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 2 

Holocene paleoceanographic reconstructions along the North Iceland Shelf (NIS) have 47 

employed a variety of sea-surface temperature (SST) and sea-ice proxies. However, these 48 

surface proxies tend to have a seasonal bias toward spring/summer, and thus, only provide 49 

a discrete snapshot of surface conditions during one season. Furthermore, SST proxies can 50 

be influenced by additional confounding variables resulting in markedly different 51 

Holocene temperature reconstructions. Here, we expand Iceland’s marine paleoclimate 52 

toolkit with TEX86
L; a temperature proxy based on the distribution of archaeal glycerol 53 

dibiphytanyl glycerol tetraether (GDGT) lipids. We develop a local Icelandic calibration 54 

from 21 surface sediment samples covering a wide environmental gradient across Iceland’s 55 

insular shelves. Locally calibrated GDGT results demonstrate that: 1) TEX86
L reflects 56 

winter subsurface (0-200 m) temperatures on the NIS, and 2) our calibration produces more 57 

realistic temperature estimates with substantially lower uncertainty (S.E. ±4 oC) over global 58 

calibrations. We then apply this new calibration to a high-resolution marine sediment core 59 

(last millennium) collected from the central NIS (B997-316 GGC, 658 m depth) with age 60 

control constrained by 14C-dated mollusks. To test the veracity of the GDGT subsurface 61 

temperatures, we analyze quartz and calcite wt% and a series of highly branched isoprenoid 62 

alkenes, including the sea ice biomarker IP25, from the same core. The sediment records 63 

demonstrate that the development of thick sea ice during the Little Ice Age warmed the 64 

subsurface due to winter insulation. Importantly, this observation reflects a seasonal 65 

component of the sea-ice/ocean feedback to be considered for the non-linear cooling of the 66 

Little Ice Age in and around Iceland. 67 

 68 

1. Introduction 69 
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The steep oceanographic (temperature, salinity, and nutrient) gradients caused by the 70 

presence of Arctic and Atlantic Ocean currents surrounding Iceland have made the insular 71 

shelves targets for northern North Atlantic climate change studies since the last 72 

deglaciation (Knudsen et al., 2004; Ólafsdóttir et al., 2010). Throughout the Holocene, the 73 

strength and latitudinal position of these currents has varied on centennial timescales, 74 

impacting terrestrial climate (Larsen et al., 2012; Geirsdóttir et al., 2013, 2019; Harning et 75 

al., 2018), as well as the status of Icelandic ice caps (Larsen et al., 2011; Brynjólfsson et 76 

al., 2015; Harning et al., 2016a, 2016b; Anderson et al., 2018). As the North Atlantic is the 77 

region that exhibits the largest meridional heat flux of the Northern Hemisphere (Wunsch, 78 

1980), and the area of deep-water formation that drives the Atlantic Meridional 79 

Overturning Circulation (AMOC), changes in local climate also have widespread 80 

hemispheric relevance (Denton & Broecker, 2008; Buckley & Marshall, 2016). Thus, 81 

gaining a more comprehensive understanding of the past oceanographic conditions in this 82 

region of the North Atlantic is not only key to understanding past episodes of climate 83 

change, but also critical to contextualize circulation changes under a currently warming 84 

climate (Spielhagen et al., 2011; Caesar et al., 2018; Thornalley et al., 2018). 85 

Over recent decades, numerous marine sediment core studies have generated 86 

surface and bottom water temperature proxy records based on Mg/Ca and δ18O of benthic 87 

and planktic foraminifera, calcite wt%, the alkenone unsaturation index (U37
k′ ) and biotic 88 

species assemblages, such as dinoflagellates and diatoms (Andersen et al., 2004; Castañeda 89 

et al., 2004; Giraudeau et al., 2004; Smith et al., 2005; Solignac et al., 2006; Bendle & 90 

Rosell-Melé, 2007; Justwan et al., 2008; Ran et al., 2008; Ólafsdóttir et al., 2010; Jiang et 91 

al., 2015; Moossen et al., 2015; Kristjánsdóttir et al., 2016). Sea surface temperature (SST) 92 
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proxies derived from phytoplankton result in a bias toward spring/summer SST and are 93 

influenced by additional confounding variables (i.e., salinity, nutrients, and depth habitat 94 

of biota, e.g., Prahl et al., 2006; Chival et al., 2014), resulting in markedly different 95 

Holocene temperature reconstructions around Iceland (Kristjánsdóttir et al., 2016). As an 96 

example, the Little Ice Age (LIA, 1250-1850 CE) is believed to be the coldest multi-97 

centennial climate anomaly of the Holocene in Iceland, yet the coldest Holocene conditions 98 

inferred from alkenones (Kristjánsdóttir et al., 2016), dinocysts (Solignac et al., 2006) and 99 

diatoms (Andersen et al., 2004; Justwan et al., 2008) occur earlier, between 4 and 2 ka. 100 

Although the cooling observed in some proxies between 4 and 2 ka may be linked to long-101 

term changes in the AMOC (Hall et al., 2004) and/or North Atlantic Oscillation (Orme et 102 

al., 2018), expanding Iceland’s quantitative proxy toolkit may help reconcile proxy 103 

discrepancies. 104 

In this study, we focus on quantifying the distribution of archaeal glycerol 105 

dibiphytanyl glycerol tetraethers (GDGTs) archived in marine sediment from the North 106 

Iceland Shelf (NIS). Although yet to be used to reconstruct marine paleoclimate on the 107 

NIS, GDGT distributions have been shown to reflect modern winter subsurface 108 

temperature (subT, 0-200 m) around Iceland (Rodrigo-Gámiz et al., 2015), the North Sea 109 

(Herfort et al., 2006), Skagerrak (Rueda et al., 2009), and Antarctica (Kim et al., 2010, 110 

2012). Assuming temperature is the dominant control on the distribution of GDGTs on the 111 

NIS (Schouten et al., 2013 and references therein), but acknowledging that at least part of 112 

the variability could also be explained by confounding effects such as ammonia oxidation 113 

rates (Hurley et al., 2016), we improve absolute temperature estimates by developing a 114 

local Icelandic calibration based on the analysis of surface sediments. We then apply this 115 
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local calibration to our late Holocene marine sediment core record. A suite of additional 116 

oceanographic surface climate proxies from the same core allow us to test the veracity of 117 

and to explore controls on GDGTs-based temperatures around Iceland.  118 

 119 

2. Regional Setting 120 

Today, the NIS represents the boundary where Arctic and Atlantic Ocean currents intercept 121 

