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Abstract This study develops a new mechanical-

based method to determine the complex modulus and

modulus gradient of field-aged asphalt mixtures using

the direct tension test. Due to the non-uniform aging

nature of the field cores, the mechanical responses

must be measured at different depths. Meanwhile, the

monotonic load is not applied at the neutral axis of the

field core specimen due to the modulus gradient, the

tensile part of the strain is used and should be

separated from the measurement because of the

eccentric loading. The modulus gradient parameters,

the location of the neutral axis, and the stress

distribution are first obtained using the elastic

formulas for a series of loading times. Then the

complex modulus is determined using the Laplace

transform and the elastic–viscoelastic correspondence

principle. An inverse approach and iteration are then

proposed by using the pseudo strain to accurately

calculate the modulus gradient parameters after the

relaxation modulus and reference modulus are

determined.

Keywords Field cores � Modulus gradient �
Eccentric loading � Corresponding principles �
Pseudo strain

1 Introduction

The dynamic modulus of asphalt mixtures is a

material property and one of the most important

inputs in the Pavement Mechanistic-Empirical (ME)

Design [1]. It is also used as an indicator for either the

level of aging or damage of the asphalt mixtures. Due

to its importance, the dynamic modulus has been

widely used and well determined for the laboratory-

mixed-laboratory-compacted (LMLC) asphalt mix-

tures. In general, the modulus of the unaged LMLC

asphalt mixtures is affected by some factors such as

binder type and content, aggregate type and grada-

tion, and mix design. These factors can be well

controlled in the laboratory and the field construc-

tion. However, when considering the field-aged

asphalt mixtures, the effects of field aging process
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and non-uniform air void distribution cannot be

ignored. On the other hand, the properties of field-

aged asphalt mixtures can provide valuable informa-

tion regarding the pavement condition since they can

be used to make maintenance decisions and perfor-

mance predictions.

In general, the field-aged asphalt mixtures become

stiffer after a long-term aging period, which is similar

with the LMLC mixtures under the long-term aging in

the laboratory. In addition to the long-term aging,

there is another unique aging feature for the field

cores: non-uniform aging in the pavement depth. It is

known that the surface of the asphalt layer suffers from

the solar radiation and oxidative aging more than

deeper layers, as the oxygen needs time to diffuse

through the interconnected air voids into the pavement

structure from the surface of the pavement. Thus less

carbonyl area is formed at deeper layers due to the less

volume of oxygen and contact area. As a result, the

modulus at the surface is higher than the other layers,

and finally a modulus gradient is developed.

In order to take into account the field aging of

asphalt mixtures in the Pavement ME Design, consid-

erable research efforts have been made to either

simulate or analyze the field aging in the laboratory, in

both binder level and mixture level, or extract binders

using the solvent from the field cores then determine

the complex shear modulus and phase angle of the

aged binders [2]. One of the widely used methods is

the AASHTO R30 aging procedure [3]. It has been

questioned to be too moderate, which cannot be used

to reflect the aging of the asphalt mixtures in the field.

Meanwhile, in order to simulate aging in a rational

way, it is suggested that for different types of asphalt

mixtures such as unmodified and modified mixtures,

different aging protocols need to be developed [4]. In

addition, the complicated non-uniform aging is even

more difficult to be simulated. For the binder extrac-

tion method, the viscosity is determined for the

extracted aged binders at different pavement depths

from the field cores, the viscosity gradient with

pavement depth and aging time can also be obtained

[5]. However, there is one main problem with this

method: some effects such as air void distribution,

aggregate gradation, binder absorption, and aggregate-

binder interaction on the modulus of the mixtures are

not considered [6, 7].

As a result, it is preferred to obtain the material

properties of the field cores directly. It is known that

conducting the mechanical tests on the field cores

remains difficult mainly due to the geometry com-

pared to the LMLC mixtures specimens. The typical

issue is the required dimension for a cylindrical

specimen. The thickness of field cores normally ranges

from 26 to 100 mm (1 to 4 inches) and even smaller for

the overlays, which is insufficient to be used in the

standard dynamic modulus test. To overcome this

issue, recent studies determine that the thickness for

rectangular and cylindrical field core specimens can be

as thin as 26 mm (1 inch) for both dynamic modulus test

and damage test, and the test results are in the same

ranges with those for the standard dimension specimen

[8, 9]. This valuable conclusion provides a guide for

dealing with those with small specimen geometries such

as field cores. In these studies, the tested specimens are

obtained from different depths of one original field core,

which are used to reflect the modulus distribution along

the pavement depth. The traditional uniaxial tension–

compression test is then conducted at different temper-

atures and frequencies to obtain the dynamic modulus

master curves of field cores at different depths. However,

it should be noted that the aging has been found to be

most severe in the top surface especially the top 13 mm

(0.5 inch) [5, 10]. The methods mentioned above are

actually to measure the average modulus of each field

core specimen, which may not be able to capture this

gradient feature at top 13 mm.

Under this circumstance, this study presents a new

mechanical method to determine the complex modu-

lus and modulus gradient of field cores using the direct

tension test. The direct tension test is adopted because

of the three key advantages: (1) it is simpler to conduct

and only takes less than 1 min for a given temperature;

(2) it causes no damage to the specimen if the strain

limitation is carefully controlled; and (3) the tensile

modulus is determined instead of compressive mod-

ulus. It has been shown that the tensile modulus and

compressive modulus of asphalt mixtures are different

in both the magnitudes and phase angles [11].

