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Abstract 

Time consolidation flow properties of a commercial detergent powder were measured at 

elevated temperature of 27 °C, 37 °C and 47 °C with the Brookfield Powder Flow Tester (PFT). 

A substantial increase of powder cohesion was observed at elevated temperature and after 

time consolidation. The Jenike method for silo design was used to correlate the powder time 

consolidation flow properties at elevated temperature to critical outlet slot to attain arch-free 

silo. The dependence of the critical diameter on temperature and time consolidation is 

successfully described by the model. 

Keywords 

Arching, Brookfield Powder Flow Tester, Jenike Method, Silo Design, Time 

Consolidation Flow Function 

Wolfson Centre for Bulk Solids Handling Technology, Faculty of Engineering & Science, 
University of Greenwich, Central Avenue, Chatham, ME4 4TB, United Kingdom 

* Email corresponding author: h.salehikahrizsangi@gre.ac.uk

1. Introduction

It is reported that around 60% of products in the chemical industry are produced as particulate 

solids [1]. All these materials must be transported, conveyed or handled. Therefore, the 

characterisation of the flow behaviour of powders plays an important role in industrial 

applications [2]. Powder flow properties are mainly dependent on the magnitude of cohesive 

forces between particles, such as van der Waals’ force and capillary forces, as well as forces 

between particles and the storage container surface [3]. When these forces increase because 

of changes in temperature or consolidation stress the powder flowability deteriorates and, 
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therefore, becomes more difficult to handle [4, 5]. A reduction in flowability of powder at an 

industrial facility could for example decrease the production rate as a result erratic or unreliable 

discharge from storage hoppers or even stop production for extreme cases such the formation 

of stable arch over the outlet. The latter arching problem commonly occurs because of 

cohesion increases between particles at elevated temperature and or after periods of time 

consolidation [6]. Due to the large outlet sizes that maybe required to break these arches, 

specific silo discharge equipment, such as; planetary screws, multiple screws “live bottom”, 

vibrating slat , or air induced system, are often applied as a solution to facilitate silo discharge. 

However, unfortunately, implementation of these approaches cause an increase in particulate 

solids handling costs [7]. 

A theoretical method was established by Jenike to predict the minimum hopper opening slot 

during discharge in order to prevent arch formation in wedge and conical shape hoppers [8]. 

This method is a function of hopper geometry (conical or wedge shape), slope angle, wall 

friction and of the bulk material flow properties. It is essential to evaluate the bulk material flow 

properties at conditions similar to the realistic industrial conditions, for instance at high 

humidity [9–11], at very low consolidation stress [12–14] and at high temperature [15]. Smith 

et al. [16] preheated two powders to 750 °C and then measured their flow properties with the 

Jenike shear tester without controlling the temperature during experiments. In another study, 

the torque necessary to rotate an impeller in a bed of different cohesive powders at an elevated 

temperature of up to 700 °C were performed by Zimmerlin et al.[17]. Modified Schulze shear 

testers capable of working from 80 °C to 220 °C and up to 500 °C were developed by Ripp 

and Ripperger [18] and Tomasetta et al., [19] respectively. Tomasetta et al., [19] measured 

the flow properties of several powders at ambient and 500 °C. However, experimental results 

did not show a univocal effect of temperature on the flow properties of the tested powders. 

Few studies have investigated the effect of temperature on flow properties of powders, 

however there is no study considering time consolidation flow properties of a commercial 

detergent powder at elevated temperature. Furthermore, there are no studies considering the 



effect of elevated temperature and time consolidation flow function on silo design for a 

detergent powder. These materials are often subjected to elevated temperatures in handling, 

for instance in storage hoppers in plants in tropical areas, so the effect of these on lump 

formation in the powders is critical to product quality. In the light of these research gaps, the 

aim of this work is to assess the effect of temperature and time consolidation on the flow 

properties of a commercial detergent powder. Consequently, arching tendency of the powder 

at the tested experimental conditions were evaluated using the Jenike approach. 