(Fig. 1a-b, Stefánsson, 1962; Hopkins, 1991; Belkin et al., 2009). This front separates the 122 

cool, low salinity and sea-ice-bearing East Icelandic Current (EIC, 1 to 4 oC) to the north 123 

from the warmer and more saline Atlantic waters carried by the North Iceland Irminger 124 

Current (NIIC, 5 to 8 oC) on the inner and mid-shelf (Orvik et al., 2001). The current 125 

density differences between the two water masses result in vertical stratification along the 126 

NIS, such that the NIIC overlies the denser and cooler Upper Arctic Intermediate Waters 127 

(<0 oC, UAIW) (Fig. 1c). Within 70-100 km from Iceland’s northern coastline, freshwater 128 

run-off and summer heating modify the NIIC surface waters and form “coastal surface 129 

waters” (Fig. 1c), which then disintegrate during the following winter (Stefánsson, 1962; 130 

Ólafsson et al., 2008). The onset of this stratification in early spring triggers the spring 131 

bloom of phytoplankton (Zhai et al., 2012).  132 

Atlantic waters provide the primary source of nutrients (i.e., phosphate, nitrate, 133 

silica) to the Icelandic shelves. Due to the greater influence of nutrient-deficient polar 134 

waters, NIS nutrient concentrations are considerably lower compared to those along the 135 

south of Iceland, where Atlantic waters dominate (Stefánsson, 1968; Stefánsson & 136 

Ólafsson, 1991). Although the freshwater run-off from Iceland is key for the seasonal 137 

stratification and phytoplankton blooms along the NIS, it has negligible direct effects on 138 
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nitrate and phosphate concentrations throughout the water column (Stefánsson & Ólafsson, 139 

1991). In terms of modern oxygen saturation, the eastern NIS has similar values to those 140 

of waters south of Iceland, which may suggest relatively high rates of productivity for both 141 

locations (Stefánsson & Ólafsson, 1991). However, given that the NIS is rather limited in 142 

available nutrients, the relatively high oxygen saturation on the NIS may also relate to 143 

higher solubility of the colder Arctic waters. 144 

 Sea ice is also an integral component of the NIS. Iron oxide data on detrital grains 145 

suggest that drift ice is predominately sourced from east and southeast Greenland but also 146 

from as far as Canada and Russia, with the latter distal sources dramatically increasing in 147 

abundance over the last 1 ka (Andrews et al., 2009a; Darby et al., 2017). The presence of 148 

and correlation between quartz and the IP25 biomarker – proxies for sea ice extent - in core-149 

top sediment along the NIS, and their absence from Iceland’s southern and western shelves 150 

further supports the dominance of drift ice origins over local sea ice production (Axford et 151 

al., 2011; Cabedo-Sanz et al., 2016a). When present, sea ice limits the exchange of heat, 152 

gases and moisture between the ocean and atmosphere, in addition to insulating the colder 153 

polar atmosphere from the relatively warmer ocean during winter (Thorndike et al., 1975; 154 

Maykut, 1978, 1982). Due to Iceland’s close proximity to the historical (post-1870 CE) sea 155 

ice edge (Divine & Dick, 2007), past changes in sea ice advection along the EIC have 156 

resulted in profound changes in local marine and terrestrial climate (Ogilvie & Jónsson, 157 

2001; Moros et al., 2006; Massé et al., 2008; Miller et al., 2012; Cabedo-Sanz et al., 2016a).  158 

 159 

3. Methods 160 

3.1. Surface and marine core sediments 161 
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During July 1997, the cooperative USA/Icelandic Bjarni Sæmundsson B997 research 162 

cruise visited 30 locations across Iceland’s western and northern shelves (Helgadóttir, 163 

1997). At each location, marine surface sediments were collected using a grab sampler. 164 

Previous studies have used these surface samples to describe the regional distributions of 165 

foraminifera δ18O (Smith et al., 2005), quartz wt % (Andrews & Eberl, 2007), and the sea 166 

ice biomarker IP25 (Axford et al., 2011; Cabedo-Sanz et al., 2016a). We selected a subset 167 

(n=11) of these marine surface sediment samples for GDGT analyses to help construct a 168 

local Icelandic calibration (Fig. 1). As many of the 30 surface sediment locations were 169 

spatially clustered, our selection provides a representative sample from each geographical 170 

location the cruise covered, and, thus optimizes our local calibration by spanning the full 171 

range of oceanographic conditions present around Iceland today. The B997 cruise also 172 

recovered a suite of piston and gravity sediment cores. In this study, we focus on giant 173 

gravity core B997-316 GGC (2.47 m long) from the central North Iceland Shelf (66.75°N, 174 

18.79°W, 658 mbsl, Fig. 1) (Helgadóttir, 1997). Sediment (~1 cm3) was subsampled every 175 

six cm for minerological and biomarker analyses. In order to minimize the degradation of 176 

biomarkers (e.g., Cabedo-Sanz et al., 2016b), samples were taken from cores stored at 4 177 

oC. All samples were subsequently freeze-dried and kept in the freezer (-20 oC) prior to 178 

biomarker extraction. 179 

 180 

3.2. Age control 181 

Four radiocarbon-based age control points are derived from a combination of mollusks (T. 182 

equalis) and benthic foraminifera (N. labradorica and G. auriculata arctica) sampled from 183 

the B997-316 GGC core (Table 1). As the B997-316 GGC core lacked datable material in 184 

Mollusk  
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the uppermost sediment, two additional mollusks (T. equalis) were sampled from the near 185 

surface sediment of an adjacent short gravity core, B997-316 SGC (Table 1), to confirm 186 

that the tops of the sediment cores are modern and that no surface sediment was lost during 187 

coring. Samples were prepared for AMS radiocarbon dating at the Institute of Arctic and 188 

Alpine Research (INSTAAR) 14C Preparation Lab and analyzed at the University of 189 

California Irvine.  190 

 191 

3.3. Minerological analyses 192 

Quantitative X-ray diffraction (qXRD) analysis was conducted on the <2 mm sediment 193 

fraction using the method developed by Eberl (2003) and used extensively on sediment 194 

samples on other B997- cores (Andrews & Eberl, 2007; Andrews et al., 2009a; Andrews, 195 

2009). Comparison between qXRD weight percent estimates on known mineral mixtures 196 

and replicate analyses indicate that the errors on the weight percent estimates of both are 197 

in the range of ±1 %. For B997-316 GGC, we focus on the identification of quartz as a 198 

proxy to reconstruct the incursion of drift ice into Icelandic waters (i.e., sea ice and/or 199 

icebergs), and calcite as a proxy of ocean productivity (Andrews et al., 2001).    200 