However, most tests are conducted in the compression

mode [1] and flexion mode [12]. The tensile modulus

is necessary, especially for the characterization of

various types of cracking in the asphalt pavements. In

this study, an inverse approach is proposed to accu-

rately determine the complex modulus and modulus

gradient at different temperatures using the elastic

theory, pseudo strain concept and elastic–viscoelastic

correspondence principle.
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This paper is organized as follows. The next section

describes the information and preparation for both

field core specimens and LMLC specimens. The test

protocol to determine the complex modulus and

modulus gradient is also discussed. The following

section provides detailed derivations and results of the

complex modulus and modulus gradient using the

inverse approach. The last section summarizes the

findings and future work.

2 Direct tension test to measure modulus gradient

The test protocol to measure the complex modulus and

modulus gradient is elaborated in this section, which

include:

1. The materials for testing, containing asphalt field

cores and LMLC mixtures;

2. The configuration and procedure of the direct

tension test with a nondestructive monotonically

increasing load; and

3. The characteristics of mechanical responses of

field cores as well as their comparisons with those

of LMLC mixtures.

2.1 Asphalt field cores and LMLC mixtures

The asphalt field cores used in this study include one

type of hot mix asphalt (HMA). They are collected

from a field project near the Austin Bergstrom airport

in Texas. The field asphalt mixtures are fabricated

with a PG 70-22 asphalt binder and Texas limestone

aggregates. The binder content is 5.2%, the nominal

maximum aggregate size is 10 mm (3/8 inch). The

detailed mix design and the aggregate gradation can be

found in this report [13]. The cores are taken at the

center of two lanes of a HMA section at 8 months and

22 months after construction. It is reasonable to

assume that the collected cores are not damaged by

traffic within this aging period when they are in the

field.

In order to demonstrate the features of field cores,

laboratory HMA specimens are also fabricated. The

parallel tests are performed between the field and

LMLC specimens to demonstrate the differences in

the measured data. Two air void contents for the

laboratory specimens are chosen. The tested LMLC

specimens are obtained only from the center of the

compacted cylinder samples for the purpose of having

uniform air void distributions through their

thicknesses.

All of the original cylinder field cores and LMLC

mixtures samples are cut into rectangular specimens

102 mm (4 inches) long and 76 mm (3 inches) wide.

The thickness of the rectangular specimen varies from

38 to 51 mm (1.5 to 2 inches) dependent on the

thickness of the original field core. The thickness of

the LMLC specimens is 38 mm (1.5 inches). Then the

steel studs are glued on the top, center and bottom of

the specimens for placing linear variable differential

transformers (LVDTs). The rectangular field core

specimen preparation is shown in Fig. 1. The air void

content, thickness and aging time of each field and

LMLC specimen are given in Table 1.

After being cut and trimmed in the laboratory, each

rectangular specimen is fixed with six LVDTs, as

shown in Fig. 2a. The two vertical LVDTs are used to

measure the vertical deformations of the top and

bottom of the specimen, respectively; another pair

attached on the two sides is used to measure the

vertical deformations of the center of the specimen.

The two horizontal LVDTs are used to measure the

lateral deformations of the top and bottom, respec-

tively. This lateral deformation is used to determine

the Poisson’s ratio of field cores, which will be

discussed in a following study. The gauge length is

50.8 mm (2 inches) for each LVDT.

2.2 Direct tension test

The direct tension test is conducted using the Material

Test System (MTS) shown in Fig. 2b. A nondestruc-

tive monotonically increasing load is applied on the

rectangular specimens at 10, 20 and 30 �C at a ramp

rate of 0.020 mm/min, respectively. This MTS is an

electrohydraulic servo machine. It includes a load cell,

a temperature chamber, and is connected to a desktop

for reading, saving and analyzing the test results

including the load and strains. The MTS is also

equipped of ball joints. To keep the specimens intact,

the maximum tensile strain is set below 100 micros-

trains as suggested in the literature [14–16]. This type

of LVDT can measure 100 microstrains accurately. It

takes approximately 2 h to change the temperature of

the specimens from one to another, and it takes

approximately 8 h to finish the entire set of the tests for

three temperatures. A new set of specimens are put in
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the temperature chamber overnight to reach the

temperature equilibrium and recover the temperature

loss due to opening the chamber for unloading and

removing the previous specimens.

The direct tension tests conducted on the tested

specimens at each temperature are repeated three

times in order to avoid the undesired test errors and

confirm that the specimens are undamaged during

testing. Otherwise, the data cannot be used for

analysis. Note that a rest period of 15 min between

the two tests is needed to recover the viscoelastic

strains after one test. The three repeated test results are

shown in Fig. 3, which indicates that a rest period of

15 min is enough and the repeatability is satisfied.

2.3 Mechanical responses of field cores

and LMLC mixtures

The mechanical responses of the field cores and

LMLC specimens are discussed herein shown in

Figs. 4, 5 and 6. Figure 4a shows the measured loads

applied on the field core specimen when the test

102mm

76 mm

51 mm

Fig. 1 Field core specimen preparation

Table 1 Field cores and

laboratory fabricated

mixtures specimens tested

in direct tension test

Material type Air void content (%) Field aging time (month) Thickness (mm)

HMA field cores 6.6 8 38

5.8 8 51

5.5 22 51

5.3 22 38

LMLC HMA 6.3 N/A 38

5.2 N/A 38

Front Side: Top 
(Pavement Surface) 

Back Side: Bottom 

Right and Left 
Sides: Center 

(a) (b)
Fig. 2 Field core specimen

and setup of direct tension

test. a Specimen with

LVDTs. b Specimen in the

MTS
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temperatures are 10 and 30 �C, respectively. It can be

seen that as the temperature increases, the load-time

curve becomes smaller and more curved, and the

duration of the test is shorter. This observation

indicates that the use of time–temperature superposi-

tion and thermorheologically simple material proper-

ties may be applied to the field specimens. Figure 4b

presents the applied loads when the aging times are 8

and 22 months, respectively, it shows when the aging

time is longer, the field core specimens become stiffer.

