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1. Introduction 

The effect of knowledge externalities on productivity has direct relevance for public policy and 

welfare. Griliches (1979; 1992) has contributed to the debate by introducing the notion of 

external knowledge capital, proxied by the level of external R&D capital stock. This approach 

ties in with macro-level endogenous growth models where investment in innovation is 

associated with increasing returns (Grossman and Helpman, 1991; Romer, 1990). 

In an early review of the empirical research, Griliches (1992) acknowledges the risk of 

selection bias but concludes that the productivity effects or R&D spillovers are significant and 

usually larger than those of own R&D capital. Mohnen (1996) acknowledges that the rates of 

return on external R&D are estimated less precisely than elasticities, but he also affirms that 

returns on external R&D are larger than those of own R&D by 50%-100%. Similarly, Cincera 

and Van Pottelsberghe de La Potterie (2001) report that: (i) international spillovers contribute 

to productivity growth substantially; (ii) the productivity effects are larger in countries with a 

higher degree of openness to imports; and (iii) the spillover effects are often larger than those 

of domestic (own) R&D. Only a more recent review by Hall et al. (2010) reports that spillover 

and own-R&D effects are similar.  

This paper aims to provide a comprehensive synthesis of the evidence base by drawing on latest 

developments in meta-regression analysis. It estimates the average productivity effects of own 

R&D and R&D spillovers in a unified framework, compares the effect-size estimates from the 

full sample with estimates based on adequately powered evidence, and distils evidence-based 

implications for future research and public policy. Other contributions of the paper include: (i) 

evaluation of the publication selection bias through alternative measures; (ii) using a 

hierarchical modelling framework that takes account of the nested nature of the evidence base; 

(iii) controlling for endogeneity that may result from correlation of the regressors with the 

random effects or idiosyncratic errors; (iv) reporting average effect-size estimates for different 

spillover types and comparing the latter with own R&D effects; (iii) using a frequentist model 

averaging method to specify the multivariate meta-regression model and obtain ‘best-practice’ 

meta-effect estimates in different contexts.  

Our findings suggest that the productivity effect of R&D spillovers is smaller than what is 

reported in narrative reviews. Also, it is usually smaller and estimated with lower precision 

compared to the effect of own R&D. Furthermore, the effect is context specific: it is larger 
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(smaller) in countries where absorptive capacity is higher (lower), depending on the history 

and level of investment in own R&D. We also find that more than two-thirds of the spillover 

effect estimates are based on evidence with low statistical power; and the average effect size 

based on adequately powered evidence is too small to be practically significant. Our findings 

do not invalidate the hypothesis that external R&D may be a source of productivity gains, but 

they indicate that the productivity effects of R&D spillovers is smaller than what is usually 

claimed; vary across countries, spillover measures and industries; and call for more innovation 

in measurement and estimation.  

The paper is organised in six sections. In section 2, we present the theoretical/empirical 

framework that underpins the findings in the research field. In section 3, we present our search 

strategy and inclusion/exclusion criteria, comment on the distribution of the effect-size 

estimates and provide preliminary evidence on publication selection bias. Our meta-regression 

methodology is discussed in section 4 while Section 5 presents the empirical findings. Section 

6 concludes by highlighting the implications our findings for policy and future research. 

 

2. Spillovers and productivity: the theoretical/empirical framework  

The effect-size estimates we analyse are extracted from studies that adopt the so-called primal 

approach, which draws on a Cobb-Douglas production function augmented with own-R&D 

capital and external R&D capital (Griliches, 1979). The augmented production function can 

be stated as follows:  

𝑌𝑖𝑡 =  𝐴𝑒𝜆𝑡𝐶𝑖𝑡
𝛼𝐿𝑖𝑡

𝛽
𝐾𝑖𝑡
𝛾
𝑆𝑖𝑡
𝜑
𝑒𝑢𝑖𝑡          (1)  

 

Here, Y is real output; C is physical capital stock net of depreciation; L is labour (number of 

employees or hours worked); K is own R&D capital stock net of depreciation; S is the spillovers 

pool (as specified below); λ is the rate of disembodied technological change; and A is a 

constant. Subscripts t and i denote time and cross-section units (firms, industries or 

countries/regions), respectively. Two standard assumptions underpinning (1) are constant 

returns to scale and continuous optimisation by the production unit. 

The spillover pool (S) available to unit i is the weighted sum of the R&D capital stocks of other 

units (j) where j ≠ i and can be unscaled (1a) or scaled (1b).  
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𝑆𝑖𝑡 = ∑ 𝑊𝑖𝑗𝐾𝑗𝑡
𝑛
𝑗=1         (1a)  

𝑆𝑖𝑡 = ∑ 𝑎𝑖𝑊𝑖𝑗𝐾𝑗𝑡
𝑛
𝑗=1         (1b) 

The weight 𝑊𝑖𝑗 (or 𝑊𝑖𝑗𝑡 if the weight is calculated for each year rather than as an average for 

the analysis period) is a vector that captures either technological proximity or transaction 

intensity between i and j. In (1b), 𝑎𝑖 is an additional weight that captures the spillover-

recipient’s openness to international imports or ‘intermediate trade’ with units in j. Several 

studies (e.g., Coe et al., 1997; Keller, 1998; Krammer, 2010) utilize the additional weight 

arguing that the productivity effects of spillovers depend not only on bilateral import or 

transaction shares but also on the beneficiary’s openness to import or transaction with the ‘rest 

of the world’. However, it must be noted that the spillover pools obtained from (1b) are smaller 

than that in (1a) by construction as both 𝑎𝑖 and 𝑊𝑖𝑗𝑡 are fractions. Finally, 𝐾𝑗𝑡 is the R&D 

capital of unit j in period t.  

Taking natural logarithms and using lower-case letters to denote logged values, we obtain (2a) 

below. The log of technical progress (𝐴𝑒𝜆𝑡) yields a unit-specific effect (ηi) and a time effect 

(λt). The coefficients of main interest are 𝛾 and 𝜑: the elasticities of output with respect to own 

R&D and the spillover pool respectively.  

 

𝑦𝑖𝑡 =  𝜂𝑖 + 𝜆𝑡 + 𝛼𝑐𝑖𝑡 + 𝛽𝑙𝑖𝑡 + 𝛾𝑘𝑖𝑡 + 𝜑𝑠𝑖𝑡 + 𝑢𝑖𝑡       (2a) 

 

Country-level studies that estimate the effects of international spillovers utilise a total factor 

productivity (TFP) specification as indicated in (2b) below. Coefficient estimates from (2a) 

and (2b) will be consistent if the assumptions of perfect competition and constant returns to 

scale are satisfied.  

 

𝐿𝑜𝑔𝑇𝐹𝑃𝑖𝑡 =  𝜂𝑖 + 𝜆𝑡 +  𝛾𝑘𝑖𝑡 + 𝜑𝑠𝑖𝑡 + 𝑢𝑖𝑡      (2b)  

 

In this study, we synthesize evidence from primal-approach studies only to ensure that we are 

pooling comparable evidence, derived from estimating a common production function with 
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quantities as inputs. Dual-approach studies, which estimate a system of factor demand 

equations derived from a cost function representation of technology, are excluded because 

technology can be represented by different cost, profit or value functions. As such, estimates 

from the dual approach are less comparable not only with the primal-approach estimates but 

also among themselves (Hall et al., 2010). The focus on primal-approach evidence only 

delimits the extent of heterogeneity in the evidence base, but it does not eliminate it. Therefore, 

and in line with other meta-analysis studies, we extract information about observable sources 

of heterogeneity and use the latter to model the variation in the evidence base.1 For this, we 

utilise a hierarchical modelling framework that allows for both intercept and slope 

heterogeneity in meta-regression models.  

Our study shares a common ground with several meta-analysis studies on the productivity 

effects of foreign direct investment (FDI) spillovers (see, e.g., Demena and van Bergeijk, 2017; 

Gorg and Strobl, 2001; Iršová and Havránek, 2013; Mebratie and Bergeijk, 2013; Meyer and 

Sinani, 2009; and Wooster and Diebel, 2010). Like these studies, we differentiate between 

different spillover measures and verify whether their productivity effects differ. We also 

control for selection bias and assess the productivity effects after controlling for selection bias. 

Finally, we estimate multivariate meta-regression models to identify the observable sources of 

heterogeneity in the evidence base.  

However, we also offer a number of extensions, including: (i) taking account of within-study 

dependence and nested nature of the meta-analysis data through hierarchical meta-regression 

models (HMRMs); (ii) addressing issues of endogeneity that may result from correlation 

between regressors and unobserved random effects or the regression error; (iii) investigating 

the level of statistical power in the evidence base and the implications of adequate power for 

effect-size estimates; and (iv) using a frequentist model averaging method to address the issue 

of model uncertainty in the context multivariate meta-regression models.  

  

 
1 See Box 1 in the Online Appendix for discussion on the various sources of heterogeneity and the ways in which 

information is extracted to model them. 
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3. Inclusion/exclusion criteria and overview of the research field  

To identify eligible studies, we began with work cited in the existing narrative reviews. This 

sample was augmented through electronic search in Google Scholar and in the Science & 

Technology Management Bibliography (STMB) 2 We used a pre-specified list of keywords, 

including: “R&D spillovers”, “knowledge externalities”, “R&D externalities”, “knowledge 

capital”, “technology diffusion”, “R&D and productivity”, and “spillovers and productivity”. 

The search period is from 1980 to 2016, starting one year after the publication of the seminal 

paper by Griliches (1979).3  

Following the best-practice recommendations for meta-analysis of economics and business 

research in Stanley et al. (2013), we screened 2,324 potentially relevant studies using title and 

abstract information. Screening decisions identified a sample of 106 studies that we then 

evaluated by reading the full-text.4 We excluded studies (e.g., Bersntein, 1989) that adopt the 

dual approach described above; and those that estimate translog or quadratic production 

functions (e.g., Aiello and Cardamone, 2008; Mairesse and Mulkay, 2008). The dual-approach 

studies are excluded because they draw on different specifications for factor-demand and cost 

functions as indicated above. They also use ex-post (as opposed to expected) output on the 

right-hand-side of their models, increasing the risk of biased estimates (Griliches, 1992: S40). 