2. Material and method 

A commercial spray dried washing detergent powder (the most popular detergent powder sold 

worldwide) was provided by a manufacturing company. The composition of the detergent 

powder is confidential (commercially sensitive), however it is a salt-base powder with addition 

of zeolite, sulphate and colour. The particle size distribution of the detergent powder was 

evaluated by using vibrational mechanical sieves following the standard procedure of ASTM 

D6913. The D10, which is the diameter at which 10% of the sample's mass is comprised of 

particles with a diameter less than this value, is 65 μm; the D50, median particle size 

distribution, is 250 μm; and D90, means that 90% of the sample has this size or smaller size, 

is around 480 μm. For measuring time consolidation flow properties of samples at high 

temperature, a Brookfield Powder Flow Tester (PFT, Brookfield Engineering Laboratories, 

Inc., Middleboro, MA, US) [20] was placed in an environmental chamber. PFT is a ring shear 

tester which operates by applying a vertical compression through the lid onto the powder 

sample contained in the annular trough (internal volume 230 cm3, external annulus diameter 

152.4 mm). An internal automated procedure controlled by the ‘powder flow software’is used 

to operate the cell to reproduce the sequences of normalstresses and the shear movement 

necessary to define the yield loci, as is described in Figure 1 assuming a linear (Coulomb) 

yield locus. The temperatures in the climate chamber were set to; 27 °C, 37 °C and 47 °C and 

consolidation durations programmed for 24h and 72h, giving total 6 experimental conditions. 

The maximum possible environmental temperature for measuring flow properties of powder 



with the PFT is 50 °C. The relative humidity was kept at 15% in all experiments. The number 

of pre-shear points (number of yield loci lines) and of shear points (number of yield locus 

points) were set to 2 and 5 respectively. The samples were renewed after the first yield loci 

line determination. 

The typical shear stress chart for the pre-shearing and shearing phase, which used for defining 

material flow properties, is reported in Figure 1. The test method follows two main steps. In 

the first step, pre-shear phase, the powder sheared at the defined pre-shear normal stress, 

σc, until attaining the steady state shear force needed to keep the lid in the fixed position. In 

the second step, shear phase, the normal shear stress, σNi, which is lower than the stress 

applied to the sample at pre-shear phase, is applied to the sample. The maximum measured 

shear stress value at the shearing phase used to calculate the failure strength of the pre-

consolidated samples. Repeating the same procedure with constant applied normal stress 

during pre-shear phase and decreasing the normal load at shear phase enables to define the 

yield locus line [21, 22]. 

The flow properties of the sample defined by using a continuum mechanics approach. 

Particularly, the Mohr-Coulomb approach is used to describe the stress distribution inside the 

particulate solid. State of stresses is described by using the Mohr's circle on both normal 

stress, σ, and shear stress, τ, plane. Major principal stress, σ1, is determined from the crossing 

point of the big Mohr’s circle and the σ-axis in Figure 1. This Mohr’s circle is tangent to the 

yield locus line which is passing through the yield locus points. The unconfined failure strength 

of powder, fc, is derived from the intersection of smaller Mohr’s circle and the σ-axis. Therefore, 

the unconfined failure strength, calculated from equation 1, is a function of Cohesion, C, and 

angle of internal friction, ϕ, which calculated from the slop of the yield locus [21, 22]. 
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Flow function, the ratio between unconfined yield strength and major principal stresses, of the 

detergent powder at room temperature and without time consolidation stress is reported in 



Figure 2. The flow function, FF, representation is the way to classified and report powder 

flowability. In fact, Jenike [23] used flow factor value, ff = σ1/fc, for flowability classification of 

powder. His considered classes are free-flowing (ff>10), easy flowing (4<ff≤10), cohesive 

(2<ff≤4), very cohesive (1<ff≤2) and non flowing (ff≤1). The flow function of the spray dry 

washing detergent powder was classified as easy flowing at ambient temperature for 

instantaneous conditions, but shows an unusal convex upward curvature, i.e. flow function 

gradient increases with stress. The wall friction properties of the detergent powder against a 

stainless steel wall were also measured with the PFT at the same experimental conditions of 

temperature, storage time and consolidation stress. 

2.1. Jenike theory of critical hopper outlet size 

For predicting the lowest wedge-shape hopper opening size to attain an arch free silo, the 

hopper design procedure developed by Jenike [24] was followed. In this method, the arch 

weight is balanced by the vertical component of the abutment stress, which is the stress within 

the material parallel to the arch surface close to the walls. Equation 2 was derived from 

calculating force balance assuming that the arch thickness is constant through the formed 

arch as well as the arch only hold its own weights. 
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where fc is the unconfined yield strength of the detergent powder, D is the effective outlet size, 

ρb is the powder bulk density, g is the acceleration due to gravity, h(α) is (a shape factor) a 

function which takes into account the effects of variation of the thickness of the arch with the 

silo geometry and the hopper half-angle, α. For measuring h(α) a graphical plot for a wedge 

shape hopper at different hopper opening half-angle was reported by Schulze [23]. 