Figure 5 presents the measured vertical and hor-

izontal strains of the field core specimen calculated

from the readings of the deformations of one vertical

and one horizontal LVDTs attached at the top. The

vertical deformations are recorded by the four vertical

LVDTs attached at the top, center and bottom,

whereas the horizontal deformations are recorded by

the two horizontal LVDTs attached on the top and

bottom. Note that the vertical strains at the center of

the specimen are calculated by averaging the readings

from the two LVDTs attached on the two center sides.

It is shown that as the tensile load increases, the

vertical strain increases whereas the horizontal strain

decreases.

Figures 6a and 6b compare the induced vertical

strains obtained from the corresponding vertical

deformation data for the field core specimen and

LMLC specimen, respectively. Under the similar

loading, the measured vertical strains in the field and

laboratory specimens are obviously different. The

three measured vertical strains in the field core

specimen (Fig. 6a) have different magnitudes at the

three locations, which are closely related to the

modulus at each depth. However, the three measured

strains for the LMLC specimen are almost identical
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(a) (b)Fig. 3 Three repeated test

results at 10 �C. a Load in

three repeated tests. b Top

and bottom strains in three

repeated tests
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Fig. 4 Monotonic loads in direct tension test. a Loads at

different temperatures. b Loads at different aging times

Fig. 5 Measured vertical and horizontal strains at top of field

core specimen
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from Fig. 6b. It is known that the LMLC specimen has

an almost uniform modulus across the thickness.

Therefore, the difference between three measured

strains of the LMLC specimen is minimal. The

measured strains at the top, center and bottom for

the field core specimens are different, which is due to

the non-uniform modulus distribution in the field

cores. In general, the strain at the top is smallest and

the strain at the bottom is largest, which reflects the

modulus distribution. Figure 6c illustrates that the

strain is smaller and increases slower for the field

specimen with a longer aging time, which shows the

long-term aging effect on the mechanical response.

Due to the existence of the modulus gradient, the

monotonic load applied at the center of the field core

specimen is actually located different from the neutral

axis as shown in Fig. 7. It is expected that the neutral

axis is closer to the stiffer side than to the softer side.

This eccentricity induces a bending moment and

corresponding bending strains at these three locations

during the testing. Therefore, the measured strains at

the top, center and bottom include two parts: the

tensile strain and bending strain. The discussions

regarding the eccentric loading are detailed in the next

section.

In the previous study [16], the modulus gradient is

obtained and verified based on the strain amplitude. As

proposed in [16], the modulus gradient of a field core

specimen at a specific loading frequency and temper-

ature is modeled by Eqs. (1) and (2):

EðzÞ ¼ Ed þ ðE0 � EdÞ
d � z

d

� �n

ð1Þ

k ¼ E0

Ed

ð2Þ

where E (z) is the dynamic modulus in pavement depth

z at a specific loading frequency and temperature; Ed

and E0 are the dynamic moduli at the top and bottom at
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tested specimen. a Strain at different depths of field core

specimen. b Strain of laboratory fabricated specimen. c Strain at
different aging times of field core specimen
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Fig. 7 Illustration of non-uniform distributions of stress, strain,

and modulus in field core specimen
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the same loading condition, respectively; d is the

thickness of the field core specimen; n is the model

parameter, which presents the shape of the stiffness

gradient; and k is the ratio of the modulus at the top to

the modulus at the bottom. When z equals to d
2
, the

center modulus Ec is obtained.

3 Derivations of complex modulus gradient

The objective of this section is to determine the

complex modulus based on the unique characteristics

of field cores mentioned above. More specifically,

there are two main subjects that have to be addressed:

1. How to determine the parameters of the modulus

gradient of a field core specimen; and

2. How to convert the measured data and parameters

of modulus gradient to its corresponding vis-

coelastic property: complex modulus.

3.1 Inverse application of viscoelastic-elastic

correspondence principle

As stated above, the stress, strain, and modulus of an

asphalt field core are non-uniformly distributed as

schematically shown in Fig. 7. This adds significant

difficulty in the viscoelastic analysis of field core

specimens. The solution to this problem is to introduce

the viscoelastic-elastic correspondence principle [17],

so a viscoelastic problem can be inferred from a

reference elastic problem. For an undamaged vis-

coelastic material, there is a linear relationship

between the stress and the pseudo strain:

r tð Þ ¼ ERe
RðtÞ ð3Þ

where r(t) is the stress in the undamaged viscoelastic

material, or called viscoelastic stress; eR(t) is the

pseudo strain; and ER is the reference modulus, which

can be assigned as the Young’s modulus [18]. The

pseudo strain is defined as

eRðtÞ ¼ 1

ER

Z t

0

Eðt � nÞ deðnÞ
dn

dn ð4Þ

where E(t) is the relaxation modulus of the material;

eðnÞ is the strain history; n is a time between 0 and t; t is

the loading time. The relaxation modulus for a short

loading time like the one in the direct tension test

above can be defined by [19]:

EðtÞ ¼ E1 þ E1e
� t

j ð5Þ

where E? is the long term relaxation modulus; E1 is

the relaxation modulus coefficient; and j is the

relaxation time.

