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Abstract 

Background To assess occurrence of a histologically validated measure of transmural (TM) 

atrial ablation – pure R unipolar electrogram (UE) morphology change – at first-ablated left 

atrial posterior wall (LAPW) sites during contact force (CF)-guided pulmonary vein isolation 

(PVI). 25 

Methods Objectively annotated VISITAG™ Module and CARTOREPLAY™ (Biosense 

Webster Inc.) UE morphology data was retrospectively analysed in 23 consecutive patients 

undergoing PVI under general anesthesia.  

Results PVI without spontaneous / dormant recovery was achieved in all, employing 

16.3[3.2] minutes of radiofrequency (RF, 30W) energy. All first-ablated LAPW sites 30 

demonstrated RS UE morphology pre-ablation, with RF-induced pure R UE morphology 

change in 98%. Time to pure R UE morphology was significantly shorter at left-sided LAPW 

sites (4.9[2.1] s versus 6.7[2.5] s; p=0.02), with significantly greater impedance drop (median 

13.5Ω versus 9.9Ω; p=0.003). Importantly, neither first-site RF duration (14.9 versus 15.0s) 

nor maximum ablation catheter tip distance moved (during RF) were significantly different, 35 

yet the mean CF was significantly higher at right-sided sites (16.5g versus 11.2g; p=0.002). 

Concurrent impedance and objectively annotated bipolar electrogram (BE) data demonstrated 

~6-8Ω impedance drop and ~30% BE decrease at the time of first pure R UE morphology 

change. 

Conclusions Using objective ablation site annotation, UE morphology evidence of TM RF 40 

effect was demonstrated far sooner than considered biologically possible according to the 

“conventional” 20-40s RF per-site approach, with significantly greater ablative effect evident 

at left-sided sites. This novel methodology represents a scientifically more rigorous 

foundation towards future research into the biological effects of RF ablation in vivo.  
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Introduction 

Radiofrequency (RF) catheter ablation for atrial fibrillation (AF) is a complex undertaking, 

since in order to achieve electrical isolation of the pulmonary veins, encircling lesions must 65 

be transmural (TM) yet without causing extra-cardiac thermal trauma via inadvertently 

excessive local RF energy delivery.1 Considerable research efforts have focussed on the 

identification of optimal RF targets for lesion creation during pulmonary vein isolation (PVI); 

following the development of contact-force (CF) sensing catheters, recommendations for the 

CF “working range” and force time integral (FTI, area under the force-time curve) were 70 

derived.2,3 However, recent reports of an increased association of CF sensing catheter use 

with atrioesophageal fistula (AEF)1,4 – the most feared complication following PVI due to its 

high mortality5 – suggests that these recommendations may be inappropriate and highlights 

the risk of conducting PVI with an imperfect understanding of when TM ablation has been 

achieved. 75 

When considering the tissue response to RF application, electrogram changes indicating TM 

atrial ablation effects are well described in animal studies. Otomo et al identified that an 

ablation catheter tip unipolar electrogram (UE) morphology transition from RS to “pure R” 

was 100% predictive of histologically proven TM lesions in porcine atria, and was catheter-

tissue angle independent.6 Using a contact-force (CF) sensing catheter in canines, Bortone et 80 

al demonstrated that 95% of atrial lesions were histologically TM following immediate RF 

termination at the first occurrence of a pure R morphology UE, with no evidence of extra-

cardiac thermal trauma. However, continuous RF delivery for 10 or 20s beyond this time (and 

indeed a “conventional” 30s duration application) consistently resulted in 100% TM lesions 

yet with 11-17% lesions associated with extra-cardiac thermal trauma.7 Considering the 85 

employed power-controlled RF protocol at 30W (48oC, 17ml/min irrigation) and minimum 



5 

 

CF 10g resulted in pure R UE morphology at 7s and with mean lesion depth of 4.3mm, one 

would anticipate a high risk of inadvertent extra-cardiac thermal trauma from the practice of 