Translog or quadratic model studies are excluded because their estimates of the spillover effects 

are non-linear. Finally, we also excluded studies that report starred coefficients without 

standard errors or t-values (e.g., Ang and Madsen, 2013; Coe and Helpman, 1995; Müller and 

Nettekoven, 1999).   

At the end of the full-text evaluation, we obtained a sample of 76 studies that adopt the primal 

approach. Further evaluation indicated that some of these studies reported rate-of-return instead 

of elasticity estimates (e.g., Griliches and Lichtenberg, 1984; Hanel, 2000; Mansfield, 1980). 

We excluded such studies for two reasons. First, rate-of-return estimates are biased if the 

assumption of zero depreciation for R&D does not hold (Griliches, 1979). Secondly, rate-of-

 
2 The STMB database contains references to more than 20,000 articles, books and conference proceedings on 

R&D management, the management of technological innovation & entrepreneurship, science & technology 

policy, and technology transfer. See, http://tomeclarke.ca/science.htm  
3 As indicated above, Griliches (1979) has provided a lasting theoretical and empirical framework for the 

knowledge capital model and identified the range of measurement and estimation issues that empirical researchers 

need to be aware of. 
4 Screening decisions were made by two researchers whilst a third researcher conducted random checks on the 

former’s decisions. Evaluation and the following inclusion/exclusion decisions were taken unanimously by three 

researchers.   

http://tomeclarke.ca/science.htm
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return estimates for both own and external R&D are much less precise than the elasticity 

estimates; and the imprecision is more evident with respect to external R&D (Hall et al., 2010).  

Our estimation sample consists of 60 primary studies that report 983 productivity-effect 

estimates for spillovers and 501 estimates for own R&D at the firm, industry or country/region 

levels.5 We have extracted all reported effect-size estimates to ensure full use of existing 

information and avoid the risk of reviewer-induced selection bias. To control for observed 

sources of heterogeneity, we coded each estimate with respect to: (i) publication characteristics 

(publication type and date, journal quality, etc.); (ii) model specification (control for own R&D, 

time dummies, industry/country dummies, etc.); (iii) data and sample characteristics (unit of 

analysis, data origin, etc.); (iv) estimation methods (GMM, 2SLS, 3SLS, OLS, panel 

cointegration, FE, etc.); and (v) spillover types (knowledge, rent or mixed spillovers).6 

Kernel densities of the effect-size estimates and associated t-values are presented in Figure 1 

for the spillover and own-R&D samples. Most effect-size estimates are positive, but their 

distribution has long tails to the right. Long right tails are also observed in the distribution of 

t-values.7 Moreover, the t-values have the highest density around 2 – near the cut-off point 

associated with statistical significance at 5%. This may be a sign of publication selection, which 

reveals itself as a sudden increase in the frequency of effect sizes that just pass the 5% 

significance level.8  

 
5 In our sample, primary studies based on firm or industry data from developing countries are small in number 

(e.g., Parameswaran, 2009 and Raut, 1995 with Indian data and Wang and Chao, 2008 with Taiwanese data). This 

may be due to relative lack of data in developing countries. It is also the case that some studies based on developing 

country data had to be excluded due to non-compatibility with the primal approach. These include, but are not 

limited to: Chuang and Lin (1999) – with Taiwanese data, but the model is not specified in log-log form; Wei and 

Liu (2006) – with Chinese data, but it estimates the effects of intangible asset spillovers as opposed to R&D 

spillovers; and Johnson and Evenson (2000) – with African data, but the model is not specified in log-log form. 
6 The mixed spillovers category captures the spillover pool constructed with transaction intensity in knowledge-

intensive goods/services (e.g., Branstetter, 2001; Griffith et al., 2006; Lee, 2005). As indicated in section 2 above, 

there is lack of agreement in the literature on whether such spillovers should be considered as knowledge or rent 

spillovers.  
7 The probabilities of the t-values by four cut-off points are given in Table 2 below. 
8 This is similar to Andrews and Kasy (2019), who consider the jumps in the density of the reported estimates 

around the cut-off points for significance as potential indicators of selection bias. 
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Figure 1: Kernel densities of effect-size estimates and associated t-values  

Panel A: Spillover effects and associated t-values 

  

Panel B: Own-R&D effects and associated t-values  

  

 

Further information is provided in Tables A1 and A2 in the Online Appendix. Most studies 

(97%) are journal articles, with the remaining 3% consisting of working papers. The median 

effect-size estimate and t-value, respectively, are 0.070 and 3.323 for spillovers and 0.061 and 

4.261 for own-R&D. The summary measures indicate that spillover and own-R&D effects are 

similar, but the former tend to be estimated with lower precision compared to own R&D effects. 

The within-study median of the effect size is positive in a large majority of the primary studies, 

with the exception of four studies (Braconier and Sjöholm, 1998; Harhoff, 2000; Kwon, 2004; 

McVicar, 2002) where the median spillover effect is negative and two studies (Biatour et al., 

2011; Braconier and Sjöholm, 1998) with a negative median productivity effect for own R&D.  
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It is also worth noting that most studies report multiple productivity estimates, with a range 

from 1 to 102 in the spillover sample and from 1 to 45 in the own-R&D sample. Whilst 22 

studies utilise firm-level, 11 studies use industry-level data and 25 studies are based on country 

data. Of the remaining two, Acharya and Keller (2009) focuses on both countries and industries 

while Bronzini and Piselli (2009) focuses on regions (in Italy). 

We probe the twin issues of heterogeneity and publication selection further through funnel plot 

asymmetry in Figure 2. The vertical line indicates the fixed-effect weighted mean (FEWM), 

estimated with weights equal to the reciprocal of the squared standard error. Asymmetric 

distribution around the FEWM is an indication of publication selection bias. Effect-size 

estimates beyond the 95% pseudo confidence interval limits (dashed lines) reflect the degree 

of residual heterogeneity that cannot be explained by sampling variations. In the left panel, 

outliers are excluded based on dfbeta routine in Stata. In the right panel, we implement a more 

severe restriction by excluding all effect-size estimates with a standard error of more than 0.5.  

The funnel graphs indicate that the fixed-effects weighted means (FEWMs) of the effect sizes 

are similar for spillovers and own-R&D. Also, in both evidence pools, the distribution of the 

effect sizes around the FEWM is asymmetric, with evident concentration to the right.  This is 

an indication of publication selection bias that needs to be verified using meta-regression and 

other methods. Third, the effect-size estimates for spillovers are associated with larger standard 

errors (ranging from 0 to 1.5) compared to standard errors associated with own-R&D effects 

(ranging from 0 to 0.6). Finally, the extent of residual heterogeneity that cannot be explained 

by sampling variation is very high in both samples (around 98%).  
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Figure 2: Funnel graphs for productivity effects of spillovers and own RD 

 

Spillover pool 

   

Own R&D pool 

  

Notes:  In the left panel, outlier restriction is based on dfbeta<=1; in the right panel, observation with standard 

error > 0.5 are excluded. Residual heterogeneity remains at 98.1% for spillovers and 97.9% for own R&D in both 

scenarios.  
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regress the logarithm of the absolute t-value associated with reported estimates on the logarithm 

of the square root of the corresponding degrees of freedom (LSRDF). The assumption here is 

that estimates based on larger samples (i.e., estimates with higher degrees of freedom) should 
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0
.5

1
1
.5

S
ta

n
d

a
rd

 e
rr

o
r 

o
f 

e
ff
e

c
t-

s
iz

e
 e

s
ti
m

a
te

-4 -2 0 2 4
All-type spillover effect

Funnel plot with pseudo 95% confidence limits

0
.1

.2
.3

.4

S
ta

n
d

a
rd

 e
rr

o
r 

o
f 

e
ff
e

c
t-

s
iz

e
 e

s
ti
m

a
te

-1 -.5 0 .5 1
All-type spillover effect

Funnel plot with pseudo 95% confidence limits

0
.2

.4
.6

S
ta

n
d

a
rd

 e
rr

o
r 

o
f 

e
ff
e

c
t-

s
iz

e
 e

s
ti
m

a
te

-1 -.5 0 .5 1
Own R&D effect

Funnel plot with pseudo 95% confidence limits

0
.1

.2
.3

.4

S
ta

n
d

a
rd

 e
rr

o
r 

o
f 

e
ff
e

c
t-

s
iz

e
 e

s
ti
m

a
te

-1 -.5 0 .5 1
Own R&D effect

Funnel plot with pseudo 95% confidence limits



13 
 

hypothesis is that publication selection is absent if the coefficient on LSRDF is 1 – i.e., if a 1% 

increase in the degrees of freedom is associated with a 1% increase in the t-value of the 

estimate. Results presented in Table 1 indicate clearly that the coefficients are much smaller 

than 1 and the null hypothesis of the Wald test is rejected strongly.  

 

Table 1: Card and Krueger (1995) test for publication selection bias 

Evidence pool Coefficient (β) SE 

Wald test statistic  

H0: β=1  p-value 

All-type SPO 0.2183 0.0984 F(1,1035)=  63.07 0.0000 

Own-R&D 0.1114 0.2030 F(1, 496) =  19.16 0.0001 

Notes: The dependent variable is the logarithm of the absolute value of the t-ratio.  Robust standard errors are 

clustered at the study level. Other tests for sub-samples consisting of knowledge, rent and mixed spillovers as 

well as spillovers and own-R&D sub-samples by unit of analysis (i.e., by firm, industry and country levels of 

data) are similar. The latter are not reported here to save space, but are available upon request.  

 

We then exploit discontinuity (jumps) in the probability of publication around t-values that 

correspond to significance at 5% (Andrews and Kasy, 2019). This non-parametric test involves 

estimating probabilities of observing negative or insignificant productivity-effect estimates 

relative to the probability of observing estimates that are significant and positive in the latent 

population of studies. The cut-off points for the t-value and the resulting bands are specified in 

(3) below, where the t-values in the population are associated with probabilities 𝛽𝑝,1, 𝛽𝑝,2, 𝛽𝑝,3,

𝛽𝑝,4 depending on the band they are in.  