Once the dynamicmodulus of a viscoelastic material

is known from the measured load and strain, the

relaxation modulus can be calculated from the dynamic

modulus-relaxation modulus relationship [20]. Then

the reference modulus and pseudo strain can be

obtained from Eqs. (3) to (5). The reason why the

pseudo strain needs to be determined and used other

than the measured strain is that it is not appropriate to

use the measured strain which is the viscoelastic strain

in the elastic theory (i.e., bending theory) to solve for

the modulus gradient parameters n and k. In this study,

due to the complexities of stress and strain in the field

core specimen, an inverse analysis with an iteration

process is proposed to determine the pseudo strain and

the gradient parameters. More specifically, it contains

the following steps:

I. In the first iteration:

1. Use the measured tensile strain of an

undamaged field core specimen as the

seed value for the pseudo strain. In

other words, temporarily, there is an

elastic relationship between the mea-

sured stress and the measured strain;

2. Utilize the elastic theory along with

the measured load/strains to determine

the modulus gradient parameters. The

values of n and k are determined and

checked for their dependence on load-

ing time and frequency;

3. Convert the functions of the measured

load/strains and modulus gradient

parameters using the Laplace transform

to calculate the corresponding vis-

coelastic property: complex modulus;

4. Calculate the relaxation modulus then

the reference modulus using the cal-

culated complex modulus; and

5. Calculate the pseudo strain by the

reference modulus.
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II. In the second iteration: replace the measured

strain with the calculated pseudo strain as the

seed value after the first iteration and repeat

steps 2–5.

III. In the following iterations (normally 3–5):

1. Replace the pseudo strain in the previous

iteration with the newest one and repeat

steps 2–5; and

2. Stop the iteration when the pseudo strain

is stable. Then the modulus gradient

parameters converge, the complex modu-

lus and pseudo strain will not change.

In the following subsections, the major steps are

elaborated in sequence and the final equations of the

complex moduli of different depths of the field cores

are presented.

3.2 Determination of modulus gradient

parameters

Using the pseudo strain to determine the modulus

gradient parameters contains three steps discussed below.

Step 1 Decomposition of vertical strains in field core

specimens

As indicated above, there is an eccentricity between

the location of the load and neutral axis in the field

core specimens. As a result, the vertical pseudo strains

at top, center and bottom can be decomposed into the

tensile portions and bending portions as follows:

e0 ¼ e0t � e0b ¼
aP

AE0

�MZ

IE0

ð6Þ

ec ¼ ect þ ecb ¼
bP

AEc

þ
M d

2
� Z

� �
IEc

ð7Þ

ed ¼ edt þ edb ¼
cP

AEd

þMðd � ZÞ
IEd

ð8Þ

where e0, ec, ed are the vertical pseudo strains at top,

center and bottom of the specimen, respectively; e0t, ect
and edt are the tensile portions of the vertical pseudo

strains at top, center and bottom, respectively; e0b, ecb
and edb are the bending portions of the vertical pseudo
strains at top, center and bottom, respectively; P is the

magnitude of the load; and a, b, and c are the

coefficients to account for the non-uniform

distribution of the stress in the field core specimen;

A is the loading area; M is the induced moment

½M ¼ Pðd
2
� zÞ�; Z is the distance from the neutral axis

to the top, d
2
� Z and d � Z are the distances from the

neutral axis to the center and from the neutral axis to

the bottom, respectively; E0, Ec and Ed are the

modulus at top, center and bottom, respectively; and

I is the moment of inertia. Note that the bending strain

at the top is negative, so it is subtracted from the strain

at the top as in Eq. (6). At the other two locations, the

bending strains are positive.

Step 2 Formulation of value and location of the load

in field core specimens.

Assume that the distribution of the tensile portion of

the pseudo strain is:

et zð Þ ¼ e0t þ
edt � e0t

d
z ð9Þ

The modulus has a distribution defined in Eq. (1).

Then the magnitude of the load is calculated by the

integral of the tensile stress as follows:

P ¼ m

Z z¼d

z¼0

et zð ÞE zð Þdz

¼ A e0t
1

2
þ k � 1

nþ 2

� �
þ edt

1

2
þ k � 1

ðnþ 1Þðnþ 2Þ

� �� 	

� Ed

ð10Þ

where m and d are the width and thickness of the field

core specimen, respectively; and A is the cross sectional

area (A = md). The location of the neutral axis relative

to the top of the specimen is determined by Eq. (11):

Z¼ 1

P

Zz¼d

z¼0

mzet zð ÞE zð Þdz

¼
d e0t 1

6
þ ðk�1Þðnþ5Þ

ðnþ1Þðnþ2Þðnþ3Þ

h i
þ edt 1

3
� 2ðk�1Þ

ðnþ1Þðnþ2Þðnþ3Þ

h in o

e0t 1
2
þ k�1

nþ2


 �h i
þ edt 1

2
þ k�1

ðnþ1Þðnþ2Þ

h in oh i

ð11Þ

For the case of the LMLC specimen, the pseudo

strains are the same at different locations and k equals

to 1. Thus Z reduces in d
2
in Eq. (11), which is the

centerline of the specimen. However, for a field

specimen, Z is always smaller than d
2
given that k is

larger than 1.
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Step 3 Solve for n and k in the modulus gradient

model.