 201 

3.4. Biomarker analyses  202 

At the University of Plymouth, freeze-dried subsamples (~1-2 g) from core B997-316 GGC 203 

were extracted for biomarkers by ultrasonication using dichloromethane:methanol (2:1, 204 

v/v). Samples were initially spiked with an internal standard (9-octylheptadec-8-ene, 9-205 

OHD, 10 L; 10 g mL-1) to permit quantification of highly branched isoprenoid (HBI) 206 

alkenes. Total lipid extracts (TLEs) were separated into three fractions (F1-F3) using silica 207 
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column chromatography, after elution with hexane (6 mL), hexane:methylacetate (80:20, 208 

v/v, 6 mL), and methanol (4 mL), respectively. The F1 fraction contained aliphatic 209 

hydrocarbons including highly branched isoprenoids (HBIs; i.e., IP25, C25:2 and C25:3), 210 

whereas F2 contained lipids with hydroxyl functional groups, including GDGTs. At the 211 

University of Colorado Boulder, freeze dried marine surface sediment samples (~3-7 g) 212 

were extracted three times on a Dionex accelerated solvent extractor (ASE 200) using 213 

dichloromethane:methanol (9:1, v/v) at 100 oC and 2000 psi, and kept as TLEs for the 214 

GDGT analysis. 215 

The IP25 (C25:1), diene II (C25:2) and triene Z (C25:3) biomarkers were analyzed at the 216 

University of Plymouth as described by Belt et al. (2012, 2015). Analysis of the F1 was 217 

performed via gas chromatography-mass spectrometry (GC-MS) following the methods 218 

and operating conditions of Belt et al. (2012) on an Agilent 7890A GC coupled to a 5975 219 

series mass selective detector fitted with an Agilent HP-5ms column (30 m x 0.25 mm x 220 

0.25 mm). Mass spectrometric analyses were carried out in selected ion monitoring mode. 221 

The identification of IP25 (Belt et al., 2007), diene II (Belt et al., 2007) and triene Z (Belt 222 

et al., 2000) was based on their characteristic GC retention indices (RIHP5MS = 2081, 2082, 223 

and 2044 for IP25, diene II, and triene Z, respectively) and mass spectra (Belt, 2018). 224 

Quantification of lipids was achieved by comparison of mass spectral responses of selected 225 

ions (IP25, m/z 350; diene II, m/z 348; triene Z, m/z 346) with those of the internal standard 226 

(9-OHD, m/z 350) and normalized according to their respective response factors and 227 

sediment masses (Belt et al., 2012). Analytical reproducibility was monitored using a 228 

standard sediment with known abundances of biomarkers for every 14-16 sediment 229 

samples extracted (analytical error 4%, n = 31). 230 
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For GDGTs, we analyzed aliquots of the F2 from B997-316 GGC and aliquots of 231 

the TLE from marine surface sediment samples in the Organic Geochemistry Laboratory 232 

at the University of Colorado Boulder. Dry samples were dissolved in hexane:isopropanol 233 

(99:1, v/v), sonicated, vortexed, and then filtered using a 0.45 m PTFE syringe filter. Prior 234 

to analysis samples were spiked with 10 ng of the C46 GDGT internal standard (Huguet et 235 

al., 2006). Isoprenoid GDGTs were identified and quantified via high performance liquid 236 

chromatography – mass spectrometry (HPLC-MS) following modified methods of 237 

Hopmans et al. (2016) on a Thermo Scientific Ultimate 3000 HPLC interphased to a Q 238 

Exactive Focus Orbitrap-Quadrupole MS. Rather than starting at 18% hexane:isopropanol 239 

(9:1, v/v) (Hopmans et al., 2016), we began our eluent gradient with 30% 240 

hexane:isopropanol (9:1, v/v) to shorten retention and overall run times without 241 

compromising the chromotographic separation of GDGTs. The HPLC was conditioned for 242 

20 minutes between runs. Samples were analyzed on full scan mode with a mass range of 243 

500-1500 m/z at 70,000 mass resolution. GDGTs were identified based on their 244 

characteristic masses and elution patterns. We adopt the TEX86
L index to reflect relative 245 

changes in temperature, which is a modification of the original TEX86 index (Schouten et 246 

al., 2002) constructed for temperatures <15 oC (Kim et al., 2010, 2012): 247 

𝑇𝐸𝑋86
𝐿 = log(

[𝐺𝐷𝐺𝑇 − 2]

[𝐺𝐷𝐺𝑇 − 1] + [𝐺𝐷𝐺𝑇 − 2] + [𝐺𝐷𝐺𝑇 − 3]
) 248 

 249 

3.5. Local Icelandic TEX86
L calibration 250 

The largest uncertainty in the temperature relationship of GDGTs in global calibrations is 251 

at the low end of the temperature spectrum (<5 oC, Kim et al., 2010, 2012), which may 252 

reflect a reduced sensitivity of Thaumarchaeota to temperature in cooler climates (Wuchter 253 
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et al., 2004) or different regional oceanographic effects. Although a recent spatially-254 

varying, Bayesian TEX86-temperature calibration model was developed to capture regional 255 

oceanography variability (Tierney & Tingley, 2014), it excludes high-latitude settings and 256 

does not include any core top samples within a ~1000-km radius of Iceland. Hence, we 257 

targeted a network of local marine surface sediments (Fig. 1) to develop a local calibration 258 

that innately reflects the nuances of Icelandic oceanography and low local temperatures. 259 

We supplemented our 11 surface sediment samples with 10 previously published surface 260 

sediment samples from around Iceland (Table 2, Rodrigo-Gámiz et al., 2015) to generate 261 

a more comprehensive GDGT calibration that spans a larger geographical area and 262 

temperature gradient than obtainable using B997 samples alone. We note that although 263 

Rodrigo-Gámiz et al. (2015) sampled the surface of sediment cores, our samples were 264 

collected used a grab sampler, which may disturb the original sedimentary structure. 265 

However, natural factors such as sea floor mixing and variable sedimentation rates will 266 

always introduce uncertainty in the temperature embedded no matter how the sample is 267 

collected. Thus, we contend that the datasets can be merged for calibration purposes. 268 

To calibrate the TEX86
L index, in situ decadal mean temperatures from 1995-2004 269 

CE were obtained from the World Ocean Atlas (WOA09, Locarnini et al., 2010) at the 270 

quarter-degree pixel where each surface sediment site is located. Subsequently, seasonal 271 

(spring, summer, fall, winter) and annual SST, in addition to 0-10 m, 0-20 m, 0-30 m, 0-272 

40 m, 0-50 m, 0-60 m, 0-70 m, 0-80 m, 0-90 m, 0-100 m, 0-125 m, 0-150 m, 0-175 m, 0-273 

