

the velocity vector u =∇φ and η(x, t) denotes the free surface. By retaining terms up to quadratic

in the amplitude of the waves, the kinematic free surface boundary condition (w − ∂η/∂t −
u∂η/∂x = 0) and the dynamic free surface boundary condition (gη+ ∂φ/∂t +(u2 +w2)/2 = 0),

both at z = η(x, t), can be combined into two forcing equations for the mean flow and the wave-

averaged free surface, respectively (e.g. Longuet-Higgins & Stewart (1964); McAllister et al.
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where the superscripts denote the order in amplitude, and we only retain wave-averaged terms

here, as indicated by the overlines on the right-hand side of (2.1a). The small parameter corre-

sponding to amplitude, steepness, is denoted by α ≡ k0|a0|, where a0 is the typical amplitude

of the surface elevation and k0 the wavenumber of the carrier wave. Explicitly, we thus have for

the Stokes expansion in α that φ = φ(1)+ φ(2)+O(α3) and η = η(1)+η(2)+O(α3), where we

will only retain the wave-averaged terms in φ(2) and η(2). In (2.1) we have made the additional

assumption that k0d ≫ 1, so that the set-down of the wave-averaged free surface η(2) does not

directly affect the mean flow (McIntyre 1981; McAllister et al. 2018). More specifically, we

set η(1) = Re[A0(X)exp(ı(k0x−ω0t))+ εA1(X)exp(ı(k0x−ω0t))] and φ(1) = Re[B0 exp(k0z+
ı(k0x −ω0t)) + εB1 exp(k0z+ ı(k0x −ω0t))], where X ≡ ε

(

x− cg,0t) with ε ≡ 1/(k0σ), σ the

characteristic length of the group and cg,0 = dω0/dk0 = ω0/(2k0) the group velocity. The linear

(O(α)) polarization relationships at the zeroth and first order in ε are given in table 1.

Our focus is on leading-order terms; we ignore dispersion of the group (e.g. van den Bremer &

Taylor (2016)), and the second-order equations in steepness (2.1) are accurate up to O(ε3) in the

bandwidth parameter ε, as can be shown from the linear polarization relationships in table 1. The

leading-order, non-dispersive mean flow solution is given by combining the linear polarization

relationships in table 1 and solving Laplace ∇2φ(2) = 0 subject to the bottom boundary condition

∂φ(2)/∂z = 0 at z =−d and the surface forcing (2.1a) (see also van den Bremer & Taylor (2016))

φ
(2)
E =

−ω0

4π

∫ ∞

−∞
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sinh(|ω|d/cg,0)

ω

|ω|
ı|̂A0|2

1− ω2cg,0

g|ω| tanh(|ω|d/cg,0)

exp(iωt̃)dω, (2.2)

where we choose cg,0 > 0 and define t̃ ≡ t − x/cg,0. We have expressed the solution as an

inverse Fourier transform in time to enable evaluation of the Fourier transform of the square

of the leading-order packet |̂A0|2 directly from point measurements of the surface elevation. It

is instructive to consider the shallow return flow limit d/σ ≪ 1, in which case the velocity field

corresponding to (2.2) becomes more simply

u
(2)
E =−ω0

2d

1

1− 1/(4k0d)
|A0|2 and w

(2)
E =− k0

1− 1/(4k0d)

d+ z

d
∂t̃ |A0|2, (2.3a,b)

where 1/(4k0d) in the denominator will be small as k0d ≫ 1.