𝑃(𝑡𝑣𝑎𝑙𝑢𝑒) ∝

{
 
 

 
 𝛽𝑝,1           𝑡𝑣𝑎𝑙𝑢𝑒 < −1.96 ∶ 𝑏𝑎𝑛𝑑1

𝛽𝑝,2   − 1.96 ≤ 𝑡𝑣𝑎𝑙𝑢𝑒 < 0 ∶ 𝑏𝑎𝑛𝑑2

𝛽𝑝,3       0 ≤ 𝑡𝑣𝑎𝑙𝑢𝑒 < 1.96 ∶ 𝑏𝑎𝑛𝑑3

𝛽𝑝,4                𝑡𝑣𝑎𝑙𝑢𝑒 ≥ 1.96 ∶ 𝑏𝑎𝑛𝑑4

     (3) 

 

Andrews and Kasy (2019) demonstrate that discontinuities (jumps) in the density of the t-

values in the sample can be used for identifying discontinuities in their density in the latent 

population of studies. Therefore, the population probabilities in (3) can be estimated using 

sample data. We do this through a multinomial logit estimator, treating the probability of 

observing a t-value in band 4 as the excluded category. The results (not reported here to save 

space) indicate that the probability of observing t-values in bands 1 – 3 would be smaller than 
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the probability of observing t-values in band 4. Using predictive margins, the relative 

probabilities for all bands are given in Table 2.9  

 

Table 2: Relative publication probabilities of observed effect-size estimates 

Publication probability 𝑡𝑣𝑎𝑙𝑢𝑒 < −1.96 −1.96 ≤ 𝑡𝑣𝑎𝑙𝑢𝑒 < 0 0 ≤ 𝑡𝑣𝑎𝑙𝑢𝑒 < 1.96 𝑡𝑣𝑎𝑙𝑢𝑒 ≥ 1.96 

All-type SPO 0.0412*** 

(0.0096) 

0.0825*** 

(0.0135) 

0.2109*** 

(0.0265) 

0.6654*** 

(0.0323) 

Own R&D 0.0080 

(0.0062) 

0.0141* 

(0.0076) 

0.2309*** 

(0.0434) 

0.7470*** 

(0.0447) 

Distribution of t-values     

All-type SPO 39 76 202 666 

Own R&D 4 9 116 371 

Note: Robust standard errors (in brackets) are clustered at the study level. *, *** indicates significance at 10% 

and 1%, respectively. Publication probabilities reflect the distribution of the t-values in the sample.  

 

Predicted margins in the last column indicate that the probabilities of observing significant and 

positive effect-size estimates are about three-times the probabilities of observing positive but 

insignificant estimates (penultimate column). Findings in Tables 1 and 2 provide quantitative 

measures of publication selection (funnel asymmetry) but the latter is estimated independently 

of the average effect size in the evidence base. In what follows, we discuss our preferred 

methodology for estimating the publication selection bias and obtaining average effect-size 

estimates at the same time. 

 

4. Meta-regression methodology 

Our methodology is informed by the publication selection model proposed by Egger et al. 

(1997) and the weighted least squares (WLS) model estimation discussed in Stanley (2005; 

2008) and Stanley and Doucouliagos (2012; 2014; 2017) among others. We contribute to the 

existing effort by: (i) adopting a hierarchical modelling (HM) approach to the bivariate and 

multivariate meta-regression models; (ii) evaluating the statistical power in the evidence base 

and obtaining effect-size estimates based on adequately powered evidence; and (iii) utilising a 

weighted-average least squares (WALS) routine for addressing model uncertainty in the 

 
9 We estimated the multinomial logit model with a constant only and by allowing the t-value bands to be related 

to the degrees of freedom within the band. The predictive margins from both specifications are identical. Also, 

we have estimated relative probabilities for all spillover-type samples, with similar results. The latter are not 

presented here to save space, but they are available on request. 
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specification and estimation of the multivariate meta-regression model. These methodological 

considerations are discussed in sections 4.1 - 4.3 below.  

 

4.1 Specification and estimation issues in the bivariate meta-regression model 

In Egger et al. (1997), the estimates of a ‘true’ effect in a research field vary around the true 

effect with an idiosyncratic error (𝜉𝑖) if publication selection does not exist. However, when 

publication selection exists, effect-size estimates in primary studies will be conditional on the 

standard error (𝑆𝐸𝑖) as indicated in (4a) below. The model in (4a) can be used to conduct tests 

for the null hypothesis of no publication bias by testing for 𝛼 = 0. Also, the estimate of 𝛽 

would be an unbiased estimator of the average productivity effect after controlling for 

selection. 

𝑒𝑓𝑓𝑒𝑐𝑡_𝑠𝑖𝑧𝑒𝑖 =  𝛽 + 𝛼𝑆𝐸𝑖 + 𝜉𝑖       (4a) 

Yet, the bivariate model in (4a) raises seven estimation issues, three of which have been 

addressed in Stanley (2005; 2008) and Stanley and Doucouliagos (2012), among others. Of 

these, heteroskedasticity is addressed through a weighted least squares (WLS) estimator, using 

precision-squared (1/𝑆𝐸𝑖
2) as analytical weight. This is equivalent to dividing both sides of (4a) 

with the standard error (Stanley and Doucouliagos, 2012), leading to:  

𝑡𝑖 = 𝛼 + 𝛽 (1 𝑆𝐸𝑖
⁄ ) + 𝜔𝑖        (4b)10 

Here 𝑡𝑖 is the t-value associated with the effect-size estimate as reported in the primary study 

and 𝜔𝑖 is the error term in (4a) divided with the standard error. Testing for 𝛽 = 0 is a precision-

effect test (PET) for ‘genuine’ effect, whilst testing for 𝛼 = 0 is the funnel asymmetry test 

(FAT) for publication selection. However, FAT is known to have low power and as such it is 

advisable to compare the FAT results with other results. Therefore, we will rely on the FAT 

results only if they are consistent with the selection bias evidence we reported in Tables 1 and 

2. On the other hand, rejection of the null hypothesis in PET indicates significant effect after 

controlling for publication selection.  

 
10 Note that the error term in (4b) is also divided by the standard error. In other words,  𝜔𝑖 = 

𝜉𝑖
𝑆𝐸𝑖
⁄ . This is also 

the case in (5b) below.  
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The second issue relates to the observation in Andrews and Kasy (2019) that the interpretation 

of 𝛽 as selection-corrected average affect across studies may be misguided. This is because the 

conditional expectation of the effect size across studies is not necessarily linear in the standard 

error (or precision). To avoid the risk of biased estimates, Andrews and Kasy (2019) propose 

a non-parametric method of correcting for publication selection.  

We argue in favour of a parametric method for two reasons. First, a solution to non-linearity in 

the relationship between effect-size estimates and their standard errors has already been 

proposed in the context of parametric meta-analysis models. Simulation studies (Moreno et al., 

2009, 2011; Stanley and Doucouliagos, 2014) clearly indicate that a non-linear (quadratic 

specification) is preferable if an effect size exists – i.e., if the PET rejects the null hypothesis. 

Then, the non-linear Egger model and its WLS equivalent are:   

𝑒𝑓𝑓𝑒𝑐𝑡_𝑠𝑖𝑧𝑒𝑖 =  𝛾 + 𝜑𝑆𝐸𝑖
2 + 𝜗𝑖       (5a) 

𝑡𝑖 = 𝛾 (1 𝑆𝐸𝑖
⁄ ) + 𝜑𝑆𝐸𝑖 + 𝜀𝑖        (5b) 

Model (5b) is estimated without a constant term and is referred to as precision-effect test 

corrected for standard errors (PEESE). The average effect size is 𝛾, which is shown to have 

smaller bias and mean square error if the PET result indicates a significant effect. In addition, 

the performance of the PEESE specification remains better at different levels of selection bias 

(Moreno et al., 2009, 2011; Stanley and Doucouliagos, 2014).11 Therefore, we address the issue 

raised by Andrew and Kasy (2019) by reporting PEESE estimates for the unbiased average 

productivity effects when the latter is significant in the PET. 

The second argument in favour of parametric models is that they, unlike the non-parametric 

model proposed by Andrew and Kasy (2019), do not rely on a strong assumption that the 

publication probability is either known or can be estimated correctly as a function of the Z-

statistic that indicates statistical significance. If the publication probability is unknown or 

estimated incorrectly from the sample, Andrews and Kasy (2019) clearly indicate that the 

median unbiased effect size they propose cannot be estimated correctly: only valid confidence 

intervals can be obtained.  

 
11 The better performance of the quadratic specification at different levels of bias is an important finding that both 

justifies and allays the concern in Andrews and Kasy (2019) that the linear Egger regression may yield biased 

effect-size estimates if selection bias exists. 
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Although we prefer a parametric modelling approach, we also argue that the latter may yield 

biased estimates if the hierarchical nature of the data is overlooked (issue 3). A well-known 

feature of the meta-analysis data is that primary studies report multiple effect-size estimates 

that may be correlated due to dependence on a given data source, estimator or time period or a 

combination thereof. Hence, the meta-regression model must take account of such 

dependencies by allowing for a more general covariance structure where effect-size estimates 

from the same study can be correlated. If within-study dependence (i.e., intra-study correlation) 

exists, the ordinary least squares (OLS) estimator would be inappropriate for two reasons: (i) 

the sample size is exaggerated due to treatment of all effect-size estimates as independent 

observations; and (ii) the risk of rejecting the null hypothesis erroneously (type-I error) is 

higher (Snijders and Bosker, 2012).  

We address within-study dependence by adopting a hierarchical modelling (HM) framework 

that allows for intra-study correlation between effect-size estimates. This contrasts with the 

existing practice of relying on pooled OLS with clustered standard errors (Stanley and 

Doucouliagos, 2012). The latter corrects for standard errors but not for the effect-size estimate, 

which is estimated without taking account between-study heterogeneity. In the presence of 

unobserved heterogeneity, the HM estimator performs better than OLS (Katahira, 2016). 