200 m depth subsurface temperature integrations, were each regressed against the 21 core 274 

top TEX86
L index values (Rodgrio-Gámiz et al., 2015; this study) to assess which portion 275 
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of the water column and which season the GDGT distributions most closely correspond to 276 

around Iceland. We calculated p-values for each regression to determine their significance. 277 

 278 

4. Results and Interpretations  279 

4.1. Age model 280 

An age model for the B997-316 GGC sediment core was generated in the CLAM software 281 

using the Marine13 calibration curve (ΔR=0, Reimer et al., 2013) and a smooth spline 282 

regression over 1000 iterations (Blaauw, 2010). The calibrated benthic foraminifera date 283 

from 49.5 cm depth produced an age reversal in the initial model, and thus, was identified 284 

as an outlier and removed from the final age model (Fig. 2). The ~400-year difference 285 

between the calibrated age of the foraminifera and that estimated from the model may relate 286 

to changes in ΔR resulting from variable water masses (Eiríksson et al., 2004; Wanamaker 287 

et al., 2012). The two mollusks from the adjacent short gravity core (B997-316 SGC) both 288 

returned conventional 14C ages ≤ 400 years (Table 1), confirming modern sediment at the 289 

core top of the SGC.  290 

Based on several lines of reasoning, we argue that the modern ages of the SGC can 291 

be used to validate the extrapolation of the B997-316 GGC age model to the surface (Fig. 292 

2). First, given that both cores were collected from the same location, we can exclude any 293 

impacts from geographic-dependent factors, such as variable sedimentation rates or 294 

oceanographic currents, that may cause the age-depth relationships to differ between the 295 

two cores. Second, coring-dependent factors can also be excluded as the two cores were 296 

collected in succession of each other using the same equipment (Helgadóttir, 1997). Even 297 

though coring operations can result in the loss of saturated or poorly consolidated surface 298 
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sediment, the identical coring techniques employed suggests that if the SGC captures 299 

modern surface sediment, so should the GGC.  300 

Given that our age model only uses the three lowermost mollusks from the GGC 301 

and the uppermost mollusk samples from the adjacent SGC, increased age uncertainty 302 

undoubtedly exists where no datable material could be obtained (i.e., ~1400-2000 CE). 303 

However, we argue that our age estimates throughout the entire GGC core are reasonably 304 

strong. First, NIS sedimentation rate slopes only change significantly between 305 

deglacial/nonglacial periods (Andrews et al., 2002; Xiao et al., 2017) due to the 306 

presence/absence of the Icelandic Ice Sheet. Following the rapid demise of the Icelandic 307 

Ice Sheet ~15 thousand years ago (Norðdahl and Ingólfsson, 2015; Patton et al., 2017), 308 

sedimentation rates have remained linear across the NIS (Castañeda et al., 2004), consistent 309 

with the linearity of B997-316 GGC’s sedimentation rate over the last millennium (Fig. 2). 310 

Second, when our age model is applied to the proxy datasets (Fig. 3), the interpreted period 311 

of the Little Ice Age (LIA, see following section) is consistent with previous age ranges in 312 

Iceland that are derived from high-resolution and precisely-dated terrestrial archives 313 

(Geirsdóttir et al., 2009; Larsen et al., 2011, 2012).  314 

 315 

4.2. Sediment core B997-316 GGC 316 

4.2.1. Minerological analyses 317 

In Icelandic waters, the two minerals quartz and calcite are qualitative indicators that reflect 318 

the incursion of drift ice (i.e., sea ice and/or icebergs) and marine surface productivity, 319 

respectively (Andrews et al., 2001, 2009a). In years when cold low-salinity Arctic water 320 

dominates, sea ice (% quartz) increases and surface productivity (% calcite) decreases due 321 

to the development of a well stratified water column. The opposite is seen in the proxies 322 
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during years characterized by warm and saline Atlantic waters, which reduces sea ice 323 

presence and mixes the water column resulting in higher productivity. Not surprisingly, % 324 

quartz and calcite generally show an inverse relationship over the last millennium in B997-325 

316 GGC, which can be interpreted as the relative dominance of Arctic versus Atlantic 326 

waters at this location (Fig. 3a-b).  327 

Percent quartz ranges from 1.4 to 2.7 %, whereas calcite ranges from 5.4 to 8.3 % 328 

(Fig. 3a-b). Recent analyses using mineral mixtures with known quartz wt % of 3.5 and 1.5 329 

(Andrews et al., 2018) confirm that these small amounts of quartz can be correctly 330 

measured. Prior to ~1250 CE, quartz is relatively low, and calcite is the highest of the 331 

record, suggesting a dominance of warmer Atlantic waters at this time. Subsequently, 332 

quartz begins a gradual yet quasi-episodic rise towards its peak abundance at ~1900 CE. 333 

On the other hand, calcite appears to decline more sharply to lower values after ~1250 CE 334 

and remain relatively low through ~1900 CE, when it rises to levels near its pre-1250 CE 335 

state. Based on these two minerals, the period between 1250 and 1900 CE was likely 336 

characterized by cooler Arctic waters that favored the advection of drift ice, vertical 337 

stratification and lower surface productivity on the NIS. Following 1900 CE, the conditions 338 

reverted back to a dominance of warmer Atlantic waters that favored restricted sea drift 339 

transport and higher surface productivity (Fig. 3). 340 

4.2.2. Highly-branched isoprenoid (HBI) alkenes 341 

The analysis of the biomarker IP25 (Belt et al., 2007), a monounsaturated C25 HBI 342 

biosynthesized by Arctic sea ice diatoms (Belt et al., 2008; Brown et al., 2014), has gained 343 

recent traction as a novel proxy for spring/summer sea ice conditions around Iceland 344 

(Massé et al., 2008; Andrews et al., 2009b; Sicre et al., 2013; Cabedo-Sanz et al., 2016a; 345 
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Xiao et al., 2017). Although the IP25 biomarker is well-preserved in Arctic and sub-Arctic 346 

marine sediment and routinely applied in paleo sea ice reconstructions as old as 5.3 Ma 347 

(Stein et al., 2016), questions remain regarding its vertical transport, degradation processes, 348 

and environmental controls (see reviews by Belt & Müller, 2013; Belt, 2018). Notably, the 349 

interpretation of its presence (or lack thereof) can be ambiguous. IP25 below the limit of 350 

detection has often been interpreted as reflecting either a lack of seasonal sea ice cover, or 351 

permanent and thick sea ice that inhibits light penetration needed for sea ice diatoms to 352 

photosynthesize and grow. However, this is likely an over-simplification of a broader range 353 

of scenarios that result in absent IP25 (Belt, 2018). In any case, further information may be 354 

obtained by the complementary analysis of certain open-water phytoplankton biomarkers 355 

