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Abstract 

The paper presents an experimental study on the mechanical properties of fly ash 

concrete during thermal exposure. The tests were carried out on an apparatus specially 

designed for studying “hot” mechanical properties of concrete materials. The results 

presented include the compressive strength, strain at peak stress point, Young’s 

modulus, and stress-strain relation at temperature ranging from ambient to 900 °C. It 

was found that 25% replacement of ordinary Portland cement with fly ash in concrete 

would yield less decrease of compressive strength and more linear stress-strain 

response at high temperatures due to the further reaction between the reactive silica in 

fly ash and calcium hydroxide under hydrothermal conditions. Based on the 

experimental results, an advanced temperature-dependent stress-strain model for fly 

ash concrete under thermal steady state is proposed. Compared with previous models, 

the present model has the advantage of considering the variation of the curvature of 

stress-strain relationship with the increase in temperature. The results are not only a 
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supplement to existing experimental data but also provide the basis for the continuous 

research on the fly ash concrete under thermal transient state. 

Keywords: Fly ash concrete; Thermal exposure; High temperature; Steady state; 

Mechanical properties; Compressive stress-strain relationship 

1. Introduction 

Temperature-dependent mechanical properties of concrete play a significant role in 

structural engineering when thermal exposure has to be considered, like the fire 

resistance design of structures (catastrophes) [1, 2] and the design of nuclear reactor 

pressure vessels (service conditions) [3, 4, 5]. For the elastic analysis used in practice, 

the evolutions of elastic modulus and compressive strength with temperature are the 

basic required parameters, while in a more advanced analysis, the variation of plastic 

strain in compression should also be properly defined [6, 7]. However, unlike steel, 

concrete is a heterogeneous composite material whose constituents have considerable 

different thermomechanical properties. When the concrete is subject to sufficient heat, 

a series of physical and chemical reactions take place [8], which adds another 

dimension of complexities to its high temperature behavior. 

The effect of increasing temperature on the mechanical properties of concrete has 

been investigated, but the specific testing methods adopted by different authors are 

different. In general, they could be distinguished according to testing at high 

temperature or after cooling down from thermal exposure [9]. The former is usually 

termed as “hot” test, while the latter is referred to as the residual test aiming at 

assessing its post-fire behavior. It should be mentioned that, in the cooling phase after 

thermal attack, there will be a further loss of compressive strength as a consequence 

of the continuing disintegration, which makes it hard to reach general conclusions 

since storage of concrete in cooling phase varies in different hydrothermal conditions 
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[10]. Therefore, hot tests are necessary in evaluating the high temperature behavior of 

concrete.  

Hot tests could be further categorized into the thermal-steady state test and the 

thermal transient state test. The concrete specimens in the steady state test were 

generally heated to achieve a uniform temperature field first and then they were 

loaded to failure, which is mainly used to obtain the stress-strain relations of concrete 

at different temperature levels [11]. In contrast, the specimens in the transient state 

test were first mechanically pre-loaded and then heated to failure, which is specially 

designed to measure the transient thermal creep (TTC) caused by pre-load [12]. Both 

of these two tests are typical representations of the possible thermomechanical 

conditions in concrete materials. Moreover, the thermal steady state test is the 

foundation of extracting TTC from the transient state test and for developing a 

complete constitutive model [13].  

Nonetheless, due to the difficulty in apparatus, available studies on hot tests are much 

more limited than residual tests and only a few have managed measuring the complete 

stress-strain relations of concrete under thermal steady state. Most widely cited 

thermal steady state tests [14, 15] were performed from 1960s to 1990s and 

corresponding constitutive models and/or provisions were also established in that 

period. After that, it seems that the impetus to perform hot test on concrete has been 

decreased. However, the early studies used primarily ordinary Portland cement (OPC) 

as binders. There is a lack of test data and models on the effect of supplementary 

cementitious materials (SCM) on the stress-strain relations of concrete during thermal 

exposure, particularly when fly ash (FA) is used as the SCM.  

FA is fine particles generated from the combustion of pulverized coal in electric 

power generation plants, which has been widely used as SCM in concrete for several 

decades [16]. As an industrial byproduct, FA is available in many countries and its 
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recycling would bring significant economic and environmental benefits. These 

advantages have resulted in increased use of FA in concrete, especially in the 

ready-mixed concrete industry. Nonetheless, there is some concern on whether or not 

the FA would affect the fire safety of concrete material.  