The mean motion of the Lagrangian particles we examine is determined by the sum of

the Stokes drift uS and the wave-induced Eulerian mean flow uE: uL = uS +uE (e.g. Bühler

(2014)). The Stokes drift can be determined from the linear waves using the linear polarization

relationships in table 1:

uS ≡ ξ(1) ·∇u(1) = k0

(

ω0,
3

2

∂

∂t̃

)

|A0|2 exp(2k0z), (2.4)

where u(1) is the velocity field of the linear wave and ξ(1) the corresponding linear displacement

vector with components ξ(1) = (ξ
(1)
x ,ξ

(1)
z ), which can be evaluated from the linear velocity field

according to ∂ξ(1)/∂t = u(1). For groups, it is evident from (2.4) that a non-zero vertical Stokes

drift exists. Like their horizontal components, the vertical velocities of the return flow and Stokes

drift are of opposite sign. Finally, we note that the Stokes drift velocity field is divergent, and

(2.4) satisfies the identity for volume conservation ∇ · uS = (1/2)∂tzz(η(1))2 from generalized
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Field O(1) O(ε) Field O(1) O(ε)
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−ık0ω0A0 −ω0 (2+k0z)ε∂X A0

TABLE 1. Expressions for the different linear (in α ≡ k0|a0|) fields at O(α1ε0) and O(α1ε1). Values are
given in terms of the leading-order amplitude envelope A0 of the vertical displacement field. The actual
fields are the real parts of the tabulated expressions after multiplication by exp(k0z+ ıϕ0), where the phase

is given by ϕ0 = k0x−ω0t. We denote η(1) ≡ ξ
(1)
z (z = 0) as the free surface.

Lagrangian-mean theory (equation (9.4) of Andrews & McIntyre (1978)), shown here correct to

leading-order for our case (see also McIntyre (1988)).

2.2. Net Lagrangian displacements

After a single group has moved past, the net horizontal and the maximum vertical (positive)

particle displacement arising from the Stokes drift (2.4) are given by

∆xS ≡
∫ ∞

−∞
uSdt̃ = ω0k0 exp(2k0z)

∫ ∞

−∞
|A0|2dt̃ = 2

√
πα2σexp(2k0z), (2.5)

∆zS,max ≡
∫ 0

−∞
wSdt̃ =

3α2

2k0
exp(2k0z), (2.6)

where t̃ = 0 is chosen to correspond to the centre of the packet, where the maximum vertical dis-

placement due to Stokes drift occurs. Whereas the first identity in (2.5) holds for a general packet

shape, the final identity corresponds to a Gaussian packet A0 = a0 exp
(

−(x− cg,0t)2/2σ2
)

=

a0 exp
(

−c2
g,0t̃2/2σ2

)

for illustration.

The net horizontal and the minimum vertical (negative) particle displacement arising from the

return flow (2.2) are

∆xE ≡
∫ ∞

−∞
uEdt̃ =−1

2

ω0

d

1

1− 1/(4k0d)

∫ ∞

−∞
|A0|2dt̃ =−

√
πα2σ

k0d− 1/4
, (2.7)

∆zE,min ≡
∫ 0

−∞
wEdt̃ =− 1

k0

d+ z

d

α2

1− 1/(4k0d)
. (2.8)

As for (2.5), the first identity in (2.7) holds for a general packet shape, whereas the final

identity corresponds to a Gaussian packet of the form A0 = a0 exp
(

−(x− cg,0t)2/2σ2
)

=

a0 exp
(

−c2
g,0t̃2/2σ2

)

. In §4, we evaluate the net displacements from time integration of the

measured surface elevation.

We note that the net horizontal displacement does not decay with depth, in contrast to the

horizontal return flow velocity (2.2) for non-shallow return flows (d/σ 6≪ 1), whereas these

horizontal displacements were erroneously shown to decay with depth in van den Bremer &

Taylor (2016) due to insufficiently large limits on the time integral therein for very deep water.