20-40s / “a median of 45s” RF “per site” during recently conducted CF-guided PVI studies in 

humans.8,9 90 

Here we provide the first-in-human report of pure R UE morphology change at sites of first 

RF application on the left atrial posterior wall (LAPW) during PVI, employing an objective 

and automated method for ablation catheter stability annotation fulfilling suitable criteria for 

a stable point of RF delivery in vivo, via custom software (VISITAG™ Module with 

CARTOREPLAY™, Biosense Webster Inc., Diamond Bar, CA). In addition we report 95 

concurrent, objectively annotated bipolar electrogram (BE) attenuation and impedance drop 

data (i.e. additional markers of RF effect in vivo10,11). Finally, through extended off-line 

catheter tip positional data analysis using the software R12, we report the relationship between 

measured catheter tip displacement during RF, time to pure R UE morphology and 

impedance drop at annotated LAPW ablation sites.  100 

 

Methods 

This ablation protocol and the technical approach to PVI was developed during an 

Institutional Review Board (IRB)-approved service evaluation, and was without influence 

from any recommendations for RF delivery derived from historical studies employing 105 

subjective methods of ablation catheter stability assessment; a complete description can be 

found online.13 Retrospective analysis of VISITAG™ Module and CARTOREPLAY™ data 

were performed following single-operator PVI, in consecutive unselected patients with 

symptomatic AF undergoing PVI according to current treatment indications.14 Briefly, all 

procedures were undertaken using general anesthesia (GA) with endotracheal intubation and 110 
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volume-controlled intermittent positive pressure ventilation: Tidal volume 6-8ml/kg; 14-16 

breaths per minute as guided by end-tidal CO2; positive end-expiratory pressure 5 cmH2O; 

50% inspired oxygen fraction. Single transseptal access was obtained with an SL1 (St Jude 

Medical Inc., Minneapolis, MN) sheath, following which either a NaviStar® 

THERMOCOOL® SMARTTOUCH™ (ST) F curve or NaviStar® EZSTEER® 115 

THERMOCOOL® SMARTTOUCH™ D/F catheter (Biosense Webster) via an Agilis™ NxT 

sheath (St Jude Medical Inc.) was placed in the left atrium (LA) via the first transseptal site. 

ACCURESP™ Module (Biosense Webster) respiratory training was checked with a 

duodecapolar LASSO® Nav catheter (Biosense Webster) in both the right superior pulmonary 

vein (PV) and the left inferior PV and applied prospectively as required to the CARTO®3 120 

geometry (V.3, Biosense Webster). 

CF-guided PVI was performed in temperature-controlled mode (17ml/min, 48oC) at 30W, 

with lesion placement guided by the VISITAG™ Module.13 The preferred sites of first RF 

application were at the LAPW opposite each superior PV ~1cm from the PV ostium, 

although in cases where constant catheter-tissue contact could only be achieved with maximal 125 

CF ≥70g, an adjacent LAPW site with lower peak CF was chosen; the target first-site ablation 

time was 15s. Circumferential PVI (entrance and exit block) was performed with continuous 

RF delivery, with additional point-by-point RF applied as required to achieve target 

parameters. Spontaneous recovery of PV conduction was assessed and eliminated during a 

minimum 20-minute wait. Dormant recovery was evaluated and targeted a minimum of 20 130 

minutes after the last RF.15  

VISITAG™ Module and CARTOREPLAY™ use 

The VISITAG™ Module permits automated ablation site annotation through catheter 

“stability filters” utilising catheter tip CF and position data during RF application. The 
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ablation catheter tip position is measured every 16/17ms, from which the standard deviation 135 