FA itself actually has little cementitious value, but if it is used together with OPC in 

making concrete the reactive silica in it will chemically react with calcium hydroxide 

(CH) to form calcium-silicate-hydrate phases (CSH) possessing cementitious 

properties. When concrete is heated above 100°C and in the presence of moisture, this 

process would be amplified, which could beneficially reduce the amount of CH and 

increase the mass of the solid skeleton of CSH, resulting in a stronger and less 

permeable material [8]. In this way, the FA concrete, besides having an increased 

structural performance at ambient temperature, might also show a different 

performance at elevated temperatures. However, on the other side, the dehydration 

from the CSH also becomes significant above about 100°C. The release of water 

would contribute the evaporation of moisture. With lower porosity and permeability in 

FA concrete, the vapor migration rate might be slower than the evaporation rate of 

pore water, which will lead the development of pore pressure [17]. The built-up of 

pore pressure, together with the reduction in strength due to the thermal 

decomposition of cement hydration products and the increase in the internal stresses 

caused by thermal gradient can cause severer damage in concrete. Therefore, the 

mechanical behavior of FA concrete at high temperature is complicated and difficult 

to predict.  

Until now, only in the study of Diederichs [18], were FA concrete specimens tested 

under thermal steady state tests. However, Diederichs’ work was aimed at 

investigating the mechanical properties of high-strength concrete (HSC) at elevated 

temperatures, rather than on the effect of FA. The compressive strength of the FA 
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concrete samples in his study was higher than 100 MPa and corresponding 

water/binder ratio is as low as 0.27. Generally, HSC suffers pronounced higher rates 

of strength loss than normal-strength concrete (NSC) due to its denser structure and 

lower permeability [19, 20, 21] which limit the ability of vapor in the concrete to 

escape and thus caused more destruction in cement matrix. The results of Diederichs 

showed that the strength loss of high-strength FA concrete (HSFC) differs a lot from 

NSC made from OPC and is more close to normal HSC without FA, which indicates 

that the effect of FA might be hidden and/or taken over by the low water/binder ratio 

in HSFC. Although FA itself could also yield similar pore pressure effect as described 

above, it might bring benefits from the accelerated and further activated chemical 

reactions. Therefore, it is necessary to perform tests on normal-strength FA concrete 

(NSFC) to avoid the overshadowing caused by HSC itself. After excluding the 

potential interference due to low water/binder ratio, the effect of FA on mechanical 

properties of concrete at high temperature would be clearer. 

2. Objectives 

Above-described study shows that the experimental research on FA concrete loaded 

under thermal steady state is incomplete. Meanwhile, the utilization of FA is still 

insufficient at present. There is still a large amount of FA were disposed in landfills 

every year, which has a negative impact on the environment. A more comprehensive 

verification of the compressive behavior of FA concrete during thermal exposure 

could help broadening its potential application in engineering.  

The main aim of this research is to investigate the effect of partly replacing OPC with 

FA in manufacturing concrete on its mechanical properties during thermal exposure. 

Given the fact that the compressive mechanical properties of conventional OPC 

concrete without SCMs under thermal steady state have been well described, several 

previous studies are selected as reference group and the emphasis of our experiment is 
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placed on normal-strength FA concrete (NSFC). A series of thermal steady state tests 

of the NSFC specimens are designed and performed, in which the water/binder ratio, 

aggregate type and FA replacement percentage are set to be in consistent with the 

reference experiments for the purpose of comparison. Also presented is the 

comparison between the experimental results and Eurocode [22] to examine the 

applicability of current code to concrete with FA. Based on the experimental results 

obtained, an advanced stress-strain model for FA concrete is proposed. Compared 

with existing models, the proposed model has an advantage of considering the 

variation of the curvatures of stress-strain relationships with increasing temperature. 

Finally, microstructures of the samples heated to different temperatures are examined 

by using SEM to investigate the thermal effect essentially on the organization of pore 

microstructures.  

3. Experimental details 

3.1 Materials 

Table 1 gives the proportions and properties of concrete samples used in the present 

study. All samples were made from BS EN 197-1 CEM I type ordinary Portland 

cement. FA used in the investigation conforms to the requirements of dry BS EN 

450-1 Type F (low calcium). The detailed chemical compositions of the cementitious 

materials are given in Table 2. The coarse aggregate was the crushed granite quarried 

from the Hingston Down quarry with the size of 10 mm and the fine aggregate was 

natural sand. The dimensions of the specimens were the cylinders of 50 mm diameter 

and 150 mm height, which gives a length/diameter ratio (slenderness) equal to 3. 