From (2.5-2.8), the horizontal and vertical Stokes drift and return flow displacements become
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FIGURE 1. Transition depths (2.9) defined as the depths where the horizontal (continuous lines) and vertical
Lagrangian (dashed lines) displacements are zero due to cancellation of their Stokes drift and Eulerian return
flow components. The colours correspond to the left and right vertical axes, which are scaled differently.

equal and opposite at the respective ‘transition’ depths zT,H and zT,V

zT,H =− 1

2k0
log

(

2k0d

(

1− 1

4k0d

))

and
3

2
exp(2k0zT,V) =

d + zT,V

d

1

1− 1/(4k0d)
(2.9a,b)

where zT,V is defined implicitly, and the horizontal transition depth (2.9a) was derived previously

by van den Bremer & Taylor (2016) albeit without the small (1− 1/(4k0d)) term to correct for

the set down. Figure 1 illustrates the dependence of these transition depths on k0d. The horizontal

transition depth (continuous lines) can be a significant fraction of the water depth for moderate

k0d (up to zT,H/d = −0.28 for k0d = 3), whereas the vertical transition depth (dashed lines) is

generally given by k0zT,V ≈− log(3/2)/2=−0.20, which becomes exact in the limit k0d →∞. In

the shallow return flow limit (d/σ ≪ 1), the transition depths (2.9) also correspond to the depths

below which the horizontal Lagrangian velocity becomes negative and the vertical Lagrangian

velocity becomes negative (in front of the packet) or positive (behind the packet), respectively

(cf. (2.3)).

3. Experimental methodology

3.1. Set-up, wave generation and data acquisition

We carried out experiments in the 35 m flume in the COAST (Coastal, Ocean and Sediment

Transport) Laboratory at the University of Plymouth, UK. Our visualisation experiments are

illustrated in figure 2. The flume has a width of 0.6 m and was filled to a depth d = 0.5 m. We used

a piston-type wavemaker to generate a focused wave group with a spectral shape that linearly

focuses to a Gaussian packet A0 = a0 exp
(

−(x f − cg,0t)2/2σ2
)

at a measurement zone located

x f = 9.407 m from the resting position of the wavemaker (measured free surface elevations are

included in figure 9 in appendix A). Although the paddles were controlled with a combination

of first- and second-order signals based on Schäffer (1996), subharmonic error waves are not

expected to play a significant role for the deep-water waves examined here (Whittaker et al.

2017). A resistance-type wave gauge provided 128 Hz free surface elevation measurements at

the focus location; the measured free surface signals provided the parameters used to predict

the theoretical particle displacements for each experiment. A light-emitting diode (LED) light

box located at the measurement zone (offset in the cross-flume direction from the wave gauge)
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FIGURE 2. Experimental set-up used to obtain PTV measurements of trajectories below focused wave
groups generated by a piston-type wavemaker in the 35 m flume in the COAST Laboratory at the University
of Plymouth.

illuminated the motions of small near-neutrally buoyant particles in a plane, which were captured

by a camera located outside of the flume. Camera calibration details are given in appendix B.1.

The ‘Plascoat’ particles were approximately 150 µm in diameter, small enough to be con-

sidered dynamically unimportant. Although the particles were slightly positively buoyant, their

upward settling velocities were small or at least slowly varying compared to their motion beneath

the free surface waves (see §3.3). The particles were effectively uniformly mixed throughout the

measurement zone, which was achieved by adding new particles between experiments when

necessary, mixing up the water column and waiting for the flume to become quiescent before

starting experiments. Because of the light sheet, we only tracked a thin slice of particles in the

(x-z)-plane. The camera field of view captured half the depth at a time. To obtain a complete

distribution with depth, we thus repeated the same experiment twice.

After propagating through the measurement zone, the dispersed wave groups were absorbed

by foam wedges within an ‘absorption zone’ located at the downstream end of the wave flume.

The measurement zone was located far enough from the wavemaker to minimise the effects

of evanescent modes from the wavemaker. To ensure near-quiescent initial conditions for each

experiment the flume was allowed to settle for 10 minutes between experiments. Although negli-

gible free surface motions remained after this time period, some slow circulations lingered within

the subsurface velocity field; these ‘background particle velocities’ were removed during post-

processing of the particle trajectories, as described below. The settling time of 10 minutes was

short enough that the slightly positively-buoyant particles remained evenly distributed throughout

the water column at the start of each experiment.