Furthermore, they allow for flexibility in modelling unobserved heterogeneity, which can be 

modelled as random intercepts, random slopes or both. A two-level random-intercept and 

random-slope HM is stated below, with other specifications given in Box 2 in the Online 

Appendix.12 

𝑡𝑖𝑗 = α
𝑅𝐼𝑆2 + β𝑅𝐼𝑆2 (1 𝑆𝐸𝑖𝑗

⁄ ) + ℎ0𝑗
𝑅𝐼𝑆2 + ℎ1𝑗

𝑅𝐼𝑆2 (1 𝑆𝐸𝑖𝑗
⁄ ) + 𝑢𝑖𝑗

𝑅𝐼𝑆2   (6) 

Here the superscript (RIS2) indicates that this is a two-level HM with random intercepts and 

random slopes. Of the random-effect components,  ℎ0𝑗
𝑅𝐼𝑆2 is study-specific random intercepts 

that reflect between-study heterogeneity in terms of intercepts; and ℎ1𝑗
𝑅𝐼𝑆2 (1 𝑆𝐸𝑖𝑗

⁄ ) are the 

study-specific slopes that reflect between-study slope heterogeneity. Both random effects are 

 
12 See Box 2 in the Online Appendix; and Ugur et al. (2016; 2018) for further discussion. 
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distributed normally with a zero mean and constant variance; and they are assumed orthogonal 

to the regressor (i.e., 1/SE). Finally, the model error is  𝑢𝑖𝑗
𝑅𝐼𝑆2 and is assumed to be i.i.d.  

The choice between OLS and HM estimator and the choice between restricted (e.g., random-

intercepts-only - RIO) and unrestricted (e.g., random-intercepts-and-slopes - RIOS) HMs is 

made through likelihood ratio (LR) tests. The null hypothesis in the LR tests is that the 

restricted model (OLS or restricted HM) is nested within the unrestricted HM. Rejection of the 

null hypothesis indicates that the unrestricted HM is more appropriate.  

The fourth issue is endogeneity due to two sources. The first, which is a common problem in 

all estimators, is potential correlation between the regressors and the model’s error term. To 

address this issue, we estimate the Egger regression (4a) with a two-stage least-squares (2SLS) 

estimator, using the inverse of the squared standard error (1/SE2) as analytical weights. We also 

use the inverse of the sample size and its square as instruments for the standard error (SE). We 

conduct endogeneity and overidentification tests to verify if the SE is exogenous and the 

instruments are valid.13  

The second type of endogeneity, specific to HMs, may arise due to correlation between the 

regressors (1/SE in 6) and study-level random-effect components (ℎ0𝑗
𝑅𝐼𝑆2 or ℎ1𝑗

𝑅𝐼𝑆2 in 6). 

Simulations in Ebbes et al. (2004) indicate that the hierarchical model would yield upward-

biased effect-size estimates and downward-biased publication selection bias estimates if the 

regressors are correlated with the random-effect components. Both biases are larger if the first 

type of endogeneity also exists.  

A well-known correction for the regressor’s correlations with the random-effect components 

has been proposed by Mundlak (1978), who demonstrate that inclusion of within-group means 

of the regressor in the model ensures mean-independence between the regressors and the group-

level random effects (see, also, Snijders and Bosker, 2012).  The Mundlak correction, however, 

may yield biased estimates because it requires within-group means at the population level 

whereas only sample means are available (see, Grilli and Rampichini, 2011). Nevertheless, the 

potential estimation bias in the Mundlak correction does not invalidate the Mundlak test itself 

(Ebbes et al., 2004; Hanchane and Mostafa, 2012). Therefore, we follow the Mundlak approach 

 
13 Because we estimate the models with robust standard errors, the test reports Wooldridge’s (1995) score test for 

endogeneity. Failure to reject the null hypothesis indicates that OLS should be used instead of 2SLS. Test results 

are reported in the last rows of the estimation tables below.  
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to test the null hypothesis that the regressors are uncorrelated with the study-level random 

effects. If the null hypothesis cannot be rejected, we estimate the HMs without Mundlak 

correction. Otherwise, we use the within-study mean of the precision as an additional regressor.  

The fifth issue relates to multiple effect-size estimates reported by primary studies. To avoid 

domination by studies that report large number of estimates, we estimate (4b) and (5b) with 

frequency weights, specified as the inverse of the number of estimates reported in each study 

(see, Stanley, 2005; 2008; Stanley and Doucouliagos, 2012).  

 

4.2 Statistical power and the weighted average of the adequately powered evidence  

The sixth issue we address is whether the evidence base is adequately powered and what would 

the average effect size be when only adequately powered effect-size estimates are used in the 

meta-analysis. Technically, statistical power is the probability of rejecting the null hypothesis 

correctly – i.e., when the alternative is true. Stated differently, power is the probability of 

‘discovering’ a significant effect when the latter actually exists (Ellis, 2010: 52). In our context, 

it provides important information about the probability of detecting a significant spillover (or 

own-R&D) effect when the latter is true. Statistical power (hence the probability of discovering 

a ‘true’ effect) is higher when the sample size is larger and the standard error of the productivity 

estimate is lower (i.e., the precision is higher).  

As indicated in Ioannidis et al. (2017), adequate power in social-scientific research has been 

conventionally set at 80% or over. This corresponds to a probability of a Type II error that is 

not larger than four times the probability of the Type I error. With a 5% significance level, this 

‘power rule’ implies the following relationship between the estimate of the ‘true’ effect (𝛾) 

and its standard error (SE) (Ioannidis et al., 2017: F239): 

 |𝛾| / 𝑆𝐸𝑖 ≥ 2.80   or    𝑆𝐸𝑖 ≤ |𝛾|/2.80.      (7) 

To identify the standard errors that satisfy the inequality in (6), we use the PEESE estimates of 

the average effect size (𝛾) from model (5b).14 Then the percentage of the adequately-powered 

evidence in the sample is obtained by dividing the number of adequately-powered effect-size 

 
14 Ioannidis et al. (2017) use PEESE estimates obtained from a WLS estimator instead of HM estimator. When 

we replicate their approach, we obtain highly similar percentages of adequately-powered estimates and weighted 

averages of the adequately powered. The results, not reported here to save space, can be provided on request. 
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estimates with the total number of productivity effect estimates in the relevant sample. Finally, 

the weighted average of the adequately-powered (WAAP) is obtained as a weighted average 

of effect-size estimates that satisfy the power rule, using the precision-squared (1/SE2) as 

analytical weights.  

 

4.3 Addressing model uncertainty in the multivariate meta-regression model  

The seventh issue arises in the context of the multivariate meta-regression model and concerns 

the choice of the moderating variables that capture the sources of observed heterogeneity in the 

evidence base.  To address this issue, we estimate a hierarchical multivariate meta-regression 

model (HMRM) as specified in (8) below and discussed in Box 2 in the Online Appendix. 

Observed heterogeneity is modelled through a set of binary (Z) variables that moderate the 

magnitude of the effect-size estimates and a set of continuous (X) variables that capture the 

sources of selection bias.  

𝑡𝑖𝑗 = 𝛼
𝐻𝑀 + 𝛽𝐻𝑀(1 𝑆𝐸𝑖𝑗)⁄ + ∑ 𝛾𝑚

𝐻𝑀
𝑚 𝑍𝑚(1 𝑆𝐸𝑖𝑗)⁄ + ∑ 𝛾𝑘

𝐻𝑀
𝑘 𝑋𝑘 + ℎ0𝑗 + ℎ1𝑗(1 𝑆𝐸𝑖𝑗)⁄ + 𝜀𝑖𝑗

𝐻𝑀   (8) 

Our choice of the moderating variables is informed by reporting guidelines for meta-analysis 

of economics research (Stanley et al., 2013). The continuous X-variables are not divided with 

standard error to verify whether higher levels of perceived quality and larger sample sizes are 

associated with less or more selection bias.15  They include the H-index of the journal, the 

number of citations for the primary study, the number of observations on which the effect-size 

estimate is based, and the number of years in the data used. As a measure of perceived quality, 

we have chosen the journal H-index instead of other journal quality indicators in the light of 

review evidence on alternative measures. 16 We have also used the study-specific number of 

citations per year as an additional quality indicator.17  

 
15 Nevertheless, we have estimated the HMRM with continuous variables divided by the standard error. The 

results, not reported here, are highly similar and can be provided on request. 
16 We use the logarithm of the h-index for journals, as reported in the Scimago Journal & Country Rank (SJR) 

database (http://www.scimagojr.com/). Several reviews of the existing journal ranking schemes report that the 

alternative measures (e.g., eigenfactor, SJR score, source normalized impact per paper, etc.) are highly correlated 

(González-Pereira et al., 2010; Mingers and Yang, 2017; and Yuen, 2018). Furthermore, Mingers and Yang (2017) 

suggest that the H-index is one of the most efficient indicators for business and management journals, which 

include economics journals. 
17 This is in line with Philips (2016), who also investigates whether perceived paper quality is associated with 

selection bias. Number of citations are drawn from Google Scholar. Reviews of existing citation platforms indicate 

http://www.scimagojr.com/
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In addition to the wide range of binary moderating variables utilised in meta-analysis, we have 

two binary variables informed by the characteristics of the research field: data midpoint in 1991 

or before; and publication date after 2000. The binary variable for data mid-point in 1991 or 

before identifies effect-size estimates that would be more dependent on data collected before 

the OECD’s publication of the Oslo Manual on collecting and interpreting technological 

innovation data. These studies account for 25% of the evidence base.  The binary variable for 

studies published after 2000 identifies primary studies published after seminal contributions to 

the field by Griliches (1992), Coe et al. (1997) and Keller (1998). These studies account for 

75% of the evidence base.18  

Given the absence of theoretical guidance on the set of moderating variables to be included in 

(8), we address model uncertainty by a weighted-average least squares (WALS) routine that 

combines ideas from Bayesian and frequentist approaches to model averaging (De Luca and 

Magnus, 2011). We prefer the WALS routine to the Bayesian model averaging (BMA) 

approach in meta-regression (Havránek, 2015; Iršová and Havránek, 2013) because the former 

has a bounded risk profile, relies on transparent ignorance in the selection of the focus 

variable(s), and is less costly in terms of computation time. The focus variable in WALS is 

precision (1/SEi), which reflects prior knowledge based on the Egger et al. (1997) model. All 

moderating variables are treated as auxiliary covariates, the relevance of which is determined 

by information from the data. The decision rule is to include an auxiliary covariate in the 

specific HMRM if its t-value in WALS is greater than one in absolute value (De Luca and 

Magnus, 2011).19 Following this rule, we estimate the HMRM with 20 moderating variables 

out of 30 potential candidates.20  

  

 
that Google Scholar provides a relatively more comprehensive account of citations compared to alternatives such 

as the Thomson ISI Web of Science and Scopus (Harzing, 2008; Meho and Yang, 2006; Nisonger, 2004).  
18 The coefficients on these and other  binary variables described in Table A5 in the Online Appendix indicate 

whether the effect-size estimates associated with the observed characteristic are larger or smaller than the effect-

size estimates in the refence category. 
19 Please see Box 3 in the Online Appendix, where we discuss the frequentist and Bayesian model averaging 

methods and indicate why the WALS routine is preferred.  
20 Results from the specific HMRM with 20 covariates are in Table 6, whereas results from the general HMRM 

with 30 covariates are reported in Table A6 in the Online Appendix. The list of moderating variables (auxiliary 

covariates) that do not satisfy the WALS criteria for inclusion in the HMRM include the following: Cobb-Douglas 

production function specified with human capital; control for capital in the primal model; use of panel data for 

estimation as opposed to cross-section data; North American data as opposed to rest-of-the-world data; knowledge 

spillovers as opposed to rent or mixed spillovers; rent spillovers as opposed to knowledge or mixed spillovers; 

use of GMM estimator as opposed to other estimators; use of data at the country level as opposed to firm or 

industry level data; the logarithm of data years; and the logarithm of the h-index for the journal.   
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5. Meta-regression results 

Table 3 presents the hierarchical model (HM) estimates of the average productivity effect by 

spillover types and own R&D; while Table 4 presents the results by unit of analysis.21 As 

indicated above, we have estimated the Egger et al. (1997) model with 2SLS for 11 evidence 

pools (samples) and tested for endogeneity and instrument validity before estimating the HM 

in (6). In all tests, we failed to reject the null hypotheses that the SE is exogenous.  