According to RILEM TC 200-HTC [23] such dimensions could avoid the end effect. 

The relatively small diameter used for the specimens was to minimize the inevitable 

structural effect during heating. All specimens were cast as described in ASTM C192 
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and cured under polyethylene sheets in a laboratory environment for 24 hrs. The 

specimens were then demolded and moved into a tank of water for curing, which was 

used to provide 100% RH and 20 °C for 90 days. Before tests, the samples were oven 

dried at 30 °C for another 10 days, and the two end surfaces of them were polished to 

ensure that they are parallel and both perpendicular to the axis of the cylinder.  

Tab.1 Concrete mix proportion and properties 

Cement type-I 52.5, kg/m3 351 

Fly ash (Class F), kg/m3 117 

Coarse aggregate, crushed granite (maximum size 10mm) , kg/m3 710 

Fine aggregate, kg/m3 910 

Water, kg/m3 235 

Water/cement ratio 0.67 

Water/binder ratio 0.5 

Plasticizer (BASF MasterPolyheed 410), kg/m3 6.5 

Ambient temperature at casting,℃ 20 

Compressive strength, N/mm2 45 

Density, kg/m3 2330 

 

Tab.2 Chemical composition of the binders 

Binders 

Composition (%) 

SiO2 Al2O3 Fe2O3 CaO MgO SO3 TiO2 K2O Na2O Cl 

Loss on 

Ignition 

Free 

CaO 

Insoluble 

Residue 

Cement 20.81 5.22 2.50 63.95 2.10 3.41 - 0.57 0.33 0.06 2.48 1.3 0.63 

Fly ash 62.81 21.02 11.63 4.25 1.70 - 1.35 2.06 2.23 - 2.11 - - 

3.2 Apparatus 

All tests were carried out on an instron-5582 testing machine as illustrated in Fig.1. 

Thermal exposure of concrete samples (50 mm diameter × 150 mm length) was 

performed by using a split tube furnace with a chamber (60 mm diameter × 300 mm 
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length). The heating rate of the furnace was controllable, and the temperature 

distributions within the samples were monitored by the thermocouples attached on the 

surface and cast in the center of the specimens. The compressive displacement during 

mechanical loading was measured via a ceramic load extending placed outside of the 

furnace. The measurement was calibrated by a group of reference tests, in which the 

same load and heat as used in the tests were performed on the bottom loading rod 

without concrete specimen on it and the corresponding temperature and displacement 

were measured, which were then used to subtract the interference from the equipment. 

  

Fig.1. Experiment setup 

3.3 Test procedures 

All specimens were heated using the heating rate of 5 °C/min, according to the 

limitation of maximum heating rate recommended in RILEM TC 200-HTC, to 

corresponding target temperatures, as shown in Fig.2. During the heating period, 

moisture in the tested specimen was allowed to escape freely. After a further heating 

period of 1 hr at the target temperature, which was found to be sufficient for reaching 

a nearly stable state in the specimen (the temperature difference between side surface 

and center is less than 2 °C), the specimen was tested in a load control regime with a 
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rate of 0.5 MPa/s. In the whole process, temperatures, applied forces and uniaxial 

displacements of the sample were recorded simultaneously.  

 

Fig.2. Heating and loading procedures 

4. Stress and deformation characteristics at high temperatures 

The compressive mechanical properties of conventional OPC concrete (without SCMs) 

at thermal steady state have been extensively studied and the results obtained by 

different researchers show a good agreement with each other when the samples used 

are made from the same aggregate type (calcareous/siliceous) and identical 

water/cement ratio. However, the other parameters, like the dimensions of sample, 

heating rate or some variations of raw materials, seem to have very limited impact on 

the results, as long as they vary within the practical range for NSC and RILEM TC 

200-HTC. Therefore, several previous tests are selected as a reference group 

representing the normal-strength OPC concrete and the samples used in our tests are 

made from the same aggregate type (siliceous) and identical water/binder ratio (0.5) 

for the purpose of comparison. The details are summarized in Table 3. For the purpose 

of comparison the results of HSFC provided by Diederichs [18] are also listed as a 

reference group.  