In mass flow silos, the consolidation stress at the outlet, σ1, depends on the distance from the 

virtual hopper vertex. Making the hypothesis of radial stress field and stationary flow, Jenike 

derived the value of the major principal stress in the arch abutment, σ1: 
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where s is a complex function depending on the hopper geometry (wedge or conical), on its 

half angle, α, on the tensional state (m=1 for active state, m= -1 for passive state), on the 

powder effective angle of internal friction and wall friction, φe and φw respectively. By 

combining Equations 2 and 3, it is possible to obtain the free flow criterion: 
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where ff, as defined in the equation above, is the flow factor, the ratio between consolidation 

stress in the hopper and the stress required to support a stable arch. The flow factor was 

calculated by Jenike and available in diagrams for wedge shape hoppers for different values 

of φe, where ff appears as a function of α, and φw. On the fc - σ1 plane, the flow factor line 

(σ1/ff) cuts the flow function curve, FF(σ1), that is the experimental constitutive equation of the 

material in which the unconfined yield stress, fc, is given as a function of the consolidation 

stress σ1: 

)( 1FFfc =  
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The intersection between the flow function and the flow factor line provides the critical 

unconfined yield strength of the material, fc*. ρb
* is the critical bulk density of the material at 

the arch. The smallest outlet size, Dc, providing arch free flow, hence is given by: 
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3. Results and discussion 

Table 1 reports the time consolidation flow properties of the tested detergent (namely, normal 

consolidation stress during pre-shear phase σc, temperature T, cohesion c, bulk density ρb, 



angle of internal friction φ, effective angle of internal friction φe and angle of wall friction φw) at 

3 different temperatures and storage durations of 1 and 3 days. 

Table 1. Results of the shear tests performed with the PFT at elevated temperature. 

Time 

[day] 

σc 

[kPa] 

T 

[°C] 

c 

[kPa] 

ρb 

[kgm3] 

φ 

[°] 

φe 

[°] 

φw 

[°] 

Instantaneous 0 22 0.04 380 24.8 32 23.6 

1 1.2 27 0.372 571 33.3 38.4 26.5 

37 0.586 588 33.1 41.7 29.6 

47 0.877 610 33 42.5 42.2 

2.4 27 1.015 619 33.7 40.5 18.3 

37 1.41 624 33.3 43.4 19.4 

47 1.951 660 34.8 44.9 23.8 

3 1.2 27 0.292 622 32.1 37.5 30.3 

37 0.908 630 32.4 45.4 38.7 

47 0.965 645 35.3 48.6 44.5 

2.4 27 0.855 662 32.9 38.7 19.7 

37 2.534 679 33.7 47.2 25.2 

47 5.772 684 33.3 49.4 26 

 

Considering the effect of both consolidation duration and temperature on the powder flow 

properties, inspecting Table 1 indicates that cohesion, c, increases with temperature and 

consolidation stress. Elevated temperature makes detergent particles more plastic and thus 

more cohesive. In contrast, the angle of internal friction, φ, is hardly dependent on the change 

in temperature and consolidation stress. Hence, the increase of the unconfined failure strength 

(calculated from Equation 1 and reported in Figure 1 and Figure 3) of the tested detergent is 

as a results of cohesion increase. Bulk density of the detergent is slightly shifted when both 

consolidation stress during pre-shear phase and temperature increased. When higher 

stresses are applied to the powder, particles rearrange and bridges and gaps between 

particles are eliminated and a more efficient packing of particles are formed, hence the volume 

slightly decreases which leads to a higher bulk density. When temperature increases, to some 

extent particle melting cause higher contact area between particles which leads to lower 

porosity in bulk powder, and, hence a bulk density increase. 



The wall friction angle, φw, is an important parameter in determining the minimum hopper half 

angle required for designing mass flow silo without the possibility of arch formation. The wall 

friction angle reports the necessary stress to move powder along the surface of the desired 

wall material, i.e. 304 stainless steel (with a 2B cold rolled finish) in this research. The angle 

of wall friction increased by almost 60% and reached 44.5 ° (at 47 °C -3 days) from 26.5 ° (at 

27 °C-1 day). The increased wall friction angle could be as a result of higher thermoplasticity 

at tested elevated temperatures which cause the surface of particles to become stickier. 