Then, we checked if endogeneity exists due to correlation between the regressor (precision) 

and the study-level (level-2) random effects. For this, we conducted Mundlak (1978) tests and 

failed to reject the null hypothesis of no correlation at 5% in 9 out of 11 estimations. The null 

hypothesis is rejected in the case of rent spillover sample (Table 3) and own R&D sample at 

the firm level (Table 4). Here, we used the Mundlak correction by adding the within-study 

mean of the precision to the HM in (6) to ensure mean independence. 

Finally, we have conducted likelihood ratio (LR) tests to verify if the HM specification we use 

is preferable to the constrained alternative, which can be OLS or a restricted HM. All LR tests 

clearly justify the HM specification we adopt, which provides for random slopes and: (i) 

random intercepts at the spillover type and study levels in the case of spillovers; and (ii) random 

intercepts at the study level only in the case of own R&D effects.

 
21 Results in Tables 3 and 4 are not based on frequency weights that account for multiple estimates reported in 

primary studies. However, estimations with frequency weights are in Tables A3 and A4 in the Online Appendix. 

The latter are largely similar to what is reported in Tables 3 and 4.  
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Table 3 – Productivity effect estimates by spillover (SPO) types and own R&D 

Dependent variable: t-value Panel A - PET/FAT  Panel B - PEESE 

 

Knowledge 

SPOs 
Mixed SPOs Rent SPOs All SPOs Own R&D  

Knowledge 

SPOs 
All SPOs 

Own 

R&D 

Effect (β in PET/FAT, γ in PEESE) 0.048*** 0.074 0.007† 0.038*** 0.064***  0.069*** 0.036*** 0.073*** 

 (0.017) (0.050) (0.023) (0.014) (0.012)  (0.016) (0.014) (0.011) 

Selection bias 2.065*** 1.377 2.751*** 2.195*** 0.808***     

 (0.572) (1.030) (0.541) (0.380) (0.402)     

Standard error       -0.835 

-

2.736*** 3.588 

       (1.540) (1.247) (3.543) 

          

Obs.  557 96 327 983 501  557 983 501 

Studies 46 6 30 60 26  46 60 26 

Log-likelihood (LL) -1760.941 -306.995 -932.755 -3064.777 -1472.789  -1766.875 

-

3067.101 

-

1474.265 

LL (comp. model) -1853.435 -323.953 -1051.853 -3321.677 -1685.547  -1933.186 

-

3449.187 

-

1714.120 

LR test: comp. mod. Preferred (p > chi2) 0.000 0.000 0.000 0.000 0.000  0.000 0.000 0.000 

Mundlak test: no-corr. at study level (p > chi2) 0.572 0.303 0.054 0.991 0.531  0.572 0.991 0.531 

Exogeneity test (p > chi2) 0.920 0.498 0.492 0.803 0.940  0.920 0.803 0.940 

Notes: Random effects are modelled as random intercepts and random slopes. The null hypothesis in the likelihood ratio (LR) test is that the restricted model is 

preferable to the multi-level model chosen. The null hypothesis in Mundlak test is that the regressor (precision) is not correlated with study-level random effects. 

The null hypothesis in the exogeneity test is that the regressor (standard error) in the Egger model is exogenous. Robust standard errors are clustered at the study 

level. ***, **, * indicates significance at 1%, 5% and 10%, respectively. .   † Estimated with Mundlak correction. 
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In Panel A of Table 3, the selection bias is severe in three out of four spillover samples but 

moderate in the own R&D sample.22 The positive signs of the selection bias are consistent with 

the funnel plot asymmetry and with selection bias evidence reported in Tables 1 and 2. Given 

these congruent findings, we conclude publication selection exists and hence simple summary 

measures or vote-counting evidence relied upon in narrative reviews would be biased. 

After controlling for selection bias, the average effect size in Table 3 is positive and significant 

for knowledge spillovers, own R&D and all spillover types; but it is insignificant for mixed 

and rent spillovers. With PEESE correction in Panel B, the average productivity effects for 

knowledge spillovers and own R&D remain similar at 0.69 and 0.073, respectively. The 

corrected estimate for all spillover types is smaller (0.036). In the case of mixed spillovers, 

neither the effect-size nor the selection bias is significant. These results are in line with those 

obtained with frequency weights in Table A3 in the Online Appendix.23 

A similar pattern is evident in Table 4, where we report average effect-size estimates at the 

country, industry and firm levels. Here too selection bias is substantial (spillover samples at 

the country level) or severe (spillover samples at the firm and industry levels). In the case of 

own-R&D, it is moderate at the country level and substantial at the firm level. The PET 

estimates indicate that spillovers have a positive and significant productivity effect only at the 

country level; whereas own R&D has positive and significant effects at the country and firm 

levels. With PEESE correction, the average productivity effects of spillovers and own-R&D 

are highly similar, ranging from 0.050 - 0.060. The results obtained with frequency weighting 

(Table A4 in the Online Appendix) are mostly in line with Table 4.24  

 
22 The selection bias is considered as severe if |α| > 2; substantial if  1≤|α| ≤ 2; and moderate if |α| < 1 (Doucouliagos 

and Stanley, 2013).  
23 The difference between spillovers and own R&D effect is insignificant as the confidence intervals for both 

estimates overlap. 
24 The only difference is that the average spillover effect at the country level (0.135) is larger than the rest. 

However, spillovers at the country level should be treated with caution. Keller (1998) has demonstrated that the 

spillover effect on country-level productivity remains positive and significant even when random weights are used 

instead of weights based on import shares.  
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Table 4 - Productivity effect estimates by spillover (SPO) types, own R&D and unit of analysis 

Dependent variable: t-value Panel A - PET/FAT  Panel B - PEESE 

 

All SPO 

Country 

All SPO 

Industry 

All SPO 

Firm 

Own R&D 

Country 

Own R&D 

Industry 
Own R&D† 

Firm 
 

All SPO 

Country 

Own R&D 

Country 

Own R&D 

Firm 

Effect (β in PET/FAT, γ in PEESE) 0.058*** -0.019 0.040 0.056*** 0.088 0.050***  0.058** 0.060*** 0.057*** 

 (0.015) (0.038) (0.029) (0.007) (0.059) (0.016)  (0.016) (0.006) (0.016) 

Selection bias 1.641*** 2.370*** 2.637*** 0.623* 1.412 1.748**     

 (0.590) (0.908) (0.538) (0.345) (1.601) (0.733)     

Standard error        -8.955** 13.934* -0.047 

        (4.115) (8.208) (2.587) 

           

Obs.  459 223 299 283 89 126  459 283 126 

Studies 26 12 22 25 9 19  26 25 19 

Log-likelihood (Hierarch. Model) -1408.742 -678.214 -955.515 -705.504 -313.91 -265.875  -1408.060 -705.669 -268.303 

Log-likelihood (Comp. Model) -1541.737 -756.472 -1008.283 -817.222 -333.312 -342.706  -1592.711 -824.433 -378.428 

LR Test chi2 265.989 156.515 105.535 223.437 38.805 153.662  369.302 237.530 220.250 

p-value 0 0 0 0 0 0  0 0 0 

Mundlak test (P>Chi2) 0.355 0.617 0.573 0.106 0.519 0.0005  0.355 0.106 0.0005 

Exogeneity test  (p > chi2) 0.710 0.594 0.780 0.821 0.244 0.757  0.710 0.821 0.757 

Notes: See Table 3.   † Estimated with Mundlak correction.  
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The findings in Tables 3 and 4 do not support the claims in large majority of the narrative reviews that 

the productivity effects of spillovers are larger than those of own R&D.25 Moreover, non-significant 

effects in Table 3 raise doubt about whether rent or mixed spillovers capture true knowledge 

externalities or just measurement errors. Our findings lend support to Griliches (1992: S36), who 

indicates that “true spillovers are ideas borrowed by research teams of industry i from the research 

results of industry j” - and it is not clear whether this kind of borrowing is related to transactions (trade 

or patent flows) between the parties involved. 

A further qualification to the received wisdom is called for by results in Tables 4, where spillover 

effects are insignificant at the firm and industry levels. This may be due to dominance of the creative 

destruction and/or market-stealing effects of external R&D (Aghion et al., 2014; Aghion and Howitt, 

1992; Bloom et al., 2013). A third qualification is called for by positive and significant average 

spillover effects at the country level. This is because it is difficult to separate the rent spillovers through 

the imports channel from productivity gains due to the disciplining effect of international competition 

and wider gains from trade.  