3.2. Matrix of experiments

We conducted 12 experiments, as outlined in table 2 with experiment 1 conducted 10 times

to determine repeatability. Frequencies were chosen such that the water depth is deep (k0d ' 3);

amplitudes such that second-order motions are large enough to measure, but not too large so that

effects beyond second-order play a role; and the bandwidth parameter ε = 1/(k0σ) such that the

wave group is still quasi-monochromatic (see van den Bremer & Taylor (2016)), but the wave

groups not so long that reflections play a role. Having defined ε based on length scales in the

physical domain and for a Gaussian group, we can obtain an estimate of the number of waves per

group of 4σ/λ0 = 2/(πε)≈ 2.5−4 (cf. table 2 and figure 9 in appendix A). We investigated both
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Experiment f0 [Hz] α = k0a0 ε = (k0σ)−1 k0d Phase at focus
[deg]

No. of raw tra-
jectories

No. of post-
processed
trajectories

1 1.25 0.13 0.21 3.16 0 609 115
2 1.25 0.13 0.21 3.16 180 505 92
3 1.25 0.12 0.16 3.16 0 317 53
4 1.25 0.12 0.16 3.16 180 345 51
5 1.25 0.12 0.26 3.16 0 556 107
6 1.25 0.12 0.26 3.16 180 502 130
7 1.5 0.10 0.20 4.53 0 573 147
8 1.5 0.10 0.20 4.53 180 499 87
9 1.5 0.12 0.16 4.53 0 242 56
10 1.5 0.12 0.16 4.53 180 345 90
11 1.5 0.09 0.23 4.53 0 444 99
12 1.5 0.09 0.23 4.53 180 477 119

TABLE 2. Matrix of experiments.

crest-focused (CF) and trough-focused (TF) wave groups, for which frequencies have phases of

0 or π at focus, respectively.

3.3. Data processing and removal of background motion

The recorded images were processed using the Streams software package, a specialist package

for flow visualisation applications (Nokes 2014) (see appendix B.2). Lagrangian paths were

calculated for particles that had been continuously matched for at least ±6Tg with Tg = σ/cg,0

either side of the time of focus. Despite the settling time between experiments, we found

persistent background motion of the particles on a time scale much greater than the linear motion

and the motion associated with Stokes drift and the Eulerian return flow beneath the group.

This background motion consists of a combination of upward settling of particles, long waves

or ‘seiche modes’ that decay very slowly in the flume and Ekman-type circulation that result

from small air flows over the surface that cannot be entirely eliminated in the laboratory. We

can estimate the (upward) Stokes settling velocity for our spherical particles as w = (2/9)((ρw−
ρp)/ρw)(gR2/ν) = 0.25mm/s, where we have used ρp = 0.96g/cm3, ρw = 0.98g/cm3, ν =
1.0×10−6 m2/s and R = 75×10−6 m. We can also estimate the velocity associated with a linear

long wave of amplitude a = 0.1mm (probably the smallest that can be detected by the gauges) to

be u = a
√

g/d = 0.44mm/s. For comparison, the Stokes drift near the surface (z = 0) and at the

point of focus is uS = cp,0α2 = 21mm/s for cp,0 = 1.25m/s ( f0 = 1.25Hz) and α = 0.13 (see

table 2). For the same case, the return flow velocity is uE = cp,0α2/(2k0d− 1/2) = 3.6mm/s for

d = 0.5m. Fortunately, all these background motions vary more slowly than the waves and their

induced mean flows themselves and we can remove these by fitting to the background motion

before and after the arrival of the group. The Lagrangian displacements were calculated after

removal of this slow background motion, and the quality of the trajectories assessed, resulting in

a smaller number of post-processed compared to raw trajectories, as reported in table 2.