(i.e., brassicasterol or dinosterol, Müller et al., 2011). 356 

 Based on a distinctively heavy stable carbon isotopic composition, in addition to 357 

similar concentration profiles to IP25 across Arctic marine surface sediment, the di-358 

unsaturated HBI diene II also has an Arctic sea ice diatom source (Belt et al., 2008; Cabedo-359 

Sanz et al., 2013; Brown et al., 2014), and is made by some Antarctic sea ice algae as well 360 

(Belt et al., 2016). In contrast, a tri-unsaturated HBI (hereafter, triene Z) is biosynthesized 361 

by certain open-water diatoms (Belt et al., 2000, 2008, 2015; Rowland et al., 2001), and 362 

sources for the Arctic and Antarctic have recently been identified (Belt et al., 2017). 363 

Importantly, the presence (or lack thereof) of triene Z, like certain phytoplankton sterols, 364 

may help differentiate between open-water or thick sea ice conditions inferred from IP25 365 

and diene II in the Arctic (Cabedo-Sanz et al., 2013; Smik et al., 2016; Köseoğlu et al., 366 

2018). However, since sterols may also be derived from other (e.g., terrestrial) sources in 367 
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addition to sea ice algae (Huang & Meinschein, 1976; Volkman, 1986; Volkman et al., 368 

1998; Belt et al., 2013, 2018), we limit our analysis here to triene Z only.  369 

 HBIs were detected in all downcore samples, with the exception of 96.5 cm depth 370 

(1509 CE), where no triene Z, diene II or IP25 were detected (Fig. 3c-e). Concentrations 371 

ranged from near detection up to 1.6 ng/g sediment for triene Z, up to 19 ng/g sediment for 372 

diene II, and up to 4 ng/g sediment for IP25. Triene Z exhibited the highest concentrations 373 

prior to 1200 CE, while its abundance diminished to very low or undetectable between 374 

~1200 and 1800 CE (Fig. 3c). Triene Z then rises to higher concentrations up through 2000 375 

CE. The similar relative trends of diene II and IP25 concentrations suggest that both HBIs 376 

are likely sourced from sea ice algae around Iceland, similar to other Arctic (Brown et al., 377 

2014) and Antarctic locations (Collins et al., 2013). Periods of synchronous reductions of 378 

diene II and IP25 concentrations occur at ~1170-1290 CE, 1450-1650 CE, and 1880 CE-379 

present.  380 

 The similar overall trends between % calcite and triene Z abundance suggest that 381 

both proxies indicate temperate water surface productivity (Fig. 3b-c). Hence, in years 382 

where warmer Atlantic waters dominate, both % calcite and triene Z abundance increase, 383 

while the opposite trend dominates during years characterized by cooler Arctic waters. The 384 

detection of both IP25 and % quartz throughout the record suggests that sea ice has been a 385 

persistent feature at this location of the NIS over the last millennium, even during intervals 386 

when elevated % calcite and triene Z suggest an increased influence of warmer Atlantic 387 

waters. We interpret the reduction of diene II and IP25 at ~1170-1290 CE and 1880 CE-388 

present to reflect diminished seasonal sea ice because of higher concentrations of triene Z 389 
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at the same time. In contrast, the reduction of diene II and IP25 from 1450-1650 CE likely 390 

reflects a period of thick, perennial sea ice as triene Z was mostly undetectable (Fig. 3c-e).  391 

4.2.3. Glycerol dibiphytanyl glycerol tetraethers (GDGTs) 392 

Changes in the degree of cyclization (number of cyclopentane moieties) in GDGTs have 393 

classically been interpreted to represent a physiological response of marine ammonia 394 

oxidizing Thaumarchaeota to changes in in situ temperature (e.g., Schouten et al., 2002). 395 

Thus, the TEX86 paleothermometer index has been empirically linked to annual or winter 396 

subT (0-200 m depth) in global data sets (Schouten et al., 2002; Kim et al., 2010, 2012). 397 

This presumption is supported by a recent study along a latitudinal transect in the western 398 

Atlantic Ocean, which demonstrated that the most likely water depths where GDGTs are 399 

produced from and exported to marine sediment is around 80-250 m (Hurley et al., 2018), 400 

similar to evidence for archaea abundance maxima at 200 m depths in the Pacific Ocean 401 

(Karner et al., 2001). Considering that Thaumarchaeota are chemolithoautotrophs that 402 

perform ammonia oxidation (conversion of NH4
+ to NO2

-), they are typically more 403 

abundant around the primary NO2
- maximum near the base of the photic zone (Francis et 404 

al., 2005; Church et al., 2010; Hurley et al., 2018), and are thus most productive when there 405 

is minimized phytoplanktic competition over NH4
+ (Schouten et al., 2013). In the case of 406 

the Arctic region, the latter occurs during the less productive winter months when 407 

photosynthesis for sea surface species is inhibited, which may explain the seasonal winter 408 

temperature bias of GDGTs previously observed in this region (Rodrigo-Gámiz et al., 409 

2015). However, in addition to subT, recent studies have shown that several other 410 

environmental and geochemical factors can influence the degree of cyclization, such as 411 

growth phase (Elling et al., 2014), ammonia oxidation rates (Hurley et al., 2016), and 412 
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oxygen concentrations (Qin et al., 2015). In contrast to some other marine temperature 413 

proxies, such as the δ18O of planktic foraminifera, GDGTs do not seem to be influenced by 414 

variations in salinity (Wuchter et al., 2004, 2005; Elling et al., 2015). Finally, GDGTs 415 

appear to be relatively resistant to oxic degradation (Schouten et al., 2004), and thus, likely 416 

reflect original living conditions once deposited in the sedimentary record. 417 

 GDGTs were present above the detection limits in all marine sediment core 418 

samples, and substantially increase in concentration at the core top (Supplement Fig S1). 419 

The calculated TEX86
L index ranged from -0.71 to -0.63 (Fig. 3f). The record displays high 420 

variability and a rather constant first order trend towards the present, in addition to the 421 

occurrence of two intervals of substantial decreases in TEX86
L values during 1350-1530 422 

CE and 1745-1975 CE. Both periods are preceded by periods of relatively higher TEX86
L 423 

values during 1110-1350 CE and 1530-1745 CE, respectively. A full paleoceanographic 424 

interpretation of the TEX86
L results is provided in the discussion. 425 

 426 

4.3. Local Icelandic TEX86
L calibration 427 

GDGTs were also detected and above detection limits in all B997 marine surface sediments 428 

samples (n=11, Supplemental Fig S2). TEX86
L values of these samples ranged from -0.72 429 

to -0.61 (Table 2). The 10 marine surface sediment samples from Rodrigo-Gámiz et al. 430 