Tab.3 Reference group 

Group Reference  Experiment 

Concrete type OPC concrete (without SCMs) Fly ash concrete 

Parameters to be 

compared 
strength deformation strength & deformation 

Resources 
Abrams 

[24] 

Malhotra 

[25] 

Schneider 

[9] 

Furumura 

[26] 

Diederichs 

[18] 
Our tests 
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Water/binder 0.5 0.5 - 0.41 0.27 0.5 

Initial strength 

(MPa) 
27 40 - 44 106.9 45 

Cementitious 

materials  
100%OPC 100%OPC 100%OPC 100%OPC 

75%OPC 

25%fly ash 

75%OPC 

25%fly ash 

Aggregate type  Siliceous Siliceous Siliceous Siliceous Siliceous Siliceous 

4.1 Compressive strength 

The temperature-compressive strength relations are plotted in Fig.3, in which the 

compressive strength was normalized by the strength of unheated specimen, 

respectively. The blue solid line represents the results from our tests and each point on 

it is an average of at least two specimens at each temperature level. As can be seen, it 

shows a very similar trend as the dash lines representing the behavior of 

normal-strength concrete without SCMs. At the beginning, the compressive strength 

of NSFC remains unchanged to 200 °C and increases to about 105% at 300 °C, which 

could be attributed to the further hydration under hydrothermal condition. Above that, 

the compressive strength decreases ceaselessly with elevated temperature due to the 

dehydration of CSH. The decrease rate reaches the maximum value around 550 °C 

when the crystalline transformation from α-quartz to β-quartz of aggregates may be 

taking place. In the whole range, the drop of compressive strength in NSFC keeps 

lower than that of NSC, which indicates that the further hydration of the reactive 

silica in FA during heating process does improve the high temperature performance of 

concrete. Given the replacement percentage of FA is only 25%, the improvement is 

thus not prominent, but at least the positive effect of FA during thermal exposure can 

be confirmed. It could be concluded from the results shown in Fig.3 that the Eurocode 

model [22], represented by the dot line in Fig.3, is quite safe when it is applied for FA 

concrete.   

According to the comparison between the results from Abrams [24] and Malhotra [25], 

it could also be concluded that the variation of initial unheated strength seems to have 

little impact on the normalized value of compressive strength at different temperature 
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levels. Nonetheless, above conclusion only applies to NSC. When it comes to HSFC, 

a very different variation of compressive strength with temperature could be observed. 

As illustrated in Fig.3, the chain line of HSFC drops much faster than the solid curve 

of NSFC at the early stage, which is the consequence of the denser microstructure and 

corresponding higher pore pressure in HSFC. It could be inferred that there are critical 

values for the parameters that could yield condensation in cement paste, like 

water/binder ratio or replacement percentage of FA. Beyond the critical values, highly 

condensed microstructure would be produced in concrete and results in destructive 

pore pressure under thermal exposure. On the other hand, the difference between 

NSFC and HSFC decreases with the increasing temperature. When the temperature 

reaches to 800 °C, they are very close to each other, which indicates that the 

compressive strength at relatively high temperature (beyond 600 °C) is almost 

independent of pore pressure. The variation in aggregates might be the main 

contribution in this phase.  
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Fig.3. Normalized compressive strength at different temperatures 

4.2 Peak strain at compressive strength 

The peak strain at compressive strength is a key deformation characteristic in 

evaluating the plastic strain of concrete, but it is hard to be determined at high 

temperature due to the difficulty in measurement. Thus, there are few available results 

on it. Fig.4 shows that, the strains at peak stress point of NSC and NSFC, tested by 

Schneider [9], Furumura [26] and ourselves, are almost identical to each other before 

300 °C and only slight difference is observed afterwards, which indicates that FA has 

no significant influence on the strain at peak stress point. The thermal incompatibility 

between aggregate and cement paste might be the main contribution and, in that case 

the aggregate type should be the decisive factor. From the common trend of these 

three curves one could conclude that the strain at peak stress point keeps 

approximately unchanged until 200 °C and increases rapidly above that. In contrast, 

the strain at peak stress point of HSFC increases obviously slower than that of NSFC 

for temperatures between 200 °C and 450 °C, suggesting a more brittle behavior, 

which could be attributed to its denser structure and corresponding higher loss of 

compressive strength in that temperature range. Another interesting result could be 

observed from Fig.5 is that the temperature-strain (at peak stress point) relationship in 

Eurocode is much higher than those of all other experiment results. This is because 

the strain at peak stress point in Eurocode has implicitly included an extra strain 

component called transient thermal creep (TTC) resulted from pre-fire load [12]. This 

implicit inclusion is safe and conservative in many cases, but it might yield wrong 

estimation of the deformation in concrete when the pre-fire load varies during the 

thermal exposure. For an advanced analysis, TTC should be calculated explicitly and 

Eurocode may not be applicable at that situation [27, 28].  
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Fig.4. Strain at peak stress point at different temperatures 

4.3 Modulus of elasticity in compression 

As discussed above, the compressive strength is decreasing while the strain at peak 

stress point is increasing with elevated temperature, which means that concrete is 

softening under thermal exposure. Therefore, it is also important to evaluate the 

variation of its stiffness, represented by the temperature-dependent elastic modulus. 