In Table 5, we provide evidence on another issue that has remained underworked in meta-analyses of 

economics research: the extent to which the existing evidence is adequately powered; and what would 

the average effect be when only adequately-powered evidence is used for estimations.26 In Panel A, 

the percentage of adequately-powered evidence is 41% for knowledge spillovers and 30% for all 

spillover types.27 In contrast, 73% of the primary-study estimates of own-R&D effects are adequately-

powered. When spillover and own R&D effects are pooled by the unit of analysis (Panel B), the 

percentage of adequately-powered estimates is relatively higher (55%) for spillover effects at the 

country level but this is still lower than those related to own-R&D at the country level (67%) or firm 

level (74%). Overall, the findings confirm our observation in section 3 that the spillover effects are 

estimated with lower precision compared to own-R&D effects.  

  

 
25 It must be reiterated that Hall et al. (2010) is the only review that does not report larger spillover effects compared to 

own-R&D effects.  
26 To our knowledge, Ioannidis et al., (2017) is the only exception, where statistical power is investigated ex post using 

evidence from 159 meta-analysis studies.  
27 We identify the primary-study estimates with a statistical power of 80% or more by assuming that the best estimates of 

the average productivity effects in the sample are unbiased estimates of the ‘true’ population effects. The best estimates 

are the PEESE estimates in Panels B of Tables 1 and 2.  
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Table 5 – Weighted average effects from adequately-powered (WAAP) evidence:  

By spillover (SPO) type, own R&D and unit of analysis 

 
      Panel A: By spillover (SPO) type and own R&D        Panel B: By unit of analysis 

 Knowledge 

SPO 
All SPO Own R&D 

All SPO 

Country 

Own R&D 

Country 

Own R&D  

Firm 

       

WAAP Effect 0.009*** 0.012*** 0.029*** 0.027*** 0.060*** 0.012*** 

 (0.002) (0.002) (0.001) (0.004) (0.003) (0.002) 

       

Obs. 229 293 365 253 198 93 

R-sq. 0.088 0.095 0.793 0.183 0.702 0.216 

Adequately 

powered (%)† 
41 30 73 55 67 74 

***, **, * indicates significance at 1%, 5% and 10%, respectively. † = (number of adequately-powered 

estimates / all observations in sample)*100 

 

Low power does not invalidate the effect-size estimates from the full samples, but it does suggest that 

such estimates constitute a poor basis for evidence-based policy. Our findings indicate that the average 

productivity effects based on adequately-powered evidence are much smaller. The weighted average 

effect from adequately-powered (WAAP) evidence for knowledge spillovers and all spillover types 

are too small (0.009 and 0.012, respectively) to be practically significant. The WAAP result for 

spillover effects based on country-level data is 0.027 and indicates a moderate effect, but this is still 

half of the own-R&D effect (0.06).  

Findings so far allow for two observations. First, the evidence does not support the claims that the 

productivity effects of external R&D are substantial and larger than own-R&D effects. Such claims do 

not take account of either publication selection bias or the high percentage of low-powered estimates 

in the literature or both. Indeed, both in the full sample and in evidence pools with adequate statistical 

power, the productivity effects of own R&D are usually larger than those of spillover effects.  

Second, our findings also indicate that the productivity effect of spillovers are usually estimated with 

lower precision and power compared to own R&D. As such, they indicate that our knowledge about 

the productivity effect of own R&D is based on firmer evidence. They also lend support to the 

argument that investing in R&D is a necessary first step to develop absorptive capacity, defined as 

organizational routines and processes that enable firms (hence industries and countries) to emulate, 

transform and exploit external knowledge (Cohen and Levinthal, 1989). A more recent study (Aldieri 
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et al., 2018) sheds further light on the importance of absorptive capacity, which depends on the firms’ 

learning strategies and the extent to which the latter is congruent with the spillover type they face.28  

In what follows, we report evidence on observed sources of heterogeneity in the evidence base and 

how the meta-effect varies by each moderating variable. One moderating factor is the measurement of 

the external knowledge stock. Griliches (1992) has already drawn attention to challenges in 

constructing a measure for the external knowledge stock, which may well exist but is essentially 

unobserved. A more recent work (Di Lorenzo and Almeida, 2017) provides new evidence on why the 

weights used to construct spillovers through a transmission channel (e.g., researcher mobility, imports, 

patent flows, etc.) may be too aggregate to take account of the variations in the quality of the 

transmission links between the source and beneficiary of the spillovers.29 Similar considerations apply 

to other transmission links, where different weighting schemes may be necessary to reflect quality 

variations in the composition of imports, foreign direct investment or patent flows that researchers use 

to construct weighted spillover pools.  

Other sources of heterogeneity relate to variations in publication type and sampling, modelling and 

estimation strategies of the primary studies. With respect to publication type, journal quality or journal 

articles as opposed to working papers may have systematic effects on reported estimates. It is also 

necessary to check whether any systematic differences exist between different samples (e.g., whether 

the sample consists of firms, industries or countries; or the firms/industries/countries have high or low 

R&D intensity). Third, we need to check if different weights used to construct the measures of external 

knowledge matter and whether there are effect-size differences when R&D investments or R&D 

capital stocks are used to construct the external knowledge pool. Finally, we verify if different 

estimation methods are associated with different estimates.  

Results in Table 6 are based on two-level HMs with random intercepts and slopes (RIS) in columns 1 

and 2; and with random intercepts only (RIO) in columns 3 and 4. In each specification, the model is 

estimated without frequency weights (columns 1 and 3) and with frequency weights (columns 2 and 

4). The frequency weight is equal to the reciprocal of the number of effect-size estimates reported in 

 
28 Aldieri et al. (2018) report that firms closer to the technology frontier develops absorptive capacities that enable them to 

benefit more from knowledge spillovers whereas those away from the technology frontier build absorptive capacities that 

enable them to benefit more from rent spillovers.  
29 According to Di Lorenzo and Almeida (2017), the mobility of high-performance inventors is lower than that of low-

performance inventors; and the difference between mobility rates is higher the larger is the performance differential. This 

implies  that the quality of the knowledge that spills over through researcher mobility may be lower than the level implied 

by a single weight that reflects the total number of mobile researchers.  
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each primary study, ensuring that each study has an equal weight of one.30 Given the log-likelihood 

values and LR test results, the preferred results are from the HM with RIS and without frequency 

weights (column 1), followed by RIS results with frequency weights in column 2. RIO results without 

and with frequency weights in columns 3 and 4 are reported as sensitivity checks.  

Because the difference in the log-likelihood values is small between RIS and RIO specifications, and 

given that sign and significance consistency is around 70% across 4 columns, we interpret the results 

in Table 6 as follows: (i) strongly-consistent results if sign and significance consistency is observed 

across 4 columns; (ii) consistent results if sign and significance consistency is observed between 

column 1 and two other columns; (iii) moderately-consistent evidence if sign and significance 

consistency is observed between columns 1 and 2 only; and (iv) weakly-consistent evidence if 

consistency exists between one of columns 1 or 2 and one of columns 3 or 4.  

Starting with moderating variables for publication characteristics (top part of Table 6), we observe 

consistent evidence that journal articles report relatively smaller spillover effects on productivity 

compared to working papers. This finding indicates that journals, as opposed to working papers, do 

not exploit reputation to accommodate highly selected evidence. In other words, our finding does not 

lend support to the “winner’s curse” argument in Costa-Font et al. (2013) that journal articles tend to 

report more selected evidence. We have also found consistent evidence that studies published after 

2000 tend to report relatively smaller spillover effects compared to previous studies. This finding 

indicates a competition-related attenuation effect, which arises from method development and/or 

exploitation of richer datasets following the pioneering contributions by Griliches (1992), Coe et al. 

(1997) and Keller (1998). These results are consistent with those from the general model reported in 

Table A6 in the Online Appendix. 

  

 
30 Note that the frequency-weighted HMs are double-weighted versions of the original Egger et al. (1997) model. Both 

sides of the latter are first weighted by precision to address heteroskedasticity. Then, the transformed model is estimated 

with frequency weights to address the issue of undue influence by studies reporting a large number of effect-size estimates. 

Frequency weighting is recommended as a sensitivity check for undue influence from studies reporting large numbers of 

estimates (Stanley and Doucouliagos, 2012). 
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Table 6 - Multivariate meta-regression analysis (WALS-determined specific model) 
Dependent Variable: 𝒕-Value (1) (2) (3) (4) 

Precision  0.204** 0.068 0.255*** 0.232** 

 (0.100) (0.144) (0.045) (0.107) 

Publication characteristics     

Journal article -0.190** -0.126 -0.238*** -0.244*** 

 (0.083) (0.106) (0.036) (0.084) 

Publication date after 2000 -0.037 0.020 -0.099*** -0.114*** 

 (0.031) (0.050) (0.011) (0.036) 

Log of citations -0.067 0.330 -0.220 0.817 

 (0.284) (0.264) (0.464) (1.001) 

Model specification     

TFP - Dependent variable is total factor productivity 0.017 0.032 0.021** -0.012 

 (0.023) (0.034) (0.009) (0.023) 

SPO coefficients in model <=2 0.037*** 0.022** 0.044*** 0.058** 

 (0.010) (0.011) (0.008) (0.026) 

Control for own R&D in model -0.053*** -0.033* -0.031*** -0.005 

 (0.019) (0.019) (0.011) (0.032) 

Industry/country dummies in model 0.051* 0.099*** 0.026*** 0.049*** 

 (0.031) (0.029) (0.009) (0.019) 

Year dummies in model 0.020 0.064 0.028*** 0.046*** 

 (0.029) (0.041) (0.007) (0.017) 

Data and sample characteristics     

Unit of analysis: industry -0.245*** -0.266*** -0.237*** -0.253*** 

 (0.058) (0.103) (0.024) (0.073) 

High R&D-intensity firm, industry -0.039 -0.061** -0.035*** -0.049 

 (0.024) (0.031) (0.013) (0.032) 

South Asian data 0.050 0.005 0.075*** 0.075*** 

 (0.037) (0.050) (0.011) (0.010) 

OECD data 0.092* 0.038 0.135*** 0.118*** 

 (0.051) (0.077) (0.023) (0.041) 

Data mid-point < =1991 -0.045 -0.014 -0.038*** -0.033* 

 (0.032) (0.060) (0.009) (0.020) 

Log of number observations 0.249 0.312 0.375 0.433 

 (0.242) (0.219) (0.359) (0.545) 

Spillover characteristics     

Based on asymmetric weights 0.024*** 0.045 0.021*** 0.037 

 (0.006) (0.036) (0.006) (0.025) 

Unweighted  0.003 0.003 0.005 0.006 

 (0.003) (0.005) (0.003) (0.007) 

Based on R&D investment  0.107* -0.014 0.222*** -0.012 

 (0.063) (0.064) (0.026) (0.154) 

Estimation method     

Estimation with differenced data -0.005* -0.005*** -0.005* -0.004*** 

 (0.003) (0.001) (0.003) (0.001) 

Estimation takes account of panel cointegration  -0.008 -0.009*** -0.008 -0.014* 

 (0.005) (0.003) (0.005) (0.008) 

Instrumental variable (IV) estimation -0.010 0.008 -0.004 0.032 

 (0.007) (0.019) (0.007) (0.038) 

Constant 1.084 -0.970 0.898 -3.478 

 (2.178) (1.986) (3.397) (3.792) 

Observations 983 983 983 983 

Studies 60 60 60 60 

Log-likelihood (HM) -3015.533 -174.850 -3052.399 -186.039 

LR Test chi2 96.545 182.603 400.093 341.093 

P> chi2 0.000 0.000 0.000 0.000 

converged Yes Yes Yes Yes 

Log-likelihood (restricted model) -3121.980 NA† -3121.980 NA† 

*** p<0.01, ** p<0.05, * p<0.1. (1) HM with random intercepts and slopes (RIS), without frequency weights; (2) HM with 

RIS and frequency weights; (3) HM with random intercepts only (RIO), without frequency weights; (4) HM with RIO and 
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frequency weights. † log-likelihood statistics for the comparative model is not reported when the HM is estimated with 

frequency weights. 