(2015) span a greater geographical and environmental range around Iceland, and hence 431 

exhibit a greater range of TEX86
L values (-0.71 to -0.49, Table 2). When we use the 432 

combined set of Icelandic marine surface sediment samples (n=21), the regression analysis 433 

demonstrates that the integration of winter temperatures from the top 200 m of the water 434 

column provides the best regression coefficients (R2=0.73, p<0.001) compared to the 435 
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integration of other seasonal temperatures and the mean annual value (Figs. 4). Thus, 436 

sedimentary values around Iceland most likely represent winter subT that integrate a signal 437 

of the uppermost 200 m of the water column, consistent with the findings of Rodrigo-438 

Gámiz et al. (2015).  439 

 440 

5. Discussion 441 

5.1. Local Icelandic TEX86
L vs. regional Arctic calibration 442 

If we supplement the combined Icelandic data set with more marine surface sediment 443 

samples from the greater northern North Atlantic region (Kim et al., 2010), the correlation 444 

coefficients of our winter subT (0-200 m) regression is substantially reduced (R2 = 0.43 vs. 445 

0.73, Supplemental Fig S3). This suggests that a local Icelandic calibration is optimal over 446 

larger regional calibrations, and perhaps, more accurately captures the nuances of local 447 

Icelandic oceanography. We hypothesize that the poorer performance of a more regional 448 

GDGT calibration for the North Atlantic region may relate to the inclusion of: 1) surface 449 

sediment samples from distal locations that feature different oceanographic environments 450 

than Iceland (e.g., Hudson Bay), and/or 2) samples from higher latitude (e.g., Svalbard and 451 

the Barents Sea) that are less “responsive” in terms of GDGT cyclization as they fall under 452 

the colder end of the spectrum in the global TEX86
L calibration, which is characterized by 453 

a higher uncertainty and deviation from linearity (Kim et al., 2010). The standard error in 454 

our Icelandic winter subT calibration for 0-200 m (±0.4 oC), is also an order of magnitude 455 

lower than the error derived from global low temperature calibrations (e.g., 4.0 oC, Kim et 456 

al., 2010; 2.8 oC, Kim et al., 2012). The reduced uncertainty achieved in our Icelandic 457 

calibration highlights the growing need for the continued development and application of 458 
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regional calibrations in future biomarker-based paleoclimate reconstructions (e.g., Kaiser 459 

et al., 2015; Foster et al., 2016; Russell et al., 2018). This is particularly important in areas 460 

where the temperature relationship of GDGTs deviates from the overall linear correlation 461 

observed in global calibrations (i.e., cold and warm regions). 462 

Despite the reduced uncertainty compared to global calibrations, the regression 463 

coefficient for the Icelandic winter subT calibration (R2=0.73) is comparatively lower than 464 

the global calibration (R2=0.86-0.87; Kim et al., 2010, 2012). We hypothesize that the 465 

unconstrained confounding influence of ammonia-oxidation on the degree of GDGT 466 

cyclization (e.g., Hurley et al., 2016) may contribute to the scatter of our dataset (Fig. 4b). 467 

Although specific ammonia (NH4
+) and nitrite (NO2

-) information for this region is 468 

currently unavailable, reduced (enhanced) ammonia oxidation rates in the water column 469 

throughout the year would result in increased (decreased) degree of cyclization, thus 470 

yielding higher and lower temperatures, respectively (Hurley et al., 2016). If ammonia 471 

oxidation rates are driven by changes in ammonia supply and utilization (e.g., reduced 472 

nutrient availability in Arctic waters, or competition with phytoplankton), we cannot 473 

separate the influence of nutrient variability on the Icelandic TEX86
L values with our 474 

current dataset. While oxygen availability has also been shown to influence the degree of 475 

cyclization in GDGTs (Qin et al., 2015), this factor is unlikely to affect the distribution of 476 

GDGTs around Iceland as these waters are relatively well-mixed and ventilated today 477 

(Stefánsson & Ólafsson, 1991), and presumably have been since the early Holocene 478 

(Kristjánsdóttir et al., 2016). With all known controlling factors considered, we suggest 479 

that our local TEX86
L calibration improves the temperature estimates for Icelandic winter 480 
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subsurface waters. Future work in constraining the effects of ammonia-oxidation around 481 

Iceland would undoubtedly benefit the application of TEX86 on the NIS. 482 

By applying temperature calibrations to our down core TEX86
L record, our data 483 

reveal rapid and abrupt temperature variability on the NIS during the last millennium (Fig. 484 

5). If the existing annual SST (Kim et al., 2010) and annual subT TEX86
L calibrations 485 

developed for polar regions (Kim et al., 2012) are applied, the GDGT distributions suggest 486 

that subT fluctuated up to 5 oC over the course of decades. These observations are 487 

considerably higher than expected, especially given that they are comparable to the 488 

magnitude of SST changes observed in other NIS proxy records over the entire Holocene 489 

(e.g., Andersen et al., 2004; Bendle & Rosell-Melé, 2007; Jiang et al., 2015; Kristjánsdóttir 490 

et al., 2016). As originally hypothesized, this exercise demonstrates that global calibrations 491 

that feature greater uncertainty for low temperatures and that do not include sites proximal 492 

to Iceland are not appropriate for the NIS. In contrast, by applying our local winter subT 493 

calibration, the magnitude of estimated subT is not only reduced to ranges more 494 

comparable to other proxy records for the last millennium but, importantly, also captures 495 

the modern instrumental winter subT (within calibration uncertainty) at the B997-316 GGC 496 

site (4 oC, Fig. 5), further reinforcing the application of our local Icelandic TEX86
L 497 

calibration. 498 

 499 

5.2. NIS surface and subsurface climate variability during the Little Ice Age  500 

The NIS represents one of the few global examples where paleo-IP25 abundance in marine 501 

cores has been calibrated against observational and documentary records (Massé et al., 502 

2008; Andrews et al., 2009b). As a result, the variability of IP25 has been routinely applied 503 
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to marine sediment around Iceland as a robust indicator for seasonal sea ice (Massé et al., 504 

2008; Andrews et al., 2009b; Sicre et al., 2013; Cabedo-Sanz et al., 2016a). Similar to these 505 

previous studies, IP25 concentrations in B997-316 GGC increase abruptly during the 13th 506 

century, and with the exception of the period 1450-1650 CE, remain elevated until the 19th 507 

century when concentrations begin to diminish (Fig. 6a). By employing statistical analyses 508 

on IP25 abundances and 11 other marine climate proxy datasets from marine sediment core 509 