When visually assessing the quality of the trajectories, we dismissed particles with incom-

pletely recorded trajectories and particles for which our automatic criterion for identifying the

focus time, namely the time at which the horizontal velocity reached a maximum, was not

successful. The displacements were calculated between t = −3Tg and t = +3Tg, with t = 0

corresponding to the focus point, Tg = σ/cg,0 denoting the group period, and the limits chosen

so that the overlying wave group has effectively zero amplitude. The trajectories recorded for
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FIGURE 3. Experimental particle trajectories for particles near the surface below crest-focussed (CF, top
row) and trough-focussed (TF, bottom row) wave groups for three different groups lengths σ (columns), as
denoted by ε = 1/(k0σ). The blue and red + symbols denote experimentally determined initial and final
particle positions, respectively.

times outside this window, during which there was no overlying wave group, were then used

to fit to and then remove background motion. To do so, we considered four fitting methods and

selected the one that minimized the displacement due to the background motion over the window

t =±3Tg (see appendix B.3 for further details).

4. Results

4.1. Particle trajectories

Figure 3 shows representative measured particle trajectories near the surface for crest-focussed

(CF, top row) and trough-focussed (TF, bottom row) experiments with three different bandwidths

(columns). Near the surface, the Stokes drift is dominant, the trajectories for shorter groups

(larger ε) are made up from fewer orbits with smaller net horizontal displacements, and the

vertically-asymmetric relationship between crest-focussed and trough-focussed trajectories is

clearest from comparing figures 3c and 3f. The different columns in figure 4 show how particle

trajectories vary with depth. Descending in the fluid, the net horizontal displacement transitions

from positive near the surface (top row), via zero (middle row) to negative at depth (bottom row).

At all depths, the linear wave signature remains present, although the magnitude of the orbits

decreases. The horseshoe-shaped mean motion induced by the return flow is evident at depth (fig.

4g-i). In both figures 3 and 4, the blue and red symbols respectively denote the experimentally

determined initial and final particle positions, which will be examined for all orbits below.

4.2. Net Lagrangian displacements

After removal of background motion, figure 5 compares net horizontal Lagrangian displace-

ment from experiments (black crosses) to theoretical predictions (red lines) for all experiments.

The theoretical predictions are evaluated from (2.5) and (2.7), where we evaluate ω0 from the
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FIGURE 4. Experimental particle trajectories for particles at different depths (rows) for three different
groups lengths σ (columns), as denoted by ε = 1/(k0σ). The blue and red + symbols denote experimentally
determined initial and final particle positions, respectively.

peak of the surface elevation spectrum and compute k0 from the linear dispersion relationship.

Instead of fitting a Gaussian functional form, we numerically evaluate the time integrals in

(2.5) and (2.7) over the envelopes extracted from the surface elevation measurements from

the gauge, where we first remove bound waves from the spectrum, which has well separated

harmonics, using filtering. As expected based on irrotational theory for wave groups, the net

positive displacements near the surface dominated by the Stokes drift are accompanied by

opposing displacement at depth dominated by the return flow.

The changes in the net displacement due to changes in bandwidth (ε) that can be observed

in figure 5 are indeed accurately predicted by our leading-order (in ε) results (2.5) and (2.7).

Keeping k0 constant, increasing ε amounts to a reduction in the group length σ with a consequent

reduction in the net displacement, as predicted by (2.5) and (2.7). Although our expressions

are only strictly valid in the narrow-banded limit ε ≡ 1/(k0σ) → 0, higher-order terms only

potentially arise at two orders higher in ε. Based on the values of ε considered here and the

calculations performed in van den Bremer & Taylor (2016), we estimate the error associated

with our narrow-banded assumption to be a few percent in the worst case.

Using a similar procedure, figure 6 compares the maximum or minimum vertical Lagrangian

displacement underneath the centre of the group to their theoretical predictions (2.6) and (2.8).