(SD) is calculated over a minimum interval of 60 positions (i.e. 1s). Consecutive ablation 

catheter tip positions within a user-defined maximum range for the SD (in mm) during on-

going RF are used to annotate a site meeting positional stability filter requirements. CF is 

measured every 50ms, with CF filtering employing a user-defined minimum CF for a 

percentage of RF time at sites meeting positional stability filter requirements. Consecutive 140 

catheter tip positions satisfying both positional and CF stability filter requirements beyond 

the minimum user-defined duration (system minimum, 3s) result in automated ablation 

annotation; a 3D and/or surface-projected tag may be used to denote the mean catheter 

position at each site. Post-ablation, annotated tags provide summative ablation data including 

RF duration, mean and range of CF, impedance and FTI (figure 1A and B; see box, left 145 

panels), while an export function permits extended data analysis. Following completion of a 

service evaluation (July – December 2013),13 the following VISITAG™ Module filter 

settings were used during this present report: Positional stability duration 3s and range 2mm; 

force-over-time 100% minimum 1g (i.e. constant catheter-tissue contact). For extended 

ablation catheter positional stability analysis, R software code was written to analyse 150 

exported VISITAG™ Module data regarding catheter tip (position) SD and maximum 

displacement from the mean position annotated at each first site of LAPW ablation. 

Impedance and RF power data at 100ms intervals during RF were obtained via the 

VISITAG™ Module export function.  

From a theoretical perspective, a fundamental element of ablation catheter positional stability 155 

is constant (versus intermittent) catheter-tissue contact. However, respiration and cardiac 

cycle-induced motion may create displacement at the catheter-tissue interface even in the 

setting of constant contact. These may be accounted for using “annotation adjustment” 

algorithms; i.e. no displacement assumed if the catheter returns to consecutive end-expiratory 
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/ end-diastolic sites within a pre-defined distance range. However, this may introduce error 160 

since RF delivery can only be proven to be “single site” when measures of catheter-tissue 

interaction and tissue response to RF at sites without catheter displacement are defined, and 

shown to be present at sites demonstrating respiration or cardiac cycle-induced motion yet 

“adjusted” to a single site. Therefore, although a proprietary respiration adjustment algorithm 

was available (ACCURESP™, Biosense Webster), this was never applied to the VISITAG™ 165 

Module filter settings, since this tool has yet to undergo such validation in vivo. 

CARTOREPLAY™ provides a means to retrospectively analyse electrogram data at all 

VISITAG™ Module annotated ablation sites, within 18 hours (data is deleted thereafter). 

During this present report, UE morphological analysis was performed immediately following 

case completion, employing histologically validated criteria for TM RF effect (i.e. pure R 170 

morphology change). UE filtering was 0.5-120Hz with analysis display speed 200mm/s and 

voltage scale 3.45 or 3.80mV. The time to pure R UE morphology was taken at the first of 3 

consecutively occurring pure R complexes, no more than 1 of which could be an atrial 

ectopic. In order to facilitate summative analysis for all first-ablated LAPW sites and to 

minimise catheter instability due to cardiac cycle length changes, every RF application was 175 

performed during CS pacing at 600ms cycle length. Ablation catheter (distal pair) BE peak-

to-peak amplitude was obtained using automated Wavefront Annotation (Biosense Webster). 

Pictorial evidence of the stated UE morphological changes was provided via a JPEG creation 

tool (e.g. figures 1A and B); all first-ablated LAPW site images are shown in the data 

supplement.  180 

Statistical analyses were performed using GraphPad Prism version 4.03. Parametric data are 

expressed as mean [SD]; non-parametric data are presented as median (1st – 3rd quartile). 

Unpaired / paired t test or the Mann Whitney test was used to assess statistical significance 

for continuous data, as appropriate. P <0.05 indicated a statistically significant difference. 
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This work received IRB approval for publication as a retrospective service evaluation; all 185 

patients provided written, informed consent.  