 

With respect to model specification, we find no systematic difference between studies that use total 

factor productivity (TFP) and those that use output or value added as dependent variable. This finding 

indicates that coefficient estimates based on both versions of the primal approach are consistent in this 

research field. In contrast, there is strongly consistent evidence that studies that control only for two 

or less spillover types (as opposed to three or more spillover types) tend to report relatively larger 

spillover effects. There is also consistent evidence that studies that control for own R&D capital tend 

to report smaller effect-size estimates compared to those that do not. 

Controlling for own R&D capital is an explicit requirement of the knowledge capital model, where 

own-R&D capital and spillovers are complements and should be both included in the model to be 

estimated (Griliches, 1979; 1992). Therefore, our finding suggests that larger spillover effects in 

primary studies that do not control for own R&D are likely to be upward-biased due to omitted variable 

bias. However, the theory is silent on whether different spillover types should be treated as 

complements. Therefore, all we can conclude is that controlling for at least three spillover types 

(knowledge, rent and mixed spillovers) may be good practice in future research as it allows for 

comparing productivity effects from different spillover types.  

Another model specification issue is inclusion of industry/country and year dummies in the estimated 

models. We find strongly-consistent evidence that the spillover effects are larger when 

industry/country dummies are included in the empirical models. The evidence on inclusion of year 

dummies is only weakly consistent but points in the same direction. The case for including 

industry/country or year dummies is not clear-cut (Hall et al., 2010). On the one hand, such dummies 

can account for erroneous omission of industry/country or year characteristics. On the other hand, they 

may be a source of bias if productivity effects differ because of different technological opportunities 

in different industries or during different phases of business cycles.  

Concerning moderating factors that reflect data and sample characteristics, we find strongly-consistent 

evidence that data at the industry level is associated with lower spillover effects compared to the 

reference category that consists of effect-size estimates based on firm or country data.31 The smaller 

spillover effects at the industry level suggest that the creative destruction and/or market-stealing effects 

of external R&D are stronger between industries compared to between firms or countries. This finding 

 
31 This is also line with the PET-FAT-PEESE results discussed above. 
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indicates that it is necessary to pay more attention to the extent to which the productivity effects of the 

external R&D stock may be attenuated by the creative destruction and/or market-stealing effects of 

external R&D (Aghion et al., 2014; Schumpeter, 1942; Bloom et al., 2013). It also indicates that the 

creative destruction and market-stealing effects may unfold at different speeds at different levels of 

analysis.  

We find weakly-consistent evidence that the spillover effects are relatively smaller when the data relate 

to firms/industries with high R&D intensity. This finding is in line with insights from Schumpeterian 

models of innovation, where productivity growth in firms/industries closer to the technology frontier 

depends more on breakthrough innovation rather than emulation of external knowledge (Aghion et al., 

2014). However, it must be indicated that only 21% of the effect-size estimates in the primary studies 

control for R&D intensity.32  

In contrast, we find consistent evidence supporting the absorptive capacity argument in that the 

productivity effects of spillovers are larger when the data relate to OECD firms/industries/countries 

(73% of the evidence base). This finding indicates that a longer history of innovation and R&D 

investment, coupled with relatively higher levels of R&D intensity over the analysis period, is an 

important factor that enables OECD firms/industries/countries to benefit more from R&D spillovers 

compared to the reference category of non-OECD firms/industries/countries.33 This is in line with 

Cohen and Levinthal (1989) and Aldieri et al. (2018), who report that investment in R&D is a necessary 

condition for benefiting from external knowledge spillovers. It is also consistent with findings in Goñi 

and Maloney (2017), who find that returns on own R&D investment is lower in less developed 

countries and the latter’s ability to benefit from external knowledge via transfers or spillovers depends 

on other absorptive capacity factors such as education, quality of the scientific infrastructure and  the 

national innovation system, and the quality of entrepreneurship.  

The last two findings indicate that countries that have higher R&D intensity secure larger productivity 

gains from spillovers, but the productivity gains diminish as the firm/industry becomes more R&D 

intensive and approaches the technology frontier. Therefore, in future research, it is necessary to 

investigate how and whether the productivity effects of spillovers are mediated through own R&D 

 
32 See summary statistics in Table A5 in the Online Appendix.  
33 Over the data period in the empirical studies (1965 – 2008), of the non-OECD countries only Hong Kong, Singapore and 

Israel have registered R&D intensity or patent-per-capita rates comparable to the OECD average (OECD Science, 

Technology and Industry Scoreboard)  
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intensity and whether the mediation is subject to threshold effects – both at the country and the 

firm/industry levels.  

Turning to spillover characteristics, there is weakly-consistent evidence that studies that adopt a scaled 

(asymmetric) spillover weight tend to report relatively larger estimates compared to those that use a 

symmetric weight. However, it is difficult to ascertain whether this represents a genuinely larger effect 

for two reasons. First, the evidence is only weakly-consistent under our decision criteria. Secondly, 

the larger effect may well be due to smaller magnitude of the spillover pool constructed with 

asymmetric weights.34 The same argument applies to the weakly-consistent evidence that spillover 

pools constructed with R&D investment (instead of R&D capital stock) are associated with larger 

productivity effects. Finally, there is no systematic difference between weighted and unweighted 

spillovers. The findings suggest that there may be several candidates for measuring R&D (knowledge) 

externalities, which are essentially unobserved in the data. As indicated by Griliches (1992), however, 

knowledge spillovers based on technology proximity may be theoretically more relevant.  

With respect to estimation methods, we find strongly-consistent evidence that effect-size estimates 

obtained from first-differenced data are smaller than those obtained from non-differenced data. We 

also find moderately-consistent evidence that estimators that take account of panel cointegration yield 

smaller estimates than others that do not control. Both findings are in line with econometric theory. 

First-differencing is known to produce an attenuation bias because mismeasurement errors in the level 

variables are exacerbated when they are time-differenced (Draca et al., 2007; Ugur et al., 2016). Also, 

in the presence of a cointegrating relationship between panels, effect-size estimates from estimators 

such as dynamic OLS or similar methods converge on the true effect values much faster compared to 

cases where the variables are assumed stationary (Stock, 1987).  

With respect to two continuous variables (log citations and log number of observations) we find that 

they have no effect on reported productivity estimates, but they reduce the magnitude of the selection 

bias (the constant term) considerably. The selection bias is reduced from ‘substantial’ and ‘severe’ 

levels in the bivariate meta-regression results of Tables 3 and 4 to insignificant in the multivariate 

meta-regression results of Table 6.  

In what follows, we exploit the findings from the WALS-selected HMRM (Table 6) to obtain meta-

effect estimates from ‘best-practice’ research that satisfies three criteria: (i) the study is published after 

 
34 Recall that the two weights (openness to import and bilateral import shares) used in the construction of the scaled 

(asymmetric) spillover pool are fractions. As indicated above, the spillover pool based on bilateral impost shares only (eq. 

1a) would be larger than the spillover pool constructed with bilateral import shares and openness to imports. 
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2000; (ii) own R&D capital is controlled for in the primary-study model; (iii) primary-study estimates 

take account of panel cointegration or utilise instrumental variable (IV) estimators.  We use these 

criteria to define ‘best practice’ because studies published after 2000 take account of the modelling 

and estimation contributions by pioneering studies such as Griliches (1992), Coe et al. (1997) and 

Keller (1998). Second, controlling for own R&D is theoretically necessary under the knowledge capital 

model that underpins the reported effect-size estimates (Griliches, 1979; 1992) and its TFP equivalent 

(Coe et al., 1997). Third, checking for panel cointegration is standard practice when the number of 

cross section units in panel data is small (see Coe et al., 1997; 2009; Keller, 1998; and Eberhardt et al., 

2013). Finally, IV estimators take account of endogeneity that may result from measurement errors, 

model misspecification or simultaneity (see Guellec and Van Pottelsberghe de La Potterie, 2001; 2004 

and Lehto, 2007).   

We apply the best-practice scenario to full sample evidence and obtain meta-effect1 in accordance with 

(8a) below. Then we condition on OECD firm/industry/country data only and obtain meta-effect2 (8b 

below). We use meta-effect2 as a sensitivity check for two reasons. First, intra-OECD data for R&D 

is relatively more comparable due to harmonisation of innovation definitions and data collection rules 

after the adoption of the Oslo Manual in 1992.  Secondly, most OECD countries have relatively higher 

levels of R&D intensity due to a longer history of investment in (and public support for) R&D. As 

such, OECD firms/industries/countries can be expected to have a higher degree of absorptive capacity. 