Select the values of the pseudo strain and load at

different loading times (in this case from 5 to 35 s) of

the direct tension test, which are given in Table 2. For

every second of the loading time, substitute the

measured values into Eqs. (6)–(11) and solve for a, b,

c, n, and k. The results of a field core specimen are

also given in Table 2. For the first iteration, the

values of the pseudo strains are equal to the tensile

strains measured from the direct tension test, which

are used as the seed values. In the following

iterations, these strains are the pseudo strains calcu-

lated from the previous iteration after determining

the complex modulus and relaxation modulus

detailed in the following subsection. The changes

of the values of a, b, c, n, and k become small from the

second iteration to the third one. Therefore, it is

regarded that the results converge at the third

iteration. The details regarding the determinations

of iterations and pseudo strains will be discussed in

the next section.

It should be noted that the exponent n and the ratio

k are the material properties since they are the two

parameters in the modulus gradient equation and

must be included in the application of the correspon-

dence principle which transforms an elastic equation

into the Laplace transform of a viscoelastic equation.

With each iteration, both n and k are determined to be

time-dependent, as seen in Table 2, which shows

their final converged values. They both increase

slightly with loading time and decreases slightly with

frequency.

3.3 Determination of complex modulus using

approximated n and k

After obtaining the modulus gradient parameters, the

next step is to convert the elastic property to the

corresponding viscoelastic property using the Laplace

transform. The procedure is given below in sequence.

In the direct tension test, the measured load and

tensile portions of the strains versus time of a field core

specimen are modeled as follows:

• Monotonic tensile load PðtÞ:

PðtÞ ¼ aPð1� e�bPtÞ ð12Þ

• Tensile portions of the strains at the top and bottom

of the field core specimen:

e0tðtÞ ¼ a0ð1� e�b0tÞ ð13Þ

edt tð Þ ¼ ad 1� e�bdt
� �

ð14Þ

• Modulus gradient parameters n and k:

n ¼ n0e
bnt ð15Þ

k ¼ k0e
bkt ð16Þ

where aP and bP are the fitting parameters for the load;

a0 and b0 are the fitting parameters for the tensile

portion of strain at the top; ad and bd are the fitting

parameters for the tensile portion of the strain at the

bottom; and n0, k0, bn and bk are the fitting parameters

for the modulus gradient parameters n and k.

Using the Laplace transform, the elastic forms in

Eqs. (12)–(16) can be rewritten as viscoelastic

Table 2 Results of calculations of modulus gradient of a field core specimen (8 months aged at 30 �C) from direct tension test

Iteration Loading time (s) Pseudo strain (le) Load (N) a b c n k n0 k0

1st 5–15 6.12 30.41 1.26 0.73 0.85 2.96 2.44 2.54 2.16

16–25 20.42 165.6 1.28 0.72 0.86 3.73 2.82

26–35 34.71 268.34 1.30 0.72 0.87 3.89 3.09

2nd 5–15 3.67 30.41 1.23 0.70 0.84 2.91 2.40 2.53 2.12

16–25 12.15 165.6 1.26 0.71 0.85 3.68 2.79

26–35 20.3 268.34 1.29 0.71 0.85 3.86 3.06

3rd 5–15 3.53 30.41 1.22 0.68 0.82 2.90 2.39 2.52 2.11

16–25 11.79 165.6 1.25 0.70 0.84 3.67 2.76

26–35 19.15 268.34 1.27 0.70 0.84 3.85 3.05
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solutions in the Laplace domain by an s-multiplied

Laplace transform (Carson transform), which are

shown in Eqs. (17)–(21):

PðsÞ ¼ aPbP

sðsþ bPÞ
ð17Þ

e0tðsÞ ¼
a0b0

sðsþ b0Þ
ð18Þ

edtðsÞ ¼
adbd

sðsþ bdÞ
ð19Þ

snðsÞ ¼ n0s

s� bn
ð20Þ

skðsÞ ¼ k0s

s� bk
ð21Þ

where s is the variable in the Laplace domain; PðsÞ,
e0tðsÞ, edtðsÞ, nðsÞ, and kðsÞ are the corresponding load,
strains, n and k in the Laplace domain. The viscoelas-

tic forms of n and k are shown in Eqs. (22) and (23).

For small values of bn and bk, the values of snðsÞ and
skðsÞ are closely approximated by the constants n0 and

k0, as shown in Eqs. (22) and (23).

snðsÞ½ �s¼ix¼
n0s

s� bn

� �
s¼ix

¼ n0x2 � n0bnx
b2n þ x2

� n0

ð22Þ

skðsÞ
� 


s¼ix¼
k0s

s� bk

� �
s¼ix

¼ k0x2 � k0bkx
b2k þ x2

� k0

ð23Þ

To obtain the modulus in the Laplace domain, the

Laplace transform is taken on both sides of Eq. (10)

and used to solve for the modulus at the bottom, which

gives:

EdðsÞ ¼
PðsÞ

sA e0tðsÞ 1
2
þ k0�1

n0þ2

h i
þ edtðsÞ 1

2
þ k0�1

ðn0þ1Þðn0þ2Þ

h in o

ð24Þ

where EdðsÞ is the bottom modulus in the Laplace

domain.