Results 

Twenty-three patients underwent first-time PVI as described, between 1st December 2016 and 

11th May 2017: 12 patients had persistent AF, 11 PAF; 17 were male (74%); mean age 58 

[13] years and CHA2DS2-VASc score 1.4 [1.4]. Complete PVI was achieved in all without 190 

spontaneous / dormant recovery of PV conduction, following 16.3 [3.2] minutes of RF, with 

no procedural complications. 

Pre-ablation, all first-ablated LAPW annotated sites demonstrated RS UE morphology (e.g. 

figure 1A and data supplement). For sites adjacent to the left PV, ablation-induced pure R UE 

morphology was identifiably achieved in 21/23 cases (e.g. figure 1B and data supplement). 195 

One case of inadvertent catheter displacement resulted in annotation termination at 4.43s 

when RS UE morphology remained present (supplementary figure S5A), while in another, 

gross artefact made UE morphology assessment impossible (supplementary figure S15A). 

For annotated sites adjacent to the right PV, ablation-induced pure R UE morphology was 

achieved in all. However, one case of inadvertent catheter displacement at RF onset resulted 200 

in 4.97s non-annotated RF delivery, so the time to pure R UE measurement was deemed 

invalid for analysis. 

Annotated first-ablated LAPW site data is shown in table 1. At left-sided sites there was a 

significantly shorter time to pure R UE morphology (4.9[2.1] s versus 6.7[2.5] s; p=0.02), 

with a significantly greater total impedance drop (13.5Ω versus 9.9Ω; p=0.003). This was not 205 

explained on the basis of a difference in the total RF duration, while both the mean CF and 

FTI were significantly lower for left-sided sites (11.2g versus 16.5g; p=0.002 and 167gs 

versus 244gs; p=0.004). Furthermore, while the maximum ablation catheter tip distance 
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moved from the (annotated) mean point was not significantly different, the standard deviation 

of catheter tip motion was significantly greater at left-sided sites (1.4[0.3] mm versus 1.1[0.3] 210 

mm; p=0.001). There were no significant differences between the BE (distal ablation catheter 

pair) data, although there was a trend towards greater total percentage BE decrease at left-

sided sites (61[19] % versus 51[24] %). 

The first 15s of annotated impedance and percentage bipolar electrogram decrease data is 

shown in figure 2, with RF power below. At the times corresponding to the pure R UE 215 

morphology data in table 1, an impedance decrease of ~6-8Ω can be observed, accompanied 

by ~30% BE decrease for both left-sided and right-sided ablation sites. Notably, utilising this 

temperature-controlled RF protocol the delay to achieve 30W power was ~6s. Correlation 

between the time to pure R UE morphology and the following factors was assessed: Total 

impedance drop; mean CF; maximum catheter tip distance moved; ablation catheter tip 220 

position SD; and BE amplitude (annotation start). The only significant correlation was in 

right-sided sites and with impedance drop – Spearman r -0.43 (-0.72 to -0.005; p=0.048). 

 

Discussion 

The analyses described in this present report represent the first-in-human description of the 225 

response to RF application at LAPW first-ablated sites meeting a putative suitable definition 

for a stable point of catheter tip-tissue contact in vivo. As a result of adopting this novel RF 

annotation methodology, we have demonstrated that when an ablation catheter is maintained 

within a (SD) range of 2mm, acutely durable ablation effect was universally achieved 

following 15s temperature-controlled RF at 30W, with TM UE morphology change typically 230 

evident within 7s and associated with a BE attenuation of ~30% and impedance drop of ~6-

8Ω. Furthermore, we have identified superior catheter tip-tissue energy coupling for left-
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sided ablation sites, evidenced by significantly shorter time to pure R UE morphology and a 

significantly greater total impedance drop. Finally, the absence of a significant correlation 

between the time to pure R UE morphology change and either the maximum catheter tip 235 

distance moved / tip position SD provides supportive evidence for the appropriateness of the 

2mm SD positional stability filter “working range”, without ACCURESP™ adjustment, 

annotation protocol. 