The meta-effect estimates from the WALS-selected HMRM are calculated as follows: 

𝑀𝑒𝑡𝑎 𝑒𝑓𝑓𝑒𝑐𝑡1 =  
𝜕𝑡𝑣𝑎𝑙𝑢𝑒

𝜕𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
+

𝜕𝑡𝑣𝑎𝑙𝑢𝑒

𝜕𝑝𝑏𝑛2000
+

𝜕𝑡𝑣𝑎𝑙𝑢𝑒

𝜕𝑐𝑡𝑟𝑙𝑜𝑤𝑛𝑅𝐷
+
𝜕𝑡𝑣𝑎𝑙𝑢𝑒

𝜕𝑐𝑜𝑖𝑛𝑡𝑔
+
𝜕𝑡𝑣𝑎𝑙𝑢𝑒

𝜕𝐼𝑉
   (8a) 

𝑀𝑒𝑡𝑎 𝑒𝑓𝑓𝑒𝑐𝑡2 =  
𝜕𝑡𝑣𝑎𝑙𝑢𝑒

𝜕𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
+

𝜕𝑡𝑣𝑎𝑙𝑢𝑒

𝜕𝑝𝑏𝑛2000
+

𝜕𝑡𝑣𝑎𝑙𝑢𝑒

𝜕𝑐𝑡𝑟𝑙𝑜𝑤𝑛𝑅𝐷
+
𝜕𝑡𝑣𝑎𝑙𝑢𝑒

𝜕𝑐𝑜𝑖𝑛𝑡𝑔
+
𝜕𝑡𝑣𝑎𝑙𝑢𝑒

𝜕𝐼𝑉
+
𝜕𝑡𝑣𝑎𝑙𝑢𝑒

𝜕𝑂𝐸𝐶𝐷
    (8b) 

The results are presented in Table 7.  The best-practice meta-effect is insignificant when full-sample 

evidence is used. This is the case irrespective of whether the HMRM is estimated with or without 

frequency weights. When we restrict the sample to OECD data only, the meta-effect (0.189) is 

significant only when the model is estimated without frequency weights. This finding provides partial 

support to Griliches (1992), who reviewed the early work (mainly based on OECD data) and reported 

an effect-size interval ranging from 0.05-0.20.  However, it must be noted that the OECD-specific meta-

effect is estimated with a wide confidence interval, which ranges from 0.007 - 0.3710 and includes the 

average effect-size estimate (0.036) from the bivariate meta-regression reported in Table 3. 
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Table 7: Meta-effect based on best-practice: Full sample and OECD data only 

 
 Meta-effect Std. error P>Z 95% c.i. 

Meta-effect – using the WALS-selected model     

Meta-effect1a:  Full sample, no freq. weights 0.096 0.093 0.298 -0.085, 0.278 

Meta-effect1b: Full sample, with freq. weights 0.054 0.121 0.655 -0.183, 0.291 

Meta-effect2a:  OECD data, no freq. weights 0.189** 0.093 0.042 0.007,  0.371 

Meta-effect2b: OECD data, with freq. weights 0.092 0.123 0.452 -0.148, 0.333 

Notes: The meta-effect is obtained by taking the linear combination of the coefficients on the moderating variables, using 

the lincom command after estimating the WALS-selected model in Stata. 

 

The meta-effect estimate based on OECD data echoes the HMRM result discussed above, which 

indicates that OECD firm/industry/country data is associated with systematically larger effect-size 

estimates compared to non-OECD data. Both findings indicate that larger spillover effects are observed 

in countries with relatively higher levels of R&D intensity. Therefore, we reiterate the importance of 

absorptive capacity as a necessary condition for securing larger productivity gains from external 

knowledge (Cohen and Levinthal, 1989; Aldieri et al., 2018; Goñi and Maloney, 2017).  

 

6. Conclusions 

Griliches (1992: S44) concludes that vote counting calculations may exaggerate the magnitude and the 

effect of R&D spillovers due to “upward selectivity bias” in the results he evaluates and because of 

various measurement issues he discusses in Griliches (1979). Therefore, he calls for further work that 

would shed better light on the productivity effects of R&D spillovers. In this study, we have responded 

to Griliches’ call by using rigorous meta-analysis methods and a rich dataset that reflects the research 

effort after his call in 1992. Our findings suggest that the effect-size interval suggested by Griliches 

(0.05 – 0.20) is context-specific – i.e., it reflects findings from studies utilising mainly OECD data. 

When data from all countries are considered, the meta-effect based on ‘best-practice’ research is 

insignificant. This context specificity suggests that the productivity effect of spillovers is large in 

countries with a longer history of investment in own R&D, which provides absorptive capacity for 

securing productivity gains from external R&D spillovers.  

Our study has also discovered additional evidence that calls for downward revision of the narrative 

review conclusions in the field. The first concerns the claim that the spillovers’ productivity effect is 

larger than that of own R&D. Our findings indicate that such optimism may be misplaced. The effect 



36 
 

of own R&D (0.073) is twice that of all spillover types (0.036); and similar to that of knowledge 

spillovers (0.069). The second relates to statistical power in the evidence base. Our findings indicate 

that more than two-thirds of the spillover effect estimates are based on evidence with low statistical 

power. Low statistical power does not invalidate the effect-size estimates but raises concerns about 

their reliability as a basis for evidence-based policy. To place the issue in empirical context, we have 

shown that the productivity effect of all spillover types is insignificant when evidence with adequate 

statistical power is considered. The effect of knowledge spillovers with adequate statistical power is 

statistically significant but too small (0.009) to be practically insignificant. Furthermore, the spillover 

effect with adequate statistical power is less than one-third of own-R&D effect (0.029).  

With respect to future research, our findings allow for three recommendations. First, there is a case for 

taking account of the distance to the technology frontier when constructing the external R&D stock. 

Second-generation endogenous growth models with creative destruction (Aghion and Howitt, 1992; 

2006) suggest that firms/industries/countries closer to the technology frontier are less likely to benefit 

from knowledge spillovers. This is confirmed to some extent in our findings concerning productivity 

effects among firms with high R&D intensity. Therefore, we call for two types of innovations in 

modelling the productivity effect of R&D spillovers: (i) using intercept and/or slope dummies that 

reflect high-R&D-intensity firms or industries; and/or (ii) augmenting the knowledge capital model 

with an interaction term between the external knowledge stock and distance (proximity) to the 

technology frontier. Whereas the former would allow for verifying whether the spillovers’ productivity 

effects differ between high- and low-R&D-intensity firms/industries; the latter would allow for 

obtaining effect-size estimates corrected for distance to the technology frontier.  

Secondly, we call for further attention to the lagged effects of both own-R&D and external-R&D 

capital, which are rarely discussed in the primary studies. However, both Griliches (1992) and Hall et 

al. (2010) have pointed out the importance of time-lags between R&D expenditures and innovation, 

between the latter and commercialization; and in the case of spillovers, between innovation and 

diffusion. Therefore, we recommend either auto-regressive distributed lags (ARDL) modelling or 

estimations with different lags as sensitivity checks. Such exercises are more feasible in spillover 

studies compared to own-R&D studies. This is because own-R&D capital tends to follow a random 

walk and this makes the lag structure more difficult to pin down (Hall et al., 2010).  

Our third recommendation relates to explicit modelling of heterogeneity in the productivity effects of 

spillovers. One source of heterogeneity is the variations in the level of R&D intensity among 

firms/industries/countries in the sample. A second source of heterogeneity could be the variations in 
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the quality of the external knowledge that diffuses through a given transmission channel (Di Lorenzo 

and Almeida, 2017).  A third source is variations in absorptive capacity, which must be commensurate 

with the external knowledge pools faced (Aldieri et al., 2018); and varies with the level of own R&D  

investment (Cohen and Levinthal, 1989) and the level of domestic institutional/entrepreneurship 

quality (Goñi and Maloney, 2017). A fourth source could be unobserved factors such as management 

quality or governance/institutional norms.   

One way for addressing such sources of heterogeneity would be to augment the knowledge capital 

model with interaction terms capturing the role of absorptive capacity, which can be measured as the 

deviation of the firm/industry/country from the sample average for R&D intensity. Another way would 

be to model heterogeneity as unobserved random effects through a hierarchical model (HM) 

framework - as is the case in Aiello and Ricotta (2016). HMs allows for nesting the individual 

observations within firms, industries, regions or countries; and for estimating spillover effects after 

controlling for between-industry or between-region variations modelled as random intercepts, random 

slopes or both. As discussed in the methodology, HMs can be estimated with Mundlak (1978) 

corrections to take account of endogeneity that may be due to correlations between unit-level 

covariates and random-effect components.  

In studies based on industry or country data, the case for modelling heterogeneity is even stronger 

because the number of cross-section units is relatively small and this calls for panel time-series models 

instead of standard panel-data models (Eberhardt, 2012). The former allows for heterogeneous slope 

coefficients and can take account of cross-sectional dependence, which may be due to common 

unobservable factors. The benefits here are twofold. On the one hand, one can test if the productivity 

effect of own R&D is reduced when spillovers are modelled as unobservable common factors 

(Eberhardt et al., 2013). On the other hand, one can test whether explicit inclusion of the spillover 

types in the model wipes out the cross-sectional dependence.  

 

From a public policy perspective, our findings indicate that the case for public support for R&D 

investment (input subsidies) may not be as strong as has been assumed so far. We have established 

empirically that the direct productivity effect of own R&D is comparable to and usually larger than 

that of spillovers. We have also demonstrated that the spillover effect is larger when 

firms/industries/countries possess a higher level of absorptive capacity, which is a positive function of 

own-R&D investment. Given these findings, the R&D gap - i.e., the gap between actual and socially 
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optimal levels of R&D investment at the firm level - maybe smaller and more heterogeneous than what 

has been assumed so far. The R&D gap may be narrower because firms are aware of the need to invest 

in own R&D and build absorptive capacity as a basis for gains from knowledge externalities. Also, the 

R&D gap is likely to be heterogeneous, due to different firm characteristics (age, size, market share, 

etc.) and different industry characteristics (e.g., technology type, technology frontier and nature of 

competition). Therefore, we argue that direct or indirect support for R&D investment may be too blunt 

an instrument for securing additional R&D effort by supported firms. Instead, ‘innovation prizes’ for 

successful innovators as suggested by Akcigit et al. (2017), may enable funders to adjust the innovation 

prize to the quality of the innovation and the level of knowledge externalities it entails. Outcome-based 

support schemes also enable the funders to overcome information asymmetry and agency problems 

inherent in direct or indirect R&D support schemes.  
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