MD99-2263, Andrews et al. (2009b) showed that a major regime shift in the marine climate 510 

off NW Iceland commenced after 1200 CE, possibly linked to a strengthening high-511 

pressure ridge over Greenland in winter/spring that favored stronger north/northwesterly 512 

winds and increased drift ice export to Iceland. Our mineral and HBI records consistently 513 

reflect major shifts in surface conditions at a similar time and in the same direction (Fig. 514 

3a-e), reinforcing the observed regime shift in marine climate, and increase of sea ice in 515 

particular, during the 13th century (Bergthórsson, 1969; Ogilvie & Jónsson, 2001; Massé 516 

et al., 2008; Andrews et al., 2009b; Sicre et al., 2013; Cabedo-Sanz et al., 2016a). The 517 

consistency of our surface productivity and sea ice proxy records in reflecting the 518 

established understanding of marine climate over the last millennium on the NIS supports 519 

the fidelity of the B997-316 GGC marine sediment record, and therefore, the interpretation 520 

of the GDGT record. 521 

When the GDGT record is converted to winter subT, two pronounced centennial-522 

scale cold anomalies exhibit mean winter subT below the record average of 4.34 oC; at 523 

1350-1530 CE (3.99 oC) and at 1745-1975 CE (4.19 oC). These two cold anomalies are 524 

consistent with low surface productivity (% calcite and triene Z) and increased seasonal 525 

sea ice (% quartz, diene II, IP25), which suggest greater dominance of colder Arctic surface 526 

“ Disclaimer: This is a pre-publication version. Readers are recommended to consult the full published 
version for accuracy and citation.” 



 23 

waters between ~1250 and 1900 CE (Fig. 6a-b). In addition, alkenone-derived SST from 527 

marine core MD99-2275 50 km to the east (Fig. 1a) document steady cooling throughout 528 

this interval (Fig. 6c, Sicre et al., 2011), further supporting the presence of cool, Arctic 529 

surface waters in the vicinity of B977-316 at this time. However, the timing for the onset 530 

(1350 CE) and termination (1975 CE) of LIA cooling observed in the subsurface during 531 

winter appears to lag that of the surface (1250 and 1900 CE, respectively) (Fig. 6). A 532 

variety of model and data-based studies have demonstrated that the LIA was triggered by 533 

a combination of sustained stratospheric volcanic sulfate injection (Zhong et al., 2010; 534 

Miller et al., 2012; Sicre et al., 2013; Slawinska & Robock, 2018), low total solar irradiance 535 

(Shindell et al., 2001) and changes in the North Atlantic Oscillation, one of the major 536 

modes of internal climate variability in the North Atlantic (Trouet et al., 2009). On the NIS, 537 

these radiative forcings directly impact the ocean surface, as manifested in the immediate 538 

and abrupt increase in seasonal sea ice, reduced northward heat transport and suppression 539 

of SSTs (Miller et al., 2012). The phase relationship between the B997-316 GGC surface 540 

proxies and GDGTs suggests that it may have taken up to a century for the radiative forcing 541 

in contact with the surface to propagate to the subsurface. 542 

 The subsurface warming observed between the two subsurface cold anomalies 543 

(~1530-1745 CE, Fig. 6d) may suggest a reduced influence of the colder Arctic water mass 544 

that generally characterized the LIA. However, similar to our surface proxies (Fig. 6a-b) 545 

and the alkenone-derived SST from MD99-2275 (Fig. 6c), a local schlerochronological 14C 546 

record (ΔRshell) constructed from mollusk shells reflects the continued dominance of older 547 

Arctic waters in the benthos as well (Fig. 6e, Wanamaker et al., 2012). In fact, between 548 

1450-1650 CE, the combination of our IP25 and triene Z datasets suggest thicker and more 549 
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permanent sea ice above the B997-316 site (Fig. 6a-b), an interpretation supported by 550 

additional LIA sea ice proxy (IP25 and quartz) records from the NIS (Massé et al., 2008; 551 

Andrews et al., 2009b; Cabedo-Sanz et al., 2016a). If thick sea ice conditions are 552 

maintained throughout the year, the insulating effects of sea ice would warm the subsurface 553 

waters during winter, as reflected by our GDGT record (Fig. 6d). The thickening of sea ice 554 

that we observe at 1450 CE coincides with the local intensification of LIA terrestrial 555 

cooling manifested in the synchronous advance of local Icelandic ice caps (Larsen et al., 556 

2011; Harning et al., 2016a), and reduced Icelandic lake productivity (Geirsdóttir et al., 557 

2013, 2019; Harning et al., 2018). A previous data-modeling comparison showed that this 558 

LIA intensification was likely forced by another episode of high stratospheric sulfate 559 

loading from explosive tropical volcanism and sustained by sea-ice/ocean feedbacks that 560 

reflected incoming solar radiation during summer (Miller et al., 2012). We suggest that the 561 

winter sea ice insulation may be another important component of the sea-ice/ocean 562 

feedback to consider in the non-linear nature of Little Ice Age cooling around Iceland. 563 

 Following the dissipation of thick sea ice conditions at 1650 CE, rising IP25 and 564 

triene Z concentrations suggest the return to seasonal sea ice conditions that favored the 565 

co-productivity of sea ice and open water algae at the B997-316 site (Fig. 6a-b). The change 566 

in sea ice conditions is the likely mechanism for the return of lower subT at 1745 CE, 567 

inferred from low GDGT temperature anomalies (Fig. 6d). We hypothesize that as the sea 568 

ice thinned out during spring months, possibly spurred by the previously stored subsurface 569 

heat, the winter ice pack would have also thinned accordingly. Consequently, a more open 570 

winter sea ice pack would have facilitated increased heat flux from the ocean to the colder 571 

overlying atmosphere, as reflected by the lower GDGT-based subsurface temperatures. 572 
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 573 

6. Conclusion 574 

Consistent with the community’s growing comprehension of GDGT-based temperature 575 

records at high latitudes, we show that archaeal isoprenoid GDGT distributions (TEX86
L) 576 

around Iceland predominately reflect winter subsurface temperatures (0-200 m). 577 

Furthermore, by developing a local calibration based on a network of surface sediment 578 

samples, reconstructed NIS subsurface temperature estimates and uncertainty are improved 579 

upon those obtained from regional and global calibrations. Our TEX86
L subsurface 580 

paleotemperature record from the NIS captures the cooling likely associated with the LIA 581 

(1250-1900 CE), as seen in additional surface proxies (sea ice and marine productivity) 582 

from the same sediment core. However, the LIA onset, intensification, and termination of 583 

the subsurface lags those changes of the surface, suggesting that it may have up to a century 584 

for changes at the surface to propagate to the subsurface during the late Holocene. We 585 

propose that the development of thick sea ice conditions during the intensification of the 586 