The upward displacement by the Stokes drift near the surface predicted by irrotational theory for
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FIGURE 5. Net horizontal Lagrangian displacement from experiments (black dots) compared to theoretical
predictions (red lines) for all experiments in table 2.

groups is accompanied by the classical Eulerian set-down at greater depth and decreasing to zero

linearly with z to zero at the bottom (cf. (2.8)).

In both figures 5 and 6, the orbits near the surface are not always perfectly captured, which is

a result of their larger size and the (reflective) free surface moving through the camera window.

Although the scatter in the data is not insignificant for some experiments (addressed in §4.3),

they line up well with theoretical predictions, including the magnitude of the displacement by the

Stokes drift and the return flow. Finally, figure 7 presents scaled (non-dimensional) Lagrangian

displacements from the experiments, noting from (2.5-2.8) that all parameters can be scaled out

except for k0d.

4.3. Repeatability

In order to assess repeatability of experiments and robustness of background motion removal,

we conducted experiment 1 ten times. For both the horizontal and the vertical displacements,

figure 8 demonstrates good agreement (to within two standard deviations) between experiments

and theoretical predictions, notably including the positive vertical displacement by the Stokes

drift in figure 8b. Most of the variability for single experiments observed in figures 5-7 is likely

due to unpredictable small residual motions present in the flume, which cannot be perfectly

removed. In fact, the reason that the agreement with the theoretical solutions appears better for

the horizontal displacements (cf. figure 5) than for the vertical displacements (cf. figure 6) is

simply that the horizontal displacements are larger, making removal of background motion easier.

Furthermore, the displacement associated with longer groups (smaller ε) is simply larger and thus

easier to measure.
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FIGURE 6. Maximum or minimum vertical Lagrangian displacement from experiments (black dots)
compared to theoretical predictions (red lines) for all experiments in table 2.

5. Conclusions

This paper has reported on an experimental study of Lagrangian trajectories underneath

uni-directional, deep-water surface gravity wave groups and has demonstrated visually

their wave-induced Eulerian return flows as well as their Stokes drifts in experiments. Our

quasi-monochromatic, small-amplitude, non-breaking experimental observations are in good

agreement with leading-order solutions to the irrotational water wave equations. We have also

shown that the Stokes drift for groups has both a horizontal and a vertical component, where the

former results in a net displacement, whereas the latter leads to a temporary positive set-up for

particles a small distance below the centre of a group, defined by a ‘transition’ depth. Such a

non-zero vertical Stokes drift is contentious in equations of the Craik & Leibovich (1976)-type

(McWilliams 2016; Mellor 2016), but has been predicted to affect Lagrangian buoy records

(Herbers & Janssen 2016). For the relatively short, yet still quasi-monochromatic, groups we

have examined, boundary layers do not have sufficient time to form and result in streaming

of Lagrangian particles. Based on a typical velocity of a0ω0 = 0.16m/s for a0 = 0.021m and

ω0 = 7.9rad/s and taking the amplitude a0 as the typical length scale, we obtain a Reynolds

number of 3.5× 103 (laminar). If we take the group length scale σ = 1.0m as the characteristic

length scale (for f0 = 1.25Hz and ε = 0.16), we can estimate the boundary layer thickness that

can develop over this scale as δ = 4.91
√

(σν)/(a0ω0) = 0.012m (Blasius solution for a laminar

boundary layer over a plate). This is too small to play a role in our measurements. Furthermore,

these short groups avoid the set up of a closed-flume return flow associated with periodic waves,

which may transport vorticity, be difficult to control experimentally and could account for some

of the confusion in the literature. Although boundary layers, the convection and conduction of

vorticity and breaking can probably explain the observed net drift and its depth variation in the
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majority of laboratory experiments, the finding by Smith (2006) of Eulerian counterflows occur

that completely cancel the Stokes drift variations at the surface for wave groups in field data is

left unexplained.