For the purposes of comparison, the modulus of elasticity is taken as the secant 

modulus at 30% of the compressive strength from the experimentally obtained stress–

strain curve. As a deformation characteristic, the temperature-dependent variation of 

elastic modulus is also mainly controlled by the aggregate type and hardly influenced 

by the partly replaced FA, similar to the behavior of the strain at peak stress point as 

discussed above. As illustrated in Fig.5, the decrease of the modulus of elasticity of 

concrete with increasing temperature generally exceeds the decrease of its strength, 

and the curves for different concretes are in good agreement with each other since 

they are all made from siliceous aggregate. The difference exists between NSFC and 

HSFC at around 200 °C, which could be ascribed to the variation in their pore 
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pressure at that phase.  

 

Fig.5. Normalized elastic modulus at different temperatures 

5. Development of an advanced stress-strain model 

5.1 Determination of the basic equation 

Table 4 provides three most widely accepted stress-strain models (ascending branch) 

that have been adopted in literature for concrete at high temperatures. However, all 

these three models assume the curvatures of the stress-strain relations keep unchanged 

when the temperature increases. As illustrated in Fig.6, the dash lines represent the 

normalized experimental stress-strain relations at different temperatures, while the 

solid lines are calculated by using the models shown in Table 4. It is evident that the 

curvatures of experimentally obtained stress-strain relations vary with temperature, 

while the three theoretical models are incapable of capturing this phenomenon since 

their curvatures are constant. This is an important characteristic but has been 

frequently ignored. In the present study, Eq.(4) proposed by Popovics [29] is selected 
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as the basic equation since it has the advantage of incorporating a parameter “n” to 

control the curvatures of the curves. 

Tab.4 Constitutive models for concrete in compression at high temperatures 

Furumura [30] Anderberg [31] EN1992-1-2 [22] 
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where  ,  are the instantaneous stress and strain, respectively; 
cf  is the 

compressive strength of unheated concrete; 
c  is the strain at peak stress point at 

compressive strength of unheated concrete; n is a parameter related to the curvature of 

the stress-strain relationship of concrete at ambient temperature.  
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Fig.6. Variation of normalized stress-strain relations and corresponding curvatures at different 

temperatures 

5.2 Curvatures of stress-strain relations 

By applying Eq.(4) to the experimental stress-strain data, the parameter “n” at 

different temperature levels could be determined. Fig.7 shows that parameter “n” 

increases to 9 at 200 °C and then drops quickly to 6.6 at around 300 °C. After that, the 

decrease rate slows down. When the heating terminates at 900 °C, it drops back to 

approximately the initial value. The higher value of n means that the stress-strain 

response is more linear. Fig.6 shows that the experimentally obtained curves are more 

linear than those of the previous OPC concrete models, which indicates that n has a 

higher value and there is less plastic strain in the FA concrete. This phenomenon could 

be ascribed to the increased skeleton of CSH caused by the reaction between FA and 

CH. The rapid increase of n at early stage is a consequence of the amplification of the 

reaction with increased temperature, while the decrease at latter stage might be caused 

by the thermally induced micro-cracks in cement paste and the decomposition of 

CSH. 

 

Fig.7. Parameter n at different temperatures 
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5.3 Advanced stress-strain model 

With the knowledge of the basic stress-strain equation, for example Eq.(1) given by 

Popovics [29], and the variation of compressive strength, peak strain and curvature 

parameter n as mentioned above, a complete temperature-dependent stress-strain 

model could be proposed as follows,  

   

 

 
 

 
=

1

n T

c c

c

n T

f T T
n T

T

 

 



 
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 

                   (5) 

where  cf T  is the compressive strength at temperature T;  c T  is the strain at 

peak stress point at temperature T;  n T  is the curvature parameter at temperature T. 

To simplify the model, the variation of the three temperature-dependent parameters 

could be represented by linear relations that fit original curves reasonably, as 

demonstrated in Fig.8.  