LIA around 1450 CE insulated the subsurface in winter, resulting in apparently warmer 587 

seasonal subsurface waters. This mechanism likely represents another seasonal component 588 

of the sea-ice/ocean feedback to be considered in the abrupt cooling manifested in and 589 

around Iceland during the LIA.  590 
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TABLES and FIGURES (8 units):  1106 

 1107 
Table 1: Radiocarbon information. 14C ages calibrated in Calib 7.1 (Stuiver et al., 2018) using the 1108 
MARINE13 calibration curve (Reimer et al., 2013) and a ΔR of 0. Note that 14C and calibrated 1109 
ages are presented as BP (Before Present) in this table, and as CE (Common Era) in the main text. 1110 
Sediment core Sediment 

depth (cm) 

Lab ID Material δ13C (‰) Conventional 
14C date BP ± σ 

ΔR 

 

Calibrated age BP ± σ 

B997-316 SGC 7.5 GRL-1691-S mollusk (T. equalis) 0.62 294 ± 91 0 <400 

B997-316 SGC 18 GRL-1690-S mollusk (T. equalis) -7.2 402 ± 38 0 <400 

B997-316 GGC 49.5 CURL-18624 foraminifera (N. labradorica 

and G. auriculata arctica) 

-14 1030 ± 15 0 600 ± 35 

B997-316 GGC 135 CURL-19693 mollusk (T. equalis) -9 1040 ± 15 0 620 ± 25 

B997-316 GGC 160 CURL-19511 mollusk (T. equalis) -8.5 1075 ± 15 0 645 ± 15 

B997-316 GGC 212.5 CURL-20191 mollusk (T. equalis) -5 1245 ± 15 0 780 ± 35 

 1111 

 1112 
Table 2: Surface sediment calibration information. * indicates data from Rodrigo-Gámiz et al. 1113 
(2015). 1114 

Site ID Latitude Longitude Water depth (mbsl) TEX86
L 

B997-313 66.617000° -23.933000° 213 -0.67 

B997-315 66.736000° -24.332000° 217 -0.69 

B997-316 66.746000° -18.792000° 658 -0.68 

B997-319 66.447000° -18.843000° 422 -0.72 

B997-324 66.527000° -21.152000° 281 -0.65 

B997-334 66.410000° -21.880000° 112 -0.70 

B997-329 65.965000° -21.294000° 112 -0.68 

B997-331 66.136000° -21.591000° 165 -0.71 

B997-344 64.836000° -24.369000° 284 -0.61 

B997-346 64.927000° -24.129000° 320 -0.63 
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B997-347 63.928000° -24.482000° 327 -0.64 

Station 1* 62.000317° -15.999183° 2255 -0.49 

Station 7* 61.498550° -24.172250° 1628 -0.51 

Station 3* 63.366200° -16.628267° 240 -0.59 

Station 5* 63.583267° -22.143733° 188 -0.62 

Station 6* 63.238233° -22.561417° 315 -0.61 

Station 8* 64.293183° -24.147083° 260 -0.62 

Station 10* 66.677450° -24.179500° 241 -0.64 

Station 11* 66.633317° -20.833433° 367 -0.63 

Station 13* 67.501633° -15.069217° 884 -0.71 

Station 14* 66.303100° -13.972817° 262 -0.68 
   

 
    

 

Fig. 1: A) Overview maps of modern Icelandic oceanography. A) February 2014 and B) May 2014 1115 

50 m depth in situ temperature integrated from local CTD stations. Marine sediment cores (black 1116 

dots) and used B997 surface sediment sample locations (black + and B997-316 GGC core site) are 1117 

marked. C) May 2014 S-N trending cross section of NIS bathymetry and vertical in situ temperature 1118 

structure along the Siglunes transect (A-A’ in panels A and B) and through the B997-316 GGC 1119 

marine sediment core site. Data from Hafrannsóknastofnun (Marine and Freshwater Research 1120 

Institute, http://www.hafro.is/Sjora/). 1121 

 1122 

Fig. 2: CLAM age model. Gray shaded area denotes the 95% confidence envelope (Blaauw, 2010). 1123 

Teal and asterisked mollusk ages are from the adjacent short gravity core, B997-316 SGC. 1124 

Radiocarbon information provided in Table 1. 1125 

 1126 

Fig. 3: B997-316 GGC marine sediment core climate proxies over the last millennium. A) % quartz, 1127 

B) % calcite, C) triene Z concentrations, D) diene II concentrations, E) IP25 concentrations, and F) 1128 

TEX86
L. Blue boxes highlight colder, LIA-like conditions reflected in the surface climate proxies 1129 

(A-E) and the subsurface proxy (F).  1130 

 1131 

Fig. 4: Regression analysis summary of surface sediment GDGT calibration. A) Correlation 1132 

coefficient (R2) of all 21 surface sediment TEX86
L values (Rodrigo-Gámiz et al., 2015; this study) 1133 
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against seasonal and annual temperature depth integrations. B) Calibration of Icelandic marine 1134 

surface sediment TEX86
L values against winter 0-200 m temperature, where gray lines denote the 1135 

95% confidence envelope. Surface sediment data shown as closed circles (this study) and open 1136 

circles (Rodrigo-Gámiz et al., 2015).  1137 

 1138 

Fig. 5: Comparison of the available TEX86
L temperature calibrations on the B997-316 GGC 1139 

sediment record. Icelandic winter subsurface temperature (this study), annual SST (Kim et al., 1140 

2010) and annual subsurface temperature (Kim et al., 2012). Modern (1995-2004 CE) winter 1141 

subsurface temperature at the B997-316 GGC site marked with gray dashed line (Locarnini et al., 1142 

2010).  1143 

 1144 

Fig. 6: Comparison of select B997-316 GGC marine climate proxies to other well-dated Icelandic 1145 

NIS marine climate records. A) B997-316 GGC IP25 concentrations (this study), B) triene Z 1146 

concentrations (this study), C) MD99-2275 alkenone-inferred SST (Sicre et al., 2011), D) B997-1147 

316 GGC GDGT-inferred subsurface temperatures, with values below the record mean (4.34 oC) 1148 

highlighted in blue (this study), and E) schlerochronological ΔR record, where increases in ΔRshell 1149 

values reflect the incursion of older, Arctic waters (Wanamaker et al., 2012). Vertical yellow bars 1150 

highlight the period of interpreted thick sea ice, and the associated insulation/warming of the 1151 

subsurface. Dashed blue lines bound the inferred periods of LIA-like conditions for the surface (A-1152 

C) and subsurface (D). 1153 
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Supplemental Fig S1: GDGT concentrations in B997-316 GGC marine sediment samples.
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