Although experimental studies, including the present one, have focussed exclusively on parti-

cles that behave as perfect Lagrangian tracers, modelling of transport of particles of all sizes and

shapes in the upper ocean will require consideration of particle inertia (Eames 2008; Santamaria

et al. 2013) and anisotropy (DiBenedetto & Ouellette 2018; DiBenedetto et al. 2018), as well as

‘surfing’ of particles near the surface (Pizzo 2017; Deike et al. 2017). Future work will examine

these effects experimentally.
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Appendix A. Measured free surface elevation signals

Figure 9 shows the unfiltered measured free surface elevation signals for the 12 experiments

in table 2.

Appendix B. Experimental procedure and data processing

B.1. Camera settings and calibration

During the experiments, a light-emitting diode (LED) light box located above the flume illumi-

nated a two-dimemsional plane approximately 1 m long and 10 mm thick. Ambient lighting was

removed during these experiments, to maximise the contrast between the illuminated particles

and the image background. A Photron SA4 high-speed camera captured the particle motions
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within the plane illuminated by the LED light box. Each experiment was repeated multiple times

to ensure complete coverage of the depth and some overlap between different camera windows

as a result. The camera captured images at 125 frames/s, with a resolution of 1024 by 1024 pixels

and a shutter speed of 1/125 s (i.e. opening the shutter for the duration of image acquisition). This

shutter speed achieved an acceptable compromise between the requirements of obtaining very

sharp images (requiring a high shutter speed) and allowing sufficient light to enter the CCD of the

camera during each image (requiring a low shutter speed). Before conducting each experiment,

the camera captured a calibration image of a ruler, allowing quantification of the pixel scale and

any distortion in the images (barrel-pincushion distortions were found to be negligible for these

tests). The image was calibrated by placing a ruler in the light sheet.

B.2. Image processing and particle tracking

The particles within each image were identified using a dual threshold algorithm, which first

searched the image for pixels with an intensity greater than a particular threshold, identified the

maximum pixel intensity within the group of pixels and finally defined the particle boundaries

based on a fraction of this maximum intensity. This algorithm has the advantage of correctly

identifying stationary and moving particles within a range of lighting conditions. The identified

particles were subsequently matched between frames using an ‘auction’ optimisation algorithm.

This auction algorithm optimised the particle matches by minimising the total cost of all potential

matches for each successive pair of frames, where the cost was first assigned based on particle

distance, then based on the (matched) particle velocities in a small region. The velocities of

matched particles were finally used to generate additional matches where appropriate.

B.3. Removal of background motion

In order to remove background motion, we first centre the signal around the time of focus,

chosen as the time of the maximum horizontal velocity, so that it corresponds to t = 0 and then

consider four ways of fitting to the background motion in the signals (x(t),z(t)):
(i) linear fit to the x-displacement prior to wave group arrival over (−6Tg,−3Tg) and

quadratic fit to the z-displacement before and after wave group arrival over (−6Tg,−3Tg) and

(3Tg,6Tg);
(ii) linear fit to the x-displacement prior to wave group arrival over (−9Tg,−3Tg) and

quadratic fit to the z-displacement before and after wave group arrival over (−9Tg,−3Tg) and

(3Tg,9Tg);
(iii) linear fit to the x-displacement prior to wave group arrival over (−12Tg,−3Tg) and

quadratic fit to the z-displacement before and after wave group arrival over (−12Tg,−3Tg) and

(3Tg,12Tg);
(iv) linear fit to the x-displacement and quadratic fit to the z-displacement before and after

wave group arrival over (−9Tg,−3Tg) and (3Tg,9Tg);
where we estimated the group velocity cg,0 and hence the group period Tg from the spectral peak

of the measured free surface time series.

All trajectories were visually inspected to ensure the orbit was complete and the focus location

correctly identified. Of the four fitting methods, we selected the method that minimised the

net ‘background’ displacement of the particle within the fit windows for each trajectory. After

satisfactory processing of the particle orbits, the net displacements were calculated between−3Tg

and 3Tg.