 

Fig.8. Linear approximation used for three decisive parameters 
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Eqs.(6)-(8) to achieve a simpler solution in analysis. 
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5.4 Verification of proposed model 

Fig.9 shows the comparison between the experimentally obtained stress-strain curves, 

represented by the red dot points, and those calculated from the proposed model, in 

which the black dash lines represent the results calculated by Eq.(5) with parameters 

directly measured from experiments and the light blue solid lines represent the results 

calculated by using simplified model Eq.(5)-(8). It is obvious from the comparisons 

that the theoretical model behaves excellently, whereas the simplified model differs 

marginally from the experimental data but with generally acceptable errors. This 

indicates that, when the model is adopted, the parameters incorporated could be 

determined by either way (measured value or simplified relations), depending on the 

expected efficiency and accuracy specifically. 
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Fig.9. Comparison of experimental stress-strain relations with proposed model 

6 Microstructure imaging 

The microstructures of crushed powder samples of the specimens under different 

temperatures were examined by using SEM techniques to understand the thermal 

effect on the change of micro-structure organization of FA concrete. As illustrated in 

Fig.10a, some unreacted FA particles were observed in the unheated specimen. In 

contrast, Fig.10b shows that after the specimens were heated to 450 °C, the unreacted 

particles disappeared due to the reaction between the FA and calcium hydroxide, 

which is in consistent with what was reported in literature as mentioned in 

introduction section. Moreover, the cement paste is reasonably dense and compact at 

ambient temperature. However, with increasing temperature, the microstructure of the 

cement matrix seems to have undergone significant changes. At 450 °C, some discrete 

pores developed due to the vapor migration and increased pore pressure. After the 

temperature increased to 550 °C, aggregate begin to rapidly expand since it is 
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approaching to the temperature for α-β phase transformation [32]. The sharp increase 

of expansion in aggregate at around 550 °C is opposite to the shrinkage of cement 

paste, resulting in severe damage and cracks at the interface between aggregates and 

adjacent cement paste, which is the reason for the observed maximum degradation 

rate of compressive strength at this temperature in our experiments. At last, when the 

temperature hits 700 °C, the CSH phase has decomposed and the cement matrix has 

turned into a loose white material that is very porous and weak. The corresponding 

deterioration of mechanical properties of concrete at this temperature is very obvious 

as illustrated in Fig.9. 

  

                   a. 20 °C                                  b. 450 °C 

  

                  c. 550 °C                                 d. 700 °C 

Fig.10. Microstructures of crushed FA concrete under different temperatures 

unreacted fly ash particles 
discrete pores 

cracks in aggregates loose white material with a very 

porous and weak structure 
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7. Conclusions 

The paper has presented an experimental study on the mechanical properties of fly ash 

concrete during thermal exposure. The tests were carried out on an apparatus specially 

designed for studying “hot” mechanical properties of concrete materials. The results 

presented include the compressive strength, strain at peak stress point, Young’s 

modulus, and stress-strain relation at temperature ranging from ambient to 900 °C. 

From the present results the following conclusions can be drawn: 

1) 25% replacement of cement with FA in concrete hardly influences its deformation 

characteristics at high temperatures, but the temperature-dependent compressive 

strength would be enhanced due to the further reaction between FA and calcium 

hydroxide under hydrothermal conditions. 

2) Eurocode EN1992-1-2 seems to be safe to be applied to normal strength concrete 

with 25% replacement of FA as SCM. However, the strain at peak stress point 

recommended in EN1992-1-2 has implicitly included the transient thermal creep, 

which should be explicitly calculated using the advanced analysis method. 

3) Porosity of cement paste has a significant influence on the mechanical properties of 

concrete at high temperatures, especially at early stage of thermal exposure (before 

500 °C). There might be a critical value for the replacement percentage of FA, which 

could lead the increase of solid skeleton of cement paste and potential destructive 

pore pressure during heating. Therefore, the higher replacement percentage of FA in 

cement should be further verified. 

4) The shape of stress-strain relationship, represented by the curvature of the curve, 

would vary with temperature. Adding FA into concrete would make it behave more 

linearly and reduce its plasticity due to the increased skeleton of CSH caused by the 
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hydration of FA and the related amplification during heating. 

5) A complete temperature-dependent stress-strain model for FA concrete in 

compression has been formulated and verified. Compared with previous models, the 

present model has the advantage of incorporating a parameter  n T  to consider the 

variation of the curvature.  
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