The relationship between the complex modulus and

relaxation modulus is shown in Eq. (25) [21]:

E�ðxÞ ¼ ixLfEðtÞgs¼ix ¼ ½sEðsÞ�s¼ix ð25Þ

Therefore, the complex modulus at the bottom of

the field core specimen can be obtained by substituting

Eqs. (24) into (25), which is shown by:

E�
dðxÞ¼ ½sEdðsÞ�s¼ix

¼ PðsÞ
A e0tðsÞ 1

2
þ k0�1

n0þ2

h i
þ edtðsÞ 1

2
þ k0�1

ðn0þ1Þðn0þ2Þ

h in o
s¼ix

ð26Þ

The final expression of the complex modulus at the

bottom is shown in Eq. (27) by substituting Eqs. (17)–

(19), (22) and (23) into Eq. (26):

E�
dðxÞ ¼

ðAC þ BDÞ þ ðAD� BCÞi
A2 þ B2

ð27Þ

in which

A ¼ � 1

2
þ k0 � 1

n0 þ 2

� �
a0b0

��

þ 1

2
þ k0 � 1

ðn0 þ 1Þðn0 þ 2Þ

� �
adbd

�
x2

þ 1

2
þ k0 � 1

n0 þ 2

� �
a0b0bpbd

þ 1

2
þ k0 � 1

ðn0 þ 1Þðn0 þ 2Þ

� �
adbdbpbd

	
md

B ¼ 1

2
þ k0 � 1

n0 þ 2

� �
a0b0ðbp þ bdÞ

�

þ 1

2
þ k0 � 1

ðn0 þ 1Þðn0 þ 2Þ

� �
adbdðbp þ b0Þ

�
xmd

C ¼ apbpðb0bd � x2Þ
D ¼ apbpðb0 þ bdÞx

When the complex modulus at the bottom is deter-

mined, the complex modulus at the top in the Laplace

domain can be determined as shown in Eq. (28):

sE0ðsÞ ¼ sk0EdðsÞ ð28Þ

where E0ðsÞ is the corresponding modulus at the top of

a field core in the Laplace domain. The complex

modulus at the center of the field core in the Laplace

domain is determined by:

sEcðsÞ ¼ sEdðsÞ 1þ k0 � 1

2n0

� �
ð29Þ

Similarly, the complex modulus at the top and that

at the center can be determined as follows:
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E�
0ðxÞ ¼ ½skEdðsÞ�s¼ix

¼ k0ðAC þ BDÞ þ k0ðAD� BCÞi
A2 þ B2

ð30Þ

E�
cðxÞ¼ ½sEcðsÞ�s¼ix

¼
1þ k0�1

2n0

� 

ðACþBDÞþ 1þ k0�1

2n0

� 

ðAD�BCÞi

A2þB2

ð31Þ

The complex modulus includes a real part and an

imaginary part, and the dynamic modulus is defined as

E�ðxÞj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

02 þ E
002

p
ð32Þ

where E
0
is real or storage modulus component; E

00
is

imaginary or loss modulus component; E�ðxÞj j is the
magnitude of the complex modulus, or dynamic

modulus. The phase angle of the complex modulus

is calculated using Eq. (33), which is also frequency

dependent.

uE ¼ arctan
E

00

E
0

� �
ð33Þ

Note that the range of the frequency for the

dynamic modulus depends on the duration of the

loading time of the direct tension test. A time–

frequency relationship is needed to convert the ranges

in the time domain to frequency domain. In this study,

Eq. (34) is used to make the approximate inverse

Laplace Transform based on the [22]:

f ðtÞ ¼ ½sf ðsÞ�s¼ 1
2t

ð34Þ

The calculated dynamic modulus versus the asso-

ciated frequency is shown in Fig. 8, using the fitting

parameters at the three temperatures.

3.3.1 Determination of complex modulus using

complex n and k

It should be mentioned that the calculations of the

complex modulus above are based on the approxi-

mated results of Laplace transform of n and k by

Eqs. (22) and (23). This generates a dynamic modulus

gradient, but results in an issue that the phase angles at

the top, center, and bottom are the same according to

Eqs. (27), (30), (31), and (33). As a matter of fact, the

phase angle should also have a gradient along the

pavement depth. However, the derivations and com-

putations become too complicated when using the

accurate results of Laplace transform of n and k. In this

study, the approximation method to calculate the

complex moduli is adopted. The derivations and

expressions of the complex moduli with complex

n and k are presented in the Appendix, which also

provides the phase angle gradient accurately.

3.3.2 Determination of relaxation modulus, reference

modulus and modulus gradient

After obtaining the initial complex modulus, the

corresponding relaxation modulus and reference mod-

ulus can be computed. First, the master curve of the

dynamic modulus is constructed at a reference tem-

perature of 20 �C using the sigmoidal model shown in

Eq. (35).

log E�ðxÞj j ¼ dþ a

1þ ebþc�logðx�aT Þ
ð35Þ

where d is the value of the lower asymptote, a is the

difference between the upper and lower asymptotes, b
and c are shape coefficients, and aT is the time–

temperature shift factor. The Williams–Landel–Ferry

(WLF) equation is employed as the shift factor

equation:

log aT ¼ � C1ðT � TrÞ
C2 þ ðT � TrÞ

ð36Þ

where T is the test temperature, Tr is the reference

temperature, C1 and C2 are the positive fitting

parameters. Figure 9 shows the master curve con-

structed by Eqs. (35) and (36) for the bottom modulus

of a field core specimen.
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Fig. 8 Calculated dynamic modulus of a field core specimen at

three temperatures
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Once the dynamic modulus master curve is deter-

mined, the relaxation modulus can also be constructed

according to their relationships shown in Eqs. (37) and

(38). When the relaxation modulus is fitted by the

Prony series model:

E tð Þ ¼ E1 þ
XM
j¼1

Eje
� t

jj ð37Þ

where E? is the long term relaxation modulus; Ej are

the relaxation modulus coefficients; and jj are the

relaxation times. The dynamic modulus is given by:

E�ðxÞj j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1þ

XM
j¼1

x2j2Ej

1þx2j2j

 !2

þ
XM
j¼1

x2j2Ej

1þx2j2j

 !2
vuut

ð38Þ

As a result, the fitting parameters for the relaxation

modulus can be computed by Eq. (38) based on the

dynamic modulus master curve determined above.