That these data are out of keeping with current views regarding what constitutes a 

“conventional” approach to RF application during PVI should come as no surprise when 240 

considering the development of the current approach towards PVI and evidence available 

from other publications: (1) The original description of ~30s RF “per site”, aiming for 80% 

BE attenuation was without scientific validation,11 yet has remained unchallenged and 

perpetuated in methodology ever since;8,16 (2) the subjective methods used to derive current 

CF and FTI recommendations are flawed,2,3 compared to any investigations conducted 245 

utilising objective means of ablation catheter stability assessment. Specifically, in 

TOCCATA (the first study reporting a relationship between CF and clinical outcome 

following PVI), valid ablation records for analysis were those “with stable CF for at least 15 

consecutive seconds”.2 However, for this methodology to be appropriate two assumptions 

must be satisfied, neither yet validated in vivo: (i) CF “stability” (however that is defined) 250 

must equate with a certain “fixed” degree of catheter tip-tissue positional stability; (ii) TM 

ablation during PVI must never be achieved within 15s. Therefore, these data should have 

been considered provisional, pending further investigations following appropriate 

methodological advances; (3) the LA wall is thin (e.g. computed tomography assessment pre-

ablation mean thickness 1.9mm; range 0.5-3.5mm),17 yet laboratory preparations of irrigated 255 

RF using “conventional” RF duration result in far deeper lesions (e.g. in a bovine skeletal 

muscle model of intermittent catheter contact at 20W, an FTI of 200gs (CF range 0-22g) 
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resulted in 4mm depth lesions);18 (4) similarly and as previously stated, in vivo investigations 

of CF-guided ablation in canines demonstrated pure R UE morphology change at 7s, with 

histologically confirmed TM ablation effect in 95% applications (power-controlled RF at 260 

30W), and mean lesion depth 4.3mm;7 (5) a report of real-time ovine lesion assessment 

utilising a novel combined ultrasound and RF ablation catheter in vivo, demonstrated rapid 

lesion development during right atrial epicardial ablation at 7W (i.e. 1.5mm depth at 10s, see 

figure 2A, Wright et al 2011);19 (6) esophageal temperature probe alerts during LAPW 

ablation at 25W (target CF 10-20g), occurred in 73% patients, with intra-luminal temperature 265 

39oC illustrated as early as 7s following RF onset (see figure 2 from Halbfass et al 2017).20 

The findings in this present report have numerous implications. Most importantly, we have 

demonstrated that the VISITAG™ Module and CARTOREPLAY™ may together be used as 

investigational tools during PVI, permitting an assessment of the TM nature of the tissue 

response to RF delivery. Clearly, this provides a foundation for further investigations in an 270 

effort to reduce the risk of esophageal thermal injury (e.g. evaluating the acute effectiveness 

of lower power delivery to the LAPW). Furthermore, in view of the objective and 

standardised nature of VISITAG™ Module annotation, any operator may similarly 

investigate lesion creation utilising their “usual approach” to ablation during CF-guided PVI. 

In view of the described evidence of rapid TM ablation effect in thin-walled atrial tissue, such 275 

investigations are likely to improve the safety profile of CF-guided PVI, through a movement 

away from the “conventional” view of a requirement for ~30s RF delivery “per site”, 

achieving 80% BE8,11,16 attenuation and FTI 400gs,2,3 towards shorter RF duration and 

possibly lower power delivery. This represents an important advance in RF ablation research 

methodology, since when the VISITAG™ Module is used as described in this present report, 280 

it comes as close as is presently possible to representing a “universal language” for the RF 

ablation “effector arm”. Consequently, and through the consistent application of CF and 
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positional stability filters described here, future research protocols may be optimised, practice 

harmonised and with published outcomes then replicated by any operator able to maintain the 

catheter position and CF stability in the manner described. 285 

The methodology presented here also represents a departure from studies utilising automated 

ablation site annotation yet failing to recognise the limitations of a CF filter permitting 

intermittent catheter-tissue contact (i.e. 30% minimum 5g) and the non-validated use of 