Furthermore, at the elevated temperature the powder moisture content decrease which may 

lead to an increase in friction of the particles and the wall surface mounted on the PFT lid. 

Apart from storage temperature, time consolidation was shown to have an influence on powder 

wall friction. This could be due to the fact that some adhesive bonding between individual 

particles, i.e. crystal bridge formation, as well as bonding between particles and wall may 

require a longer time to form. In addition, higher compaction stresses may cause stronger 

particle-wall interactions which all lead to an elevated wall friction angle. 

Figure 3 reports time consolidation flow functions of the detergent powder at different 

temperatures. Particularly, Figure 3a reports the flow function after 1 day storage and Figure 

3b after 3 days storage. Measuring temperature dependent time consolidation is an important 

parameter for silo design, because only then the calculation on the formation of arch is 

correctly possible to perform. Inspection of Figure 3a reveals that the flow function of the tested 

powder at higher temperature increased compared to the lower tested temperature after 1 day 

storage. Flow function of detergent powder tested at 27 °C and 37 °C were classified in the 

cohesive region while the flow function at 47 °C falls in the very cohesive part with a slight 

tendency towards lower cohesive flow index at higher consolidation stress. A slight shift of 

major principal stress when temperature increased were also observed. Comparing Figure 

3a&b shows that at 27 °C the flow functions falls on the boundary of the cohesive and easy 

flowing ranges but the 1 day storage period shows a slightly greater strength than the 3 day 



storage. This is due to the reduction in cohesion and angle of internal friction of the detergent 

when storage duration increased to 3 days (see Table 1) 

Temperature increases to 37 °C and 47 °C caused a dramatic increase in the unconfined yield 

strength of the detergent, and hence, the flow function shifts from easy flowing region to very 

cohesive region. The shift in flow function curve could be illustrated by the formation of 

interparticle bridges due to increase in the particle contact areas due to plastic flow of the 

particles over time bulk powder sintering at the temperature slightly lower than melting 

temperature of the detergent powder. This is also reported during storage of plastic particles 

at ambient temperature [23]. The other reason could be an increase in adhesive forces at 

elevated temperature [23]. Particularly, Chirone et al [15] reported that the change in flow 

properties of ceramic powder at high temperature is due to the change in van der Waals forces. 

There were no repetitions reported in Table 1. However, one repetition for the flow function 

measurements of sample which stored for 1-day at 37 °C was cried out. The results showed 

les than 2% deviation between the 2 flow function tests. Furthermore, the previous study which 

have done by Salehi et. Al [21] showed that the standard deviation between different repetition 

of flow function measurements using PFT are usually negligible. 

3.1 Model Results 

According to the Jenike approach for silo design, the powder flow properties reported in Table 

1 were used to calculate predicted Jenike design opening slot values reported in Table 2. 

Table 2. Main outlet design values 

Time 

[day] 

T 

[°C] 

ff 

[-] 

fc* 

 [kPa] 

ρb
* 

[kg.m-3] 

αm 

 [°] 

h(αm)  

[-] 

Dc 

[m] 

Instantaneous 22 1.1 0.3 343 28.6 1.12 0.1 

1 27 1.4 0.66 556 31.4 1.15 0.141 

37 1.4 1.20 577 27.9 1.14 0.242 

 47 1.3 1.50 597 16.0 1.08 0.377 

3 27 1.4 0.555 604 27.7 1.13 0.106 

37 1.2 1.79 614 18.1 1.09 0.324 



47 1.2 2.04 627 16.4 1.08 0.358  

 

The flow factor values, ff, were determined by using the diagram provided by Jenike [23]. The 

critical value of the unconfined yield strength, fc*as well as the critical value of bulk density, ρb
*, 

in equation 6, were determined by the intersections between the flow factor line with both flow 

function and density curves. αm is the maximum possible hopper half angle to have the mass 

flow discharge and above this angle the core flow regime is dominant in the hopper. Values of 

h(αm) were evaluated based on the method developed by Schulze [23]. The fc* and ρb
* were 

used in equation 6 to calculate the prediction values of the critical slot opening to avoid arching 

(Dc). 