The calculation results is given in Fig. 10.

To faciliate the calcualtion of the pseudo strain, fit

the relaxation modulus determimed above by a

simpler model like that in Eq. (5). Substitute Eq. (5)

and the strain history formulated by Eqs. (14) into (4),

which gives:

edðtÞ¼
1

ER

ðE1adð1� e�bdtÞþE1adj
1
bd
�j

e�bdt� e�
t
j


 �" #

ð39Þ

where ed(t) is the pseudo strain at the bottom of the

field core specimen. Since the Young’s modulus of

asphalt materials is not easy to determine using [18],

the representative elastic modulus formulated by

Eq. (40) is used to estimate the reference modulus

[20].

ER ¼ Ere ¼
1

2
E�j jf¼ 1

tp

þE t ¼ tp

2


 �h i
ð40Þ

where Ere is the representative elastic modulus; E�j j is
the dynamic modulus; f is the frequency of a load

pulse; and tp is the pulse time of a load. The pulse time

of 0.1 s is chosen in this study, so using Eq. (40), the

reference modulus is calculated with the dynamic

modulus master curve and relaxation modulus deter-

mined previously. The pseudo strains at 30 �C at

different iterations and the strain measured from the

direct tension test are shown in Fig. 11. It can be seen

that the pseudo strain is smaller than the measured

strain, especially for the longer loading time. This

phenomenon matches the understanding that the

viscous effect is more active when the temperature is

higher, which is corresponding to a lower loading

frequency or a higher loading time.

Once the relationships of the pseudo strains and

time are determined, the measured strains used in the

first iteration are replaced by the pseudo strains to

recalculate the values of n and k using Eqs. (6)–(11).

Fig. 9 Dynamic modulus master curve of a field core specimen

Fig. 10 Relaxation modulus determined from the dynamic

modulus master curve

Fig. 11 Measured strain at the bottom of a field core specimen

and associated pseudo strains at different iterations

138 Page 12 of 15 Materials and Structures (2017) 50:138



Then the updated values of n and k are inserted into

Eqs. (26)–(40) to obtain the new dynamic modulus

master curve and relaxation modulus again. This

procedure is repeated until the convergence require-

ment of the values of n and k are met. In general, the

values of n and k become stable within 5 iterations. For

instance, in Fig. 11, the change of the pseudo strain at

30 �C is minimal after 3 iterations. Once the conver-

gence is reached, the complex modulus and the

modulus gradient parameters can be regarded as the

actual material properties. The three complex moduli

are determined with the updated n and k using

Eqs. (27), (30) and (31). The modulus gradient is then

extracted from the dynamic modulus curves at the

three depths and three temperatures for 8 and

22 months aged field core specimens when the loading

frequency is 0.1 Hz, which is shown in Fig. 12.

4 Conclusions and future work

This paper targets the asphalt field cores and proposes

a methodology to determine the complex modulus and

modulus gradient using the direct tension test. A total

of four HMA field cores at two aging times and two

laboratory fabricated mixtures are prepared and tested

in this study. The major contributions of this paper are

summarized as follows:

• The strains at different depths of the field core

specimens are different, which is related to the

modulus gradient, however, the strains for the

LMLC mixtures are almost identical.

• Due to the nature of the modulus gradient, the

strains should be decomposed into tensile and

bending portions from the elastic theory. The

tensile portion is used and the two aging param-

eters n and k in the modulus gradient equation for

different loading times and the modulus gradient

can be obtained.

• Using the Laplace transform and correspondence

principle, the elastic forms can be further con-

verted into the viscoelastic forms, which is used to

determine the dynamic modulus.

• An inverse approach with an iteration process for

field cores is proposed using the pseudo strain

concept. The relaxation modulus and reference

modulus are determined to calculate the pseudo

strain. Since the measured strain (i.e., viscoelastic

strain) is not appropriate to be used in the elastic

formulas, pseudo strain should be calculated to

determine the accurate results of n and k, and

dynamic modulus.

In a continuation of this paper, the dynamic

modulus, viscoelastic Poisson’s ratio and the corre-

sponding phase angles will be determined to obtain a

full characterization of the viscoelastic properties of

asphalt field cores. The viscoelastic properties of the

field core specimens are elaborated and show the time-

dependency, non-uniform aging dependency and the

long-term aging dependency. It is worth noting that

the air void distribution of field specimens also has an

influence on the dynamic modulus at different depths,

and it should be taken into account carefully. In

addition, the properties of warm mix asphalt mixtures

(WMA) at the same aging condition are compared

with the HMA dynamic modulus and Poisson’s ratio.
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Appendix

When the accurate Laplace transformed results of

n and k are used to derive the complex modulus, the
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Fig. 12 Modulus gradients of 8 and 22 months aged field

specimens at three temperatures and 0.1 Hz
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expressions of A and B in Eq. (27) become different,

whereas C andD remain the same since n and k are not

involved.