ACCURESP™ adjustment,8 when considering a suitable definition for a stable point of RF 

application in vivo. Furthermore, an inherent problem with any system of ablation lesion 290 

delivery founded upon assessments of CF and energy delivery alone is now clearly apparent 

when considering the differential ablative effect between left and right-sided sites 

demonstrated in this present report. However, this should also not be surprising, when 

recognising the recently reported impedance drop range of 0 to ~50Ω resulting from an 

ablation index (AI) value of 300; i.e. indicative of great variability in tissue RF effects (see 295 

figure 3 from Das et al8). 

Study limitations 

All UE morphology data were collected retrospectively, so this report does not prove that 

modification of RF delivery based on real-time UE morphological assessment during 

VISITAG™ Module and CF-guided PVI is appropriate. However, this is an important area 300 

for further research, not least in view of the promising findings from a single-centre UE 

signal modification-based PVI study in humans, before the advent of CF-sensing and 

objective ablation site annotation.21 Furthermore, neither esophageal luminal temperature 

monitoring nor post-ablation endoscopic evaluation was employed; given the time to pure R 

UE morphology change of 3.1s demonstrated in figure 1 it is highly likely that some LAPW 305 

lesions were accompanied by inadvertent extra-cardiac thermal injury. Therefore, the 



14 

 

approach to ablation described in this report is not a direct recommendation for others to 

follow without careful consideration. Rather, through adopting the methodology described, 

any operator has the opportunity to identify the most appropriate means to achieve TM 

ablation during PVI, via insights into their “usual approach” using the VISITAG™ Module 310 

and CARTOREPLAY™. 

The significantly greater time to pure R UE morphology at right-sided sites may in part have 

been due to increased LA wall thickness. Also, although the maximum distance of catheter 

tip motion did not differ between left and right-sided sites, there may have been a greater 

degree of LAPW motion beneath the catheter tip at right-sided sites, despite a significantly 315 

greater mean CF (i.e. out-of-phase motion). Nevertheless, the significantly greater total 

impedance drop at left-sided sites remains the first demonstration of superior regional 

catheter tip-tissue energy coupling in vivo. Although this finding cannot be fully explained at 

present, these data may indicate that the more oblique catheter orientation routinely obtained 

during left-sided ablation may result in a greater surface area of ablation electrode in contact 320 

with the tissue, with even a relatively small difference potentially resulting in significantly 

greater power delivery.10 While the mechanisms underlying these observations await 

identification, this represents an important unknown variable in any attempt to harmonise RF 

ablation practice based upon ablation lesion quality markers incorporating CF, RF duration 

and power alone.8 325 

Maintaining a stable catheter position within the chosen 2mm SD range may require some 

novel operator “adjustments” for respiration-induced motion, particularly when the use of 

ACCURESP™ adjustment use during PVI remains non-validated. There is presently no 

means to describe any compensatory sheath / catheter movements utilised during this report; 

jet ventilation may therefore improve the reproducibility of VISITAG™ Module and CF-330 

guided PVI, but this requires further study. Moreover, even when adopting uniform weight-
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adjusted ventilatory settings, variable lung capacity between patients may result in differing 

degrees of respiratory excursion, hindering reproducibility; the addition of a suitable scale to 

the ACCURESP™ respiratory indication window would theoretically help counter this 

problem, permitting patient-specific tidal volumes to be administered towards possibly 335 

greater uniformity of respiration-related catheter excursion. 

An ex vivo study into the accuracy of ST catheter CF measurement demonstrated important 

CF error with parallel catheter orientation, of 6.6 +/- 5.9g.22 Although parallel orientation 

never occurred at these first sites of RF application in this present report, this issue represents 

a possible flaw to the use of 100% minimum 1g CF filter at all left atrial sites. A complete 340 

assessment of the effects of changing the CF filter minimum level was beyond the scope of 

this present report, but any operator seeking to perform entire PVI lesion sets during contact 

catheter-tissue contact should be aware of this important issue. 