In general, the value of Dc increased with temperature and storage duration. In particular, the 

critical outlet opening to avoid arching was largest for the highest storage temperature and 

storage duration. The critical hopper half angle to attain mass flow discharge, or in other word 

to avoid core flow discharge, decreased by almost 50%, from 31.4 ° (27 °C-1day) to 16.4 ° (47 

°C-3days). This indicates that for a fixed amount of headroom, the designed silo will have a 

lower storage capacity when the detergent powder is intended to be stored at high temperature 

for 3 days. In a core flow silo, only the material in the channel above the opening slot flows at 

the initial stages of discharge. Afterwards, materials placed in the stagnant area (located at 

the silo periphery starting at the hopper walls) could discharge. These zones are usually 

formed asymmetrical, hence causing unfavourable stress on the silo walls. The other 

unfavourable issue in the core flow silos are rathole development which formed from 

consolidated stagnant zones. Core flow silo have several disadvantages compared to mass 

flow silo where the potential problem of arching remains [23]. 

The critical opening slot of the tested detergent stored at 27 °C for 3days was slightly reduced 

compare to the detergent stored at the same temperature but under consolidation for one day. 

This behavior is in-line with the flow function classification of the detergent at the two tested 

storage durations (see Fig. 3). The predicted critical opening slot for all tested conditions seem 



to be very large. It has to be recalled that the Jenike procedure is a silo design procedure and, 

as such, tends to provide silo design estimates on the safe side. In particular, over-estimated 

predicted critical opening diameter in comparison with the experimental values have been 

reported in several studies [7, 25, 26]. 

Conclusion 

Flow properties of a commercial washing detergent powder at high temperature and at 

different time consolidation have been studied. The flow function showed considerable 

dependence on temperature and consolidation duration. The Jenike approach for silo design 

has been followed for predicting the minimum hopper opening slot to attain arch-free silo. The 

critical outlet slot width to avoid arching increased by a factor of 3.5, and reached to 0.358 m 

from 0.1 m (at Instantaneous condition), when the temperature and time consolidation 

increased to 3 days and 47 °C respectively. The results showed that in order to correctly 

design a silo, it is essential to evaluate the bulk material flow properties at situation similar to 

the realistic industrial conditions where the powder may store for several days at elevated 

temperature. 

  



 

 

Figure 1. Procedure for evaluating yield locus line (assuming Coulomb) [21]. 
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Figure 2. Flow function of the tested detergent at room temperature without applying time 

consolidation stress (instantaneous flow functions). (The vertical axis has been expanded by 

a factor of 4:1). 
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Figure 3. Time consolidation flow function of the detergent powder at different temperature. 

●, 27 °C; ▲, 37 °C; ■, 47 °C. a) after 1 day storage and; b) after 3 days storage. 
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List of symbols 

C [Pa] cohesion 

D [m] effective outlet size 

Dc [m] critical outlet size 

fc [Pa] unconfined yield strength 

fc* [Pa] critical unconfined yield strength 

ff [-] flow factor 

FF [-] flow function 

g [m/s2] the acceleration due to gravity 

h [-] function which takes into account effects of variation of thickness of the arch 

with the silo geometry and the hopper half-angle α 

R [Pa] radius of Mohr circle at steady state condition 

P [Pa] centre coordinate of the Mohr circle at steady state condition 

S [-] a function depending on hopper geometry, on half angle, α, on the tensional 

state (m = 1 for active state, m = -1 for passive state), on effective angle of internal friction, 

ϕe, and on wall friction, w, 

α [°] hopper half angle 

i [°] kinematic angle of internal friction 

e [°] effective angle of internal friction 

w [°] angle wall friction 

σ1 [Pa] major principal stress 

σ‾c, [Pa] average normal consolidation stress 

σN [Pa] normal stress during shear phase 



τ [Pa] shear stress  

τc [Pa] shear stress at steady state condition during pre-shear phase 

τ‾c [Pa] average pre-shear shear stress 

ρb [kg m-3] bulk density 

ρb* [kg m-3] critical bulk density 

ρt [kg m-3] tap density 
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Table and Figure captions 

Table 1. Results of the shear tests performed with the PFT at elevated temperature. 

Table 2. Main outlet design values. 

Figure 1. Procedure for evaluating yield locus line (assuming Coulomb) [21]. 

Figure 2. Flow function of the tested detergent at room temperature without applying time 

consolidation stress (instantaneous flow functions). (The vertical axis has been expanded by 

a factor of 4:1). 

Figure 3. Time consolidation flow function of the detergent powder at different temperature. 

●, 27 °C; ▲, 37 °C; ■, 47 °C. a) after 1 day storage; and b) after 3 days storage.