In the new expressions of A and B, the terms with

n0 and k0 should be replaced by the corresponding

forms in the Laplace domain shown in Eqs. (20) and

(21); specifically there are two different terms with

n0 and k0 in A and B that need to be replaced by

the complex numbers, which are 1
2
þ k0 � 1

n0 þ 2
and

1
2
þ k0 � 1

ðn0 þ 1Þðn0 þ 2Þ.

Therefore, the term of 1
2
þ k0�1

n0þ2
is determined shown

in Eq. (41) using complex numbers of n and k.

1

2
þ k�ðxÞ � 1

n�ðxÞ þ 2
¼ 1

2
þ ðF1 þ iF2Þ ð41Þ

where F1 ¼ A1A3 þA2A4

A2
3
þA2

4

, F2 ¼ A1A4 �A2A3

A2
3
þA2

4

A1 ¼ ðx2 þ b2nÞ½x2ðk0 � 1Þ � b2k�
A2 ¼ ðx2 þ b2nÞbkk0x
A3 ¼ ðx2 þ b2kÞ½x2ðn0 þ 2Þ þ b2n�
A4 ¼ ðx2 þ b2kÞbnn0x

Meanwhile, the term of 1
2
þ k0�1

ðn0þ1Þðn0þ2Þ is deter-

mined in Eq. (42).

1

2
þ k�ðxÞ � 1

½n�ðxÞ þ 1�½n�ðxÞ þ 2� ¼
1

2
þ ðG1 þ iG2Þ ð42Þ

where G1 ¼ A5A7þA6A8

A2
7
þA2

8

; G2 ¼ A5A8�A6A7

A2
7
þA2

8

A5 ¼ ½x2ðk0 � 1Þ � b2k�ðx2 þ b2nÞ
2

A6 ¼ bkk0xðx2 þ b2nÞ
2

A7 ¼ ðx2 þ b2kÞ½ðx2ðn0 þ 1Þ þ b2nÞðx2ðn0 þ 2Þ
þ 2b2nÞ � b2nn

2
0x

2�
A8 ¼ bnn0x½ðx2ðn0 þ 1Þ þ b2nÞ þ ðx2ðn0 þ 2Þ þ 2b2nÞ�

Therefore, the new expressions of A and B are

shown in Eqs. (43) and (44).

A¼H1þ iH2 ¼
1

2
þF1

� �
a0b0þ

1

2
þG1

� �
adbd

� �
x2

þ 1

2
þF1

� �
a0b0bpbdþ

1

2
þG1

� �
adbdbpbd

� �

þ i½ðF2a0b0þa2adbdÞx2þðF2a0b0bpbdþG2adbdbpbdÞ�
ð43Þ

B¼ J1þ iJ2 ¼
1

2
þF1

� �
a0b0ðbpþbdÞ

�

þ 1

2
þG1

� �
adbdðbpþb0Þ

�
x

þ i½F2a0b0ðbpþbdÞþa2adbdðbpþbdÞ�x

ð44Þ

After obtaining the expressions for A and B,

Eq. (27) for the modulus at the bottom is reformulated

as follows:

E�
dðxÞ ¼

ðL1L3 þ L2L4Þ þ iðL2L3 � L1L4Þ
L23 þ L24

¼ R1 þ iR2 ð45Þ

where L1 ¼ CH1 þ DJ1 � DH2 þ CJ2

L2 ¼ CH2 þ DJ2 þ DH1 � CJ1

L3 ¼ H2
1 � H2

2 þ J21 � J2

L4 ¼ 2ðH1H2 þ J1J2Þ

Based on the elastic relation for top and bottom

modulus shown in Eq. (2), the complex modulus at the

top is shown as

E�
0ðxÞ ¼ k�ðxÞE�

dðxÞ ð46Þ

The complex modulus at the top is determined as

E�
0ðxÞ ¼ N1 þ iN2 ð47Þ

N1 ¼
k0x2

x2þb2k

L1L3þL2L4

L23þL24

� �
þ bkk0x
x2þb2k

L2L3�L1L4

L23þL24

� �

N2 ¼
k0x2

x2þb2k

L2L3�L1L4

L23þL24

� �
þ bkk0x
x2þb2k

L1L3þL2L4

L23þL24

� �

The elastic equation for the center modulus can be

derived from Eq. (1), which is shown as

Ec ¼ ð1þ k � 1

2n
ÞEd ð48Þ

Thus, the complex modulus at the center is

calculated as

E�
cðxÞ ¼ 1þ k�ðxÞ � 1

2n
�ðxÞ

� �
E�
dðxÞ ð49Þ

Therefore, using the accurate Laplace transforms

for n and k and the complex modulus at the bottom

shown in Eq. (45), the complex modulus at the center

is determined as
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E�
cðxÞ ¼ ðM1R1 �M2R2Þ þ iðM2R1 þ R1R2Þ ð50Þ

where M1 ¼ 2f ðx2 þ b2
k
Þþ pðk0x2 � 1Þþ qðbkk0xÞ
2f ðx2 þ b2

k
Þ

M2 ¼
qðk0x2 � 1Þ � pðbkk0xÞ

2f ðx2 þ b2kÞ
p ¼ cos½lnð2Þg�
q ¼ � sin½lnð2Þg�

f ¼ n0x2

x2 þ b2n

g ¼ bnn0x
x2 þ b2n
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