The availability of an imaging modality to help validate the TM nature of RF lesions in vivo 

would strengthen the findings of this present report; unfortunately there is no validated means 345 

to perform this at present. UE morphology change analyses are impossible during AF, since 

by definition, fibrillatory waves are random (data not shown, since all procedures were 

performed during CS pacing at 600ms in this present report). Finally, achieving durable PVI 

requires sufficient overlap of TM RF effect between adjacent lesions; these present data 

provide no information concerning the diameter of TM ablative effects. However, through 350 

conducting similar investigations to those described here, the diameter of RF-induced thermal 

injury may be identified during PVI; these data are presented in a pre-publication report 

online.23 

 

 355 
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Conclusions 

Through appropriate use of the VISITAG™ Module and CARTOREPLAY™ during PVI, 

the TM nature of the tissue response to RF may be investigated at objectively annotated first-

ablated sites meeting a suitable definition for a stable point of catheter-tissue contact in vivo. 

These novel data presented indicate that the “conventional” approach to RF application 360 

during PVI probably inappropriately increases the risk of extra-cardiac thermal trauma, 

particularly at left-sided LAPW sites. When used appropriately, the VISITAG™ Module and 

CARTOREPLAY™ provide a novel research methodology with greater scientific rigour, 

potentially facilitating greater efficacy in RF ablation practice via suitably “tailored” 

approaches to RF delivery. 365 
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Table legends 510 

Table 1: Left atrial posterior wall annotated ablation site data, according to proximity to the 

left or right pulmonary vein (left-sided / right-sided, respectively). For bipolar electrogram 

(BE) data, annotation “start” and “end” represent the first and last ablation catheter (distal 

pair) electrograms respectively, during automated VISITAG™ Module RF annotation. Data 

is shown as mean [SD] / median (25th – 75th centile), as appropriate. UE, unipolar 515 

electrogram; CF, contact force; FTI, force time integral; SD, standard deviation. 

 

Figure legends 

Figure 1: Left panel showing CARTO®3 LA geometry with VISITAG™ Module ablation site 

annotation displayed as 2mm radius spheres, with transition to red at 10s RF duration 520 

(transparent PA view) and right panel showing CARTOREPLAY™ screen with 24-hour 

clock timeline beneath. A: First RF application annotation onset at the LAPW during left PV 

isolation. “Location 1” is highlighted (greater tag diameter) with corresponding annotated 

summative ablation site data shown (box). CARTOREPLAY™ electrogram data at 200ms 

speed demonstrates pre-ablation RS UE morphology during CS pacing at 600ms cycle length 525 

(from top to bottom: ECG lead II; MAP 1-2 bipolar electrogram 1.33mV scale; MAP 1 UE 

3.45mV scale; CS 1-2 and 5-6 bipolar electrograms). RF and VISITAG™ Module annotation 

onset is identified in the middle of the CARTOREPLAY™ screen as white and red/yellow 

horizontal bars at the bottom, respectively. B: CARTO®3 LA geometry and 

CARTOREPLAY™ screen showing time calliper at the onset of 3 consecutive pure R UE 530 

morphology complexes during CS pacing at “Location 1”, following 3.1s RF. 
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Figure 2: Impedance change and percentage bipolar electrogram decrease (ablation catheter 

distal pair) for the first 15s of annotated ablation site data according to proximity to the left or 

right PV (left-sided / right-sided, respectively). Error bars are shown in one direction for 535 

clarity. The RF power data represents a smoothed curve from all RF applications. 

 

 

 



25 

 

 

Figure 1A 



26 

 

 

Figure 1B 

 

 

 

 



27 

 

 

Figure 2 


